ADIv5: Implement function to lookup CoreSight component
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
28
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
36 *
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45 *
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
56 */
57
58 /*
59 * Relevant specifications from ARM include:
60 *
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
63 *
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
66 */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
78
79 /*
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89 * *
90 * DP and MEM-AP register access through APACC and DPACC *
91 * *
92 ***************************************************************************/
93
94 /**
95 * Select one of the APs connected to the specified DAP. The
96 * selection is implicitly used with future AP transactions.
97 * This is a NOP if the specified AP is already selected.
98 *
99 * @param dap The DAP
100 * @param apsel Number of the AP to (implicitly) use with further
101 * transactions. This normally identifies a MEM-AP.
102 */
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t apsel)
104 {
105 uint32_t select_apsel = (apsel << 24) & 0xFF000000;
106
107 if (select_apsel != dap->apsel)
108 {
109 dap->apsel = select_apsel;
110 /* Switching AP invalidates cached values.
111 * Values MUST BE UPDATED BEFORE AP ACCESS.
112 */
113 dap->ap_bank_value = -1;
114 dap->ap_csw_value = -1;
115 dap->ap_tar_value = -1;
116 }
117 }
118
119 /**
120 * Queue transactions setting up transfer parameters for the
121 * currently selected MEM-AP.
122 *
123 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124 * initiate data reads or writes using memory or peripheral addresses.
125 * If the CSW is configured for it, the TAR may be automatically
126 * incremented after each transfer.
127 *
128 * @todo Rename to reflect it being specifically a MEM-AP function.
129 *
130 * @param dap The DAP connected to the MEM-AP.
131 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
132 * matches the cached value, the register is not changed.
133 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
134 * matches the cached address, the register is not changed.
135 *
136 * @return ERROR_OK if the transaction was properly queued, else a fault code.
137 */
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
139 {
140 int retval;
141
142 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143 if (csw != dap->ap_csw_value)
144 {
145 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147 if (retval != ERROR_OK)
148 return retval;
149 dap->ap_csw_value = csw;
150 }
151 if (tar != dap->ap_tar_value)
152 {
153 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155 if (retval != ERROR_OK)
156 return retval;
157 dap->ap_tar_value = tar;
158 }
159 /* Disable TAR cache when autoincrementing */
160 if (csw & CSW_ADDRINC_MASK)
161 dap->ap_tar_value = -1;
162 return ERROR_OK;
163 }
164
165 /**
166 * Asynchronous (queued) read of a word from memory or a system register.
167 *
168 * @param dap The DAP connected to the MEM-AP performing the read.
169 * @param address Address of the 32-bit word to read; it must be
170 * readable by the currently selected MEM-AP.
171 * @param value points to where the word will be stored when the
172 * transaction queue is flushed (assuming no errors).
173 *
174 * @return ERROR_OK for success. Otherwise a fault code.
175 */
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177 uint32_t *value)
178 {
179 int retval;
180
181 /* Use banked addressing (REG_BDx) to avoid some link traffic
182 * (updating TAR) when reading several consecutive addresses.
183 */
184 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185 address & 0xFFFFFFF0);
186 if (retval != ERROR_OK)
187 return retval;
188
189 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
190 }
191
192 /**
193 * Synchronous read of a word from memory or a system register.
194 * As a side effect, this flushes any queued transactions.
195 *
196 * @param dap The DAP connected to the MEM-AP performing the read.
197 * @param address Address of the 32-bit word to read; it must be
198 * readable by the currently selected MEM-AP.
199 * @param value points to where the result will be stored.
200 *
201 * @return ERROR_OK for success; *value holds the result.
202 * Otherwise a fault code.
203 */
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205 uint32_t *value)
206 {
207 int retval;
208
209 retval = mem_ap_read_u32(dap, address, value);
210 if (retval != ERROR_OK)
211 return retval;
212
213 return dap_run(dap);
214 }
215
216 /**
217 * Asynchronous (queued) write of a word to memory or a system register.
218 *
219 * @param dap The DAP connected to the MEM-AP.
220 * @param address Address to be written; it must be writable by
221 * the currently selected MEM-AP.
222 * @param value Word that will be written to the address when transaction
223 * queue is flushed (assuming no errors).
224 *
225 * @return ERROR_OK for success. Otherwise a fault code.
226 */
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228 uint32_t value)
229 {
230 int retval;
231
232 /* Use banked addressing (REG_BDx) to avoid some link traffic
233 * (updating TAR) when writing several consecutive addresses.
234 */
235 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236 address & 0xFFFFFFF0);
237 if (retval != ERROR_OK)
238 return retval;
239
240 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241 value);
242 }
243
244 /**
245 * Synchronous write of a word to memory or a system register.
246 * As a side effect, this flushes any queued transactions.
247 *
248 * @param dap The DAP connected to the MEM-AP.
249 * @param address Address to be written; it must be writable by
250 * the currently selected MEM-AP.
251 * @param value Word that will be written.
252 *
253 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
254 */
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256 uint32_t value)
257 {
258 int retval = mem_ap_write_u32(dap, address, value);
259
260 if (retval != ERROR_OK)
261 return retval;
262
263 return dap_run(dap);
264 }
265
266 /*****************************************************************************
267 * *
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
269 * *
270 * Write a buffer in target order (little endian) *
271 * *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
274 {
275 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276 uint32_t adr = address;
277 uint8_t* pBuffer = buffer;
278
279 count >>= 2;
280 wcount = count;
281
282 /* if we have an unaligned access - reorder data */
283 if (adr & 0x3u)
284 {
285 for (writecount = 0; writecount < count; writecount++)
286 {
287 int i;
288 uint32_t outvalue;
289 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
290
291 for (i = 0; i < 4; i++)
292 {
293 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294 outvalue >>= 8;
295 adr++;
296 }
297 pBuffer += sizeof(uint32_t);
298 }
299 }
300
301 while (wcount > 0)
302 {
303 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305 if (wcount < blocksize)
306 blocksize = wcount;
307
308 /* handle unaligned data at 4k boundary */
309 if (blocksize == 0)
310 blocksize = 1;
311
312 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313 if (retval != ERROR_OK)
314 return retval;
315
316 for (writecount = 0; writecount < blocksize; writecount++)
317 {
318 retval = dap_queue_ap_write(dap, AP_REG_DRW,
319 *(uint32_t *) ((void *) (buffer + 4 * writecount)));
320 if (retval != ERROR_OK)
321 break;
322 }
323
324 if ((retval = dap_run(dap)) == ERROR_OK)
325 {
326 wcount = wcount - blocksize;
327 address = address + 4 * blocksize;
328 buffer = buffer + 4 * blocksize;
329 }
330 else
331 {
332 errorcount++;
333 }
334
335 if (errorcount > 1)
336 {
337 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
338 return retval;
339 }
340 }
341
342 return retval;
343 }
344
345 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
346 uint8_t *buffer, int count, uint32_t address)
347 {
348 int retval = ERROR_OK;
349 int wcount, blocksize, writecount, i;
350
351 wcount = count >> 1;
352
353 while (wcount > 0)
354 {
355 int nbytes;
356
357 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
358 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
359
360 if (wcount < blocksize)
361 blocksize = wcount;
362
363 /* handle unaligned data at 4k boundary */
364 if (blocksize == 0)
365 blocksize = 1;
366
367 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
368 if (retval != ERROR_OK)
369 return retval;
370 writecount = blocksize;
371
372 do
373 {
374 nbytes = MIN((writecount << 1), 4);
375
376 if (nbytes < 4)
377 {
378 retval = mem_ap_write_buf_u16(dap, buffer,
379 nbytes, address);
380 if (retval != ERROR_OK)
381 {
382 LOG_WARNING("Block write error address "
383 "0x%" PRIx32 ", count 0x%x",
384 address, count);
385 return retval;
386 }
387
388 address += nbytes >> 1;
389 }
390 else
391 {
392 uint32_t outvalue;
393 memcpy(&outvalue, buffer, sizeof(uint32_t));
394
395 for (i = 0; i < nbytes; i++)
396 {
397 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
398 outvalue >>= 8;
399 address++;
400 }
401
402 memcpy(&outvalue, buffer, sizeof(uint32_t));
403 retval = dap_queue_ap_write(dap,
404 AP_REG_DRW, outvalue);
405 if (retval != ERROR_OK)
406 break;
407
408 if ((retval = dap_run(dap)) != ERROR_OK)
409 {
410 LOG_WARNING("Block write error address "
411 "0x%" PRIx32 ", count 0x%x",
412 address, count);
413 return retval;
414 }
415 }
416
417 buffer += nbytes >> 1;
418 writecount -= nbytes >> 1;
419
420 } while (writecount);
421 wcount -= blocksize;
422 }
423
424 return retval;
425 }
426
427 int mem_ap_write_buf_u16(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
428 {
429 int retval = ERROR_OK;
430
431 if (count >= 4)
432 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
433
434 while (count > 0)
435 {
436 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
437 if (retval != ERROR_OK)
438 return retval;
439 uint16_t svalue;
440 memcpy(&svalue, buffer, sizeof(uint16_t));
441 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
442 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
443 if (retval != ERROR_OK)
444 break;
445
446 retval = dap_run(dap);
447 if (retval != ERROR_OK)
448 break;
449
450 count -= 2;
451 address += 2;
452 buffer += 2;
453 }
454
455 return retval;
456 }
457
458 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
459 uint8_t *buffer, int count, uint32_t address)
460 {
461 int retval = ERROR_OK;
462 int wcount, blocksize, writecount, i;
463
464 wcount = count;
465
466 while (wcount > 0)
467 {
468 int nbytes;
469
470 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
471 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
472
473 if (wcount < blocksize)
474 blocksize = wcount;
475
476 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
477 if (retval != ERROR_OK)
478 return retval;
479 writecount = blocksize;
480
481 do
482 {
483 nbytes = MIN(writecount, 4);
484
485 if (nbytes < 4)
486 {
487 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
488 if (retval != ERROR_OK)
489 {
490 LOG_WARNING("Block write error address "
491 "0x%" PRIx32 ", count 0x%x",
492 address, count);
493 return retval;
494 }
495
496 address += nbytes;
497 }
498 else
499 {
500 uint32_t outvalue;
501 memcpy(&outvalue, buffer, sizeof(uint32_t));
502
503 for (i = 0; i < nbytes; i++)
504 {
505 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
506 outvalue >>= 8;
507 address++;
508 }
509
510 memcpy(&outvalue, buffer, sizeof(uint32_t));
511 retval = dap_queue_ap_write(dap,
512 AP_REG_DRW, outvalue);
513 if (retval != ERROR_OK)
514 break;
515
516 if ((retval = dap_run(dap)) != ERROR_OK)
517 {
518 LOG_WARNING("Block write error address "
519 "0x%" PRIx32 ", count 0x%x",
520 address, count);
521 return retval;
522 }
523 }
524
525 buffer += nbytes;
526 writecount -= nbytes;
527
528 } while (writecount);
529 wcount -= blocksize;
530 }
531
532 return retval;
533 }
534
535 int mem_ap_write_buf_u8(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
536 {
537 int retval = ERROR_OK;
538
539 if (count >= 4)
540 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
541
542 while (count > 0)
543 {
544 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
545 if (retval != ERROR_OK)
546 return retval;
547 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
548 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
549 if (retval != ERROR_OK)
550 break;
551
552 retval = dap_run(dap);
553 if (retval != ERROR_OK)
554 break;
555
556 count--;
557 address++;
558 buffer++;
559 }
560
561 return retval;
562 }
563
564 /* FIXME don't import ... this is a temporary workaround for the
565 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
566 */
567 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
568 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
569 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
570
571 /**
572 * Synchronously read a block of 32-bit words into a buffer
573 * @param dap The DAP connected to the MEM-AP.
574 * @param buffer where the words will be stored (in host byte order).
575 * @param count How many words to read.
576 * @param address Memory address from which to read words; all the
577 * words must be readable by the currently selected MEM-AP.
578 */
579 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
580 int count, uint32_t address)
581 {
582 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
583 uint32_t adr = address;
584 uint8_t* pBuffer = buffer;
585
586 count >>= 2;
587 wcount = count;
588
589 while (wcount > 0)
590 {
591 /* Adjust to read blocks within boundaries aligned to the
592 * TAR autoincrement size (at least 2^10). Autoincrement
593 * mode avoids an extra per-word roundtrip to update TAR.
594 */
595 blocksize = max_tar_block_size(dap->tar_autoincr_block,
596 address);
597 if (wcount < blocksize)
598 blocksize = wcount;
599
600 /* handle unaligned data at 4k boundary */
601 if (blocksize == 0)
602 blocksize = 1;
603
604 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
605 address);
606 if (retval != ERROR_OK)
607 return retval;
608
609 /* FIXME remove these three calls to adi_jtag_dp_scan(),
610 * so this routine becomes transport-neutral. Be careful
611 * not to cause performance problems with JTAG; would it
612 * suffice to loop over dap_queue_ap_read(), or would that
613 * be slower when JTAG is the chosen transport?
614 */
615
616 /* Scan out first read */
617 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
618 DPAP_READ, 0, NULL, NULL);
619 if (retval != ERROR_OK)
620 return retval;
621 for (readcount = 0; readcount < blocksize - 1; readcount++)
622 {
623 /* Scan out next read; scan in posted value for the
624 * previous one. Assumes read is acked "OK/FAULT",
625 * and CTRL_STAT says that meant "OK".
626 */
627 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
628 DPAP_READ, 0, buffer + 4 * readcount,
629 &dap->ack);
630 if (retval != ERROR_OK)
631 return retval;
632 }
633
634 /* Scan in last posted value; RDBUFF has no other effect,
635 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
636 */
637 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
638 DPAP_READ, 0, buffer + 4 * readcount,
639 &dap->ack);
640 if (retval != ERROR_OK)
641 return retval;
642
643 retval = dap_run(dap);
644 if (retval != ERROR_OK)
645 {
646 errorcount++;
647 if (errorcount <= 1)
648 {
649 /* try again */
650 continue;
651 }
652 LOG_WARNING("Block read error address 0x%" PRIx32, address);
653 return retval;
654 }
655 wcount = wcount - blocksize;
656 address += 4 * blocksize;
657 buffer += 4 * blocksize;
658 }
659
660 /* if we have an unaligned access - reorder data */
661 if (adr & 0x3u)
662 {
663 for (readcount = 0; readcount < count; readcount++)
664 {
665 int i;
666 uint32_t data;
667 memcpy(&data, pBuffer, sizeof(uint32_t));
668
669 for (i = 0; i < 4; i++)
670 {
671 *((uint8_t*)pBuffer) =
672 (data >> 8 * (adr & 0x3));
673 pBuffer++;
674 adr++;
675 }
676 }
677 }
678
679 return retval;
680 }
681
682 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
683 uint8_t *buffer, int count, uint32_t address)
684 {
685 uint32_t invalue;
686 int retval = ERROR_OK;
687 int wcount, blocksize, readcount, i;
688
689 wcount = count >> 1;
690
691 while (wcount > 0)
692 {
693 int nbytes;
694
695 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
696 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
697 if (wcount < blocksize)
698 blocksize = wcount;
699
700 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
701 if (retval != ERROR_OK)
702 return retval;
703
704 /* handle unaligned data at 4k boundary */
705 if (blocksize == 0)
706 blocksize = 1;
707 readcount = blocksize;
708
709 do
710 {
711 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
712 if (retval != ERROR_OK)
713 return retval;
714 if ((retval = dap_run(dap)) != ERROR_OK)
715 {
716 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
717 return retval;
718 }
719
720 nbytes = MIN((readcount << 1), 4);
721
722 for (i = 0; i < nbytes; i++)
723 {
724 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
725 buffer++;
726 address++;
727 }
728
729 readcount -= (nbytes >> 1);
730 } while (readcount);
731 wcount -= blocksize;
732 }
733
734 return retval;
735 }
736
737 /**
738 * Synchronously read a block of 16-bit halfwords into a buffer
739 * @param dap The DAP connected to the MEM-AP.
740 * @param buffer where the halfwords will be stored (in host byte order).
741 * @param count How many halfwords to read.
742 * @param address Memory address from which to read words; all the
743 * words must be readable by the currently selected MEM-AP.
744 */
745 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
746 int count, uint32_t address)
747 {
748 uint32_t invalue, i;
749 int retval = ERROR_OK;
750
751 if (count >= 4)
752 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
753
754 while (count > 0)
755 {
756 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
757 if (retval != ERROR_OK)
758 return retval;
759 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
760 if (retval != ERROR_OK)
761 break;
762
763 retval = dap_run(dap);
764 if (retval != ERROR_OK)
765 break;
766
767 if (address & 0x1)
768 {
769 for (i = 0; i < 2; i++)
770 {
771 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
772 buffer++;
773 address++;
774 }
775 }
776 else
777 {
778 uint16_t svalue = (invalue >> 8 * (address & 0x3));
779 memcpy(buffer, &svalue, sizeof(uint16_t));
780 address += 2;
781 buffer += 2;
782 }
783 count -= 2;
784 }
785
786 return retval;
787 }
788
789 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
790 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
791 *
792 * The solution is to arrange for a large out/in scan in this loop and
793 * and convert data afterwards.
794 */
795 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
796 uint8_t *buffer, int count, uint32_t address)
797 {
798 uint32_t invalue;
799 int retval = ERROR_OK;
800 int wcount, blocksize, readcount, i;
801
802 wcount = count;
803
804 while (wcount > 0)
805 {
806 int nbytes;
807
808 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
809 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
810
811 if (wcount < blocksize)
812 blocksize = wcount;
813
814 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
815 if (retval != ERROR_OK)
816 return retval;
817 readcount = blocksize;
818
819 do
820 {
821 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822 if (retval != ERROR_OK)
823 return retval;
824 if ((retval = dap_run(dap)) != ERROR_OK)
825 {
826 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
827 return retval;
828 }
829
830 nbytes = MIN(readcount, 4);
831
832 for (i = 0; i < nbytes; i++)
833 {
834 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
835 buffer++;
836 address++;
837 }
838
839 readcount -= nbytes;
840 } while (readcount);
841 wcount -= blocksize;
842 }
843
844 return retval;
845 }
846
847 /**
848 * Synchronously read a block of bytes into a buffer
849 * @param dap The DAP connected to the MEM-AP.
850 * @param buffer where the bytes will be stored.
851 * @param count How many bytes to read.
852 * @param address Memory address from which to read data; all the
853 * data must be readable by the currently selected MEM-AP.
854 */
855 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
856 int count, uint32_t address)
857 {
858 uint32_t invalue;
859 int retval = ERROR_OK;
860
861 if (count >= 4)
862 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
863
864 while (count > 0)
865 {
866 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
867 if (retval != ERROR_OK)
868 return retval;
869 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
870 if (retval != ERROR_OK)
871 return retval;
872 retval = dap_run(dap);
873 if (retval != ERROR_OK)
874 break;
875
876 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
877 count--;
878 address++;
879 buffer++;
880 }
881
882 return retval;
883 }
884
885 /*--------------------------------------------------------------------------*/
886
887
888 /* FIXME don't import ... just initialize as
889 * part of DAP transport setup
890 */
891 extern const struct dap_ops jtag_dp_ops;
892
893 /*--------------------------------------------------------------------------*/
894
895 /**
896 * Initialize a DAP. This sets up the power domains, prepares the DP
897 * for further use, and arranges to use AP #0 for all AP operations
898 * until dap_ap-select() changes that policy.
899 *
900 * @param dap The DAP being initialized.
901 *
902 * @todo Rename this. We also need an initialization scheme which account
903 * for SWD transports not just JTAG; that will need to address differences
904 * in layering. (JTAG is useful without any debug target; but not SWD.)
905 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
906 */
907 int ahbap_debugport_init(struct adiv5_dap *dap)
908 {
909 uint32_t dummy;
910 uint32_t ctrlstat;
911 int cnt = 0;
912 int retval;
913
914 LOG_DEBUG(" ");
915
916 /* JTAG-DP or SWJ-DP, in JTAG mode */
917 dap->ops = &jtag_dp_ops;
918
919 /* Default MEM-AP setup.
920 *
921 * REVISIT AP #0 may be an inappropriate default for this.
922 * Should we probe, or take a hint from the caller?
923 * Presumably we can ignore the possibility of multiple APs.
924 */
925 dap->apsel = !0;
926 dap_ap_select(dap, 0);
927
928 /* DP initialization */
929
930 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
931 if (retval != ERROR_OK)
932 return retval;
933
934 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
935 if (retval != ERROR_OK)
936 return retval;
937
938 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
939 if (retval != ERROR_OK)
940 return retval;
941
942 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
943 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
944 if (retval != ERROR_OK)
945 return retval;
946
947 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
948 if (retval != ERROR_OK)
949 return retval;
950 if ((retval = dap_run(dap)) != ERROR_OK)
951 return retval;
952
953 /* Check that we have debug power domains activated */
954 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
955 {
956 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
957 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
958 if (retval != ERROR_OK)
959 return retval;
960 if ((retval = dap_run(dap)) != ERROR_OK)
961 return retval;
962 alive_sleep(10);
963 }
964
965 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
966 {
967 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
968 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
969 if (retval != ERROR_OK)
970 return retval;
971 if ((retval = dap_run(dap)) != ERROR_OK)
972 return retval;
973 alive_sleep(10);
974 }
975
976 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
977 if (retval != ERROR_OK)
978 return retval;
979 /* With debug power on we can activate OVERRUN checking */
980 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
981 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
982 if (retval != ERROR_OK)
983 return retval;
984 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
985 if (retval != ERROR_OK)
986 return retval;
987
988 return ERROR_OK;
989 }
990
991 /* CID interpretation -- see ARM IHI 0029B section 3
992 * and ARM IHI 0031A table 13-3.
993 */
994 static const char *class_description[16] ={
995 "Reserved", "ROM table", "Reserved", "Reserved",
996 "Reserved", "Reserved", "Reserved", "Reserved",
997 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
998 "Reserved", "OptimoDE DESS",
999 "Generic IP component", "PrimeCell or System component"
1000 };
1001
1002 static bool
1003 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1004 {
1005 return cid3 == 0xb1 && cid2 == 0x05
1006 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1007 }
1008
1009 struct broken_cpu {
1010 uint32_t dbgbase;
1011 uint32_t apid;
1012 uint32_t correct_dbgbase;
1013 char *model;
1014 } broken_cpus[] = {
1015 { 0x80000000, 0x04770002, 0x60000000, "imx51" },
1016 };
1017
1018 int dap_get_debugbase(struct adiv5_dap *dap, int apsel,
1019 uint32_t *out_dbgbase, uint32_t *out_apid)
1020 {
1021 uint32_t apselold;
1022 int retval;
1023 unsigned int i;
1024 uint32_t dbgbase, apid;
1025
1026 /* AP address is in bits 31:24 of DP_SELECT */
1027 if (apsel >= 256)
1028 return ERROR_INVALID_ARGUMENTS;
1029
1030 apselold = dap->apsel;
1031 dap_ap_select(dap, apsel);
1032
1033 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1034 if (retval != ERROR_OK)
1035 return retval;
1036 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1037 if (retval != ERROR_OK)
1038 return retval;
1039 retval = dap_run(dap);
1040 if (retval != ERROR_OK)
1041 return retval;
1042
1043 /* Some CPUs are messed up, so fixup if needed. */
1044 for (i = 0; i < sizeof(broken_cpus)/sizeof(struct broken_cpu); i++)
1045 if (broken_cpus[i].dbgbase == dbgbase &&
1046 broken_cpus[i].apid == apid) {
1047 LOG_WARNING("Found broken CPU (%s), trying to fixup "
1048 "ROM Table location from 0x%08x to 0x%08x",
1049 broken_cpus[i].model, dbgbase,
1050 broken_cpus[i].correct_dbgbase);
1051 dbgbase = broken_cpus[i].correct_dbgbase;
1052 break;
1053 }
1054
1055 dap_ap_select(dap, apselold);
1056
1057 /* The asignment happens only here to prevent modification of these
1058 * values before they are certain. */
1059 *out_dbgbase = dbgbase;
1060 *out_apid = apid;
1061
1062 return ERROR_OK;
1063 }
1064
1065 int dap_lookup_cs_component(struct adiv5_dap *dap, int apsel,
1066 uint32_t dbgbase, uint8_t type, uint32_t *addr)
1067 {
1068 uint32_t apselold;
1069 uint32_t romentry, entry_offset = 0, component_base, devtype;
1070 int retval = ERROR_FAIL;
1071
1072 if (apsel >= 256)
1073 return ERROR_INVALID_ARGUMENTS;
1074
1075 apselold = dap->apsel;
1076 dap_ap_select(dap, apsel);
1077
1078 do
1079 {
1080 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1081 entry_offset, &romentry);
1082 if (retval != ERROR_OK)
1083 return retval;
1084
1085 component_base = (dbgbase & 0xFFFFF000)
1086 + (romentry & 0xFFFFF000);
1087
1088 if (romentry & 0x1) {
1089 retval = mem_ap_read_atomic_u32(dap,
1090 (component_base & 0xfffff000) | 0xfcc,
1091 &devtype);
1092 if ((devtype & 0xff) == type) {
1093 *addr = component_base;
1094 retval = ERROR_OK;
1095 break;
1096 }
1097 }
1098 entry_offset += 4;
1099 } while (romentry > 0);
1100
1101 dap_ap_select(dap, apselold);
1102
1103 return retval;
1104 }
1105
1106 static int dap_info_command(struct command_context *cmd_ctx,
1107 struct adiv5_dap *dap, int apsel)
1108 {
1109 int retval;
1110 uint32_t dbgbase, apid;
1111 int romtable_present = 0;
1112 uint8_t mem_ap;
1113 uint32_t apselold;
1114
1115 retval = dap_get_debugbase(dap, apsel, &dbgbase, &apid);
1116 if (retval != ERROR_OK)
1117 return retval;
1118
1119 apselold = dap->apsel;
1120 dap_ap_select(dap, apsel);
1121
1122 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1123 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1124 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1125 if (apid)
1126 {
1127 switch (apid&0x0F)
1128 {
1129 case 0:
1130 command_print(cmd_ctx, "\tType is JTAG-AP");
1131 break;
1132 case 1:
1133 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1134 break;
1135 case 2:
1136 command_print(cmd_ctx, "\tType is MEM-AP APB");
1137 break;
1138 default:
1139 command_print(cmd_ctx, "\tUnknown AP type");
1140 break;
1141 }
1142
1143 /* NOTE: a MEM-AP may have a single CoreSight component that's
1144 * not a ROM table ... or have no such components at all.
1145 */
1146 if (mem_ap)
1147 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1148 dbgbase);
1149 }
1150 else
1151 {
1152 command_print(cmd_ctx, "No AP found at this apsel 0x%x", apsel);
1153 }
1154
1155 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1156 if (romtable_present)
1157 {
1158 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1159 uint16_t entry_offset;
1160
1161 /* bit 16 of apid indicates a memory access port */
1162 if (dbgbase & 0x02)
1163 command_print(cmd_ctx, "\tValid ROM table present");
1164 else
1165 command_print(cmd_ctx, "\tROM table in legacy format");
1166
1167 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1168 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1169 if (retval != ERROR_OK)
1170 return retval;
1171 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1172 if (retval != ERROR_OK)
1173 return retval;
1174 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1175 if (retval != ERROR_OK)
1176 return retval;
1177 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1178 if (retval != ERROR_OK)
1179 return retval;
1180 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1181 if (retval != ERROR_OK)
1182 return retval;
1183 retval = dap_run(dap);
1184 if (retval != ERROR_OK)
1185 return retval;
1186
1187 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1188 command_print(cmd_ctx, "\tCID3 0x%2.2x"
1189 ", CID2 0x%2.2x"
1190 ", CID1 0x%2.2x"
1191 ", CID0 0x%2.2x",
1192 (unsigned) cid3, (unsigned)cid2,
1193 (unsigned) cid1, (unsigned) cid0);
1194 if (memtype & 0x01)
1195 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1196 else
1197 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1198 "Dedicated debug bus.");
1199
1200 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1201 entry_offset = 0;
1202 do
1203 {
1204 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1205 if (retval != ERROR_OK)
1206 return retval;
1207 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1208 if (romentry&0x01)
1209 {
1210 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1211 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1212 uint32_t component_base;
1213 unsigned part_num;
1214 char *type, *full;
1215
1216 component_base = (dbgbase & 0xFFFFF000)
1217 + (romentry & 0xFFFFF000);
1218
1219 /* IDs are in last 4K section */
1220
1221
1222 retval = mem_ap_read_atomic_u32(dap,
1223 component_base + 0xFE0, &c_pid0);
1224 if (retval != ERROR_OK)
1225 return retval;
1226 c_pid0 &= 0xff;
1227 retval = mem_ap_read_atomic_u32(dap,
1228 component_base + 0xFE4, &c_pid1);
1229 if (retval != ERROR_OK)
1230 return retval;
1231 c_pid1 &= 0xff;
1232 retval = mem_ap_read_atomic_u32(dap,
1233 component_base + 0xFE8, &c_pid2);
1234 if (retval != ERROR_OK)
1235 return retval;
1236 c_pid2 &= 0xff;
1237 retval = mem_ap_read_atomic_u32(dap,
1238 component_base + 0xFEC, &c_pid3);
1239 if (retval != ERROR_OK)
1240 return retval;
1241 c_pid3 &= 0xff;
1242 retval = mem_ap_read_atomic_u32(dap,
1243 component_base + 0xFD0, &c_pid4);
1244 if (retval != ERROR_OK)
1245 return retval;
1246 c_pid4 &= 0xff;
1247
1248 retval = mem_ap_read_atomic_u32(dap,
1249 component_base + 0xFF0, &c_cid0);
1250 if (retval != ERROR_OK)
1251 return retval;
1252 c_cid0 &= 0xff;
1253 retval = mem_ap_read_atomic_u32(dap,
1254 component_base + 0xFF4, &c_cid1);
1255 if (retval != ERROR_OK)
1256 return retval;
1257 c_cid1 &= 0xff;
1258 retval = mem_ap_read_atomic_u32(dap,
1259 component_base + 0xFF8, &c_cid2);
1260 if (retval != ERROR_OK)
1261 return retval;
1262 c_cid2 &= 0xff;
1263 retval = mem_ap_read_atomic_u32(dap,
1264 component_base + 0xFFC, &c_cid3);
1265 if (retval != ERROR_OK)
1266 return retval;
1267 c_cid3 &= 0xff;
1268
1269
1270 command_print(cmd_ctx,
1271 "\t\tComponent base address 0x%" PRIx32
1272 ", start address 0x%" PRIx32,
1273 component_base,
1274 /* component may take multiple 4K pages */
1275 component_base - 0x1000*(c_pid4 >> 4));
1276 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1277 (int) (c_cid1 >> 4) & 0xf,
1278 /* See ARM IHI 0029B Table 3-3 */
1279 class_description[(c_cid1 >> 4) & 0xf]);
1280
1281 /* CoreSight component? */
1282 if (((c_cid1 >> 4) & 0x0f) == 9) {
1283 uint32_t devtype;
1284 unsigned minor;
1285 char *major = "Reserved", *subtype = "Reserved";
1286
1287 retval = mem_ap_read_atomic_u32(dap,
1288 (component_base & 0xfffff000) | 0xfcc,
1289 &devtype);
1290 if (retval != ERROR_OK)
1291 return retval;
1292 minor = (devtype >> 4) & 0x0f;
1293 switch (devtype & 0x0f) {
1294 case 0:
1295 major = "Miscellaneous";
1296 switch (minor) {
1297 case 0:
1298 subtype = "other";
1299 break;
1300 case 4:
1301 subtype = "Validation component";
1302 break;
1303 }
1304 break;
1305 case 1:
1306 major = "Trace Sink";
1307 switch (minor) {
1308 case 0:
1309 subtype = "other";
1310 break;
1311 case 1:
1312 subtype = "Port";
1313 break;
1314 case 2:
1315 subtype = "Buffer";
1316 break;
1317 }
1318 break;
1319 case 2:
1320 major = "Trace Link";
1321 switch (minor) {
1322 case 0:
1323 subtype = "other";
1324 break;
1325 case 1:
1326 subtype = "Funnel, router";
1327 break;
1328 case 2:
1329 subtype = "Filter";
1330 break;
1331 case 3:
1332 subtype = "FIFO, buffer";
1333 break;
1334 }
1335 break;
1336 case 3:
1337 major = "Trace Source";
1338 switch (minor) {
1339 case 0:
1340 subtype = "other";
1341 break;
1342 case 1:
1343 subtype = "Processor";
1344 break;
1345 case 2:
1346 subtype = "DSP";
1347 break;
1348 case 3:
1349 subtype = "Engine/Coprocessor";
1350 break;
1351 case 4:
1352 subtype = "Bus";
1353 break;
1354 }
1355 break;
1356 case 4:
1357 major = "Debug Control";
1358 switch (minor) {
1359 case 0:
1360 subtype = "other";
1361 break;
1362 case 1:
1363 subtype = "Trigger Matrix";
1364 break;
1365 case 2:
1366 subtype = "Debug Auth";
1367 break;
1368 }
1369 break;
1370 case 5:
1371 major = "Debug Logic";
1372 switch (minor) {
1373 case 0:
1374 subtype = "other";
1375 break;
1376 case 1:
1377 subtype = "Processor";
1378 break;
1379 case 2:
1380 subtype = "DSP";
1381 break;
1382 case 3:
1383 subtype = "Engine/Coprocessor";
1384 break;
1385 }
1386 break;
1387 }
1388 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1389 (unsigned) (devtype & 0xff),
1390 major, subtype);
1391 /* REVISIT also show 0xfc8 DevId */
1392 }
1393
1394 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1395 command_print(cmd_ctx,
1396 "\t\tCID3 0%2.2x"
1397 ", CID2 0%2.2x"
1398 ", CID1 0%2.2x"
1399 ", CID0 0%2.2x",
1400 (int) c_cid3,
1401 (int) c_cid2,
1402 (int)c_cid1,
1403 (int)c_cid0);
1404 command_print(cmd_ctx,
1405 "\t\tPeripheral ID[4..0] = hex "
1406 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1407 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1408 (int) c_pid1, (int) c_pid0);
1409
1410 /* Part number interpretations are from Cortex
1411 * core specs, the CoreSight components TRM
1412 * (ARM DDI 0314H), and ETM specs; also from
1413 * chip observation (e.g. TI SDTI).
1414 */
1415 part_num = (c_pid0 & 0xff);
1416 part_num |= (c_pid1 & 0x0f) << 8;
1417 switch (part_num) {
1418 case 0x000:
1419 type = "Cortex-M3 NVIC";
1420 full = "(Interrupt Controller)";
1421 break;
1422 case 0x001:
1423 type = "Cortex-M3 ITM";
1424 full = "(Instrumentation Trace Module)";
1425 break;
1426 case 0x002:
1427 type = "Cortex-M3 DWT";
1428 full = "(Data Watchpoint and Trace)";
1429 break;
1430 case 0x003:
1431 type = "Cortex-M3 FBP";
1432 full = "(Flash Patch and Breakpoint)";
1433 break;
1434 case 0x00d:
1435 type = "CoreSight ETM11";
1436 full = "(Embedded Trace)";
1437 break;
1438 // case 0x113: what?
1439 case 0x120: /* from OMAP3 memmap */
1440 type = "TI SDTI";
1441 full = "(System Debug Trace Interface)";
1442 break;
1443 case 0x343: /* from OMAP3 memmap */
1444 type = "TI DAPCTL";
1445 full = "";
1446 break;
1447 case 0x906:
1448 type = "Coresight CTI";
1449 full = "(Cross Trigger)";
1450 break;
1451 case 0x907:
1452 type = "Coresight ETB";
1453 full = "(Trace Buffer)";
1454 break;
1455 case 0x908:
1456 type = "Coresight CSTF";
1457 full = "(Trace Funnel)";
1458 break;
1459 case 0x910:
1460 type = "CoreSight ETM9";
1461 full = "(Embedded Trace)";
1462 break;
1463 case 0x912:
1464 type = "Coresight TPIU";
1465 full = "(Trace Port Interface Unit)";
1466 break;
1467 case 0x921:
1468 type = "Cortex-A8 ETM";
1469 full = "(Embedded Trace)";
1470 break;
1471 case 0x922:
1472 type = "Cortex-A8 CTI";
1473 full = "(Cross Trigger)";
1474 break;
1475 case 0x923:
1476 type = "Cortex-M3 TPIU";
1477 full = "(Trace Port Interface Unit)";
1478 break;
1479 case 0x924:
1480 type = "Cortex-M3 ETM";
1481 full = "(Embedded Trace)";
1482 break;
1483 case 0xc08:
1484 type = "Cortex-A8 Debug";
1485 full = "(Debug Unit)";
1486 break;
1487 default:
1488 type = "-*- unrecognized -*-";
1489 full = "";
1490 break;
1491 }
1492 command_print(cmd_ctx, "\t\tPart is %s %s",
1493 type, full);
1494 }
1495 else
1496 {
1497 if (romentry)
1498 command_print(cmd_ctx, "\t\tComponent not present");
1499 else
1500 command_print(cmd_ctx, "\t\tEnd of ROM table");
1501 }
1502 entry_offset += 4;
1503 } while (romentry > 0);
1504 }
1505 else
1506 {
1507 command_print(cmd_ctx, "\tNo ROM table present");
1508 }
1509 dap_ap_select(dap, apselold);
1510
1511 return ERROR_OK;
1512 }
1513
1514 COMMAND_HANDLER(handle_dap_info_command)
1515 {
1516 struct target *target = get_current_target(CMD_CTX);
1517 struct arm *arm = target_to_arm(target);
1518 struct adiv5_dap *dap = arm->dap;
1519 uint32_t apsel;
1520
1521 switch (CMD_ARGC) {
1522 case 0:
1523 apsel = dap->apsel;
1524 break;
1525 case 1:
1526 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1527 break;
1528 default:
1529 return ERROR_COMMAND_SYNTAX_ERROR;
1530 }
1531
1532 return dap_info_command(CMD_CTX, dap, apsel);
1533 }
1534
1535 COMMAND_HANDLER(dap_baseaddr_command)
1536 {
1537 struct target *target = get_current_target(CMD_CTX);
1538 struct arm *arm = target_to_arm(target);
1539 struct adiv5_dap *dap = arm->dap;
1540
1541 uint32_t apsel, apselsave, baseaddr;
1542 int retval;
1543
1544 apselsave = dap->apsel;
1545 switch (CMD_ARGC) {
1546 case 0:
1547 apsel = dap->apsel;
1548 break;
1549 case 1:
1550 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1551 /* AP address is in bits 31:24 of DP_SELECT */
1552 if (apsel >= 256)
1553 return ERROR_INVALID_ARGUMENTS;
1554 break;
1555 default:
1556 return ERROR_COMMAND_SYNTAX_ERROR;
1557 }
1558
1559 if (apselsave != apsel)
1560 dap_ap_select(dap, apsel);
1561
1562 /* NOTE: assumes we're talking to a MEM-AP, which
1563 * has a base address. There are other kinds of AP,
1564 * though they're not common for now. This should
1565 * use the ID register to verify it's a MEM-AP.
1566 */
1567 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1568 if (retval != ERROR_OK)
1569 return retval;
1570 retval = dap_run(dap);
1571 if (retval != ERROR_OK)
1572 return retval;
1573
1574 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1575
1576 if (apselsave != apsel)
1577 dap_ap_select(dap, apselsave);
1578
1579 return retval;
1580 }
1581
1582 COMMAND_HANDLER(dap_memaccess_command)
1583 {
1584 struct target *target = get_current_target(CMD_CTX);
1585 struct arm *arm = target_to_arm(target);
1586 struct adiv5_dap *dap = arm->dap;
1587
1588 uint32_t memaccess_tck;
1589
1590 switch (CMD_ARGC) {
1591 case 0:
1592 memaccess_tck = dap->memaccess_tck;
1593 break;
1594 case 1:
1595 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1596 break;
1597 default:
1598 return ERROR_COMMAND_SYNTAX_ERROR;
1599 }
1600 dap->memaccess_tck = memaccess_tck;
1601
1602 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1603 dap->memaccess_tck);
1604
1605 return ERROR_OK;
1606 }
1607
1608 COMMAND_HANDLER(dap_apsel_command)
1609 {
1610 struct target *target = get_current_target(CMD_CTX);
1611 struct arm *arm = target_to_arm(target);
1612 struct adiv5_dap *dap = arm->dap;
1613
1614 uint32_t apsel, apid;
1615 int retval;
1616
1617 switch (CMD_ARGC) {
1618 case 0:
1619 apsel = 0;
1620 break;
1621 case 1:
1622 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1623 /* AP address is in bits 31:24 of DP_SELECT */
1624 if (apsel >= 256)
1625 return ERROR_INVALID_ARGUMENTS;
1626 break;
1627 default:
1628 return ERROR_COMMAND_SYNTAX_ERROR;
1629 }
1630
1631 dap_ap_select(dap, apsel);
1632 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1633 if (retval != ERROR_OK)
1634 return retval;
1635 retval = dap_run(dap);
1636 if (retval != ERROR_OK)
1637 return retval;
1638
1639 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1640 apsel, apid);
1641
1642 return retval;
1643 }
1644
1645 COMMAND_HANDLER(dap_apid_command)
1646 {
1647 struct target *target = get_current_target(CMD_CTX);
1648 struct arm *arm = target_to_arm(target);
1649 struct adiv5_dap *dap = arm->dap;
1650
1651 uint32_t apsel, apselsave, apid;
1652 int retval;
1653
1654 apselsave = dap->apsel;
1655 switch (CMD_ARGC) {
1656 case 0:
1657 apsel = dap->apsel;
1658 break;
1659 case 1:
1660 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1661 /* AP address is in bits 31:24 of DP_SELECT */
1662 if (apsel >= 256)
1663 return ERROR_INVALID_ARGUMENTS;
1664 break;
1665 default:
1666 return ERROR_COMMAND_SYNTAX_ERROR;
1667 }
1668
1669 if (apselsave != apsel)
1670 dap_ap_select(dap, apsel);
1671
1672 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1673 if (retval != ERROR_OK)
1674 return retval;
1675 retval = dap_run(dap);
1676 if (retval != ERROR_OK)
1677 return retval;
1678
1679 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1680 if (apselsave != apsel)
1681 dap_ap_select(dap, apselsave);
1682
1683 return retval;
1684 }
1685
1686 static const struct command_registration dap_commands[] = {
1687 {
1688 .name = "info",
1689 .handler = handle_dap_info_command,
1690 .mode = COMMAND_EXEC,
1691 .help = "display ROM table for MEM-AP "
1692 "(default currently selected AP)",
1693 .usage = "[ap_num]",
1694 },
1695 {
1696 .name = "apsel",
1697 .handler = dap_apsel_command,
1698 .mode = COMMAND_EXEC,
1699 .help = "Set the currently selected AP (default 0) "
1700 "and display the result",
1701 .usage = "[ap_num]",
1702 },
1703 {
1704 .name = "apid",
1705 .handler = dap_apid_command,
1706 .mode = COMMAND_EXEC,
1707 .help = "return ID register from AP "
1708 "(default currently selected AP)",
1709 .usage = "[ap_num]",
1710 },
1711 {
1712 .name = "baseaddr",
1713 .handler = dap_baseaddr_command,
1714 .mode = COMMAND_EXEC,
1715 .help = "return debug base address from MEM-AP "
1716 "(default currently selected AP)",
1717 .usage = "[ap_num]",
1718 },
1719 {
1720 .name = "memaccess",
1721 .handler = dap_memaccess_command,
1722 .mode = COMMAND_EXEC,
1723 .help = "set/get number of extra tck for MEM-AP memory "
1724 "bus access [0-255]",
1725 .usage = "[cycles]",
1726 },
1727 COMMAND_REGISTRATION_DONE
1728 };
1729
1730 const struct command_registration dap_command_handlers[] = {
1731 {
1732 .name = "dap",
1733 .mode = COMMAND_EXEC,
1734 .help = "DAP command group",
1735 .chain = dap_commands,
1736 },
1737 COMMAND_REGISTRATION_DONE
1738 };
1739
1740

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)