types: write memory now uses const
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
28
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
36 *
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45 *
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
56 */
57
58 /*
59 * Relevant specifications from ARM include:
60 *
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
63 *
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
66 */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
78
79 /*
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89 * *
90 * DP and MEM-AP register access through APACC and DPACC *
91 * *
92 ***************************************************************************/
93
94 /**
95 * Select one of the APs connected to the specified DAP. The
96 * selection is implicitly used with future AP transactions.
97 * This is a NOP if the specified AP is already selected.
98 *
99 * @param dap The DAP
100 * @param apsel Number of the AP to (implicitly) use with further
101 * transactions. This normally identifies a MEM-AP.
102 */
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t ap)
104 {
105 uint32_t new_ap = (ap << 24) & 0xFF000000;
106
107 if (new_ap != dap->ap_current)
108 {
109 dap->ap_current = new_ap;
110 /* Switching AP invalidates cached values.
111 * Values MUST BE UPDATED BEFORE AP ACCESS.
112 */
113 dap->ap_bank_value = -1;
114 dap->ap_csw_value = -1;
115 dap->ap_tar_value = -1;
116 }
117 }
118
119 /**
120 * Queue transactions setting up transfer parameters for the
121 * currently selected MEM-AP.
122 *
123 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124 * initiate data reads or writes using memory or peripheral addresses.
125 * If the CSW is configured for it, the TAR may be automatically
126 * incremented after each transfer.
127 *
128 * @todo Rename to reflect it being specifically a MEM-AP function.
129 *
130 * @param dap The DAP connected to the MEM-AP.
131 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
132 * matches the cached value, the register is not changed.
133 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
134 * matches the cached address, the register is not changed.
135 *
136 * @return ERROR_OK if the transaction was properly queued, else a fault code.
137 */
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
139 {
140 int retval;
141
142 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143 if (csw != dap->ap_csw_value)
144 {
145 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147 if (retval != ERROR_OK)
148 return retval;
149 dap->ap_csw_value = csw;
150 }
151 if (tar != dap->ap_tar_value)
152 {
153 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155 if (retval != ERROR_OK)
156 return retval;
157 dap->ap_tar_value = tar;
158 }
159 /* Disable TAR cache when autoincrementing */
160 if (csw & CSW_ADDRINC_MASK)
161 dap->ap_tar_value = -1;
162 return ERROR_OK;
163 }
164
165 /**
166 * Asynchronous (queued) read of a word from memory or a system register.
167 *
168 * @param dap The DAP connected to the MEM-AP performing the read.
169 * @param address Address of the 32-bit word to read; it must be
170 * readable by the currently selected MEM-AP.
171 * @param value points to where the word will be stored when the
172 * transaction queue is flushed (assuming no errors).
173 *
174 * @return ERROR_OK for success. Otherwise a fault code.
175 */
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177 uint32_t *value)
178 {
179 int retval;
180
181 /* Use banked addressing (REG_BDx) to avoid some link traffic
182 * (updating TAR) when reading several consecutive addresses.
183 */
184 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185 address & 0xFFFFFFF0);
186 if (retval != ERROR_OK)
187 return retval;
188
189 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
190 }
191
192 /**
193 * Synchronous read of a word from memory or a system register.
194 * As a side effect, this flushes any queued transactions.
195 *
196 * @param dap The DAP connected to the MEM-AP performing the read.
197 * @param address Address of the 32-bit word to read; it must be
198 * readable by the currently selected MEM-AP.
199 * @param value points to where the result will be stored.
200 *
201 * @return ERROR_OK for success; *value holds the result.
202 * Otherwise a fault code.
203 */
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205 uint32_t *value)
206 {
207 int retval;
208
209 retval = mem_ap_read_u32(dap, address, value);
210 if (retval != ERROR_OK)
211 return retval;
212
213 return dap_run(dap);
214 }
215
216 /**
217 * Asynchronous (queued) write of a word to memory or a system register.
218 *
219 * @param dap The DAP connected to the MEM-AP.
220 * @param address Address to be written; it must be writable by
221 * the currently selected MEM-AP.
222 * @param value Word that will be written to the address when transaction
223 * queue is flushed (assuming no errors).
224 *
225 * @return ERROR_OK for success. Otherwise a fault code.
226 */
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228 uint32_t value)
229 {
230 int retval;
231
232 /* Use banked addressing (REG_BDx) to avoid some link traffic
233 * (updating TAR) when writing several consecutive addresses.
234 */
235 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236 address & 0xFFFFFFF0);
237 if (retval != ERROR_OK)
238 return retval;
239
240 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241 value);
242 }
243
244 /**
245 * Synchronous write of a word to memory or a system register.
246 * As a side effect, this flushes any queued transactions.
247 *
248 * @param dap The DAP connected to the MEM-AP.
249 * @param address Address to be written; it must be writable by
250 * the currently selected MEM-AP.
251 * @param value Word that will be written.
252 *
253 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
254 */
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256 uint32_t value)
257 {
258 int retval = mem_ap_write_u32(dap, address, value);
259
260 if (retval != ERROR_OK)
261 return retval;
262
263 return dap_run(dap);
264 }
265
266 /*****************************************************************************
267 * *
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
269 * *
270 * Write a buffer in target order (little endian) *
271 * *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
274 {
275 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276 uint32_t adr = address;
277 const uint8_t* pBuffer = buffer;
278
279 count >>= 2;
280 wcount = count;
281
282 /* if we have an unaligned access - reorder data */
283 if (adr & 0x3u)
284 {
285 for (writecount = 0; writecount < count; writecount++)
286 {
287 int i;
288 uint32_t outvalue;
289 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
290
291 for (i = 0; i < 4; i++)
292 {
293 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294 outvalue >>= 8;
295 adr++;
296 }
297 pBuffer += sizeof(uint32_t);
298 }
299 }
300
301 while (wcount > 0)
302 {
303 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305 if (wcount < blocksize)
306 blocksize = wcount;
307
308 /* handle unaligned data at 4k boundary */
309 if (blocksize == 0)
310 blocksize = 1;
311
312 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313 if (retval != ERROR_OK)
314 return retval;
315
316 for (writecount = 0; writecount < blocksize; writecount++)
317 {
318 retval = dap_queue_ap_write(dap, AP_REG_DRW,
319 *(uint32_t *) ((void *) (buffer + 4 * writecount)));
320 if (retval != ERROR_OK)
321 break;
322 }
323
324 if ((retval = dap_run(dap)) == ERROR_OK)
325 {
326 wcount = wcount - blocksize;
327 address = address + 4 * blocksize;
328 buffer = buffer + 4 * blocksize;
329 }
330 else
331 {
332 errorcount++;
333 }
334
335 if (errorcount > 1)
336 {
337 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
338 return retval;
339 }
340 }
341
342 return retval;
343 }
344
345 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
346 const uint8_t *buffer, int count, uint32_t address)
347 {
348 int retval = ERROR_OK;
349 int wcount, blocksize, writecount, i;
350
351 wcount = count >> 1;
352
353 while (wcount > 0)
354 {
355 int nbytes;
356
357 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
358 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
359
360 if (wcount < blocksize)
361 blocksize = wcount;
362
363 /* handle unaligned data at 4k boundary */
364 if (blocksize == 0)
365 blocksize = 1;
366
367 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
368 if (retval != ERROR_OK)
369 return retval;
370 writecount = blocksize;
371
372 do
373 {
374 nbytes = MIN((writecount << 1), 4);
375
376 if (nbytes < 4)
377 {
378 retval = mem_ap_write_buf_u16(dap, buffer,
379 nbytes, address);
380 if (retval != ERROR_OK)
381 {
382 LOG_WARNING("Block write error address "
383 "0x%" PRIx32 ", count 0x%x",
384 address, count);
385 return retval;
386 }
387
388 address += nbytes >> 1;
389 }
390 else
391 {
392 uint32_t outvalue;
393 memcpy(&outvalue, buffer, sizeof(uint32_t));
394
395 for (i = 0; i < nbytes; i++)
396 {
397 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
398 outvalue >>= 8;
399 address++;
400 }
401
402 memcpy(&outvalue, buffer, sizeof(uint32_t));
403 retval = dap_queue_ap_write(dap,
404 AP_REG_DRW, outvalue);
405 if (retval != ERROR_OK)
406 break;
407
408 if ((retval = dap_run(dap)) != ERROR_OK)
409 {
410 LOG_WARNING("Block write error address "
411 "0x%" PRIx32 ", count 0x%x",
412 address, count);
413 return retval;
414 }
415 }
416
417 buffer += nbytes >> 1;
418 writecount -= nbytes >> 1;
419
420 } while (writecount);
421 wcount -= blocksize;
422 }
423
424 return retval;
425 }
426
427 int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
428 {
429 int retval = ERROR_OK;
430
431 if (count >= 4)
432 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
433
434 while (count > 0)
435 {
436 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
437 if (retval != ERROR_OK)
438 return retval;
439 uint16_t svalue;
440 memcpy(&svalue, buffer, sizeof(uint16_t));
441 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
442 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
443 if (retval != ERROR_OK)
444 break;
445
446 retval = dap_run(dap);
447 if (retval != ERROR_OK)
448 break;
449
450 count -= 2;
451 address += 2;
452 buffer += 2;
453 }
454
455 return retval;
456 }
457
458 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
459 const uint8_t *buffer, int count, uint32_t address)
460 {
461 int retval = ERROR_OK;
462 int wcount, blocksize, writecount, i;
463
464 wcount = count;
465
466 while (wcount > 0)
467 {
468 int nbytes;
469
470 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
471 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
472
473 if (wcount < blocksize)
474 blocksize = wcount;
475
476 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
477 if (retval != ERROR_OK)
478 return retval;
479 writecount = blocksize;
480
481 do
482 {
483 nbytes = MIN(writecount, 4);
484
485 if (nbytes < 4)
486 {
487 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
488 if (retval != ERROR_OK)
489 {
490 LOG_WARNING("Block write error address "
491 "0x%" PRIx32 ", count 0x%x",
492 address, count);
493 return retval;
494 }
495
496 address += nbytes;
497 }
498 else
499 {
500 uint32_t outvalue;
501 memcpy(&outvalue, buffer, sizeof(uint32_t));
502
503 for (i = 0; i < nbytes; i++)
504 {
505 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
506 outvalue >>= 8;
507 address++;
508 }
509
510 memcpy(&outvalue, buffer, sizeof(uint32_t));
511 retval = dap_queue_ap_write(dap,
512 AP_REG_DRW, outvalue);
513 if (retval != ERROR_OK)
514 break;
515
516 if ((retval = dap_run(dap)) != ERROR_OK)
517 {
518 LOG_WARNING("Block write error address "
519 "0x%" PRIx32 ", count 0x%x",
520 address, count);
521 return retval;
522 }
523 }
524
525 buffer += nbytes;
526 writecount -= nbytes;
527
528 } while (writecount);
529 wcount -= blocksize;
530 }
531
532 return retval;
533 }
534
535 int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
536 {
537 int retval = ERROR_OK;
538
539 if (count >= 4)
540 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
541
542 while (count > 0)
543 {
544 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
545 if (retval != ERROR_OK)
546 return retval;
547 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
548 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
549 if (retval != ERROR_OK)
550 break;
551
552 retval = dap_run(dap);
553 if (retval != ERROR_OK)
554 break;
555
556 count--;
557 address++;
558 buffer++;
559 }
560
561 return retval;
562 }
563
564 /* FIXME don't import ... this is a temporary workaround for the
565 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
566 */
567 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
568 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
569 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
570
571 /**
572 * Synchronously read a block of 32-bit words into a buffer
573 * @param dap The DAP connected to the MEM-AP.
574 * @param buffer where the words will be stored (in host byte order).
575 * @param count How many words to read.
576 * @param address Memory address from which to read words; all the
577 * words must be readable by the currently selected MEM-AP.
578 */
579 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
580 int count, uint32_t address)
581 {
582 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
583 uint32_t adr = address;
584 uint8_t* pBuffer = buffer;
585
586 count >>= 2;
587 wcount = count;
588
589 while (wcount > 0)
590 {
591 /* Adjust to read blocks within boundaries aligned to the
592 * TAR autoincrement size (at least 2^10). Autoincrement
593 * mode avoids an extra per-word roundtrip to update TAR.
594 */
595 blocksize = max_tar_block_size(dap->tar_autoincr_block,
596 address);
597 if (wcount < blocksize)
598 blocksize = wcount;
599
600 /* handle unaligned data at 4k boundary */
601 if (blocksize == 0)
602 blocksize = 1;
603
604 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
605 address);
606 if (retval != ERROR_OK)
607 return retval;
608
609 /* FIXME remove these three calls to adi_jtag_dp_scan(),
610 * so this routine becomes transport-neutral. Be careful
611 * not to cause performance problems with JTAG; would it
612 * suffice to loop over dap_queue_ap_read(), or would that
613 * be slower when JTAG is the chosen transport?
614 */
615
616 /* Scan out first read */
617 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
618 DPAP_READ, 0, NULL, NULL);
619 if (retval != ERROR_OK)
620 return retval;
621 for (readcount = 0; readcount < blocksize - 1; readcount++)
622 {
623 /* Scan out next read; scan in posted value for the
624 * previous one. Assumes read is acked "OK/FAULT",
625 * and CTRL_STAT says that meant "OK".
626 */
627 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
628 DPAP_READ, 0, buffer + 4 * readcount,
629 &dap->ack);
630 if (retval != ERROR_OK)
631 return retval;
632 }
633
634 /* Scan in last posted value; RDBUFF has no other effect,
635 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
636 */
637 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
638 DPAP_READ, 0, buffer + 4 * readcount,
639 &dap->ack);
640 if (retval != ERROR_OK)
641 return retval;
642
643 retval = dap_run(dap);
644 if (retval != ERROR_OK)
645 {
646 errorcount++;
647 if (errorcount <= 1)
648 {
649 /* try again */
650 continue;
651 }
652 LOG_WARNING("Block read error address 0x%" PRIx32, address);
653 return retval;
654 }
655 wcount = wcount - blocksize;
656 address += 4 * blocksize;
657 buffer += 4 * blocksize;
658 }
659
660 /* if we have an unaligned access - reorder data */
661 if (adr & 0x3u)
662 {
663 for (readcount = 0; readcount < count; readcount++)
664 {
665 int i;
666 uint32_t data;
667 memcpy(&data, pBuffer, sizeof(uint32_t));
668
669 for (i = 0; i < 4; i++)
670 {
671 *((uint8_t*)pBuffer) =
672 (data >> 8 * (adr & 0x3));
673 pBuffer++;
674 adr++;
675 }
676 }
677 }
678
679 return retval;
680 }
681
682 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
683 uint8_t *buffer, int count, uint32_t address)
684 {
685 uint32_t invalue;
686 int retval = ERROR_OK;
687 int wcount, blocksize, readcount, i;
688
689 wcount = count >> 1;
690
691 while (wcount > 0)
692 {
693 int nbytes;
694
695 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
696 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
697 if (wcount < blocksize)
698 blocksize = wcount;
699
700 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
701 if (retval != ERROR_OK)
702 return retval;
703
704 /* handle unaligned data at 4k boundary */
705 if (blocksize == 0)
706 blocksize = 1;
707 readcount = blocksize;
708
709 do
710 {
711 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
712 if (retval != ERROR_OK)
713 return retval;
714 if ((retval = dap_run(dap)) != ERROR_OK)
715 {
716 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
717 return retval;
718 }
719
720 nbytes = MIN((readcount << 1), 4);
721
722 for (i = 0; i < nbytes; i++)
723 {
724 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
725 buffer++;
726 address++;
727 }
728
729 readcount -= (nbytes >> 1);
730 } while (readcount);
731 wcount -= blocksize;
732 }
733
734 return retval;
735 }
736
737 /**
738 * Synchronously read a block of 16-bit halfwords into a buffer
739 * @param dap The DAP connected to the MEM-AP.
740 * @param buffer where the halfwords will be stored (in host byte order).
741 * @param count How many halfwords to read.
742 * @param address Memory address from which to read words; all the
743 * words must be readable by the currently selected MEM-AP.
744 */
745 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
746 int count, uint32_t address)
747 {
748 uint32_t invalue, i;
749 int retval = ERROR_OK;
750
751 if (count >= 4)
752 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
753
754 while (count > 0)
755 {
756 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
757 if (retval != ERROR_OK)
758 return retval;
759 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
760 if (retval != ERROR_OK)
761 break;
762
763 retval = dap_run(dap);
764 if (retval != ERROR_OK)
765 break;
766
767 if (address & 0x1)
768 {
769 for (i = 0; i < 2; i++)
770 {
771 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
772 buffer++;
773 address++;
774 }
775 }
776 else
777 {
778 uint16_t svalue = (invalue >> 8 * (address & 0x3));
779 memcpy(buffer, &svalue, sizeof(uint16_t));
780 address += 2;
781 buffer += 2;
782 }
783 count -= 2;
784 }
785
786 return retval;
787 }
788
789 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
790 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
791 *
792 * The solution is to arrange for a large out/in scan in this loop and
793 * and convert data afterwards.
794 */
795 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
796 uint8_t *buffer, int count, uint32_t address)
797 {
798 uint32_t invalue;
799 int retval = ERROR_OK;
800 int wcount, blocksize, readcount, i;
801
802 wcount = count;
803
804 while (wcount > 0)
805 {
806 int nbytes;
807
808 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
809 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
810
811 if (wcount < blocksize)
812 blocksize = wcount;
813
814 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
815 if (retval != ERROR_OK)
816 return retval;
817 readcount = blocksize;
818
819 do
820 {
821 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822 if (retval != ERROR_OK)
823 return retval;
824 if ((retval = dap_run(dap)) != ERROR_OK)
825 {
826 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
827 return retval;
828 }
829
830 nbytes = MIN(readcount, 4);
831
832 for (i = 0; i < nbytes; i++)
833 {
834 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
835 buffer++;
836 address++;
837 }
838
839 readcount -= nbytes;
840 } while (readcount);
841 wcount -= blocksize;
842 }
843
844 return retval;
845 }
846
847 /**
848 * Synchronously read a block of bytes into a buffer
849 * @param dap The DAP connected to the MEM-AP.
850 * @param buffer where the bytes will be stored.
851 * @param count How many bytes to read.
852 * @param address Memory address from which to read data; all the
853 * data must be readable by the currently selected MEM-AP.
854 */
855 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
856 int count, uint32_t address)
857 {
858 uint32_t invalue;
859 int retval = ERROR_OK;
860
861 if (count >= 4)
862 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
863
864 while (count > 0)
865 {
866 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
867 if (retval != ERROR_OK)
868 return retval;
869 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
870 if (retval != ERROR_OK)
871 return retval;
872 retval = dap_run(dap);
873 if (retval != ERROR_OK)
874 break;
875
876 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
877 count--;
878 address++;
879 buffer++;
880 }
881
882 return retval;
883 }
884
885 /*--------------------------------------------------------------------*/
886 /* Wrapping function with selection of AP */
887 /*--------------------------------------------------------------------*/
888 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
889 uint32_t address, uint32_t *value)
890 {
891 dap_ap_select(swjdp, ap);
892 return mem_ap_read_u32(swjdp, address, value);
893 }
894
895 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
896 uint32_t address, uint32_t value)
897 {
898 dap_ap_select(swjdp, ap);
899 return mem_ap_write_u32(swjdp, address, value);
900 }
901
902 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
903 uint32_t address, uint32_t *value)
904 {
905 dap_ap_select(swjdp, ap);
906 return mem_ap_read_atomic_u32(swjdp, address, value);
907 }
908
909 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
910 uint32_t address, uint32_t value)
911 {
912 dap_ap_select(swjdp, ap);
913 return mem_ap_write_atomic_u32(swjdp, address, value);
914 }
915
916 int mem_ap_sel_read_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
917 uint8_t *buffer, int count, uint32_t address)
918 {
919 dap_ap_select(swjdp, ap);
920 return mem_ap_read_buf_u8(swjdp, buffer, count, address);
921 }
922
923 int mem_ap_sel_read_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
924 uint8_t *buffer, int count, uint32_t address)
925 {
926 dap_ap_select(swjdp, ap);
927 return mem_ap_read_buf_u16(swjdp, buffer, count, address);
928 }
929
930 int mem_ap_sel_read_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
931 uint8_t *buffer, int count, uint32_t address)
932 {
933 dap_ap_select(swjdp, ap);
934 return mem_ap_read_buf_u32(swjdp, buffer, count, address);
935 }
936
937 int mem_ap_sel_write_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
938 const uint8_t *buffer, int count, uint32_t address)
939 {
940 dap_ap_select(swjdp, ap);
941 return mem_ap_write_buf_u8(swjdp, buffer, count, address);
942 }
943
944 int mem_ap_sel_write_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
945 const uint8_t *buffer, int count, uint32_t address)
946 {
947 dap_ap_select(swjdp, ap);
948 return mem_ap_write_buf_u16(swjdp, buffer, count, address);
949 }
950
951 int mem_ap_sel_write_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
952 const uint8_t *buffer, int count, uint32_t address)
953 {
954 dap_ap_select(swjdp, ap);
955 return mem_ap_write_buf_u32(swjdp, buffer, count, address);
956 }
957
958
959 /*--------------------------------------------------------------------------*/
960
961
962 /* FIXME don't import ... just initialize as
963 * part of DAP transport setup
964 */
965 extern const struct dap_ops jtag_dp_ops;
966
967 /*--------------------------------------------------------------------------*/
968
969 /**
970 * Initialize a DAP. This sets up the power domains, prepares the DP
971 * for further use, and arranges to use AP #0 for all AP operations
972 * until dap_ap-select() changes that policy.
973 *
974 * @param dap The DAP being initialized.
975 *
976 * @todo Rename this. We also need an initialization scheme which account
977 * for SWD transports not just JTAG; that will need to address differences
978 * in layering. (JTAG is useful without any debug target; but not SWD.)
979 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
980 */
981 int ahbap_debugport_init(struct adiv5_dap *dap)
982 {
983 uint32_t ctrlstat;
984 int cnt = 0;
985 int retval;
986
987 LOG_DEBUG(" ");
988
989 /* JTAG-DP or SWJ-DP, in JTAG mode
990 * ... for SWD mode this is patched as part
991 * of link switchover
992 */
993 if (!dap->ops)
994 dap->ops = &jtag_dp_ops;
995
996 /* Default MEM-AP setup.
997 *
998 * REVISIT AP #0 may be an inappropriate default for this.
999 * Should we probe, or take a hint from the caller?
1000 * Presumably we can ignore the possibility of multiple APs.
1001 */
1002 dap->ap_current = !0;
1003 dap_ap_select(dap, 0);
1004
1005 /* DP initialization */
1006
1007 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1008 if (retval != ERROR_OK)
1009 return retval;
1010
1011 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
1012 if (retval != ERROR_OK)
1013 return retval;
1014
1015 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1016 if (retval != ERROR_OK)
1017 return retval;
1018
1019 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
1020 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1021 if (retval != ERROR_OK)
1022 return retval;
1023
1024 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1025 if (retval != ERROR_OK)
1026 return retval;
1027 if ((retval = dap_run(dap)) != ERROR_OK)
1028 return retval;
1029
1030 /* Check that we have debug power domains activated */
1031 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
1032 {
1033 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
1034 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1035 if (retval != ERROR_OK)
1036 return retval;
1037 if ((retval = dap_run(dap)) != ERROR_OK)
1038 return retval;
1039 alive_sleep(10);
1040 }
1041
1042 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
1043 {
1044 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
1045 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1046 if (retval != ERROR_OK)
1047 return retval;
1048 if ((retval = dap_run(dap)) != ERROR_OK)
1049 return retval;
1050 alive_sleep(10);
1051 }
1052
1053 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1054 if (retval != ERROR_OK)
1055 return retval;
1056 /* With debug power on we can activate OVERRUN checking */
1057 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
1058 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1059 if (retval != ERROR_OK)
1060 return retval;
1061 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1062 if (retval != ERROR_OK)
1063 return retval;
1064
1065 return ERROR_OK;
1066 }
1067
1068 /* CID interpretation -- see ARM IHI 0029B section 3
1069 * and ARM IHI 0031A table 13-3.
1070 */
1071 static const char *class_description[16] ={
1072 "Reserved", "ROM table", "Reserved", "Reserved",
1073 "Reserved", "Reserved", "Reserved", "Reserved",
1074 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1075 "Reserved", "OptimoDE DESS",
1076 "Generic IP component", "PrimeCell or System component"
1077 };
1078
1079 static bool
1080 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1081 {
1082 return cid3 == 0xb1 && cid2 == 0x05
1083 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1084 }
1085
1086 struct broken_cpu {
1087 uint32_t dbgbase;
1088 uint32_t apid;
1089 uint32_t idcode;
1090 uint32_t correct_dbgbase;
1091 char *model;
1092 } broken_cpus[] = {
1093 { 0x80000000, 0x04770002, 0x1ba00477, 0x60000000, "imx51" },
1094 { 0x80040000, 0x04770002, 0x3b95c02f, 0x80000000, "omap4430" },
1095 };
1096
1097 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
1098 uint32_t *out_dbgbase, uint32_t *out_apid)
1099 {
1100 uint32_t ap_old;
1101 int retval;
1102 unsigned int i;
1103 uint32_t dbgbase, apid, idcode;
1104
1105 /* AP address is in bits 31:24 of DP_SELECT */
1106 if (ap >= 256)
1107 return ERROR_INVALID_ARGUMENTS;
1108
1109 ap_old = dap->ap_current;
1110 dap_ap_select(dap, ap);
1111
1112 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1113 if (retval != ERROR_OK)
1114 return retval;
1115 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1116 if (retval != ERROR_OK)
1117 return retval;
1118 retval = dap_run(dap);
1119 if (retval != ERROR_OK)
1120 return retval;
1121
1122 /* Excavate the device ID code */
1123 struct jtag_tap *tap = dap->jtag_info->tap;
1124 while (tap != NULL) {
1125 if (tap->hasidcode) {
1126 idcode = tap->idcode;
1127 break;
1128 }
1129 tap = tap->next_tap;
1130 }
1131 if (tap == NULL || !tap->hasidcode)
1132 return ERROR_OK;
1133
1134 /* Some CPUs are messed up, so fixup if needed. */
1135 for (i = 0; i < sizeof(broken_cpus)/sizeof(struct broken_cpu); i++)
1136 if (broken_cpus[i].dbgbase == dbgbase &&
1137 broken_cpus[i].apid == apid &&
1138 broken_cpus[i].idcode == idcode) {
1139 LOG_WARNING("Found broken CPU (%s), trying to fixup "
1140 "ROM Table location from 0x%08x to 0x%08x",
1141 broken_cpus[i].model, dbgbase,
1142 broken_cpus[i].correct_dbgbase);
1143 dbgbase = broken_cpus[i].correct_dbgbase;
1144 break;
1145 }
1146
1147 dap_ap_select(dap, ap_old);
1148
1149 /* The asignment happens only here to prevent modification of these
1150 * values before they are certain. */
1151 *out_dbgbase = dbgbase;
1152 *out_apid = apid;
1153
1154 return ERROR_OK;
1155 }
1156
1157 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
1158 uint32_t dbgbase, uint8_t type, uint32_t *addr)
1159 {
1160 uint32_t ap_old;
1161 uint32_t romentry, entry_offset = 0, component_base, devtype;
1162 int retval = ERROR_FAIL;
1163
1164 if (ap >= 256)
1165 return ERROR_INVALID_ARGUMENTS;
1166
1167 ap_old = dap->ap_current;
1168 dap_ap_select(dap, ap);
1169
1170 do
1171 {
1172 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1173 entry_offset, &romentry);
1174 if (retval != ERROR_OK)
1175 return retval;
1176
1177 component_base = (dbgbase & 0xFFFFF000)
1178 + (romentry & 0xFFFFF000);
1179
1180 if (romentry & 0x1) {
1181 retval = mem_ap_read_atomic_u32(dap,
1182 (component_base & 0xfffff000) | 0xfcc,
1183 &devtype);
1184 if ((devtype & 0xff) == type) {
1185 *addr = component_base;
1186 retval = ERROR_OK;
1187 break;
1188 }
1189 }
1190 entry_offset += 4;
1191 } while (romentry > 0);
1192
1193 dap_ap_select(dap, ap_old);
1194
1195 return retval;
1196 }
1197
1198 static int dap_info_command(struct command_context *cmd_ctx,
1199 struct adiv5_dap *dap, int ap)
1200 {
1201 int retval;
1202 uint32_t dbgbase, apid;
1203 int romtable_present = 0;
1204 uint8_t mem_ap;
1205 uint32_t ap_old;
1206
1207 retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1208 if (retval != ERROR_OK)
1209 return retval;
1210
1211 ap_old = dap->ap_current;
1212 dap_ap_select(dap, ap);
1213
1214 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1215 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1216 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1217 if (apid)
1218 {
1219 switch (apid&0x0F)
1220 {
1221 case 0:
1222 command_print(cmd_ctx, "\tType is JTAG-AP");
1223 break;
1224 case 1:
1225 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1226 break;
1227 case 2:
1228 command_print(cmd_ctx, "\tType is MEM-AP APB");
1229 break;
1230 default:
1231 command_print(cmd_ctx, "\tUnknown AP type");
1232 break;
1233 }
1234
1235 /* NOTE: a MEM-AP may have a single CoreSight component that's
1236 * not a ROM table ... or have no such components at all.
1237 */
1238 if (mem_ap)
1239 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1240 dbgbase);
1241 }
1242 else
1243 {
1244 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1245 }
1246
1247 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1248 if (romtable_present)
1249 {
1250 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1251 uint16_t entry_offset;
1252
1253 /* bit 16 of apid indicates a memory access port */
1254 if (dbgbase & 0x02)
1255 command_print(cmd_ctx, "\tValid ROM table present");
1256 else
1257 command_print(cmd_ctx, "\tROM table in legacy format");
1258
1259 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1260 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1261 if (retval != ERROR_OK)
1262 return retval;
1263 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1264 if (retval != ERROR_OK)
1265 return retval;
1266 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1267 if (retval != ERROR_OK)
1268 return retval;
1269 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1270 if (retval != ERROR_OK)
1271 return retval;
1272 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1273 if (retval != ERROR_OK)
1274 return retval;
1275 retval = dap_run(dap);
1276 if (retval != ERROR_OK)
1277 return retval;
1278
1279 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1280 command_print(cmd_ctx, "\tCID3 0x%2.2x"
1281 ", CID2 0x%2.2x"
1282 ", CID1 0x%2.2x"
1283 ", CID0 0x%2.2x",
1284 (unsigned) cid3, (unsigned)cid2,
1285 (unsigned) cid1, (unsigned) cid0);
1286 if (memtype & 0x01)
1287 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1288 else
1289 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1290 "Dedicated debug bus.");
1291
1292 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1293 entry_offset = 0;
1294 do
1295 {
1296 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1297 if (retval != ERROR_OK)
1298 return retval;
1299 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1300 if (romentry&0x01)
1301 {
1302 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1303 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1304 uint32_t component_base;
1305 unsigned part_num;
1306 char *type, *full;
1307
1308 component_base = (dbgbase & 0xFFFFF000)
1309 + (romentry & 0xFFFFF000);
1310
1311 /* IDs are in last 4K section */
1312
1313
1314 retval = mem_ap_read_atomic_u32(dap,
1315 component_base + 0xFE0, &c_pid0);
1316 if (retval != ERROR_OK)
1317 return retval;
1318 c_pid0 &= 0xff;
1319 retval = mem_ap_read_atomic_u32(dap,
1320 component_base + 0xFE4, &c_pid1);
1321 if (retval != ERROR_OK)
1322 return retval;
1323 c_pid1 &= 0xff;
1324 retval = mem_ap_read_atomic_u32(dap,
1325 component_base + 0xFE8, &c_pid2);
1326 if (retval != ERROR_OK)
1327 return retval;
1328 c_pid2 &= 0xff;
1329 retval = mem_ap_read_atomic_u32(dap,
1330 component_base + 0xFEC, &c_pid3);
1331 if (retval != ERROR_OK)
1332 return retval;
1333 c_pid3 &= 0xff;
1334 retval = mem_ap_read_atomic_u32(dap,
1335 component_base + 0xFD0, &c_pid4);
1336 if (retval != ERROR_OK)
1337 return retval;
1338 c_pid4 &= 0xff;
1339
1340 retval = mem_ap_read_atomic_u32(dap,
1341 component_base + 0xFF0, &c_cid0);
1342 if (retval != ERROR_OK)
1343 return retval;
1344 c_cid0 &= 0xff;
1345 retval = mem_ap_read_atomic_u32(dap,
1346 component_base + 0xFF4, &c_cid1);
1347 if (retval != ERROR_OK)
1348 return retval;
1349 c_cid1 &= 0xff;
1350 retval = mem_ap_read_atomic_u32(dap,
1351 component_base + 0xFF8, &c_cid2);
1352 if (retval != ERROR_OK)
1353 return retval;
1354 c_cid2 &= 0xff;
1355 retval = mem_ap_read_atomic_u32(dap,
1356 component_base + 0xFFC, &c_cid3);
1357 if (retval != ERROR_OK)
1358 return retval;
1359 c_cid3 &= 0xff;
1360
1361
1362 command_print(cmd_ctx,
1363 "\t\tComponent base address 0x%" PRIx32
1364 ", start address 0x%" PRIx32,
1365 component_base,
1366 /* component may take multiple 4K pages */
1367 component_base - 0x1000*(c_pid4 >> 4));
1368 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1369 (int) (c_cid1 >> 4) & 0xf,
1370 /* See ARM IHI 0029B Table 3-3 */
1371 class_description[(c_cid1 >> 4) & 0xf]);
1372
1373 /* CoreSight component? */
1374 if (((c_cid1 >> 4) & 0x0f) == 9) {
1375 uint32_t devtype;
1376 unsigned minor;
1377 char *major = "Reserved", *subtype = "Reserved";
1378
1379 retval = mem_ap_read_atomic_u32(dap,
1380 (component_base & 0xfffff000) | 0xfcc,
1381 &devtype);
1382 if (retval != ERROR_OK)
1383 return retval;
1384 minor = (devtype >> 4) & 0x0f;
1385 switch (devtype & 0x0f) {
1386 case 0:
1387 major = "Miscellaneous";
1388 switch (minor) {
1389 case 0:
1390 subtype = "other";
1391 break;
1392 case 4:
1393 subtype = "Validation component";
1394 break;
1395 }
1396 break;
1397 case 1:
1398 major = "Trace Sink";
1399 switch (minor) {
1400 case 0:
1401 subtype = "other";
1402 break;
1403 case 1:
1404 subtype = "Port";
1405 break;
1406 case 2:
1407 subtype = "Buffer";
1408 break;
1409 }
1410 break;
1411 case 2:
1412 major = "Trace Link";
1413 switch (minor) {
1414 case 0:
1415 subtype = "other";
1416 break;
1417 case 1:
1418 subtype = "Funnel, router";
1419 break;
1420 case 2:
1421 subtype = "Filter";
1422 break;
1423 case 3:
1424 subtype = "FIFO, buffer";
1425 break;
1426 }
1427 break;
1428 case 3:
1429 major = "Trace Source";
1430 switch (minor) {
1431 case 0:
1432 subtype = "other";
1433 break;
1434 case 1:
1435 subtype = "Processor";
1436 break;
1437 case 2:
1438 subtype = "DSP";
1439 break;
1440 case 3:
1441 subtype = "Engine/Coprocessor";
1442 break;
1443 case 4:
1444 subtype = "Bus";
1445 break;
1446 }
1447 break;
1448 case 4:
1449 major = "Debug Control";
1450 switch (minor) {
1451 case 0:
1452 subtype = "other";
1453 break;
1454 case 1:
1455 subtype = "Trigger Matrix";
1456 break;
1457 case 2:
1458 subtype = "Debug Auth";
1459 break;
1460 }
1461 break;
1462 case 5:
1463 major = "Debug Logic";
1464 switch (minor) {
1465 case 0:
1466 subtype = "other";
1467 break;
1468 case 1:
1469 subtype = "Processor";
1470 break;
1471 case 2:
1472 subtype = "DSP";
1473 break;
1474 case 3:
1475 subtype = "Engine/Coprocessor";
1476 break;
1477 }
1478 break;
1479 }
1480 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1481 (unsigned) (devtype & 0xff),
1482 major, subtype);
1483 /* REVISIT also show 0xfc8 DevId */
1484 }
1485
1486 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1487 command_print(cmd_ctx,
1488 "\t\tCID3 0%2.2x"
1489 ", CID2 0%2.2x"
1490 ", CID1 0%2.2x"
1491 ", CID0 0%2.2x",
1492 (int) c_cid3,
1493 (int) c_cid2,
1494 (int)c_cid1,
1495 (int)c_cid0);
1496 command_print(cmd_ctx,
1497 "\t\tPeripheral ID[4..0] = hex "
1498 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1499 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1500 (int) c_pid1, (int) c_pid0);
1501
1502 /* Part number interpretations are from Cortex
1503 * core specs, the CoreSight components TRM
1504 * (ARM DDI 0314H), CoreSight System Design
1505 * Guide (ARM DGI 0012D) and ETM specs; also
1506 * from chip observation (e.g. TI SDTI).
1507 */
1508 part_num = (c_pid0 & 0xff);
1509 part_num |= (c_pid1 & 0x0f) << 8;
1510 switch (part_num) {
1511 case 0x000:
1512 type = "Cortex-M3 NVIC";
1513 full = "(Interrupt Controller)";
1514 break;
1515 case 0x001:
1516 type = "Cortex-M3 ITM";
1517 full = "(Instrumentation Trace Module)";
1518 break;
1519 case 0x002:
1520 type = "Cortex-M3 DWT";
1521 full = "(Data Watchpoint and Trace)";
1522 break;
1523 case 0x003:
1524 type = "Cortex-M3 FBP";
1525 full = "(Flash Patch and Breakpoint)";
1526 break;
1527 case 0x00d:
1528 type = "CoreSight ETM11";
1529 full = "(Embedded Trace)";
1530 break;
1531 // case 0x113: what?
1532 case 0x120: /* from OMAP3 memmap */
1533 type = "TI SDTI";
1534 full = "(System Debug Trace Interface)";
1535 break;
1536 case 0x343: /* from OMAP3 memmap */
1537 type = "TI DAPCTL";
1538 full = "";
1539 break;
1540 case 0x906:
1541 type = "Coresight CTI";
1542 full = "(Cross Trigger)";
1543 break;
1544 case 0x907:
1545 type = "Coresight ETB";
1546 full = "(Trace Buffer)";
1547 break;
1548 case 0x908:
1549 type = "Coresight CSTF";
1550 full = "(Trace Funnel)";
1551 break;
1552 case 0x910:
1553 type = "CoreSight ETM9";
1554 full = "(Embedded Trace)";
1555 break;
1556 case 0x912:
1557 type = "Coresight TPIU";
1558 full = "(Trace Port Interface Unit)";
1559 break;
1560 case 0x921:
1561 type = "Cortex-A8 ETM";
1562 full = "(Embedded Trace)";
1563 break;
1564 case 0x922:
1565 type = "Cortex-A8 CTI";
1566 full = "(Cross Trigger)";
1567 break;
1568 case 0x923:
1569 type = "Cortex-M3 TPIU";
1570 full = "(Trace Port Interface Unit)";
1571 break;
1572 case 0x924:
1573 type = "Cortex-M3 ETM";
1574 full = "(Embedded Trace)";
1575 break;
1576 case 0x930:
1577 type = "Cortex-R4 ETM";
1578 full = "(Embedded Trace)";
1579 break;
1580 case 0xc08:
1581 type = "Cortex-A8 Debug";
1582 full = "(Debug Unit)";
1583 break;
1584 default:
1585 type = "-*- unrecognized -*-";
1586 full = "";
1587 break;
1588 }
1589 command_print(cmd_ctx, "\t\tPart is %s %s",
1590 type, full);
1591 }
1592 else
1593 {
1594 if (romentry)
1595 command_print(cmd_ctx, "\t\tComponent not present");
1596 else
1597 command_print(cmd_ctx, "\t\tEnd of ROM table");
1598 }
1599 entry_offset += 4;
1600 } while (romentry > 0);
1601 }
1602 else
1603 {
1604 command_print(cmd_ctx, "\tNo ROM table present");
1605 }
1606 dap_ap_select(dap, ap_old);
1607
1608 return ERROR_OK;
1609 }
1610
1611 COMMAND_HANDLER(handle_dap_info_command)
1612 {
1613 struct target *target = get_current_target(CMD_CTX);
1614 struct arm *arm = target_to_arm(target);
1615 struct adiv5_dap *dap = arm->dap;
1616 uint32_t apsel;
1617
1618 switch (CMD_ARGC) {
1619 case 0:
1620 apsel = dap->apsel;
1621 break;
1622 case 1:
1623 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1624 break;
1625 default:
1626 return ERROR_COMMAND_SYNTAX_ERROR;
1627 }
1628
1629 return dap_info_command(CMD_CTX, dap, apsel);
1630 }
1631
1632 COMMAND_HANDLER(dap_baseaddr_command)
1633 {
1634 struct target *target = get_current_target(CMD_CTX);
1635 struct arm *arm = target_to_arm(target);
1636 struct adiv5_dap *dap = arm->dap;
1637
1638 uint32_t apsel, baseaddr;
1639 int retval;
1640
1641 switch (CMD_ARGC) {
1642 case 0:
1643 apsel = dap->apsel;
1644 break;
1645 case 1:
1646 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1647 /* AP address is in bits 31:24 of DP_SELECT */
1648 if (apsel >= 256)
1649 return ERROR_INVALID_ARGUMENTS;
1650 break;
1651 default:
1652 return ERROR_COMMAND_SYNTAX_ERROR;
1653 }
1654
1655 dap_ap_select(dap, apsel);
1656
1657 /* NOTE: assumes we're talking to a MEM-AP, which
1658 * has a base address. There are other kinds of AP,
1659 * though they're not common for now. This should
1660 * use the ID register to verify it's a MEM-AP.
1661 */
1662 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1663 if (retval != ERROR_OK)
1664 return retval;
1665 retval = dap_run(dap);
1666 if (retval != ERROR_OK)
1667 return retval;
1668
1669 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1670
1671 return retval;
1672 }
1673
1674 COMMAND_HANDLER(dap_memaccess_command)
1675 {
1676 struct target *target = get_current_target(CMD_CTX);
1677 struct arm *arm = target_to_arm(target);
1678 struct adiv5_dap *dap = arm->dap;
1679
1680 uint32_t memaccess_tck;
1681
1682 switch (CMD_ARGC) {
1683 case 0:
1684 memaccess_tck = dap->memaccess_tck;
1685 break;
1686 case 1:
1687 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1688 break;
1689 default:
1690 return ERROR_COMMAND_SYNTAX_ERROR;
1691 }
1692 dap->memaccess_tck = memaccess_tck;
1693
1694 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1695 dap->memaccess_tck);
1696
1697 return ERROR_OK;
1698 }
1699
1700 COMMAND_HANDLER(dap_apsel_command)
1701 {
1702 struct target *target = get_current_target(CMD_CTX);
1703 struct arm *arm = target_to_arm(target);
1704 struct adiv5_dap *dap = arm->dap;
1705
1706 uint32_t apsel, apid;
1707 int retval;
1708
1709 switch (CMD_ARGC) {
1710 case 0:
1711 apsel = 0;
1712 break;
1713 case 1:
1714 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1715 /* AP address is in bits 31:24 of DP_SELECT */
1716 if (apsel >= 256)
1717 return ERROR_INVALID_ARGUMENTS;
1718 break;
1719 default:
1720 return ERROR_COMMAND_SYNTAX_ERROR;
1721 }
1722
1723 dap->apsel = apsel;
1724 dap_ap_select(dap, apsel);
1725
1726 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1727 if (retval != ERROR_OK)
1728 return retval;
1729 retval = dap_run(dap);
1730 if (retval != ERROR_OK)
1731 return retval;
1732
1733 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1734 apsel, apid);
1735
1736 return retval;
1737 }
1738
1739 COMMAND_HANDLER(dap_apid_command)
1740 {
1741 struct target *target = get_current_target(CMD_CTX);
1742 struct arm *arm = target_to_arm(target);
1743 struct adiv5_dap *dap = arm->dap;
1744
1745 uint32_t apsel, apid;
1746 int retval;
1747
1748 switch (CMD_ARGC) {
1749 case 0:
1750 apsel = dap->apsel;
1751 break;
1752 case 1:
1753 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1754 /* AP address is in bits 31:24 of DP_SELECT */
1755 if (apsel >= 256)
1756 return ERROR_INVALID_ARGUMENTS;
1757 break;
1758 default:
1759 return ERROR_COMMAND_SYNTAX_ERROR;
1760 }
1761
1762 dap_ap_select(dap, apsel);
1763
1764 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1765 if (retval != ERROR_OK)
1766 return retval;
1767 retval = dap_run(dap);
1768 if (retval != ERROR_OK)
1769 return retval;
1770
1771 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1772
1773 return retval;
1774 }
1775
1776 static const struct command_registration dap_commands[] = {
1777 {
1778 .name = "info",
1779 .handler = handle_dap_info_command,
1780 .mode = COMMAND_EXEC,
1781 .help = "display ROM table for MEM-AP "
1782 "(default currently selected AP)",
1783 .usage = "[ap_num]",
1784 },
1785 {
1786 .name = "apsel",
1787 .handler = dap_apsel_command,
1788 .mode = COMMAND_EXEC,
1789 .help = "Set the currently selected AP (default 0) "
1790 "and display the result",
1791 .usage = "[ap_num]",
1792 },
1793 {
1794 .name = "apid",
1795 .handler = dap_apid_command,
1796 .mode = COMMAND_EXEC,
1797 .help = "return ID register from AP "
1798 "(default currently selected AP)",
1799 .usage = "[ap_num]",
1800 },
1801 {
1802 .name = "baseaddr",
1803 .handler = dap_baseaddr_command,
1804 .mode = COMMAND_EXEC,
1805 .help = "return debug base address from MEM-AP "
1806 "(default currently selected AP)",
1807 .usage = "[ap_num]",
1808 },
1809 {
1810 .name = "memaccess",
1811 .handler = dap_memaccess_command,
1812 .mode = COMMAND_EXEC,
1813 .help = "set/get number of extra tck for MEM-AP memory "
1814 "bus access [0-255]",
1815 .usage = "[cycles]",
1816 },
1817 COMMAND_REGISTRATION_DONE
1818 };
1819
1820 const struct command_registration dap_command_handlers[] = {
1821 {
1822 .name = "dap",
1823 .mode = COMMAND_EXEC,
1824 .help = "DAP command group",
1825 .chain = dap_commands,
1826 },
1827 COMMAND_REGISTRATION_DONE
1828 };
1829
1830

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)