arm_adi_v5: error propagation fixes
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
28
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
36 *
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45 *
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
56 */
57
58 /*
59 * Relevant specifications from ARM include:
60 *
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
63 *
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
66 */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
78
79 /*
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89 * *
90 * DP and MEM-AP register access through APACC and DPACC *
91 * *
92 ***************************************************************************/
93
94 /**
95 * Select one of the APs connected to the specified DAP. The
96 * selection is implicitly used with future AP transactions.
97 * This is a NOP if the specified AP is already selected.
98 *
99 * @param dap The DAP
100 * @param apsel Number of the AP to (implicitly) use with further
101 * transactions. This normally identifies a MEM-AP.
102 */
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t apsel)
104 {
105 uint32_t select_apsel = (apsel << 24) & 0xFF000000;
106
107 if (select_apsel != dap->apsel)
108 {
109 dap->apsel = select_apsel;
110 /* Switching AP invalidates cached values.
111 * Values MUST BE UPDATED BEFORE AP ACCESS.
112 */
113 dap->ap_bank_value = -1;
114 dap->ap_csw_value = -1;
115 dap->ap_tar_value = -1;
116 }
117 }
118
119 /**
120 * Queue transactions setting up transfer parameters for the
121 * currently selected MEM-AP.
122 *
123 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124 * initiate data reads or writes using memory or peripheral addresses.
125 * If the CSW is configured for it, the TAR may be automatically
126 * incremented after each transfer.
127 *
128 * @todo Rename to reflect it being specifically a MEM-AP function.
129 *
130 * @param dap The DAP connected to the MEM-AP.
131 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
132 * matches the cached value, the register is not changed.
133 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
134 * matches the cached address, the register is not changed.
135 *
136 * @return ERROR_OK if the transaction was properly queued, else a fault code.
137 */
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
139 {
140 int retval;
141
142 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143 if (csw != dap->ap_csw_value)
144 {
145 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147 if (retval != ERROR_OK)
148 return retval;
149 dap->ap_csw_value = csw;
150 }
151 if (tar != dap->ap_tar_value)
152 {
153 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155 if (retval != ERROR_OK)
156 return retval;
157 dap->ap_tar_value = tar;
158 }
159 /* Disable TAR cache when autoincrementing */
160 if (csw & CSW_ADDRINC_MASK)
161 dap->ap_tar_value = -1;
162 return ERROR_OK;
163 }
164
165 /**
166 * Asynchronous (queued) read of a word from memory or a system register.
167 *
168 * @param dap The DAP connected to the MEM-AP performing the read.
169 * @param address Address of the 32-bit word to read; it must be
170 * readable by the currently selected MEM-AP.
171 * @param value points to where the word will be stored when the
172 * transaction queue is flushed (assuming no errors).
173 *
174 * @return ERROR_OK for success. Otherwise a fault code.
175 */
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177 uint32_t *value)
178 {
179 int retval;
180
181 /* Use banked addressing (REG_BDx) to avoid some link traffic
182 * (updating TAR) when reading several consecutive addresses.
183 */
184 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185 address & 0xFFFFFFF0);
186 if (retval != ERROR_OK)
187 return retval;
188
189 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
190 }
191
192 /**
193 * Synchronous read of a word from memory or a system register.
194 * As a side effect, this flushes any queued transactions.
195 *
196 * @param dap The DAP connected to the MEM-AP performing the read.
197 * @param address Address of the 32-bit word to read; it must be
198 * readable by the currently selected MEM-AP.
199 * @param value points to where the result will be stored.
200 *
201 * @return ERROR_OK for success; *value holds the result.
202 * Otherwise a fault code.
203 */
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205 uint32_t *value)
206 {
207 int retval;
208
209 retval = mem_ap_read_u32(dap, address, value);
210 if (retval != ERROR_OK)
211 return retval;
212
213 return dap_run(dap);
214 }
215
216 /**
217 * Asynchronous (queued) write of a word to memory or a system register.
218 *
219 * @param dap The DAP connected to the MEM-AP.
220 * @param address Address to be written; it must be writable by
221 * the currently selected MEM-AP.
222 * @param value Word that will be written to the address when transaction
223 * queue is flushed (assuming no errors).
224 *
225 * @return ERROR_OK for success. Otherwise a fault code.
226 */
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228 uint32_t value)
229 {
230 int retval;
231
232 /* Use banked addressing (REG_BDx) to avoid some link traffic
233 * (updating TAR) when writing several consecutive addresses.
234 */
235 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236 address & 0xFFFFFFF0);
237 if (retval != ERROR_OK)
238 return retval;
239
240 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241 value);
242 }
243
244 /**
245 * Synchronous write of a word to memory or a system register.
246 * As a side effect, this flushes any queued transactions.
247 *
248 * @param dap The DAP connected to the MEM-AP.
249 * @param address Address to be written; it must be writable by
250 * the currently selected MEM-AP.
251 * @param value Word that will be written.
252 *
253 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
254 */
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256 uint32_t value)
257 {
258 int retval = mem_ap_write_u32(dap, address, value);
259
260 if (retval != ERROR_OK)
261 return retval;
262
263 return dap_run(dap);
264 }
265
266 /*****************************************************************************
267 * *
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
269 * *
270 * Write a buffer in target order (little endian) *
271 * *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
274 {
275 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276 uint32_t adr = address;
277 uint8_t* pBuffer = buffer;
278
279 count >>= 2;
280 wcount = count;
281
282 /* if we have an unaligned access - reorder data */
283 if (adr & 0x3u)
284 {
285 for (writecount = 0; writecount < count; writecount++)
286 {
287 int i;
288 uint32_t outvalue;
289 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
290
291 for (i = 0; i < 4; i++)
292 {
293 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294 outvalue >>= 8;
295 adr++;
296 }
297 pBuffer += sizeof(uint32_t);
298 }
299 }
300
301 while (wcount > 0)
302 {
303 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305 if (wcount < blocksize)
306 blocksize = wcount;
307
308 /* handle unaligned data at 4k boundary */
309 if (blocksize == 0)
310 blocksize = 1;
311
312 dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313
314 for (writecount = 0; writecount < blocksize; writecount++)
315 {
316 retval = dap_queue_ap_write(dap, AP_REG_DRW,
317 *(uint32_t *) (buffer + 4 * writecount));
318 if (retval != ERROR_OK)
319 break;
320 }
321
322 if (dap_run(dap) == ERROR_OK)
323 {
324 wcount = wcount - blocksize;
325 address = address + 4 * blocksize;
326 buffer = buffer + 4 * blocksize;
327 }
328 else
329 {
330 errorcount++;
331 }
332
333 if (errorcount > 1)
334 {
335 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
336 /* REVISIT return the *actual* fault code */
337 return ERROR_JTAG_DEVICE_ERROR;
338 }
339 }
340
341 return retval;
342 }
343
344 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
345 uint8_t *buffer, int count, uint32_t address)
346 {
347 int retval = ERROR_OK;
348 int wcount, blocksize, writecount, i;
349
350 wcount = count >> 1;
351
352 while (wcount > 0)
353 {
354 int nbytes;
355
356 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
357 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
358
359 if (wcount < blocksize)
360 blocksize = wcount;
361
362 /* handle unaligned data at 4k boundary */
363 if (blocksize == 0)
364 blocksize = 1;
365
366 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
367 writecount = blocksize;
368
369 do
370 {
371 nbytes = MIN((writecount << 1), 4);
372
373 if (nbytes < 4)
374 {
375 if (mem_ap_write_buf_u16(dap, buffer,
376 nbytes, address) != ERROR_OK)
377 {
378 LOG_WARNING("Block write error address "
379 "0x%" PRIx32 ", count 0x%x",
380 address, count);
381 return ERROR_JTAG_DEVICE_ERROR;
382 }
383
384 address += nbytes >> 1;
385 }
386 else
387 {
388 uint32_t outvalue;
389 memcpy(&outvalue, buffer, sizeof(uint32_t));
390
391 for (i = 0; i < nbytes; i++)
392 {
393 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
394 outvalue >>= 8;
395 address++;
396 }
397
398 memcpy(&outvalue, buffer, sizeof(uint32_t));
399 retval = dap_queue_ap_write(dap,
400 AP_REG_DRW, outvalue);
401 if (retval != ERROR_OK)
402 break;
403
404 if (dap_run(dap) != ERROR_OK)
405 {
406 LOG_WARNING("Block write error address "
407 "0x%" PRIx32 ", count 0x%x",
408 address, count);
409 /* REVISIT return *actual* fault code */
410 return ERROR_JTAG_DEVICE_ERROR;
411 }
412 }
413
414 buffer += nbytes >> 1;
415 writecount -= nbytes >> 1;
416
417 } while (writecount);
418 wcount -= blocksize;
419 }
420
421 return retval;
422 }
423
424 int mem_ap_write_buf_u16(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
425 {
426 int retval = ERROR_OK;
427
428 if (count >= 4)
429 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
430
431 while (count > 0)
432 {
433 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
434 uint16_t svalue;
435 memcpy(&svalue, buffer, sizeof(uint16_t));
436 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
437 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
438 if (retval != ERROR_OK)
439 break;
440
441 retval = dap_run(dap);
442 if (retval != ERROR_OK)
443 break;
444
445 count -= 2;
446 address += 2;
447 buffer += 2;
448 }
449
450 return retval;
451 }
452
453 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
454 uint8_t *buffer, int count, uint32_t address)
455 {
456 int retval = ERROR_OK;
457 int wcount, blocksize, writecount, i;
458
459 wcount = count;
460
461 while (wcount > 0)
462 {
463 int nbytes;
464
465 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
466 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
467
468 if (wcount < blocksize)
469 blocksize = wcount;
470
471 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
472 writecount = blocksize;
473
474 do
475 {
476 nbytes = MIN(writecount, 4);
477
478 if (nbytes < 4)
479 {
480 if (mem_ap_write_buf_u8(dap, buffer, nbytes, address) != ERROR_OK)
481 {
482 LOG_WARNING("Block write error address "
483 "0x%" PRIx32 ", count 0x%x",
484 address, count);
485 return ERROR_JTAG_DEVICE_ERROR;
486 }
487
488 address += nbytes;
489 }
490 else
491 {
492 uint32_t outvalue;
493 memcpy(&outvalue, buffer, sizeof(uint32_t));
494
495 for (i = 0; i < nbytes; i++)
496 {
497 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
498 outvalue >>= 8;
499 address++;
500 }
501
502 memcpy(&outvalue, buffer, sizeof(uint32_t));
503 retval = dap_queue_ap_write(dap,
504 AP_REG_DRW, outvalue);
505 if (retval != ERROR_OK)
506 break;
507
508 if (dap_run(dap) != ERROR_OK)
509 {
510 LOG_WARNING("Block write error address "
511 "0x%" PRIx32 ", count 0x%x",
512 address, count);
513 /* REVISIT return *actual* fault code */
514 return ERROR_JTAG_DEVICE_ERROR;
515 }
516 }
517
518 buffer += nbytes;
519 writecount -= nbytes;
520
521 } while (writecount);
522 wcount -= blocksize;
523 }
524
525 return retval;
526 }
527
528 int mem_ap_write_buf_u8(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
529 {
530 int retval = ERROR_OK;
531
532 if (count >= 4)
533 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
534
535 while (count > 0)
536 {
537 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
538 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
539 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
540 if (retval != ERROR_OK)
541 break;
542
543 retval = dap_run(dap);
544 if (retval != ERROR_OK)
545 break;
546
547 count--;
548 address++;
549 buffer++;
550 }
551
552 return retval;
553 }
554
555 /* FIXME don't import ... this is a temporary workaround for the
556 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
557 */
558 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
559 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
560 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
561
562 /**
563 * Synchronously read a block of 32-bit words into a buffer
564 * @param dap The DAP connected to the MEM-AP.
565 * @param buffer where the words will be stored (in host byte order).
566 * @param count How many words to read.
567 * @param address Memory address from which to read words; all the
568 * words must be readable by the currently selected MEM-AP.
569 */
570 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
571 int count, uint32_t address)
572 {
573 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
574 uint32_t adr = address;
575 uint8_t* pBuffer = buffer;
576
577 count >>= 2;
578 wcount = count;
579
580 while (wcount > 0)
581 {
582 /* Adjust to read blocks within boundaries aligned to the
583 * TAR autoincrement size (at least 2^10). Autoincrement
584 * mode avoids an extra per-word roundtrip to update TAR.
585 */
586 blocksize = max_tar_block_size(dap->tar_autoincr_block,
587 address);
588 if (wcount < blocksize)
589 blocksize = wcount;
590
591 /* handle unaligned data at 4k boundary */
592 if (blocksize == 0)
593 blocksize = 1;
594
595 dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
596 address);
597
598 /* FIXME remove these three calls to adi_jtag_dp_scan(),
599 * so this routine becomes transport-neutral. Be careful
600 * not to cause performance problems with JTAG; would it
601 * suffice to loop over dap_queue_ap_read(), or would that
602 * be slower when JTAG is the chosen transport?
603 */
604
605 /* Scan out first read */
606 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
607 DPAP_READ, 0, NULL, NULL);
608 if (retval != ERROR_OK)
609 return retval;
610 for (readcount = 0; readcount < blocksize - 1; readcount++)
611 {
612 /* Scan out next read; scan in posted value for the
613 * previous one. Assumes read is acked "OK/FAULT",
614 * and CTRL_STAT says that meant "OK".
615 */
616 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
617 DPAP_READ, 0, buffer + 4 * readcount,
618 &dap->ack);
619 if (retval != ERROR_OK)
620 return retval;
621 }
622
623 /* Scan in last posted value; RDBUFF has no other effect,
624 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
625 */
626 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
627 DPAP_READ, 0, buffer + 4 * readcount,
628 &dap->ack);
629 if (retval != ERROR_OK)
630 return retval;
631
632 retval = dap_run(dap);
633 if (retval != ERROR_OK)
634 {
635 errorcount++;
636 if (errorcount <= 1)
637 {
638 /* try again */
639 continue;
640 }
641 LOG_WARNING("Block read error address 0x%" PRIx32, address);
642 return retval;
643 }
644 wcount = wcount - blocksize;
645 address += 4 * blocksize;
646 buffer += 4 * blocksize;
647 }
648
649 /* if we have an unaligned access - reorder data */
650 if (adr & 0x3u)
651 {
652 for (readcount = 0; readcount < count; readcount++)
653 {
654 int i;
655 uint32_t data;
656 memcpy(&data, pBuffer, sizeof(uint32_t));
657
658 for (i = 0; i < 4; i++)
659 {
660 *((uint8_t*)pBuffer) =
661 (data >> 8 * (adr & 0x3));
662 pBuffer++;
663 adr++;
664 }
665 }
666 }
667
668 return retval;
669 }
670
671 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
672 uint8_t *buffer, int count, uint32_t address)
673 {
674 uint32_t invalue;
675 int retval = ERROR_OK;
676 int wcount, blocksize, readcount, i;
677
678 wcount = count >> 1;
679
680 while (wcount > 0)
681 {
682 int nbytes;
683
684 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
685 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
686 if (wcount < blocksize)
687 blocksize = wcount;
688
689 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
690
691 /* handle unaligned data at 4k boundary */
692 if (blocksize == 0)
693 blocksize = 1;
694 readcount = blocksize;
695
696 do
697 {
698 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
699 if (dap_run(dap) != ERROR_OK)
700 {
701 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
702 /* REVISIT return the *actual* fault code */
703 return ERROR_JTAG_DEVICE_ERROR;
704 }
705
706 nbytes = MIN((readcount << 1), 4);
707
708 for (i = 0; i < nbytes; i++)
709 {
710 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
711 buffer++;
712 address++;
713 }
714
715 readcount -= (nbytes >> 1);
716 } while (readcount);
717 wcount -= blocksize;
718 }
719
720 return retval;
721 }
722
723 /**
724 * Synchronously read a block of 16-bit halfwords into a buffer
725 * @param dap The DAP connected to the MEM-AP.
726 * @param buffer where the halfwords will be stored (in host byte order).
727 * @param count How many halfwords to read.
728 * @param address Memory address from which to read words; all the
729 * words must be readable by the currently selected MEM-AP.
730 */
731 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
732 int count, uint32_t address)
733 {
734 uint32_t invalue, i;
735 int retval = ERROR_OK;
736
737 if (count >= 4)
738 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
739
740 while (count > 0)
741 {
742 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
743 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
744 if (retval != ERROR_OK)
745 break;
746
747 retval = dap_run(dap);
748 if (retval != ERROR_OK)
749 break;
750
751 if (address & 0x1)
752 {
753 for (i = 0; i < 2; i++)
754 {
755 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
756 buffer++;
757 address++;
758 }
759 }
760 else
761 {
762 uint16_t svalue = (invalue >> 8 * (address & 0x3));
763 memcpy(buffer, &svalue, sizeof(uint16_t));
764 address += 2;
765 buffer += 2;
766 }
767 count -= 2;
768 }
769
770 return retval;
771 }
772
773 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
774 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
775 *
776 * The solution is to arrange for a large out/in scan in this loop and
777 * and convert data afterwards.
778 */
779 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
780 uint8_t *buffer, int count, uint32_t address)
781 {
782 uint32_t invalue;
783 int retval = ERROR_OK;
784 int wcount, blocksize, readcount, i;
785
786 wcount = count;
787
788 while (wcount > 0)
789 {
790 int nbytes;
791
792 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
793 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
794
795 if (wcount < blocksize)
796 blocksize = wcount;
797
798 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
799 readcount = blocksize;
800
801 do
802 {
803 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
804 if (dap_run(dap) != ERROR_OK)
805 {
806 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
807 /* REVISIT return the *actual* fault code */
808 return ERROR_JTAG_DEVICE_ERROR;
809 }
810
811 nbytes = MIN(readcount, 4);
812
813 for (i = 0; i < nbytes; i++)
814 {
815 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
816 buffer++;
817 address++;
818 }
819
820 readcount -= nbytes;
821 } while (readcount);
822 wcount -= blocksize;
823 }
824
825 return retval;
826 }
827
828 /**
829 * Synchronously read a block of bytes into a buffer
830 * @param dap The DAP connected to the MEM-AP.
831 * @param buffer where the bytes will be stored.
832 * @param count How many bytes to read.
833 * @param address Memory address from which to read data; all the
834 * data must be readable by the currently selected MEM-AP.
835 */
836 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
837 int count, uint32_t address)
838 {
839 uint32_t invalue;
840 int retval = ERROR_OK;
841
842 if (count >= 4)
843 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
844
845 while (count > 0)
846 {
847 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
848 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
849 retval = dap_run(dap);
850 if (retval != ERROR_OK)
851 break;
852
853 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
854 count--;
855 address++;
856 buffer++;
857 }
858
859 return retval;
860 }
861
862 /*--------------------------------------------------------------------------*/
863
864
865 /* FIXME don't import ... just initialize as
866 * part of DAP transport setup
867 */
868 extern const struct dap_ops jtag_dp_ops;
869
870 /*--------------------------------------------------------------------------*/
871
872 /**
873 * Initialize a DAP. This sets up the power domains, prepares the DP
874 * for further use, and arranges to use AP #0 for all AP operations
875 * until dap_ap-select() changes that policy.
876 *
877 * @param dap The DAP being initialized.
878 *
879 * @todo Rename this. We also need an initialization scheme which account
880 * for SWD transports not just JTAG; that will need to address differences
881 * in layering. (JTAG is useful without any debug target; but not SWD.)
882 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
883 */
884 int ahbap_debugport_init(struct adiv5_dap *dap)
885 {
886 uint32_t idreg, romaddr, dummy;
887 uint32_t ctrlstat;
888 int cnt = 0;
889 int retval;
890
891 LOG_DEBUG(" ");
892
893 /* JTAG-DP or SWJ-DP, in JTAG mode */
894 dap->ops = &jtag_dp_ops;
895
896 /* Default MEM-AP setup.
897 *
898 * REVISIT AP #0 may be an inappropriate default for this.
899 * Should we probe, or take a hint from the caller?
900 * Presumably we can ignore the possibility of multiple APs.
901 */
902 dap->apsel = !0;
903 dap_ap_select(dap, 0);
904
905 /* DP initialization */
906
907 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
908 if (retval != ERROR_OK)
909 return retval;
910
911 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
912 if (retval != ERROR_OK)
913 return retval;
914
915 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
916 if (retval != ERROR_OK)
917 return retval;
918
919 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
920 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
921 if (retval != ERROR_OK)
922 return retval;
923
924 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
925 if (retval != ERROR_OK)
926 return retval;
927 if ((retval = dap_run(dap)) != ERROR_OK)
928 return retval;
929
930 /* Check that we have debug power domains activated */
931 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
932 {
933 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
934 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
935 if (retval != ERROR_OK)
936 return retval;
937 if ((retval = dap_run(dap)) != ERROR_OK)
938 return retval;
939 alive_sleep(10);
940 }
941
942 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
943 {
944 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
945 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
946 if (retval != ERROR_OK)
947 return retval;
948 if ((retval = dap_run(dap)) != ERROR_OK)
949 return retval;
950 alive_sleep(10);
951 }
952
953 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
954 if (retval != ERROR_OK)
955 return retval;
956 /* With debug power on we can activate OVERRUN checking */
957 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
958 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
959 if (retval != ERROR_OK)
960 return retval;
961 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
962 if (retval != ERROR_OK)
963 return retval;
964
965 /*
966 * REVISIT this isn't actually *initializing* anything in an AP,
967 * and doesn't care if it's a MEM-AP at all (much less AHB-AP).
968 * Should it? If the ROM address is valid, is this the right
969 * place to scan the table and do any topology detection?
970 */
971 retval = dap_queue_ap_read(dap, AP_REG_IDR, &idreg);
972 retval = dap_queue_ap_read(dap, AP_REG_BASE, &romaddr);
973
974 if ((retval = dap_run(dap)) != ERROR_OK)
975 return retval;
976
977 LOG_DEBUG("MEM-AP #%" PRId32 " ID Register 0x%" PRIx32
978 ", Debug ROM Address 0x%" PRIx32,
979 dap->apsel, idreg, romaddr);
980
981 return ERROR_OK;
982 }
983
984 /* CID interpretation -- see ARM IHI 0029B section 3
985 * and ARM IHI 0031A table 13-3.
986 */
987 static const char *class_description[16] ={
988 "Reserved", "ROM table", "Reserved", "Reserved",
989 "Reserved", "Reserved", "Reserved", "Reserved",
990 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
991 "Reserved", "OptimoDE DESS",
992 "Generic IP component", "PrimeCell or System component"
993 };
994
995 static bool
996 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
997 {
998 return cid3 == 0xb1 && cid2 == 0x05
999 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1000 }
1001
1002 static int dap_info_command(struct command_context *cmd_ctx,
1003 struct adiv5_dap *dap, int apsel)
1004 {
1005 int retval;
1006 uint32_t dbgbase, apid;
1007 int romtable_present = 0;
1008 uint8_t mem_ap;
1009 uint32_t apselold;
1010
1011 /* AP address is in bits 31:24 of DP_SELECT */
1012 if (apsel >= 256)
1013 return ERROR_INVALID_ARGUMENTS;
1014
1015 apselold = dap->apsel;
1016 dap_ap_select(dap, apsel);
1017 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1018 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1019 retval = dap_run(dap);
1020 if (retval != ERROR_OK)
1021 return retval;
1022
1023 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1024 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1025 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1026 if (apid)
1027 {
1028 switch (apid&0x0F)
1029 {
1030 case 0:
1031 command_print(cmd_ctx, "\tType is JTAG-AP");
1032 break;
1033 case 1:
1034 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1035 break;
1036 case 2:
1037 command_print(cmd_ctx, "\tType is MEM-AP APB");
1038 break;
1039 default:
1040 command_print(cmd_ctx, "\tUnknown AP type");
1041 break;
1042 }
1043
1044 /* NOTE: a MEM-AP may have a single CoreSight component that's
1045 * not a ROM table ... or have no such components at all.
1046 */
1047 if (mem_ap)
1048 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1049 dbgbase);
1050 }
1051 else
1052 {
1053 command_print(cmd_ctx, "No AP found at this apsel 0x%x", apsel);
1054 }
1055
1056 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1057 if (romtable_present)
1058 {
1059 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1060 uint16_t entry_offset;
1061
1062 /* bit 16 of apid indicates a memory access port */
1063 if (dbgbase & 0x02)
1064 command_print(cmd_ctx, "\tValid ROM table present");
1065 else
1066 command_print(cmd_ctx, "\tROM table in legacy format");
1067
1068 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1069 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1070 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1071 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1072 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1073 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1074 retval = dap_run(dap);
1075 if (retval != ERROR_OK)
1076 return retval;
1077
1078 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1079 command_print(cmd_ctx, "\tCID3 0x%2.2" PRIx32
1080 ", CID2 0x%2.2" PRIx32
1081 ", CID1 0x%2.2" PRIx32
1082 ", CID0 0x%2.2" PRIx32,
1083 cid3, cid2, cid1, cid0);
1084 if (memtype & 0x01)
1085 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1086 else
1087 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1088 "Dedicated debug bus.");
1089
1090 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1091 entry_offset = 0;
1092 do
1093 {
1094 mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1095 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1096 if (romentry&0x01)
1097 {
1098 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1099 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1100 uint32_t component_start, component_base;
1101 unsigned part_num;
1102 char *type, *full;
1103
1104 component_base = (uint32_t)((dbgbase & 0xFFFFF000)
1105 + (int)(romentry & 0xFFFFF000));
1106 mem_ap_read_atomic_u32(dap,
1107 (component_base & 0xFFFFF000) | 0xFE0, &c_pid0);
1108 mem_ap_read_atomic_u32(dap,
1109 (component_base & 0xFFFFF000) | 0xFE4, &c_pid1);
1110 mem_ap_read_atomic_u32(dap,
1111 (component_base & 0xFFFFF000) | 0xFE8, &c_pid2);
1112 mem_ap_read_atomic_u32(dap,
1113 (component_base & 0xFFFFF000) | 0xFEC, &c_pid3);
1114 mem_ap_read_atomic_u32(dap,
1115 (component_base & 0xFFFFF000) | 0xFD0, &c_pid4);
1116 mem_ap_read_atomic_u32(dap,
1117 (component_base & 0xFFFFF000) | 0xFF0, &c_cid0);
1118 mem_ap_read_atomic_u32(dap,
1119 (component_base & 0xFFFFF000) | 0xFF4, &c_cid1);
1120 mem_ap_read_atomic_u32(dap,
1121 (component_base & 0xFFFFF000) | 0xFF8, &c_cid2);
1122 mem_ap_read_atomic_u32(dap,
1123 (component_base & 0xFFFFF000) | 0xFFC, &c_cid3);
1124 component_start = component_base - 0x1000*(c_pid4 >> 4);
1125
1126 command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32
1127 ", start address 0x%" PRIx32,
1128 component_base, component_start);
1129 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1130 (int) (c_cid1 >> 4) & 0xf,
1131 /* See ARM IHI 0029B Table 3-3 */
1132 class_description[(c_cid1 >> 4) & 0xf]);
1133
1134 /* CoreSight component? */
1135 if (((c_cid1 >> 4) & 0x0f) == 9) {
1136 uint32_t devtype;
1137 unsigned minor;
1138 char *major = "Reserved", *subtype = "Reserved";
1139
1140 mem_ap_read_atomic_u32(dap,
1141 (component_base & 0xfffff000) | 0xfcc,
1142 &devtype);
1143 minor = (devtype >> 4) & 0x0f;
1144 switch (devtype & 0x0f) {
1145 case 0:
1146 major = "Miscellaneous";
1147 switch (minor) {
1148 case 0:
1149 subtype = "other";
1150 break;
1151 case 4:
1152 subtype = "Validation component";
1153 break;
1154 }
1155 break;
1156 case 1:
1157 major = "Trace Sink";
1158 switch (minor) {
1159 case 0:
1160 subtype = "other";
1161 break;
1162 case 1:
1163 subtype = "Port";
1164 break;
1165 case 2:
1166 subtype = "Buffer";
1167 break;
1168 }
1169 break;
1170 case 2:
1171 major = "Trace Link";
1172 switch (minor) {
1173 case 0:
1174 subtype = "other";
1175 break;
1176 case 1:
1177 subtype = "Funnel, router";
1178 break;
1179 case 2:
1180 subtype = "Filter";
1181 break;
1182 case 3:
1183 subtype = "FIFO, buffer";
1184 break;
1185 }
1186 break;
1187 case 3:
1188 major = "Trace Source";
1189 switch (minor) {
1190 case 0:
1191 subtype = "other";
1192 break;
1193 case 1:
1194 subtype = "Processor";
1195 break;
1196 case 2:
1197 subtype = "DSP";
1198 break;
1199 case 3:
1200 subtype = "Engine/Coprocessor";
1201 break;
1202 case 4:
1203 subtype = "Bus";
1204 break;
1205 }
1206 break;
1207 case 4:
1208 major = "Debug Control";
1209 switch (minor) {
1210 case 0:
1211 subtype = "other";
1212 break;
1213 case 1:
1214 subtype = "Trigger Matrix";
1215 break;
1216 case 2:
1217 subtype = "Debug Auth";
1218 break;
1219 }
1220 break;
1221 case 5:
1222 major = "Debug Logic";
1223 switch (minor) {
1224 case 0:
1225 subtype = "other";
1226 break;
1227 case 1:
1228 subtype = "Processor";
1229 break;
1230 case 2:
1231 subtype = "DSP";
1232 break;
1233 case 3:
1234 subtype = "Engine/Coprocessor";
1235 break;
1236 }
1237 break;
1238 }
1239 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1240 (unsigned) (devtype & 0xff),
1241 major, subtype);
1242 /* REVISIT also show 0xfc8 DevId */
1243 }
1244
1245 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1246 command_print(cmd_ctx, "\t\tCID3 0x%2.2" PRIx32
1247 ", CID2 0x%2.2" PRIx32
1248 ", CID1 0x%2.2" PRIx32
1249 ", CID0 0x%2.2" PRIx32,
1250 c_cid3, c_cid2, c_cid1, c_cid0);
1251 command_print(cmd_ctx, "\t\tPeripheral ID[4..0] = hex "
1252 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1253 (int) c_pid4,
1254 (int) c_pid3, (int) c_pid2,
1255 (int) c_pid1, (int) c_pid0);
1256
1257 /* Part number interpretations are from Cortex
1258 * core specs, the CoreSight components TRM
1259 * (ARM DDI 0314H), and ETM specs; also from
1260 * chip observation (e.g. TI SDTI).
1261 */
1262 part_num = c_pid0 & 0xff;
1263 part_num |= (c_pid1 & 0x0f) << 8;
1264 switch (part_num) {
1265 case 0x000:
1266 type = "Cortex-M3 NVIC";
1267 full = "(Interrupt Controller)";
1268 break;
1269 case 0x001:
1270 type = "Cortex-M3 ITM";
1271 full = "(Instrumentation Trace Module)";
1272 break;
1273 case 0x002:
1274 type = "Cortex-M3 DWT";
1275 full = "(Data Watchpoint and Trace)";
1276 break;
1277 case 0x003:
1278 type = "Cortex-M3 FBP";
1279 full = "(Flash Patch and Breakpoint)";
1280 break;
1281 case 0x00d:
1282 type = "CoreSight ETM11";
1283 full = "(Embedded Trace)";
1284 break;
1285 // case 0x113: what?
1286 case 0x120: /* from OMAP3 memmap */
1287 type = "TI SDTI";
1288 full = "(System Debug Trace Interface)";
1289 break;
1290 case 0x343: /* from OMAP3 memmap */
1291 type = "TI DAPCTL";
1292 full = "";
1293 break;
1294 case 0x906:
1295 type = "Coresight CTI";
1296 full = "(Cross Trigger)";
1297 break;
1298 case 0x907:
1299 type = "Coresight ETB";
1300 full = "(Trace Buffer)";
1301 break;
1302 case 0x908:
1303 type = "Coresight CSTF";
1304 full = "(Trace Funnel)";
1305 break;
1306 case 0x910:
1307 type = "CoreSight ETM9";
1308 full = "(Embedded Trace)";
1309 break;
1310 case 0x912:
1311 type = "Coresight TPIU";
1312 full = "(Trace Port Interface Unit)";
1313 break;
1314 case 0x921:
1315 type = "Cortex-A8 ETM";
1316 full = "(Embedded Trace)";
1317 break;
1318 case 0x922:
1319 type = "Cortex-A8 CTI";
1320 full = "(Cross Trigger)";
1321 break;
1322 case 0x923:
1323 type = "Cortex-M3 TPIU";
1324 full = "(Trace Port Interface Unit)";
1325 break;
1326 case 0x924:
1327 type = "Cortex-M3 ETM";
1328 full = "(Embedded Trace)";
1329 break;
1330 case 0xc08:
1331 type = "Cortex-A8 Debug";
1332 full = "(Debug Unit)";
1333 break;
1334 default:
1335 type = "-*- unrecognized -*-";
1336 full = "";
1337 break;
1338 }
1339 command_print(cmd_ctx, "\t\tPart is %s %s",
1340 type, full);
1341 }
1342 else
1343 {
1344 if (romentry)
1345 command_print(cmd_ctx, "\t\tComponent not present");
1346 else
1347 command_print(cmd_ctx, "\t\tEnd of ROM table");
1348 }
1349 entry_offset += 4;
1350 } while (romentry > 0);
1351 }
1352 else
1353 {
1354 command_print(cmd_ctx, "\tNo ROM table present");
1355 }
1356 dap_ap_select(dap, apselold);
1357
1358 return ERROR_OK;
1359 }
1360
1361 COMMAND_HANDLER(handle_dap_info_command)
1362 {
1363 struct target *target = get_current_target(CMD_CTX);
1364 struct arm *arm = target_to_arm(target);
1365 struct adiv5_dap *dap = arm->dap;
1366 uint32_t apsel;
1367
1368 switch (CMD_ARGC) {
1369 case 0:
1370 apsel = dap->apsel;
1371 break;
1372 case 1:
1373 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1374 break;
1375 default:
1376 return ERROR_COMMAND_SYNTAX_ERROR;
1377 }
1378
1379 return dap_info_command(CMD_CTX, dap, apsel);
1380 }
1381
1382 COMMAND_HANDLER(dap_baseaddr_command)
1383 {
1384 struct target *target = get_current_target(CMD_CTX);
1385 struct arm *arm = target_to_arm(target);
1386 struct adiv5_dap *dap = arm->dap;
1387
1388 uint32_t apsel, apselsave, baseaddr;
1389 int retval;
1390
1391 apselsave = dap->apsel;
1392 switch (CMD_ARGC) {
1393 case 0:
1394 apsel = dap->apsel;
1395 break;
1396 case 1:
1397 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1398 /* AP address is in bits 31:24 of DP_SELECT */
1399 if (apsel >= 256)
1400 return ERROR_INVALID_ARGUMENTS;
1401 break;
1402 default:
1403 return ERROR_COMMAND_SYNTAX_ERROR;
1404 }
1405
1406 if (apselsave != apsel)
1407 dap_ap_select(dap, apsel);
1408
1409 /* NOTE: assumes we're talking to a MEM-AP, which
1410 * has a base address. There are other kinds of AP,
1411 * though they're not common for now. This should
1412 * use the ID register to verify it's a MEM-AP.
1413 */
1414 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1415 retval = dap_run(dap);
1416 if (retval != ERROR_OK)
1417 return retval;
1418
1419 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1420
1421 if (apselsave != apsel)
1422 dap_ap_select(dap, apselsave);
1423
1424 return retval;
1425 }
1426
1427 COMMAND_HANDLER(dap_memaccess_command)
1428 {
1429 struct target *target = get_current_target(CMD_CTX);
1430 struct arm *arm = target_to_arm(target);
1431 struct adiv5_dap *dap = arm->dap;
1432
1433 uint32_t memaccess_tck;
1434
1435 switch (CMD_ARGC) {
1436 case 0:
1437 memaccess_tck = dap->memaccess_tck;
1438 break;
1439 case 1:
1440 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1441 break;
1442 default:
1443 return ERROR_COMMAND_SYNTAX_ERROR;
1444 }
1445 dap->memaccess_tck = memaccess_tck;
1446
1447 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1448 dap->memaccess_tck);
1449
1450 return ERROR_OK;
1451 }
1452
1453 COMMAND_HANDLER(dap_apsel_command)
1454 {
1455 struct target *target = get_current_target(CMD_CTX);
1456 struct arm *arm = target_to_arm(target);
1457 struct adiv5_dap *dap = arm->dap;
1458
1459 uint32_t apsel, apid;
1460 int retval;
1461
1462 switch (CMD_ARGC) {
1463 case 0:
1464 apsel = 0;
1465 break;
1466 case 1:
1467 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1468 /* AP address is in bits 31:24 of DP_SELECT */
1469 if (apsel >= 256)
1470 return ERROR_INVALID_ARGUMENTS;
1471 break;
1472 default:
1473 return ERROR_COMMAND_SYNTAX_ERROR;
1474 }
1475
1476 dap_ap_select(dap, apsel);
1477 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1478 retval = dap_run(dap);
1479 if (retval != ERROR_OK)
1480 return retval;
1481
1482 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1483 apsel, apid);
1484
1485 return retval;
1486 }
1487
1488 COMMAND_HANDLER(dap_apid_command)
1489 {
1490 struct target *target = get_current_target(CMD_CTX);
1491 struct arm *arm = target_to_arm(target);
1492 struct adiv5_dap *dap = arm->dap;
1493
1494 uint32_t apsel, apselsave, apid;
1495 int retval;
1496
1497 apselsave = dap->apsel;
1498 switch (CMD_ARGC) {
1499 case 0:
1500 apsel = dap->apsel;
1501 break;
1502 case 1:
1503 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1504 /* AP address is in bits 31:24 of DP_SELECT */
1505 if (apsel >= 256)
1506 return ERROR_INVALID_ARGUMENTS;
1507 break;
1508 default:
1509 return ERROR_COMMAND_SYNTAX_ERROR;
1510 }
1511
1512 if (apselsave != apsel)
1513 dap_ap_select(dap, apsel);
1514
1515 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1516 retval = dap_run(dap);
1517 if (retval != ERROR_OK)
1518 return retval;
1519
1520 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1521 if (apselsave != apsel)
1522 dap_ap_select(dap, apselsave);
1523
1524 return retval;
1525 }
1526
1527 static const struct command_registration dap_commands[] = {
1528 {
1529 .name = "info",
1530 .handler = handle_dap_info_command,
1531 .mode = COMMAND_EXEC,
1532 .help = "display ROM table for MEM-AP "
1533 "(default currently selected AP)",
1534 .usage = "[ap_num]",
1535 },
1536 {
1537 .name = "apsel",
1538 .handler = dap_apsel_command,
1539 .mode = COMMAND_EXEC,
1540 .help = "Set the currently selected AP (default 0) "
1541 "and display the result",
1542 .usage = "[ap_num]",
1543 },
1544 {
1545 .name = "apid",
1546 .handler = dap_apid_command,
1547 .mode = COMMAND_EXEC,
1548 .help = "return ID register from AP "
1549 "(default currently selected AP)",
1550 .usage = "[ap_num]",
1551 },
1552 {
1553 .name = "baseaddr",
1554 .handler = dap_baseaddr_command,
1555 .mode = COMMAND_EXEC,
1556 .help = "return debug base address from MEM-AP "
1557 "(default currently selected AP)",
1558 .usage = "[ap_num]",
1559 },
1560 {
1561 .name = "memaccess",
1562 .handler = dap_memaccess_command,
1563 .mode = COMMAND_EXEC,
1564 .help = "set/get number of extra tck for MEM-AP memory "
1565 "bus access [0-255]",
1566 .usage = "[cycles]",
1567 },
1568 COMMAND_REGISTRATION_DONE
1569 };
1570
1571 const struct command_registration dap_command_handlers[] = {
1572 {
1573 .name = "dap",
1574 .mode = COMMAND_EXEC,
1575 .help = "DAP command group",
1576 .chain = dap_commands,
1577 },
1578 COMMAND_REGISTRATION_DONE
1579 };
1580
1581

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)