arm_adi_v5: added partnumbers
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
20 * *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
25 * *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program; if not, write to the *
28 * Free Software Foundation, Inc., *
29 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
30 ***************************************************************************/
31
32 /**
33 * @file
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focusses on memory mapped resources as defined by the
38 * CoreSight architecture.
39 *
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48 *
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction piplining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 */
60
61 /*
62 * Relevant specifications from ARM include:
63 *
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
66 *
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
69 */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include <helper/jep106.h>
79 #include <helper/time_support.h>
80 #include <helper/list.h>
81
82 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
83
84 /*
85 uint32_t tar_block_size(uint32_t address)
86 Return the largest block starting at address that does not cross a tar block size alignment boundary
87 */
88 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
89 {
90 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
91 }
92
93 /***************************************************************************
94 * *
95 * DP and MEM-AP register access through APACC and DPACC *
96 * *
97 ***************************************************************************/
98
99 static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
100 {
101 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT |
102 ap->csw_default;
103
104 if (csw != ap->csw_value) {
105 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
106 int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw);
107 if (retval != ERROR_OK)
108 return retval;
109 ap->csw_value = csw;
110 }
111 return ERROR_OK;
112 }
113
114 static int mem_ap_setup_tar(struct adiv5_ap *ap, uint32_t tar)
115 {
116 if (tar != ap->tar_value ||
117 (ap->csw_value & CSW_ADDRINC_MASK)) {
118 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
119 int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, tar);
120 if (retval != ERROR_OK)
121 return retval;
122 ap->tar_value = tar;
123 }
124 return ERROR_OK;
125 }
126
127 /**
128 * Queue transactions setting up transfer parameters for the
129 * currently selected MEM-AP.
130 *
131 * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
132 * initiate data reads or writes using memory or peripheral addresses.
133 * If the CSW is configured for it, the TAR may be automatically
134 * incremented after each transfer.
135 *
136 * @param ap The MEM-AP.
137 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
138 * matches the cached value, the register is not changed.
139 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
140 * matches the cached address, the register is not changed.
141 *
142 * @return ERROR_OK if the transaction was properly queued, else a fault code.
143 */
144 static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, uint32_t tar)
145 {
146 int retval;
147 retval = mem_ap_setup_csw(ap, csw);
148 if (retval != ERROR_OK)
149 return retval;
150 retval = mem_ap_setup_tar(ap, tar);
151 if (retval != ERROR_OK)
152 return retval;
153 return ERROR_OK;
154 }
155
156 /**
157 * Asynchronous (queued) read of a word from memory or a system register.
158 *
159 * @param ap The MEM-AP to access.
160 * @param address Address of the 32-bit word to read; it must be
161 * readable by the currently selected MEM-AP.
162 * @param value points to where the word will be stored when the
163 * transaction queue is flushed (assuming no errors).
164 *
165 * @return ERROR_OK for success. Otherwise a fault code.
166 */
167 int mem_ap_read_u32(struct adiv5_ap *ap, uint32_t address,
168 uint32_t *value)
169 {
170 int retval;
171
172 /* Use banked addressing (REG_BDx) to avoid some link traffic
173 * (updating TAR) when reading several consecutive addresses.
174 */
175 retval = mem_ap_setup_transfer(ap, CSW_32BIT | CSW_ADDRINC_OFF,
176 address & 0xFFFFFFF0);
177 if (retval != ERROR_OK)
178 return retval;
179
180 return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value);
181 }
182
183 /**
184 * Synchronous read of a word from memory or a system register.
185 * As a side effect, this flushes any queued transactions.
186 *
187 * @param ap The MEM-AP to access.
188 * @param address Address of the 32-bit word to read; it must be
189 * readable by the currently selected MEM-AP.
190 * @param value points to where the result will be stored.
191 *
192 * @return ERROR_OK for success; *value holds the result.
193 * Otherwise a fault code.
194 */
195 int mem_ap_read_atomic_u32(struct adiv5_ap *ap, uint32_t address,
196 uint32_t *value)
197 {
198 int retval;
199
200 retval = mem_ap_read_u32(ap, address, value);
201 if (retval != ERROR_OK)
202 return retval;
203
204 return dap_run(ap->dap);
205 }
206
207 /**
208 * Asynchronous (queued) write of a word to memory or a system register.
209 *
210 * @param ap The MEM-AP to access.
211 * @param address Address to be written; it must be writable by
212 * the currently selected MEM-AP.
213 * @param value Word that will be written to the address when transaction
214 * queue is flushed (assuming no errors).
215 *
216 * @return ERROR_OK for success. Otherwise a fault code.
217 */
218 int mem_ap_write_u32(struct adiv5_ap *ap, uint32_t address,
219 uint32_t value)
220 {
221 int retval;
222
223 /* Use banked addressing (REG_BDx) to avoid some link traffic
224 * (updating TAR) when writing several consecutive addresses.
225 */
226 retval = mem_ap_setup_transfer(ap, CSW_32BIT | CSW_ADDRINC_OFF,
227 address & 0xFFFFFFF0);
228 if (retval != ERROR_OK)
229 return retval;
230
231 return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC),
232 value);
233 }
234
235 /**
236 * Synchronous write of a word to memory or a system register.
237 * As a side effect, this flushes any queued transactions.
238 *
239 * @param ap The MEM-AP to access.
240 * @param address Address to be written; it must be writable by
241 * the currently selected MEM-AP.
242 * @param value Word that will be written.
243 *
244 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
245 */
246 int mem_ap_write_atomic_u32(struct adiv5_ap *ap, uint32_t address,
247 uint32_t value)
248 {
249 int retval = mem_ap_write_u32(ap, address, value);
250
251 if (retval != ERROR_OK)
252 return retval;
253
254 return dap_run(ap->dap);
255 }
256
257 /**
258 * Synchronous write of a block of memory, using a specific access size.
259 *
260 * @param ap The MEM-AP to access.
261 * @param buffer The data buffer to write. No particular alignment is assumed.
262 * @param size Which access size to use, in bytes. 1, 2 or 4.
263 * @param count The number of writes to do (in size units, not bytes).
264 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
265 * @param addrinc Whether the target address should be increased for each write or not. This
266 * should normally be true, except when writing to e.g. a FIFO.
267 * @return ERROR_OK on success, otherwise an error code.
268 */
269 static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
270 uint32_t address, bool addrinc)
271 {
272 struct adiv5_dap *dap = ap->dap;
273 size_t nbytes = size * count;
274 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
275 uint32_t csw_size;
276 uint32_t addr_xor;
277 int retval;
278
279 /* TI BE-32 Quirks mode:
280 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
281 * size write address bytes written in order
282 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
283 * 2 TAR ^ 2 (val >> 8), (val)
284 * 1 TAR ^ 3 (val)
285 * For example, if you attempt to write a single byte to address 0, the processor
286 * will actually write a byte to address 3.
287 *
288 * To make writes of size < 4 work as expected, we xor a value with the address before
289 * setting the TAP, and we set the TAP after every transfer rather then relying on
290 * address increment. */
291
292 if (size == 4) {
293 csw_size = CSW_32BIT;
294 addr_xor = 0;
295 } else if (size == 2) {
296 csw_size = CSW_16BIT;
297 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
298 } else if (size == 1) {
299 csw_size = CSW_8BIT;
300 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
301 } else {
302 return ERROR_TARGET_UNALIGNED_ACCESS;
303 }
304
305 if (ap->unaligned_access_bad && (address % size != 0))
306 return ERROR_TARGET_UNALIGNED_ACCESS;
307
308 retval = mem_ap_setup_tar(ap, address ^ addr_xor);
309 if (retval != ERROR_OK)
310 return retval;
311
312 while (nbytes > 0) {
313 uint32_t this_size = size;
314
315 /* Select packed transfer if possible */
316 if (addrinc && ap->packed_transfers && nbytes >= 4
317 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
318 this_size = 4;
319 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
320 } else {
321 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
322 }
323
324 if (retval != ERROR_OK)
325 break;
326
327 /* How many source bytes each transfer will consume, and their location in the DRW,
328 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
329 uint32_t outvalue = 0;
330 if (dap->ti_be_32_quirks) {
331 switch (this_size) {
332 case 4:
333 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
334 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
335 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
336 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
337 break;
338 case 2:
339 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (address++ & 3) ^ addr_xor);
340 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (address++ & 3) ^ addr_xor);
341 break;
342 case 1:
343 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (address++ & 3) ^ addr_xor);
344 break;
345 }
346 } else {
347 switch (this_size) {
348 case 4:
349 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
350 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
351 case 2:
352 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
353 case 1:
354 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
355 }
356 }
357
358 nbytes -= this_size;
359
360 retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue);
361 if (retval != ERROR_OK)
362 break;
363
364 /* Rewrite TAR if it wrapped or we're xoring addresses */
365 if (addrinc && (addr_xor || (address % ap->tar_autoincr_block < size && nbytes > 0))) {
366 retval = mem_ap_setup_tar(ap, address ^ addr_xor);
367 if (retval != ERROR_OK)
368 break;
369 }
370 }
371
372 /* REVISIT: Might want to have a queued version of this function that does not run. */
373 if (retval == ERROR_OK)
374 retval = dap_run(dap);
375
376 if (retval != ERROR_OK) {
377 uint32_t tar;
378 if (dap_queue_ap_read(ap, MEM_AP_REG_TAR, &tar) == ERROR_OK
379 && dap_run(dap) == ERROR_OK)
380 LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar);
381 else
382 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
383 }
384
385 return retval;
386 }
387
388 /**
389 * Synchronous read of a block of memory, using a specific access size.
390 *
391 * @param ap The MEM-AP to access.
392 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
393 * @param size Which access size to use, in bytes. 1, 2 or 4.
394 * @param count The number of reads to do (in size units, not bytes).
395 * @param address Address to be read; it must be readable by the currently selected MEM-AP.
396 * @param addrinc Whether the target address should be increased after each read or not. This
397 * should normally be true, except when reading from e.g. a FIFO.
398 * @return ERROR_OK on success, otherwise an error code.
399 */
400 static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
401 uint32_t adr, bool addrinc)
402 {
403 struct adiv5_dap *dap = ap->dap;
404 size_t nbytes = size * count;
405 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
406 uint32_t csw_size;
407 uint32_t address = adr;
408 int retval;
409
410 /* TI BE-32 Quirks mode:
411 * Reads on big-endian TMS570 behave strangely differently than writes.
412 * They read from the physical address requested, but with DRW byte-reversed.
413 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
414 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
415 * so avoid them. */
416
417 if (size == 4)
418 csw_size = CSW_32BIT;
419 else if (size == 2)
420 csw_size = CSW_16BIT;
421 else if (size == 1)
422 csw_size = CSW_8BIT;
423 else
424 return ERROR_TARGET_UNALIGNED_ACCESS;
425
426 if (ap->unaligned_access_bad && (adr % size != 0))
427 return ERROR_TARGET_UNALIGNED_ACCESS;
428
429 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
430 * over-allocation if packed transfers are going to be used, but determining the real need at
431 * this point would be messy. */
432 uint32_t *read_buf = malloc(count * sizeof(uint32_t));
433 uint32_t *read_ptr = read_buf;
434 if (read_buf == NULL) {
435 LOG_ERROR("Failed to allocate read buffer");
436 return ERROR_FAIL;
437 }
438
439 retval = mem_ap_setup_tar(ap, address);
440 if (retval != ERROR_OK) {
441 free(read_buf);
442 return retval;
443 }
444
445 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
446 * useful bytes it contains, and their location in the word, depends on the type of transfer
447 * and alignment. */
448 while (nbytes > 0) {
449 uint32_t this_size = size;
450
451 /* Select packed transfer if possible */
452 if (addrinc && ap->packed_transfers && nbytes >= 4
453 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
454 this_size = 4;
455 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
456 } else {
457 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
458 }
459 if (retval != ERROR_OK)
460 break;
461
462 retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++);
463 if (retval != ERROR_OK)
464 break;
465
466 nbytes -= this_size;
467 address += this_size;
468
469 /* Rewrite TAR if it wrapped */
470 if (addrinc && address % ap->tar_autoincr_block < size && nbytes > 0) {
471 retval = mem_ap_setup_tar(ap, address);
472 if (retval != ERROR_OK)
473 break;
474 }
475 }
476
477 if (retval == ERROR_OK)
478 retval = dap_run(dap);
479
480 /* Restore state */
481 address = adr;
482 nbytes = size * count;
483 read_ptr = read_buf;
484
485 /* If something failed, read TAR to find out how much data was successfully read, so we can
486 * at least give the caller what we have. */
487 if (retval != ERROR_OK) {
488 uint32_t tar;
489 if (dap_queue_ap_read(ap, MEM_AP_REG_TAR, &tar) == ERROR_OK
490 && dap_run(dap) == ERROR_OK) {
491 LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar);
492 if (nbytes > tar - address)
493 nbytes = tar - address;
494 } else {
495 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
496 nbytes = 0;
497 }
498 }
499
500 /* Replay loop to populate caller's buffer from the correct word and byte lane */
501 while (nbytes > 0) {
502 uint32_t this_size = size;
503
504 if (addrinc && ap->packed_transfers && nbytes >= 4
505 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
506 this_size = 4;
507 }
508
509 if (dap->ti_be_32_quirks) {
510 switch (this_size) {
511 case 4:
512 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
513 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
514 case 2:
515 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
516 case 1:
517 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
518 }
519 } else {
520 switch (this_size) {
521 case 4:
522 *buffer++ = *read_ptr >> 8 * (address++ & 3);
523 *buffer++ = *read_ptr >> 8 * (address++ & 3);
524 case 2:
525 *buffer++ = *read_ptr >> 8 * (address++ & 3);
526 case 1:
527 *buffer++ = *read_ptr >> 8 * (address++ & 3);
528 }
529 }
530
531 read_ptr++;
532 nbytes -= this_size;
533 }
534
535 free(read_buf);
536 return retval;
537 }
538
539 int mem_ap_read_buf(struct adiv5_ap *ap,
540 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
541 {
542 return mem_ap_read(ap, buffer, size, count, address, true);
543 }
544
545 int mem_ap_write_buf(struct adiv5_ap *ap,
546 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
547 {
548 return mem_ap_write(ap, buffer, size, count, address, true);
549 }
550
551 int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
552 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
553 {
554 return mem_ap_read(ap, buffer, size, count, address, false);
555 }
556
557 int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
558 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
559 {
560 return mem_ap_write(ap, buffer, size, count, address, false);
561 }
562
563 /*--------------------------------------------------------------------------*/
564
565
566 #define DAP_POWER_DOMAIN_TIMEOUT (10)
567
568 /* FIXME don't import ... just initialize as
569 * part of DAP transport setup
570 */
571 extern const struct dap_ops jtag_dp_ops;
572
573 /*--------------------------------------------------------------------------*/
574
575 /**
576 * Create a new DAP
577 */
578 struct adiv5_dap *dap_init(void)
579 {
580 struct adiv5_dap *dap = calloc(1, sizeof(struct adiv5_dap));
581 int i;
582 /* Set up with safe defaults */
583 for (i = 0; i <= 255; i++) {
584 dap->ap[i].dap = dap;
585 dap->ap[i].ap_num = i;
586 /* memaccess_tck max is 255 */
587 dap->ap[i].memaccess_tck = 255;
588 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
589 dap->ap[i].tar_autoincr_block = (1<<10);
590 }
591 INIT_LIST_HEAD(&dap->cmd_journal);
592 return dap;
593 }
594
595 /**
596 * Initialize a DAP. This sets up the power domains, prepares the DP
597 * for further use and activates overrun checking.
598 *
599 * @param dap The DAP being initialized.
600 */
601 int dap_dp_init(struct adiv5_dap *dap)
602 {
603 int retval;
604
605 LOG_DEBUG(" ");
606 /* JTAG-DP or SWJ-DP, in JTAG mode
607 * ... for SWD mode this is patched as part
608 * of link switchover
609 * FIXME: This should already be setup by the respective transport specific DAP creation.
610 */
611 if (!dap->ops)
612 dap->ops = &jtag_dp_ops;
613
614 dap->select = DP_SELECT_INVALID;
615 dap->last_read = NULL;
616
617 for (size_t i = 0; i < 10; i++) {
618 /* DP initialization */
619
620 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
621 if (retval != ERROR_OK)
622 continue;
623
624 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
625 if (retval != ERROR_OK)
626 continue;
627
628 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
629 if (retval != ERROR_OK)
630 continue;
631
632 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
633 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
634 if (retval != ERROR_OK)
635 continue;
636
637 /* Check that we have debug power domains activated */
638 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
639 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
640 CDBGPWRUPACK, CDBGPWRUPACK,
641 DAP_POWER_DOMAIN_TIMEOUT);
642 if (retval != ERROR_OK)
643 continue;
644
645 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
646 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
647 CSYSPWRUPACK, CSYSPWRUPACK,
648 DAP_POWER_DOMAIN_TIMEOUT);
649 if (retval != ERROR_OK)
650 continue;
651
652 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
653 if (retval != ERROR_OK)
654 continue;
655
656 /* With debug power on we can activate OVERRUN checking */
657 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
658 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
659 if (retval != ERROR_OK)
660 continue;
661 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
662 if (retval != ERROR_OK)
663 continue;
664
665 retval = dap_run(dap);
666 if (retval != ERROR_OK)
667 continue;
668
669 break;
670 }
671
672 return retval;
673 }
674
675 /**
676 * Initialize a DAP. This sets up the power domains, prepares the DP
677 * for further use, and arranges to use AP #0 for all AP operations
678 * until dap_ap-select() changes that policy.
679 *
680 * @param ap The MEM-AP being initialized.
681 */
682 int mem_ap_init(struct adiv5_ap *ap)
683 {
684 /* check that we support packed transfers */
685 uint32_t csw, cfg;
686 int retval;
687 struct adiv5_dap *dap = ap->dap;
688
689 retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
690 if (retval != ERROR_OK)
691 return retval;
692
693 retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw);
694 if (retval != ERROR_OK)
695 return retval;
696
697 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg);
698 if (retval != ERROR_OK)
699 return retval;
700
701 retval = dap_run(dap);
702 if (retval != ERROR_OK)
703 return retval;
704
705 if (csw & CSW_ADDRINC_PACKED)
706 ap->packed_transfers = true;
707 else
708 ap->packed_transfers = false;
709
710 /* Packed transfers on TI BE-32 processors do not work correctly in
711 * many cases. */
712 if (dap->ti_be_32_quirks)
713 ap->packed_transfers = false;
714
715 LOG_DEBUG("MEM_AP Packed Transfers: %s",
716 ap->packed_transfers ? "enabled" : "disabled");
717
718 /* The ARM ADI spec leaves implementation-defined whether unaligned
719 * memory accesses work, only work partially, or cause a sticky error.
720 * On TI BE-32 processors, reads seem to return garbage in some bytes
721 * and unaligned writes seem to cause a sticky error.
722 * TODO: it would be nice to have a way to detect whether unaligned
723 * operations are supported on other processors. */
724 ap->unaligned_access_bad = dap->ti_be_32_quirks;
725
726 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
727 !!(cfg & 0x04), !!(cfg & 0x02), !!(cfg & 0x01));
728
729 return ERROR_OK;
730 }
731
732 /* CID interpretation -- see ARM IHI 0029B section 3
733 * and ARM IHI 0031A table 13-3.
734 */
735 static const char *class_description[16] = {
736 "Reserved", "ROM table", "Reserved", "Reserved",
737 "Reserved", "Reserved", "Reserved", "Reserved",
738 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
739 "Reserved", "OptimoDE DESS",
740 "Generic IP component", "PrimeCell or System component"
741 };
742
743 static bool is_dap_cid_ok(uint32_t cid)
744 {
745 return (cid & 0xffff0fff) == 0xb105000d;
746 }
747
748 /*
749 * This function checks the ID for each access port to find the requested Access Port type
750 */
751 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
752 {
753 int ap_num;
754
755 /* Maximum AP number is 255 since the SELECT register is 8 bits */
756 for (ap_num = 0; ap_num <= 255; ap_num++) {
757
758 /* read the IDR register of the Access Port */
759 uint32_t id_val = 0;
760
761 int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val);
762 if (retval != ERROR_OK)
763 return retval;
764
765 retval = dap_run(dap);
766
767 /* IDR bits:
768 * 31-28 : Revision
769 * 27-24 : JEDEC bank (0x4 for ARM)
770 * 23-17 : JEDEC code (0x3B for ARM)
771 * 16-13 : Class (0b1000=Mem-AP)
772 * 12-8 : Reserved
773 * 7-4 : AP Variant (non-zero for JTAG-AP)
774 * 3-0 : AP Type (0=JTAG-AP 1=AHB-AP 2=APB-AP 4=AXI-AP)
775 */
776
777 /* Reading register for a non-existant AP should not cause an error,
778 * but just to be sure, try to continue searching if an error does happen.
779 */
780 if ((retval == ERROR_OK) && /* Register read success */
781 ((id_val & IDR_JEP106) == IDR_JEP106_ARM) && /* Jedec codes match */
782 ((id_val & IDR_TYPE) == type_to_find)) { /* type matches*/
783
784 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
785 (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
786 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
787 (type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" :
788 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown",
789 ap_num, id_val);
790
791 *ap_out = &dap->ap[ap_num];
792 return ERROR_OK;
793 }
794 }
795
796 LOG_DEBUG("No %s found",
797 (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
798 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
799 (type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" :
800 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown");
801 return ERROR_FAIL;
802 }
803
804 int dap_get_debugbase(struct adiv5_ap *ap,
805 uint32_t *dbgbase, uint32_t *apid)
806 {
807 struct adiv5_dap *dap = ap->dap;
808 int retval;
809
810 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, dbgbase);
811 if (retval != ERROR_OK)
812 return retval;
813 retval = dap_queue_ap_read(ap, AP_REG_IDR, apid);
814 if (retval != ERROR_OK)
815 return retval;
816 retval = dap_run(dap);
817 if (retval != ERROR_OK)
818 return retval;
819
820 return ERROR_OK;
821 }
822
823 int dap_lookup_cs_component(struct adiv5_ap *ap,
824 uint32_t dbgbase, uint8_t type, uint32_t *addr, int32_t *idx)
825 {
826 uint32_t romentry, entry_offset = 0, component_base, devtype;
827 int retval;
828
829 *addr = 0;
830
831 do {
832 retval = mem_ap_read_atomic_u32(ap, (dbgbase&0xFFFFF000) |
833 entry_offset, &romentry);
834 if (retval != ERROR_OK)
835 return retval;
836
837 component_base = (dbgbase & 0xFFFFF000)
838 + (romentry & 0xFFFFF000);
839
840 if (romentry & 0x1) {
841 uint32_t c_cid1;
842 retval = mem_ap_read_atomic_u32(ap, component_base | 0xff4, &c_cid1);
843 if (retval != ERROR_OK) {
844 LOG_ERROR("Can't read component with base address 0x%" PRIx32
845 ", the corresponding core might be turned off", component_base);
846 return retval;
847 }
848 if (((c_cid1 >> 4) & 0x0f) == 1) {
849 retval = dap_lookup_cs_component(ap, component_base,
850 type, addr, idx);
851 if (retval == ERROR_OK)
852 break;
853 if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
854 return retval;
855 }
856
857 retval = mem_ap_read_atomic_u32(ap,
858 (component_base & 0xfffff000) | 0xfcc,
859 &devtype);
860 if (retval != ERROR_OK)
861 return retval;
862 if ((devtype & 0xff) == type) {
863 if (!*idx) {
864 *addr = component_base;
865 break;
866 } else
867 (*idx)--;
868 }
869 }
870 entry_offset += 4;
871 } while (romentry > 0);
872
873 if (!*addr)
874 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
875
876 return ERROR_OK;
877 }
878
879 static int dap_read_part_id(struct adiv5_ap *ap, uint32_t component_base, uint32_t *cid, uint64_t *pid)
880 {
881 assert((component_base & 0xFFF) == 0);
882 assert(ap != NULL && cid != NULL && pid != NULL);
883
884 uint32_t cid0, cid1, cid2, cid3;
885 uint32_t pid0, pid1, pid2, pid3, pid4;
886 int retval;
887
888 /* IDs are in last 4K section */
889 retval = mem_ap_read_u32(ap, component_base + 0xFE0, &pid0);
890 if (retval != ERROR_OK)
891 return retval;
892 retval = mem_ap_read_u32(ap, component_base + 0xFE4, &pid1);
893 if (retval != ERROR_OK)
894 return retval;
895 retval = mem_ap_read_u32(ap, component_base + 0xFE8, &pid2);
896 if (retval != ERROR_OK)
897 return retval;
898 retval = mem_ap_read_u32(ap, component_base + 0xFEC, &pid3);
899 if (retval != ERROR_OK)
900 return retval;
901 retval = mem_ap_read_u32(ap, component_base + 0xFD0, &pid4);
902 if (retval != ERROR_OK)
903 return retval;
904 retval = mem_ap_read_u32(ap, component_base + 0xFF0, &cid0);
905 if (retval != ERROR_OK)
906 return retval;
907 retval = mem_ap_read_u32(ap, component_base + 0xFF4, &cid1);
908 if (retval != ERROR_OK)
909 return retval;
910 retval = mem_ap_read_u32(ap, component_base + 0xFF8, &cid2);
911 if (retval != ERROR_OK)
912 return retval;
913 retval = mem_ap_read_u32(ap, component_base + 0xFFC, &cid3);
914 if (retval != ERROR_OK)
915 return retval;
916
917 retval = dap_run(ap->dap);
918 if (retval != ERROR_OK)
919 return retval;
920
921 *cid = (cid3 & 0xff) << 24
922 | (cid2 & 0xff) << 16
923 | (cid1 & 0xff) << 8
924 | (cid0 & 0xff);
925 *pid = (uint64_t)(pid4 & 0xff) << 32
926 | (pid3 & 0xff) << 24
927 | (pid2 & 0xff) << 16
928 | (pid1 & 0xff) << 8
929 | (pid0 & 0xff);
930
931 return ERROR_OK;
932 }
933
934 /* The designer identity code is encoded as:
935 * bits 11:8 : JEP106 Bank (number of continuation codes), only valid when bit 7 is 1.
936 * bit 7 : Set when bits 6:0 represent a JEP106 ID and cleared when bits 6:0 represent
937 * a legacy ASCII Identity Code.
938 * bits 6:0 : JEP106 Identity Code (without parity) or legacy ASCII code according to bit 7.
939 * JEP106 is a standard available from jedec.org
940 */
941
942 /* Part number interpretations are from Cortex
943 * core specs, the CoreSight components TRM
944 * (ARM DDI 0314H), CoreSight System Design
945 * Guide (ARM DGI 0012D) and ETM specs; also
946 * from chip observation (e.g. TI SDTI).
947 */
948
949 /* The legacy code only used the part number field to identify CoreSight peripherals.
950 * This meant that the same part number from two different manufacturers looked the same.
951 * It is desirable for all future additions to identify with both part number and JEP106.
952 * "ANY_ID" is a wildcard (any JEP106) only to preserve legacy behavior for legacy entries.
953 */
954
955 #define ANY_ID 0x1000
956
957 #define ARM_ID 0x4BB
958
959 static const struct {
960 uint16_t designer_id;
961 uint16_t part_num;
962 const char *type;
963 const char *full;
964 } dap_partnums[] = {
965 { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
966 { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
967 { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
968 { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
969 { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
970 { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
971 { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
972 { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
973 { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
974 { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
975 { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
976 { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
977 { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
978 { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
979 { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
980 { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
981 { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
982 { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
983 { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
984 { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
985 { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
986 { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
987 { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
988 { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
989 { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
990 { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
991 { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
992 { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
993 { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
994 { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
995 { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
996 { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
997 { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
998 { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
999 { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
1000 { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
1001 { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
1002 { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
1003 { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
1004 { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
1005 { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
1006 { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
1007 { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
1008 { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
1009 { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
1010 { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
1011 { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
1012 { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
1013 { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
1014 { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
1015 { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
1016 { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
1017 { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
1018 { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
1019 { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
1020 { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
1021 { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
1022 { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
1023 { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
1024 { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
1025 { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
1026 { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitoring Unit)", },
1027 { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
1028 { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
1029 { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
1030 { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
1031 { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
1032 { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
1033 { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
1034 { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
1035 { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
1036 { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
1037 { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
1038 { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
1039 { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
1040 { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
1041 { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
1042 { 0x0E5, 0x000, "SHARC+/Blackfin+", "", },
1043 /* legacy comment: 0x113: what? */
1044 { ANY_ID, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
1045 { ANY_ID, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
1046 /* Atmel */
1047 { 0x09f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
1048 };
1049
1050 static int dap_rom_display(struct command_context *cmd_ctx,
1051 struct adiv5_ap *ap, uint32_t dbgbase, int depth)
1052 {
1053 int retval;
1054 uint64_t pid;
1055 uint32_t cid;
1056 char tabs[7] = "";
1057
1058 if (depth > 16) {
1059 command_print(cmd_ctx, "\tTables too deep");
1060 return ERROR_FAIL;
1061 }
1062
1063 if (depth)
1064 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1065
1066 uint32_t base_addr = dbgbase & 0xFFFFF000;
1067 command_print(cmd_ctx, "\t\tComponent base address 0x%08" PRIx32, base_addr);
1068
1069 retval = dap_read_part_id(ap, base_addr, &cid, &pid);
1070 if (retval != ERROR_OK) {
1071 command_print(cmd_ctx, "\t\tCan't read component, the corresponding core might be turned off");
1072 return ERROR_OK; /* Don't abort recursion */
1073 }
1074
1075 if (!is_dap_cid_ok(cid)) {
1076 command_print(cmd_ctx, "\t\tInvalid CID 0x%08" PRIx32, cid);
1077 return ERROR_OK; /* Don't abort recursion */
1078 }
1079
1080 /* component may take multiple 4K pages */
1081 uint32_t size = (pid >> 36) & 0xf;
1082 if (size > 0)
1083 command_print(cmd_ctx, "\t\tStart address 0x%08" PRIx32, (uint32_t)(base_addr - 0x1000 * size));
1084
1085 command_print(cmd_ctx, "\t\tPeripheral ID 0x%010" PRIx64, pid);
1086
1087 uint8_t class = (cid >> 12) & 0xf;
1088 uint16_t part_num = pid & 0xfff;
1089 uint16_t designer_id = ((pid >> 32) & 0xf) << 8 | ((pid >> 12) & 0xff);
1090
1091 if (designer_id & 0x80) {
1092 /* JEP106 code */
1093 command_print(cmd_ctx, "\t\tDesigner is 0x%03" PRIx16 ", %s",
1094 designer_id, jep106_manufacturer(designer_id >> 8, designer_id & 0x7f));
1095 } else {
1096 /* Legacy ASCII ID, clear invalid bits */
1097 designer_id &= 0x7f;
1098 command_print(cmd_ctx, "\t\tDesigner ASCII code 0x%02" PRIx16 ", %s",
1099 designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
1100 }
1101
1102 /* default values to be overwritten upon finding a match */
1103 const char *type = "Unrecognized";
1104 const char *full = "";
1105
1106 /* search dap_partnums[] array for a match */
1107 for (unsigned entry = 0; entry < ARRAY_SIZE(dap_partnums); entry++) {
1108
1109 if ((dap_partnums[entry].designer_id != designer_id) && (dap_partnums[entry].designer_id != ANY_ID))
1110 continue;
1111
1112 if (dap_partnums[entry].part_num != part_num)
1113 continue;
1114
1115 type = dap_partnums[entry].type;
1116 full = dap_partnums[entry].full;
1117 break;
1118 }
1119
1120 command_print(cmd_ctx, "\t\tPart is 0x%" PRIx16", %s %s", part_num, type, full);
1121 command_print(cmd_ctx, "\t\tComponent class is 0x%" PRIx8 ", %s", class, class_description[class]);
1122
1123 if (class == 1) { /* ROM Table */
1124 uint32_t memtype;
1125 retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &memtype);
1126 if (retval != ERROR_OK)
1127 return retval;
1128
1129 if (memtype & 0x01)
1130 command_print(cmd_ctx, "\t\tMEMTYPE system memory present on bus");
1131 else
1132 command_print(cmd_ctx, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1133
1134 /* Read ROM table entries from base address until we get 0x00000000 or reach the reserved area */
1135 for (uint16_t entry_offset = 0; entry_offset < 0xF00; entry_offset += 4) {
1136 uint32_t romentry;
1137 retval = mem_ap_read_atomic_u32(ap, base_addr | entry_offset, &romentry);
1138 if (retval != ERROR_OK)
1139 return retval;
1140 command_print(cmd_ctx, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
1141 tabs, entry_offset, romentry);
1142 if (romentry & 0x01) {
1143 /* Recurse */
1144 retval = dap_rom_display(cmd_ctx, ap, base_addr + (romentry & 0xFFFFF000), depth + 1);
1145 if (retval != ERROR_OK)
1146 return retval;
1147 } else if (romentry != 0) {
1148 command_print(cmd_ctx, "\t\tComponent not present");
1149 } else {
1150 command_print(cmd_ctx, "\t%s\tEnd of ROM table", tabs);
1151 break;
1152 }
1153 }
1154 } else if (class == 9) { /* CoreSight component */
1155 const char *major = "Reserved", *subtype = "Reserved";
1156
1157 uint32_t devtype;
1158 retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &devtype);
1159 if (retval != ERROR_OK)
1160 return retval;
1161 unsigned minor = (devtype >> 4) & 0x0f;
1162 switch (devtype & 0x0f) {
1163 case 0:
1164 major = "Miscellaneous";
1165 switch (minor) {
1166 case 0:
1167 subtype = "other";
1168 break;
1169 case 4:
1170 subtype = "Validation component";
1171 break;
1172 }
1173 break;
1174 case 1:
1175 major = "Trace Sink";
1176 switch (minor) {
1177 case 0:
1178 subtype = "other";
1179 break;
1180 case 1:
1181 subtype = "Port";
1182 break;
1183 case 2:
1184 subtype = "Buffer";
1185 break;
1186 case 3:
1187 subtype = "Router";
1188 break;
1189 }
1190 break;
1191 case 2:
1192 major = "Trace Link";
1193 switch (minor) {
1194 case 0:
1195 subtype = "other";
1196 break;
1197 case 1:
1198 subtype = "Funnel, router";
1199 break;
1200 case 2:
1201 subtype = "Filter";
1202 break;
1203 case 3:
1204 subtype = "FIFO, buffer";
1205 break;
1206 }
1207 break;
1208 case 3:
1209 major = "Trace Source";
1210 switch (minor) {
1211 case 0:
1212 subtype = "other";
1213 break;
1214 case 1:
1215 subtype = "Processor";
1216 break;
1217 case 2:
1218 subtype = "DSP";
1219 break;
1220 case 3:
1221 subtype = "Engine/Coprocessor";
1222 break;
1223 case 4:
1224 subtype = "Bus";
1225 break;
1226 case 6:
1227 subtype = "Software";
1228 break;
1229 }
1230 break;
1231 case 4:
1232 major = "Debug Control";
1233 switch (minor) {
1234 case 0:
1235 subtype = "other";
1236 break;
1237 case 1:
1238 subtype = "Trigger Matrix";
1239 break;
1240 case 2:
1241 subtype = "Debug Auth";
1242 break;
1243 case 3:
1244 subtype = "Power Requestor";
1245 break;
1246 }
1247 break;
1248 case 5:
1249 major = "Debug Logic";
1250 switch (minor) {
1251 case 0:
1252 subtype = "other";
1253 break;
1254 case 1:
1255 subtype = "Processor";
1256 break;
1257 case 2:
1258 subtype = "DSP";
1259 break;
1260 case 3:
1261 subtype = "Engine/Coprocessor";
1262 break;
1263 case 4:
1264 subtype = "Bus";
1265 break;
1266 case 5:
1267 subtype = "Memory";
1268 break;
1269 }
1270 break;
1271 case 6:
1272 major = "Perfomance Monitor";
1273 switch (minor) {
1274 case 0:
1275 subtype = "other";
1276 break;
1277 case 1:
1278 subtype = "Processor";
1279 break;
1280 case 2:
1281 subtype = "DSP";
1282 break;
1283 case 3:
1284 subtype = "Engine/Coprocessor";
1285 break;
1286 case 4:
1287 subtype = "Bus";
1288 break;
1289 case 5:
1290 subtype = "Memory";
1291 break;
1292 }
1293 break;
1294 }
1295 command_print(cmd_ctx, "\t\tType is 0x%02" PRIx8 ", %s, %s",
1296 (uint8_t)(devtype & 0xff),
1297 major, subtype);
1298 /* REVISIT also show 0xfc8 DevId */
1299 }
1300
1301 return ERROR_OK;
1302 }
1303
1304 static int dap_info_command(struct command_context *cmd_ctx,
1305 struct adiv5_ap *ap)
1306 {
1307 int retval;
1308 uint32_t dbgbase, apid;
1309 uint8_t mem_ap;
1310
1311 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1312 retval = dap_get_debugbase(ap, &dbgbase, &apid);
1313 if (retval != ERROR_OK)
1314 return retval;
1315
1316 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1317 if (apid == 0) {
1318 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap->ap_num);
1319 return ERROR_FAIL;
1320 }
1321
1322 switch (apid & (IDR_JEP106 | IDR_TYPE)) {
1323 case IDR_JEP106_ARM | AP_TYPE_JTAG_AP:
1324 command_print(cmd_ctx, "\tType is JTAG-AP");
1325 break;
1326 case IDR_JEP106_ARM | AP_TYPE_AHB_AP:
1327 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1328 break;
1329 case IDR_JEP106_ARM | AP_TYPE_APB_AP:
1330 command_print(cmd_ctx, "\tType is MEM-AP APB");
1331 break;
1332 case IDR_JEP106_ARM | AP_TYPE_AXI_AP:
1333 command_print(cmd_ctx, "\tType is MEM-AP AXI");
1334 break;
1335 default:
1336 command_print(cmd_ctx, "\tUnknown AP type");
1337 break;
1338 }
1339
1340 /* NOTE: a MEM-AP may have a single CoreSight component that's
1341 * not a ROM table ... or have no such components at all.
1342 */
1343 mem_ap = (apid & IDR_CLASS) == AP_CLASS_MEM_AP;
1344 if (mem_ap) {
1345 command_print(cmd_ctx, "MEM-AP BASE 0x%8.8" PRIx32, dbgbase);
1346
1347 if (dbgbase == 0xFFFFFFFF || (dbgbase & 0x3) == 0x2) {
1348 command_print(cmd_ctx, "\tNo ROM table present");
1349 } else {
1350 if (dbgbase & 0x01)
1351 command_print(cmd_ctx, "\tValid ROM table present");
1352 else
1353 command_print(cmd_ctx, "\tROM table in legacy format");
1354
1355 dap_rom_display(cmd_ctx, ap, dbgbase & 0xFFFFF000, 0);
1356 }
1357 }
1358
1359 return ERROR_OK;
1360 }
1361
1362 COMMAND_HANDLER(handle_dap_info_command)
1363 {
1364 struct target *target = get_current_target(CMD_CTX);
1365 struct arm *arm = target_to_arm(target);
1366 struct adiv5_dap *dap = arm->dap;
1367 uint32_t apsel;
1368
1369 switch (CMD_ARGC) {
1370 case 0:
1371 apsel = dap->apsel;
1372 break;
1373 case 1:
1374 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1375 if (apsel >= 256)
1376 return ERROR_COMMAND_SYNTAX_ERROR;
1377 break;
1378 default:
1379 return ERROR_COMMAND_SYNTAX_ERROR;
1380 }
1381
1382 return dap_info_command(CMD_CTX, &dap->ap[apsel]);
1383 }
1384
1385 COMMAND_HANDLER(dap_baseaddr_command)
1386 {
1387 struct target *target = get_current_target(CMD_CTX);
1388 struct arm *arm = target_to_arm(target);
1389 struct adiv5_dap *dap = arm->dap;
1390
1391 uint32_t apsel, baseaddr;
1392 int retval;
1393
1394 switch (CMD_ARGC) {
1395 case 0:
1396 apsel = dap->apsel;
1397 break;
1398 case 1:
1399 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1400 /* AP address is in bits 31:24 of DP_SELECT */
1401 if (apsel >= 256)
1402 return ERROR_COMMAND_SYNTAX_ERROR;
1403 break;
1404 default:
1405 return ERROR_COMMAND_SYNTAX_ERROR;
1406 }
1407
1408 /* NOTE: assumes we're talking to a MEM-AP, which
1409 * has a base address. There are other kinds of AP,
1410 * though they're not common for now. This should
1411 * use the ID register to verify it's a MEM-AP.
1412 */
1413 retval = dap_queue_ap_read(dap_ap(dap, apsel), MEM_AP_REG_BASE, &baseaddr);
1414 if (retval != ERROR_OK)
1415 return retval;
1416 retval = dap_run(dap);
1417 if (retval != ERROR_OK)
1418 return retval;
1419
1420 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1421
1422 return retval;
1423 }
1424
1425 COMMAND_HANDLER(dap_memaccess_command)
1426 {
1427 struct target *target = get_current_target(CMD_CTX);
1428 struct arm *arm = target_to_arm(target);
1429 struct adiv5_dap *dap = arm->dap;
1430
1431 uint32_t memaccess_tck;
1432
1433 switch (CMD_ARGC) {
1434 case 0:
1435 memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
1436 break;
1437 case 1:
1438 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1439 break;
1440 default:
1441 return ERROR_COMMAND_SYNTAX_ERROR;
1442 }
1443 dap->ap[dap->apsel].memaccess_tck = memaccess_tck;
1444
1445 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1446 dap->ap[dap->apsel].memaccess_tck);
1447
1448 return ERROR_OK;
1449 }
1450
1451 COMMAND_HANDLER(dap_apsel_command)
1452 {
1453 struct target *target = get_current_target(CMD_CTX);
1454 struct arm *arm = target_to_arm(target);
1455 struct adiv5_dap *dap = arm->dap;
1456
1457 uint32_t apsel, apid;
1458 int retval;
1459
1460 switch (CMD_ARGC) {
1461 case 0:
1462 apsel = dap->apsel;
1463 break;
1464 case 1:
1465 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1466 /* AP address is in bits 31:24 of DP_SELECT */
1467 if (apsel >= 256)
1468 return ERROR_COMMAND_SYNTAX_ERROR;
1469 break;
1470 default:
1471 return ERROR_COMMAND_SYNTAX_ERROR;
1472 }
1473
1474 dap->apsel = apsel;
1475
1476 retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
1477 if (retval != ERROR_OK)
1478 return retval;
1479 retval = dap_run(dap);
1480 if (retval != ERROR_OK)
1481 return retval;
1482
1483 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1484 apsel, apid);
1485
1486 return retval;
1487 }
1488
1489 COMMAND_HANDLER(dap_apcsw_command)
1490 {
1491 struct target *target = get_current_target(CMD_CTX);
1492 struct arm *arm = target_to_arm(target);
1493 struct adiv5_dap *dap = arm->dap;
1494
1495 uint32_t apcsw = dap->ap[dap->apsel].csw_default, sprot = 0;
1496
1497 switch (CMD_ARGC) {
1498 case 0:
1499 command_print(CMD_CTX, "apsel %" PRIi32 " selected, csw 0x%8.8" PRIx32,
1500 (dap->apsel), apcsw);
1501 break;
1502 case 1:
1503 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], sprot);
1504 /* AP address is in bits 31:24 of DP_SELECT */
1505 if (sprot > 1)
1506 return ERROR_COMMAND_SYNTAX_ERROR;
1507 if (sprot)
1508 apcsw |= CSW_SPROT;
1509 else
1510 apcsw &= ~CSW_SPROT;
1511 break;
1512 default:
1513 return ERROR_COMMAND_SYNTAX_ERROR;
1514 }
1515 dap->ap[dap->apsel].csw_default = apcsw;
1516
1517 return 0;
1518 }
1519
1520
1521
1522 COMMAND_HANDLER(dap_apid_command)
1523 {
1524 struct target *target = get_current_target(CMD_CTX);
1525 struct arm *arm = target_to_arm(target);
1526 struct adiv5_dap *dap = arm->dap;
1527
1528 uint32_t apsel, apid;
1529 int retval;
1530
1531 switch (CMD_ARGC) {
1532 case 0:
1533 apsel = dap->apsel;
1534 break;
1535 case 1:
1536 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1537 /* AP address is in bits 31:24 of DP_SELECT */
1538 if (apsel >= 256)
1539 return ERROR_COMMAND_SYNTAX_ERROR;
1540 break;
1541 default:
1542 return ERROR_COMMAND_SYNTAX_ERROR;
1543 }
1544
1545 retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
1546 if (retval != ERROR_OK)
1547 return retval;
1548 retval = dap_run(dap);
1549 if (retval != ERROR_OK)
1550 return retval;
1551
1552 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1553
1554 return retval;
1555 }
1556
1557 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
1558 {
1559 struct target *target = get_current_target(CMD_CTX);
1560 struct arm *arm = target_to_arm(target);
1561 struct adiv5_dap *dap = arm->dap;
1562
1563 uint32_t enable = dap->ti_be_32_quirks;
1564
1565 switch (CMD_ARGC) {
1566 case 0:
1567 break;
1568 case 1:
1569 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], enable);
1570 if (enable > 1)
1571 return ERROR_COMMAND_SYNTAX_ERROR;
1572 break;
1573 default:
1574 return ERROR_COMMAND_SYNTAX_ERROR;
1575 }
1576 dap->ti_be_32_quirks = enable;
1577 command_print(CMD_CTX, "TI BE-32 quirks mode %s",
1578 enable ? "enabled" : "disabled");
1579
1580 return 0;
1581 }
1582
1583 static const struct command_registration dap_commands[] = {
1584 {
1585 .name = "info",
1586 .handler = handle_dap_info_command,
1587 .mode = COMMAND_EXEC,
1588 .help = "display ROM table for MEM-AP "
1589 "(default currently selected AP)",
1590 .usage = "[ap_num]",
1591 },
1592 {
1593 .name = "apsel",
1594 .handler = dap_apsel_command,
1595 .mode = COMMAND_EXEC,
1596 .help = "Set the currently selected AP (default 0) "
1597 "and display the result",
1598 .usage = "[ap_num]",
1599 },
1600 {
1601 .name = "apcsw",
1602 .handler = dap_apcsw_command,
1603 .mode = COMMAND_EXEC,
1604 .help = "Set csw access bit ",
1605 .usage = "[sprot]",
1606 },
1607
1608 {
1609 .name = "apid",
1610 .handler = dap_apid_command,
1611 .mode = COMMAND_EXEC,
1612 .help = "return ID register from AP "
1613 "(default currently selected AP)",
1614 .usage = "[ap_num]",
1615 },
1616 {
1617 .name = "baseaddr",
1618 .handler = dap_baseaddr_command,
1619 .mode = COMMAND_EXEC,
1620 .help = "return debug base address from MEM-AP "
1621 "(default currently selected AP)",
1622 .usage = "[ap_num]",
1623 },
1624 {
1625 .name = "memaccess",
1626 .handler = dap_memaccess_command,
1627 .mode = COMMAND_EXEC,
1628 .help = "set/get number of extra tck for MEM-AP memory "
1629 "bus access [0-255]",
1630 .usage = "[cycles]",
1631 },
1632 {
1633 .name = "ti_be_32_quirks",
1634 .handler = dap_ti_be_32_quirks_command,
1635 .mode = COMMAND_CONFIG,
1636 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
1637 .usage = "[enable]",
1638 },
1639 COMMAND_REGISTRATION_DONE
1640 };
1641
1642 const struct command_registration dap_command_handlers[] = {
1643 {
1644 .name = "dap",
1645 .mode = COMMAND_EXEC,
1646 .help = "DAP command group",
1647 .usage = "",
1648 .chain = dap_commands,
1649 },
1650 COMMAND_REGISTRATION_DONE
1651 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)