target/arm_adi_v5: change prototype of dap_rom_display()
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
20 * *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
25 * *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
28 ***************************************************************************/
29
30 /**
31 * @file
32 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
33 * debugging architecture. Compared with previous versions, this includes
34 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
35 * transport, and focusses on memory mapped resources as defined by the
36 * CoreSight architecture.
37 *
38 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
39 * basic components: a Debug Port (DP) transporting messages to and from a
40 * debugger, and an Access Port (AP) accessing resources. Three types of DP
41 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
42 * One uses only SWD for communication, and is called SW-DP. The third can
43 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
44 * is used to access memory mapped resources and is called a MEM-AP. Also a
45 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
46 *
47 * This programming interface allows DAP pipelined operations through a
48 * transaction queue. This primarily affects AP operations (such as using
49 * a MEM-AP to access memory or registers). If the current transaction has
50 * not finished by the time the next one must begin, and the ORUNDETECT bit
51 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
52 * further AP operations will fail. There are two basic methods to avoid
53 * such overrun errors. One involves polling for status instead of using
54 * transaction piplining. The other involves adding delays to ensure the
55 * AP has enough time to complete one operation before starting the next
56 * one. (For JTAG these delays are controlled by memaccess_tck.)
57 */
58
59 /*
60 * Relevant specifications from ARM include:
61 *
62 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031E
63 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
64 *
65 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
66 * Cortex-M3(tm) TRM, ARM DDI 0337G
67 */
68
69 #ifdef HAVE_CONFIG_H
70 #include "config.h"
71 #endif
72
73 #include "jtag/interface.h"
74 #include "arm.h"
75 #include "arm_adi_v5.h"
76 #include "jtag/swd.h"
77 #include "transport/transport.h"
78 #include <helper/jep106.h>
79 #include <helper/time_support.h>
80 #include <helper/list.h>
81 #include <helper/jim-nvp.h>
82
83 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
84
85 /*
86 uint32_t tar_block_size(uint32_t address)
87 Return the largest block starting at address that does not cross a tar block size alignment boundary
88 */
89 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
90 {
91 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
92 }
93
94 /***************************************************************************
95 * *
96 * DP and MEM-AP register access through APACC and DPACC *
97 * *
98 ***************************************************************************/
99
100 static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
101 {
102 csw |= ap->csw_default;
103
104 if (csw != ap->csw_value) {
105 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
106 int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw);
107 if (retval != ERROR_OK) {
108 ap->csw_value = 0;
109 return retval;
110 }
111 ap->csw_value = csw;
112 }
113 return ERROR_OK;
114 }
115
116 static int mem_ap_setup_tar(struct adiv5_ap *ap, uint32_t tar)
117 {
118 if (!ap->tar_valid || tar != ap->tar_value) {
119 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
120 int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, tar);
121 if (retval != ERROR_OK) {
122 ap->tar_valid = false;
123 return retval;
124 }
125 ap->tar_value = tar;
126 ap->tar_valid = true;
127 }
128 return ERROR_OK;
129 }
130
131 static int mem_ap_read_tar(struct adiv5_ap *ap, uint32_t *tar)
132 {
133 int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR, tar);
134 if (retval != ERROR_OK) {
135 ap->tar_valid = false;
136 return retval;
137 }
138
139 retval = dap_run(ap->dap);
140 if (retval != ERROR_OK) {
141 ap->tar_valid = false;
142 return retval;
143 }
144
145 ap->tar_value = *tar;
146 ap->tar_valid = true;
147 return ERROR_OK;
148 }
149
150 static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
151 {
152 switch (ap->csw_value & CSW_ADDRINC_MASK) {
153 case CSW_ADDRINC_SINGLE:
154 switch (ap->csw_value & CSW_SIZE_MASK) {
155 case CSW_8BIT:
156 return 1;
157 case CSW_16BIT:
158 return 2;
159 case CSW_32BIT:
160 return 4;
161 default:
162 return 0;
163 }
164 case CSW_ADDRINC_PACKED:
165 return 4;
166 }
167 return 0;
168 }
169
170 /* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW
171 */
172 static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
173 {
174 if (!ap->tar_valid)
175 return;
176
177 uint32_t inc = mem_ap_get_tar_increment(ap);
178 if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value))
179 ap->tar_valid = false;
180 else
181 ap->tar_value += inc;
182 }
183
184 /**
185 * Queue transactions setting up transfer parameters for the
186 * currently selected MEM-AP.
187 *
188 * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
189 * initiate data reads or writes using memory or peripheral addresses.
190 * If the CSW is configured for it, the TAR may be automatically
191 * incremented after each transfer.
192 *
193 * @param ap The MEM-AP.
194 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
195 * matches the cached value, the register is not changed.
196 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
197 * matches the cached address, the register is not changed.
198 *
199 * @return ERROR_OK if the transaction was properly queued, else a fault code.
200 */
201 static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, uint32_t tar)
202 {
203 int retval;
204 retval = mem_ap_setup_csw(ap, csw);
205 if (retval != ERROR_OK)
206 return retval;
207 retval = mem_ap_setup_tar(ap, tar);
208 if (retval != ERROR_OK)
209 return retval;
210 return ERROR_OK;
211 }
212
213 /**
214 * Asynchronous (queued) read of a word from memory or a system register.
215 *
216 * @param ap The MEM-AP to access.
217 * @param address Address of the 32-bit word to read; it must be
218 * readable by the currently selected MEM-AP.
219 * @param value points to where the word will be stored when the
220 * transaction queue is flushed (assuming no errors).
221 *
222 * @return ERROR_OK for success. Otherwise a fault code.
223 */
224 int mem_ap_read_u32(struct adiv5_ap *ap, uint32_t address,
225 uint32_t *value)
226 {
227 int retval;
228
229 /* Use banked addressing (REG_BDx) to avoid some link traffic
230 * (updating TAR) when reading several consecutive addresses.
231 */
232 retval = mem_ap_setup_transfer(ap,
233 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
234 address & 0xFFFFFFF0);
235 if (retval != ERROR_OK)
236 return retval;
237
238 return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value);
239 }
240
241 /**
242 * Synchronous read of a word from memory or a system register.
243 * As a side effect, this flushes any queued transactions.
244 *
245 * @param ap The MEM-AP to access.
246 * @param address Address of the 32-bit word to read; it must be
247 * readable by the currently selected MEM-AP.
248 * @param value points to where the result will be stored.
249 *
250 * @return ERROR_OK for success; *value holds the result.
251 * Otherwise a fault code.
252 */
253 int mem_ap_read_atomic_u32(struct adiv5_ap *ap, uint32_t address,
254 uint32_t *value)
255 {
256 int retval;
257
258 retval = mem_ap_read_u32(ap, address, value);
259 if (retval != ERROR_OK)
260 return retval;
261
262 return dap_run(ap->dap);
263 }
264
265 /**
266 * Asynchronous (queued) write of a word to memory or a system register.
267 *
268 * @param ap The MEM-AP to access.
269 * @param address Address to be written; it must be writable by
270 * the currently selected MEM-AP.
271 * @param value Word that will be written to the address when transaction
272 * queue is flushed (assuming no errors).
273 *
274 * @return ERROR_OK for success. Otherwise a fault code.
275 */
276 int mem_ap_write_u32(struct adiv5_ap *ap, uint32_t address,
277 uint32_t value)
278 {
279 int retval;
280
281 /* Use banked addressing (REG_BDx) to avoid some link traffic
282 * (updating TAR) when writing several consecutive addresses.
283 */
284 retval = mem_ap_setup_transfer(ap,
285 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
286 address & 0xFFFFFFF0);
287 if (retval != ERROR_OK)
288 return retval;
289
290 return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC),
291 value);
292 }
293
294 /**
295 * Synchronous write of a word to memory or a system register.
296 * As a side effect, this flushes any queued transactions.
297 *
298 * @param ap The MEM-AP to access.
299 * @param address Address to be written; it must be writable by
300 * the currently selected MEM-AP.
301 * @param value Word that will be written.
302 *
303 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
304 */
305 int mem_ap_write_atomic_u32(struct adiv5_ap *ap, uint32_t address,
306 uint32_t value)
307 {
308 int retval = mem_ap_write_u32(ap, address, value);
309
310 if (retval != ERROR_OK)
311 return retval;
312
313 return dap_run(ap->dap);
314 }
315
316 /**
317 * Synchronous write of a block of memory, using a specific access size.
318 *
319 * @param ap The MEM-AP to access.
320 * @param buffer The data buffer to write. No particular alignment is assumed.
321 * @param size Which access size to use, in bytes. 1, 2 or 4.
322 * @param count The number of writes to do (in size units, not bytes).
323 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
324 * @param addrinc Whether the target address should be increased for each write or not. This
325 * should normally be true, except when writing to e.g. a FIFO.
326 * @return ERROR_OK on success, otherwise an error code.
327 */
328 static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
329 uint32_t address, bool addrinc)
330 {
331 struct adiv5_dap *dap = ap->dap;
332 size_t nbytes = size * count;
333 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
334 uint32_t csw_size;
335 uint32_t addr_xor;
336 int retval = ERROR_OK;
337
338 /* TI BE-32 Quirks mode:
339 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
340 * size write address bytes written in order
341 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
342 * 2 TAR ^ 2 (val >> 8), (val)
343 * 1 TAR ^ 3 (val)
344 * For example, if you attempt to write a single byte to address 0, the processor
345 * will actually write a byte to address 3.
346 *
347 * To make writes of size < 4 work as expected, we xor a value with the address before
348 * setting the TAP, and we set the TAP after every transfer rather then relying on
349 * address increment. */
350
351 if (size == 4) {
352 csw_size = CSW_32BIT;
353 addr_xor = 0;
354 } else if (size == 2) {
355 csw_size = CSW_16BIT;
356 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
357 } else if (size == 1) {
358 csw_size = CSW_8BIT;
359 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
360 } else {
361 return ERROR_TARGET_UNALIGNED_ACCESS;
362 }
363
364 if (ap->unaligned_access_bad && (address % size != 0))
365 return ERROR_TARGET_UNALIGNED_ACCESS;
366
367 while (nbytes > 0) {
368 uint32_t this_size = size;
369
370 /* Select packed transfer if possible */
371 if (addrinc && ap->packed_transfers && nbytes >= 4
372 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
373 this_size = 4;
374 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
375 } else {
376 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
377 }
378
379 if (retval != ERROR_OK)
380 break;
381
382 retval = mem_ap_setup_tar(ap, address ^ addr_xor);
383 if (retval != ERROR_OK)
384 return retval;
385
386 /* How many source bytes each transfer will consume, and their location in the DRW,
387 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
388 uint32_t outvalue = 0;
389 uint32_t drw_byte_idx = address;
390 if (dap->ti_be_32_quirks) {
391 switch (this_size) {
392 case 4:
393 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
394 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
395 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
396 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor);
397 break;
398 case 2:
399 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor);
400 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor);
401 break;
402 case 1:
403 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor);
404 break;
405 }
406 } else {
407 switch (this_size) {
408 case 4:
409 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
410 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
411 /* fallthrough */
412 case 2:
413 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
414 /* fallthrough */
415 case 1:
416 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
417 }
418 }
419
420 nbytes -= this_size;
421
422 retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue);
423 if (retval != ERROR_OK)
424 break;
425
426 mem_ap_update_tar_cache(ap);
427 if (addrinc)
428 address += this_size;
429 }
430
431 /* REVISIT: Might want to have a queued version of this function that does not run. */
432 if (retval == ERROR_OK)
433 retval = dap_run(dap);
434
435 if (retval != ERROR_OK) {
436 uint32_t tar;
437 if (mem_ap_read_tar(ap, &tar) == ERROR_OK)
438 LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar);
439 else
440 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
441 }
442
443 return retval;
444 }
445
446 /**
447 * Synchronous read of a block of memory, using a specific access size.
448 *
449 * @param ap The MEM-AP to access.
450 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
451 * @param size Which access size to use, in bytes. 1, 2 or 4.
452 * @param count The number of reads to do (in size units, not bytes).
453 * @param address Address to be read; it must be readable by the currently selected MEM-AP.
454 * @param addrinc Whether the target address should be increased after each read or not. This
455 * should normally be true, except when reading from e.g. a FIFO.
456 * @return ERROR_OK on success, otherwise an error code.
457 */
458 static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
459 uint32_t adr, bool addrinc)
460 {
461 struct adiv5_dap *dap = ap->dap;
462 size_t nbytes = size * count;
463 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
464 uint32_t csw_size;
465 uint32_t address = adr;
466 int retval = ERROR_OK;
467
468 /* TI BE-32 Quirks mode:
469 * Reads on big-endian TMS570 behave strangely differently than writes.
470 * They read from the physical address requested, but with DRW byte-reversed.
471 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
472 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
473 * so avoid them. */
474
475 if (size == 4)
476 csw_size = CSW_32BIT;
477 else if (size == 2)
478 csw_size = CSW_16BIT;
479 else if (size == 1)
480 csw_size = CSW_8BIT;
481 else
482 return ERROR_TARGET_UNALIGNED_ACCESS;
483
484 if (ap->unaligned_access_bad && (adr % size != 0))
485 return ERROR_TARGET_UNALIGNED_ACCESS;
486
487 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
488 * over-allocation if packed transfers are going to be used, but determining the real need at
489 * this point would be messy. */
490 uint32_t *read_buf = calloc(count, sizeof(uint32_t));
491 /* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */
492 uint32_t *read_ptr = read_buf;
493 if (read_buf == NULL) {
494 LOG_ERROR("Failed to allocate read buffer");
495 return ERROR_FAIL;
496 }
497
498 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
499 * useful bytes it contains, and their location in the word, depends on the type of transfer
500 * and alignment. */
501 while (nbytes > 0) {
502 uint32_t this_size = size;
503
504 /* Select packed transfer if possible */
505 if (addrinc && ap->packed_transfers && nbytes >= 4
506 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
507 this_size = 4;
508 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
509 } else {
510 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
511 }
512 if (retval != ERROR_OK)
513 break;
514
515 retval = mem_ap_setup_tar(ap, address);
516 if (retval != ERROR_OK)
517 break;
518
519 retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++);
520 if (retval != ERROR_OK)
521 break;
522
523 nbytes -= this_size;
524 if (addrinc)
525 address += this_size;
526
527 mem_ap_update_tar_cache(ap);
528 }
529
530 if (retval == ERROR_OK)
531 retval = dap_run(dap);
532
533 /* Restore state */
534 address = adr;
535 nbytes = size * count;
536 read_ptr = read_buf;
537
538 /* If something failed, read TAR to find out how much data was successfully read, so we can
539 * at least give the caller what we have. */
540 if (retval != ERROR_OK) {
541 uint32_t tar;
542 if (mem_ap_read_tar(ap, &tar) == ERROR_OK) {
543 /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */
544 LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar);
545 if (nbytes > tar - address)
546 nbytes = tar - address;
547 } else {
548 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
549 nbytes = 0;
550 }
551 }
552
553 /* Replay loop to populate caller's buffer from the correct word and byte lane */
554 while (nbytes > 0) {
555 uint32_t this_size = size;
556
557 if (addrinc && ap->packed_transfers && nbytes >= 4
558 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
559 this_size = 4;
560 }
561
562 if (dap->ti_be_32_quirks) {
563 switch (this_size) {
564 case 4:
565 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
566 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
567 /* fallthrough */
568 case 2:
569 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
570 /* fallthrough */
571 case 1:
572 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
573 }
574 } else {
575 switch (this_size) {
576 case 4:
577 *buffer++ = *read_ptr >> 8 * (address++ & 3);
578 *buffer++ = *read_ptr >> 8 * (address++ & 3);
579 /* fallthrough */
580 case 2:
581 *buffer++ = *read_ptr >> 8 * (address++ & 3);
582 /* fallthrough */
583 case 1:
584 *buffer++ = *read_ptr >> 8 * (address++ & 3);
585 }
586 }
587
588 read_ptr++;
589 nbytes -= this_size;
590 }
591
592 free(read_buf);
593 return retval;
594 }
595
596 int mem_ap_read_buf(struct adiv5_ap *ap,
597 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
598 {
599 return mem_ap_read(ap, buffer, size, count, address, true);
600 }
601
602 int mem_ap_write_buf(struct adiv5_ap *ap,
603 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
604 {
605 return mem_ap_write(ap, buffer, size, count, address, true);
606 }
607
608 int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
609 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
610 {
611 return mem_ap_read(ap, buffer, size, count, address, false);
612 }
613
614 int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
615 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
616 {
617 return mem_ap_write(ap, buffer, size, count, address, false);
618 }
619
620 /*--------------------------------------------------------------------------*/
621
622
623 #define DAP_POWER_DOMAIN_TIMEOUT (10)
624
625 /*--------------------------------------------------------------------------*/
626
627 /**
628 * Invalidate cached DP select and cached TAR and CSW of all APs
629 */
630 void dap_invalidate_cache(struct adiv5_dap *dap)
631 {
632 dap->select = DP_SELECT_INVALID;
633 dap->last_read = NULL;
634
635 int i;
636 for (i = 0; i <= 255; i++) {
637 /* force csw and tar write on the next mem-ap access */
638 dap->ap[i].tar_valid = false;
639 dap->ap[i].csw_value = 0;
640 }
641 }
642
643 /**
644 * Initialize a DAP. This sets up the power domains, prepares the DP
645 * for further use and activates overrun checking.
646 *
647 * @param dap The DAP being initialized.
648 */
649 int dap_dp_init(struct adiv5_dap *dap)
650 {
651 int retval;
652
653 LOG_DEBUG("%s", adiv5_dap_name(dap));
654
655 dap_invalidate_cache(dap);
656
657 /*
658 * Early initialize dap->dp_ctrl_stat.
659 * In jtag mode only, if the following atomic reads fail and set the
660 * sticky error, it will trigger the clearing of the sticky. Without this
661 * initialization system and debug power would be disabled while clearing
662 * the sticky error bit.
663 */
664 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
665
666 for (size_t i = 0; i < 30; i++) {
667 /* DP initialization */
668
669 retval = dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL);
670 if (retval == ERROR_OK)
671 break;
672 }
673
674 /*
675 * This write operation clears the sticky error bit in jtag mode only and
676 * is ignored in swd mode. It also powers-up system and debug domains in
677 * both jtag and swd modes, if not done before.
678 * Actually we do not need to clear the sticky error here because it has
679 * been already cleared (if it was set) in the previous atomic read. This
680 * write could be removed, but this initial part of dap_dp_init() is the
681 * result of years of fine tuning and there are strong concerns about any
682 * unnecessary code change. It doesn't harm, so let's keep it here and
683 * preserve the historical sequence of read/write operations!
684 */
685 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat | SSTICKYERR);
686 if (retval != ERROR_OK)
687 return retval;
688
689 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
690 if (retval != ERROR_OK)
691 return retval;
692
693 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
694 if (retval != ERROR_OK)
695 return retval;
696
697 /* Check that we have debug power domains activated */
698 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
699 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
700 CDBGPWRUPACK, CDBGPWRUPACK,
701 DAP_POWER_DOMAIN_TIMEOUT);
702 if (retval != ERROR_OK)
703 return retval;
704
705 if (!dap->ignore_syspwrupack) {
706 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
707 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
708 CSYSPWRUPACK, CSYSPWRUPACK,
709 DAP_POWER_DOMAIN_TIMEOUT);
710 if (retval != ERROR_OK)
711 return retval;
712 }
713
714 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
715 if (retval != ERROR_OK)
716 return retval;
717
718 /* With debug power on we can activate OVERRUN checking */
719 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
720 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
721 if (retval != ERROR_OK)
722 return retval;
723 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
724 if (retval != ERROR_OK)
725 return retval;
726
727 retval = dap_run(dap);
728 if (retval != ERROR_OK)
729 return retval;
730
731 return retval;
732 }
733
734 /**
735 * Initialize a DAP. This sets up the power domains, prepares the DP
736 * for further use, and arranges to use AP #0 for all AP operations
737 * until dap_ap-select() changes that policy.
738 *
739 * @param ap The MEM-AP being initialized.
740 */
741 int mem_ap_init(struct adiv5_ap *ap)
742 {
743 /* check that we support packed transfers */
744 uint32_t csw, cfg;
745 int retval;
746 struct adiv5_dap *dap = ap->dap;
747
748 ap->tar_valid = false;
749 ap->csw_value = 0; /* force csw and tar write */
750 retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
751 if (retval != ERROR_OK)
752 return retval;
753
754 retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw);
755 if (retval != ERROR_OK)
756 return retval;
757
758 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg);
759 if (retval != ERROR_OK)
760 return retval;
761
762 retval = dap_run(dap);
763 if (retval != ERROR_OK)
764 return retval;
765
766 if (csw & CSW_ADDRINC_PACKED)
767 ap->packed_transfers = true;
768 else
769 ap->packed_transfers = false;
770
771 /* Packed transfers on TI BE-32 processors do not work correctly in
772 * many cases. */
773 if (dap->ti_be_32_quirks)
774 ap->packed_transfers = false;
775
776 LOG_DEBUG("MEM_AP Packed Transfers: %s",
777 ap->packed_transfers ? "enabled" : "disabled");
778
779 /* The ARM ADI spec leaves implementation-defined whether unaligned
780 * memory accesses work, only work partially, or cause a sticky error.
781 * On TI BE-32 processors, reads seem to return garbage in some bytes
782 * and unaligned writes seem to cause a sticky error.
783 * TODO: it would be nice to have a way to detect whether unaligned
784 * operations are supported on other processors. */
785 ap->unaligned_access_bad = dap->ti_be_32_quirks;
786
787 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
788 !!(cfg & 0x04), !!(cfg & 0x02), !!(cfg & 0x01));
789
790 return ERROR_OK;
791 }
792
793 /**
794 * Put the debug link into SWD mode, if the target supports it.
795 * The link's initial mode may be either JTAG (for example,
796 * with SWJ-DP after reset) or SWD.
797 *
798 * Note that targets using the JTAG-DP do not support SWD, and that
799 * some targets which could otherwise support it may have been
800 * configured to disable SWD signaling
801 *
802 * @param dap The DAP used
803 * @return ERROR_OK or else a fault code.
804 */
805 int dap_to_swd(struct adiv5_dap *dap)
806 {
807 int retval;
808
809 LOG_DEBUG("Enter SWD mode");
810
811 if (transport_is_jtag()) {
812 retval = jtag_add_tms_seq(swd_seq_jtag_to_swd_len,
813 swd_seq_jtag_to_swd, TAP_INVALID);
814 if (retval == ERROR_OK)
815 retval = jtag_execute_queue();
816 return retval;
817 }
818
819 if (transport_is_swd()) {
820 const struct swd_driver *swd = adiv5_dap_swd_driver(dap);
821
822 return swd->switch_seq(JTAG_TO_SWD);
823 }
824
825 LOG_ERROR("Nor JTAG nor SWD transport");
826 return ERROR_FAIL;
827 }
828
829 /**
830 * Put the debug link into JTAG mode, if the target supports it.
831 * The link's initial mode may be either SWD or JTAG.
832 *
833 * Note that targets implemented with SW-DP do not support JTAG, and
834 * that some targets which could otherwise support it may have been
835 * configured to disable JTAG signaling
836 *
837 * @param dap The DAP used
838 * @return ERROR_OK or else a fault code.
839 */
840 int dap_to_jtag(struct adiv5_dap *dap)
841 {
842 int retval;
843
844 LOG_DEBUG("Enter JTAG mode");
845
846 if (transport_is_jtag()) {
847 retval = jtag_add_tms_seq(swd_seq_swd_to_jtag_len,
848 swd_seq_swd_to_jtag, TAP_RESET);
849 if (retval == ERROR_OK)
850 retval = jtag_execute_queue();
851 return retval;
852 }
853
854 if (transport_is_swd()) {
855 const struct swd_driver *swd = adiv5_dap_swd_driver(dap);
856
857 return swd->switch_seq(SWD_TO_JTAG);
858 }
859
860 LOG_ERROR("Nor JTAG nor SWD transport");
861 return ERROR_FAIL;
862 }
863
864 /* CID interpretation -- see ARM IHI 0029B section 3
865 * and ARM IHI 0031A table 13-3.
866 */
867 static const char *class_description[16] = {
868 "Reserved", "ROM table", "Reserved", "Reserved",
869 "Reserved", "Reserved", "Reserved", "Reserved",
870 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
871 "Reserved", "OptimoDE DESS",
872 "Generic IP component", "PrimeCell or System component"
873 };
874
875 static bool is_dap_cid_ok(uint32_t cid)
876 {
877 return (cid & 0xffff0fff) == 0xb105000d;
878 }
879
880 /*
881 * This function checks the ID for each access port to find the requested Access Port type
882 */
883 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
884 {
885 int ap_num;
886
887 /* Maximum AP number is 255 since the SELECT register is 8 bits */
888 for (ap_num = 0; ap_num <= DP_APSEL_MAX; ap_num++) {
889
890 /* read the IDR register of the Access Port */
891 uint32_t id_val = 0;
892
893 int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val);
894 if (retval != ERROR_OK)
895 return retval;
896
897 retval = dap_run(dap);
898
899 /* IDR bits:
900 * 31-28 : Revision
901 * 27-24 : JEDEC bank (0x4 for ARM)
902 * 23-17 : JEDEC code (0x3B for ARM)
903 * 16-13 : Class (0b1000=Mem-AP)
904 * 12-8 : Reserved
905 * 7-4 : AP Variant (non-zero for JTAG-AP)
906 * 3-0 : AP Type (0=JTAG-AP 1=AHB-AP 2=APB-AP 4=AXI-AP)
907 */
908
909 /* Reading register for a non-existant AP should not cause an error,
910 * but just to be sure, try to continue searching if an error does happen.
911 */
912 if ((retval == ERROR_OK) && /* Register read success */
913 ((id_val & IDR_JEP106) == IDR_JEP106_ARM) && /* Jedec codes match */
914 ((id_val & IDR_TYPE) == type_to_find)) { /* type matches*/
915
916 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
917 (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
918 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
919 (type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" :
920 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown",
921 ap_num, id_val);
922
923 *ap_out = &dap->ap[ap_num];
924 return ERROR_OK;
925 }
926 }
927
928 LOG_DEBUG("No %s found",
929 (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
930 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
931 (type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" :
932 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown");
933 return ERROR_FAIL;
934 }
935
936 int dap_get_debugbase(struct adiv5_ap *ap,
937 uint32_t *dbgbase, uint32_t *apid)
938 {
939 struct adiv5_dap *dap = ap->dap;
940 int retval;
941
942 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, dbgbase);
943 if (retval != ERROR_OK)
944 return retval;
945 retval = dap_queue_ap_read(ap, AP_REG_IDR, apid);
946 if (retval != ERROR_OK)
947 return retval;
948 retval = dap_run(dap);
949 if (retval != ERROR_OK)
950 return retval;
951
952 return ERROR_OK;
953 }
954
955 int dap_lookup_cs_component(struct adiv5_ap *ap,
956 uint32_t dbgbase, uint8_t type, uint32_t *addr, int32_t *idx)
957 {
958 uint32_t romentry, entry_offset = 0, component_base, devtype;
959 int retval;
960
961 *addr = 0;
962
963 do {
964 retval = mem_ap_read_atomic_u32(ap, (dbgbase&0xFFFFF000) |
965 entry_offset, &romentry);
966 if (retval != ERROR_OK)
967 return retval;
968
969 component_base = (dbgbase & 0xFFFFF000)
970 + (romentry & 0xFFFFF000);
971
972 if (romentry & 0x1) {
973 uint32_t c_cid1;
974 retval = mem_ap_read_atomic_u32(ap, component_base | 0xff4, &c_cid1);
975 if (retval != ERROR_OK) {
976 LOG_ERROR("Can't read component with base address 0x%" PRIx32
977 ", the corresponding core might be turned off", component_base);
978 return retval;
979 }
980 if (((c_cid1 >> 4) & 0x0f) == 1) {
981 retval = dap_lookup_cs_component(ap, component_base,
982 type, addr, idx);
983 if (retval == ERROR_OK)
984 break;
985 if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
986 return retval;
987 }
988
989 retval = mem_ap_read_atomic_u32(ap,
990 (component_base & 0xfffff000) | 0xfcc,
991 &devtype);
992 if (retval != ERROR_OK)
993 return retval;
994 if ((devtype & 0xff) == type) {
995 if (!*idx) {
996 *addr = component_base;
997 break;
998 } else
999 (*idx)--;
1000 }
1001 }
1002 entry_offset += 4;
1003 } while (romentry > 0);
1004
1005 if (!*addr)
1006 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1007
1008 return ERROR_OK;
1009 }
1010
1011 static int dap_read_part_id(struct adiv5_ap *ap, uint32_t component_base, uint32_t *cid, uint64_t *pid)
1012 {
1013 assert((component_base & 0xFFF) == 0);
1014 assert(ap != NULL && cid != NULL && pid != NULL);
1015
1016 uint32_t cid0, cid1, cid2, cid3;
1017 uint32_t pid0, pid1, pid2, pid3, pid4;
1018 int retval;
1019
1020 /* IDs are in last 4K section */
1021 retval = mem_ap_read_u32(ap, component_base + 0xFE0, &pid0);
1022 if (retval != ERROR_OK)
1023 return retval;
1024 retval = mem_ap_read_u32(ap, component_base + 0xFE4, &pid1);
1025 if (retval != ERROR_OK)
1026 return retval;
1027 retval = mem_ap_read_u32(ap, component_base + 0xFE8, &pid2);
1028 if (retval != ERROR_OK)
1029 return retval;
1030 retval = mem_ap_read_u32(ap, component_base + 0xFEC, &pid3);
1031 if (retval != ERROR_OK)
1032 return retval;
1033 retval = mem_ap_read_u32(ap, component_base + 0xFD0, &pid4);
1034 if (retval != ERROR_OK)
1035 return retval;
1036 retval = mem_ap_read_u32(ap, component_base + 0xFF0, &cid0);
1037 if (retval != ERROR_OK)
1038 return retval;
1039 retval = mem_ap_read_u32(ap, component_base + 0xFF4, &cid1);
1040 if (retval != ERROR_OK)
1041 return retval;
1042 retval = mem_ap_read_u32(ap, component_base + 0xFF8, &cid2);
1043 if (retval != ERROR_OK)
1044 return retval;
1045 retval = mem_ap_read_u32(ap, component_base + 0xFFC, &cid3);
1046 if (retval != ERROR_OK)
1047 return retval;
1048
1049 retval = dap_run(ap->dap);
1050 if (retval != ERROR_OK)
1051 return retval;
1052
1053 *cid = (cid3 & 0xff) << 24
1054 | (cid2 & 0xff) << 16
1055 | (cid1 & 0xff) << 8
1056 | (cid0 & 0xff);
1057 *pid = (uint64_t)(pid4 & 0xff) << 32
1058 | (pid3 & 0xff) << 24
1059 | (pid2 & 0xff) << 16
1060 | (pid1 & 0xff) << 8
1061 | (pid0 & 0xff);
1062
1063 return ERROR_OK;
1064 }
1065
1066 /* The designer identity code is encoded as:
1067 * bits 11:8 : JEP106 Bank (number of continuation codes), only valid when bit 7 is 1.
1068 * bit 7 : Set when bits 6:0 represent a JEP106 ID and cleared when bits 6:0 represent
1069 * a legacy ASCII Identity Code.
1070 * bits 6:0 : JEP106 Identity Code (without parity) or legacy ASCII code according to bit 7.
1071 * JEP106 is a standard available from jedec.org
1072 */
1073
1074 /* Part number interpretations are from Cortex
1075 * core specs, the CoreSight components TRM
1076 * (ARM DDI 0314H), CoreSight System Design
1077 * Guide (ARM DGI 0012D) and ETM specs; also
1078 * from chip observation (e.g. TI SDTI).
1079 */
1080
1081 /* The legacy code only used the part number field to identify CoreSight peripherals.
1082 * This meant that the same part number from two different manufacturers looked the same.
1083 * It is desirable for all future additions to identify with both part number and JEP106.
1084 * "ANY_ID" is a wildcard (any JEP106) only to preserve legacy behavior for legacy entries.
1085 */
1086
1087 #define ANY_ID 0x1000
1088
1089 #define ARM_ID 0x4BB
1090
1091 static const struct {
1092 uint16_t designer_id;
1093 uint16_t part_num;
1094 const char *type;
1095 const char *full;
1096 } dap_partnums[] = {
1097 { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
1098 { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
1099 { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
1100 { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
1101 { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
1102 { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
1103 { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
1104 { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
1105 { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
1106 { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
1107 { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
1108 { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
1109 { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
1110 { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
1111 { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
1112 { ARM_ID, 0x4a9, "Cortex-A9 ROM", "(ROM Table)", },
1113 { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
1114 { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
1115 { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
1116 { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
1117 { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
1118 { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
1119 { ARM_ID, 0x4b5, "Cortex-R5 ROM", "(ROM Table)", },
1120 { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
1121 { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
1122 { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
1123 { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
1124 { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
1125 { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
1126 { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
1127 { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
1128 { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
1129 { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
1130 { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
1131 { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
1132 { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
1133 { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
1134 { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
1135 { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
1136 { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
1137 { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
1138 { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
1139 { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
1140 { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
1141 { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
1142 { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
1143 { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
1144 { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
1145 { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
1146 { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
1147 { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
1148 { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
1149 { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
1150 { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
1151 { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
1152 { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
1153 { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
1154 { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
1155 { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
1156 { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
1157 { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
1158 { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
1159 { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
1160 { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitor Unit)", },
1161 { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
1162 { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
1163 { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
1164 { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
1165 { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
1166 { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
1167 { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
1168 { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
1169 { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
1170 { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
1171 { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
1172 { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
1173 { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
1174 { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
1175 { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
1176 { 0x097, 0x9af, "MSP432 ROM", "(ROM Table)" },
1177 { 0x09f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
1178 { 0x0c1, 0x1db, "XMC4500 ROM", "(ROM Table)" },
1179 { 0x0c1, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" },
1180 { 0x0c1, 0x1ed, "XMC1000 ROM", "(ROM Table)" },
1181 { 0x0E5, 0x000, "SHARC+/Blackfin+", "", },
1182 { 0x0F0, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
1183 { 0x3eb, 0x181, "Tegra 186 ROM", "(ROM Table)", },
1184 { 0x3eb, 0x211, "Tegra 210 ROM", "(ROM Table)", },
1185 { 0x3eb, 0x202, "Denver ETM", "(Denver Embedded Trace)", },
1186 { 0x3eb, 0x302, "Denver Debug", "(Debug Unit)", },
1187 { 0x3eb, 0x402, "Denver PMU", "(Performance Monitor Unit)", },
1188 /* legacy comment: 0x113: what? */
1189 { ANY_ID, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
1190 { ANY_ID, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
1191 };
1192
1193 static int dap_rom_display(struct command_invocation *cmd,
1194 struct adiv5_ap *ap, uint32_t dbgbase, int depth)
1195 {
1196 int retval;
1197 uint64_t pid;
1198 uint32_t cid;
1199 char tabs[16] = "";
1200
1201 if (depth > 16) {
1202 command_print(cmd->ctx, "\tTables too deep");
1203 return ERROR_FAIL;
1204 }
1205
1206 if (depth)
1207 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1208
1209 uint32_t base_addr = dbgbase & 0xFFFFF000;
1210 command_print(cmd->ctx, "\t\tComponent base address 0x%08" PRIx32, base_addr);
1211
1212 retval = dap_read_part_id(ap, base_addr, &cid, &pid);
1213 if (retval != ERROR_OK) {
1214 command_print(cmd->ctx, "\t\tCan't read component, the corresponding core might be turned off");
1215 return ERROR_OK; /* Don't abort recursion */
1216 }
1217
1218 if (!is_dap_cid_ok(cid)) {
1219 command_print(cmd->ctx, "\t\tInvalid CID 0x%08" PRIx32, cid);
1220 return ERROR_OK; /* Don't abort recursion */
1221 }
1222
1223 /* component may take multiple 4K pages */
1224 uint32_t size = (pid >> 36) & 0xf;
1225 if (size > 0)
1226 command_print(cmd->ctx, "\t\tStart address 0x%08" PRIx32, (uint32_t)(base_addr - 0x1000 * size));
1227
1228 command_print(cmd->ctx, "\t\tPeripheral ID 0x%010" PRIx64, pid);
1229
1230 uint8_t class = (cid >> 12) & 0xf;
1231 uint16_t part_num = pid & 0xfff;
1232 uint16_t designer_id = ((pid >> 32) & 0xf) << 8 | ((pid >> 12) & 0xff);
1233
1234 if (designer_id & 0x80) {
1235 /* JEP106 code */
1236 command_print(cmd->ctx, "\t\tDesigner is 0x%03" PRIx16 ", %s",
1237 designer_id, jep106_manufacturer(designer_id >> 8, designer_id & 0x7f));
1238 } else {
1239 /* Legacy ASCII ID, clear invalid bits */
1240 designer_id &= 0x7f;
1241 command_print(cmd->ctx, "\t\tDesigner ASCII code 0x%02" PRIx16 ", %s",
1242 designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
1243 }
1244
1245 /* default values to be overwritten upon finding a match */
1246 const char *type = "Unrecognized";
1247 const char *full = "";
1248
1249 /* search dap_partnums[] array for a match */
1250 for (unsigned entry = 0; entry < ARRAY_SIZE(dap_partnums); entry++) {
1251
1252 if ((dap_partnums[entry].designer_id != designer_id) && (dap_partnums[entry].designer_id != ANY_ID))
1253 continue;
1254
1255 if (dap_partnums[entry].part_num != part_num)
1256 continue;
1257
1258 type = dap_partnums[entry].type;
1259 full = dap_partnums[entry].full;
1260 break;
1261 }
1262
1263 command_print(cmd->ctx, "\t\tPart is 0x%" PRIx16", %s %s", part_num, type, full);
1264 command_print(cmd->ctx, "\t\tComponent class is 0x%" PRIx8 ", %s", class, class_description[class]);
1265
1266 if (class == 1) { /* ROM Table */
1267 uint32_t memtype;
1268 retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &memtype);
1269 if (retval != ERROR_OK)
1270 return retval;
1271
1272 if (memtype & 0x01)
1273 command_print(cmd->ctx, "\t\tMEMTYPE system memory present on bus");
1274 else
1275 command_print(cmd->ctx, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1276
1277 /* Read ROM table entries from base address until we get 0x00000000 or reach the reserved area */
1278 for (uint16_t entry_offset = 0; entry_offset < 0xF00; entry_offset += 4) {
1279 uint32_t romentry;
1280 retval = mem_ap_read_atomic_u32(ap, base_addr | entry_offset, &romentry);
1281 if (retval != ERROR_OK)
1282 return retval;
1283 command_print(cmd->ctx, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
1284 tabs, entry_offset, romentry);
1285 if (romentry & 0x01) {
1286 /* Recurse */
1287 retval = dap_rom_display(cmd, ap, base_addr + (romentry & 0xFFFFF000), depth + 1);
1288 if (retval != ERROR_OK)
1289 return retval;
1290 } else if (romentry != 0) {
1291 command_print(cmd->ctx, "\t\tComponent not present");
1292 } else {
1293 command_print(cmd->ctx, "\t%s\tEnd of ROM table", tabs);
1294 break;
1295 }
1296 }
1297 } else if (class == 9) { /* CoreSight component */
1298 const char *major = "Reserved", *subtype = "Reserved";
1299
1300 uint32_t devtype;
1301 retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &devtype);
1302 if (retval != ERROR_OK)
1303 return retval;
1304 unsigned minor = (devtype >> 4) & 0x0f;
1305 switch (devtype & 0x0f) {
1306 case 0:
1307 major = "Miscellaneous";
1308 switch (minor) {
1309 case 0:
1310 subtype = "other";
1311 break;
1312 case 4:
1313 subtype = "Validation component";
1314 break;
1315 }
1316 break;
1317 case 1:
1318 major = "Trace Sink";
1319 switch (minor) {
1320 case 0:
1321 subtype = "other";
1322 break;
1323 case 1:
1324 subtype = "Port";
1325 break;
1326 case 2:
1327 subtype = "Buffer";
1328 break;
1329 case 3:
1330 subtype = "Router";
1331 break;
1332 }
1333 break;
1334 case 2:
1335 major = "Trace Link";
1336 switch (minor) {
1337 case 0:
1338 subtype = "other";
1339 break;
1340 case 1:
1341 subtype = "Funnel, router";
1342 break;
1343 case 2:
1344 subtype = "Filter";
1345 break;
1346 case 3:
1347 subtype = "FIFO, buffer";
1348 break;
1349 }
1350 break;
1351 case 3:
1352 major = "Trace Source";
1353 switch (minor) {
1354 case 0:
1355 subtype = "other";
1356 break;
1357 case 1:
1358 subtype = "Processor";
1359 break;
1360 case 2:
1361 subtype = "DSP";
1362 break;
1363 case 3:
1364 subtype = "Engine/Coprocessor";
1365 break;
1366 case 4:
1367 subtype = "Bus";
1368 break;
1369 case 6:
1370 subtype = "Software";
1371 break;
1372 }
1373 break;
1374 case 4:
1375 major = "Debug Control";
1376 switch (minor) {
1377 case 0:
1378 subtype = "other";
1379 break;
1380 case 1:
1381 subtype = "Trigger Matrix";
1382 break;
1383 case 2:
1384 subtype = "Debug Auth";
1385 break;
1386 case 3:
1387 subtype = "Power Requestor";
1388 break;
1389 }
1390 break;
1391 case 5:
1392 major = "Debug Logic";
1393 switch (minor) {
1394 case 0:
1395 subtype = "other";
1396 break;
1397 case 1:
1398 subtype = "Processor";
1399 break;
1400 case 2:
1401 subtype = "DSP";
1402 break;
1403 case 3:
1404 subtype = "Engine/Coprocessor";
1405 break;
1406 case 4:
1407 subtype = "Bus";
1408 break;
1409 case 5:
1410 subtype = "Memory";
1411 break;
1412 }
1413 break;
1414 case 6:
1415 major = "Performance Monitor";
1416 switch (minor) {
1417 case 0:
1418 subtype = "other";
1419 break;
1420 case 1:
1421 subtype = "Processor";
1422 break;
1423 case 2:
1424 subtype = "DSP";
1425 break;
1426 case 3:
1427 subtype = "Engine/Coprocessor";
1428 break;
1429 case 4:
1430 subtype = "Bus";
1431 break;
1432 case 5:
1433 subtype = "Memory";
1434 break;
1435 }
1436 break;
1437 }
1438 command_print(cmd->ctx, "\t\tType is 0x%02" PRIx8 ", %s, %s",
1439 (uint8_t)(devtype & 0xff),
1440 major, subtype);
1441 /* REVISIT also show 0xfc8 DevId */
1442 }
1443
1444 return ERROR_OK;
1445 }
1446
1447 int dap_info_command(struct command_invocation *cmd,
1448 struct adiv5_ap *ap)
1449 {
1450 int retval;
1451 uint32_t dbgbase, apid;
1452 uint8_t mem_ap;
1453
1454 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1455 retval = dap_get_debugbase(ap, &dbgbase, &apid);
1456 if (retval != ERROR_OK)
1457 return retval;
1458
1459 command_print(cmd->ctx, "AP ID register 0x%8.8" PRIx32, apid);
1460 if (apid == 0) {
1461 command_print(cmd->ctx, "No AP found at this ap 0x%x", ap->ap_num);
1462 return ERROR_FAIL;
1463 }
1464
1465 switch (apid & (IDR_JEP106 | IDR_TYPE)) {
1466 case IDR_JEP106_ARM | AP_TYPE_JTAG_AP:
1467 command_print(cmd->ctx, "\tType is JTAG-AP");
1468 break;
1469 case IDR_JEP106_ARM | AP_TYPE_AHB_AP:
1470 command_print(cmd->ctx, "\tType is MEM-AP AHB");
1471 break;
1472 case IDR_JEP106_ARM | AP_TYPE_APB_AP:
1473 command_print(cmd->ctx, "\tType is MEM-AP APB");
1474 break;
1475 case IDR_JEP106_ARM | AP_TYPE_AXI_AP:
1476 command_print(cmd->ctx, "\tType is MEM-AP AXI");
1477 break;
1478 default:
1479 command_print(cmd->ctx, "\tUnknown AP type");
1480 break;
1481 }
1482
1483 /* NOTE: a MEM-AP may have a single CoreSight component that's
1484 * not a ROM table ... or have no such components at all.
1485 */
1486 mem_ap = (apid & IDR_CLASS) == AP_CLASS_MEM_AP;
1487 if (mem_ap) {
1488 command_print(cmd->ctx, "MEM-AP BASE 0x%8.8" PRIx32, dbgbase);
1489
1490 if (dbgbase == 0xFFFFFFFF || (dbgbase & 0x3) == 0x2) {
1491 command_print(cmd->ctx, "\tNo ROM table present");
1492 } else {
1493 if (dbgbase & 0x01)
1494 command_print(cmd->ctx, "\tValid ROM table present");
1495 else
1496 command_print(cmd->ctx, "\tROM table in legacy format");
1497
1498 dap_rom_display(cmd, ap, dbgbase & 0xFFFFF000, 0);
1499 }
1500 }
1501
1502 return ERROR_OK;
1503 }
1504
1505 enum adiv5_cfg_param {
1506 CFG_DAP,
1507 CFG_AP_NUM
1508 };
1509
1510 static const Jim_Nvp nvp_config_opts[] = {
1511 { .name = "-dap", .value = CFG_DAP },
1512 { .name = "-ap-num", .value = CFG_AP_NUM },
1513 { .name = NULL, .value = -1 }
1514 };
1515
1516 int adiv5_jim_configure(struct target *target, Jim_GetOptInfo *goi)
1517 {
1518 struct adiv5_private_config *pc;
1519 int e;
1520
1521 pc = (struct adiv5_private_config *)target->private_config;
1522 if (pc == NULL) {
1523 pc = calloc(1, sizeof(struct adiv5_private_config));
1524 pc->ap_num = DP_APSEL_INVALID;
1525 target->private_config = pc;
1526 }
1527
1528 target->has_dap = true;
1529
1530 if (goi->argc > 0) {
1531 Jim_Nvp *n;
1532
1533 Jim_SetEmptyResult(goi->interp);
1534
1535 /* check first if topmost item is for us */
1536 e = Jim_Nvp_name2value_obj(goi->interp, nvp_config_opts,
1537 goi->argv[0], &n);
1538 if (e != JIM_OK)
1539 return JIM_CONTINUE;
1540
1541 e = Jim_GetOpt_Obj(goi, NULL);
1542 if (e != JIM_OK)
1543 return e;
1544
1545 switch (n->value) {
1546 case CFG_DAP:
1547 if (goi->isconfigure) {
1548 Jim_Obj *o_t;
1549 struct adiv5_dap *dap;
1550 e = Jim_GetOpt_Obj(goi, &o_t);
1551 if (e != JIM_OK)
1552 return e;
1553 dap = dap_instance_by_jim_obj(goi->interp, o_t);
1554 if (dap == NULL) {
1555 Jim_SetResultString(goi->interp, "DAP name invalid!", -1);
1556 return JIM_ERR;
1557 }
1558 if (pc->dap != NULL && pc->dap != dap) {
1559 Jim_SetResultString(goi->interp,
1560 "DAP assignment cannot be changed after target was created!", -1);
1561 return JIM_ERR;
1562 }
1563 if (target->tap_configured) {
1564 Jim_SetResultString(goi->interp,
1565 "-chain-position and -dap configparams are mutually exclusive!", -1);
1566 return JIM_ERR;
1567 }
1568 pc->dap = dap;
1569 target->tap = dap->tap;
1570 target->dap_configured = true;
1571 } else {
1572 if (goi->argc != 0) {
1573 Jim_WrongNumArgs(goi->interp,
1574 goi->argc, goi->argv,
1575 "NO PARAMS");
1576 return JIM_ERR;
1577 }
1578
1579 if (pc->dap == NULL) {
1580 Jim_SetResultString(goi->interp, "DAP not configured", -1);
1581 return JIM_ERR;
1582 }
1583 Jim_SetResultString(goi->interp, adiv5_dap_name(pc->dap), -1);
1584 }
1585 break;
1586
1587 case CFG_AP_NUM:
1588 if (goi->isconfigure) {
1589 jim_wide ap_num;
1590 e = Jim_GetOpt_Wide(goi, &ap_num);
1591 if (e != JIM_OK)
1592 return e;
1593 if (ap_num < 0 || ap_num > DP_APSEL_MAX) {
1594 Jim_SetResultString(goi->interp, "Invalid AP number!", -1);
1595 return JIM_ERR;
1596 }
1597 pc->ap_num = ap_num;
1598 } else {
1599 if (goi->argc != 0) {
1600 Jim_WrongNumArgs(goi->interp,
1601 goi->argc, goi->argv,
1602 "NO PARAMS");
1603 return JIM_ERR;
1604 }
1605
1606 if (pc->ap_num == DP_APSEL_INVALID) {
1607 Jim_SetResultString(goi->interp, "AP number not configured", -1);
1608 return JIM_ERR;
1609 }
1610 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, pc->ap_num));
1611 }
1612 break;
1613 }
1614 }
1615
1616 return JIM_OK;
1617 }
1618
1619 int adiv5_verify_config(struct adiv5_private_config *pc)
1620 {
1621 if (pc == NULL)
1622 return ERROR_FAIL;
1623
1624 if (pc->dap == NULL)
1625 return ERROR_FAIL;
1626
1627 return ERROR_OK;
1628 }
1629
1630
1631 COMMAND_HANDLER(handle_dap_info_command)
1632 {
1633 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1634 uint32_t apsel;
1635
1636 switch (CMD_ARGC) {
1637 case 0:
1638 apsel = dap->apsel;
1639 break;
1640 case 1:
1641 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1642 if (apsel > DP_APSEL_MAX)
1643 return ERROR_COMMAND_SYNTAX_ERROR;
1644 break;
1645 default:
1646 return ERROR_COMMAND_SYNTAX_ERROR;
1647 }
1648
1649 return dap_info_command(CMD, &dap->ap[apsel]);
1650 }
1651
1652 COMMAND_HANDLER(dap_baseaddr_command)
1653 {
1654 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1655 uint32_t apsel, baseaddr;
1656 int retval;
1657
1658 switch (CMD_ARGC) {
1659 case 0:
1660 apsel = dap->apsel;
1661 break;
1662 case 1:
1663 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1664 /* AP address is in bits 31:24 of DP_SELECT */
1665 if (apsel > DP_APSEL_MAX)
1666 return ERROR_COMMAND_SYNTAX_ERROR;
1667 break;
1668 default:
1669 return ERROR_COMMAND_SYNTAX_ERROR;
1670 }
1671
1672 /* NOTE: assumes we're talking to a MEM-AP, which
1673 * has a base address. There are other kinds of AP,
1674 * though they're not common for now. This should
1675 * use the ID register to verify it's a MEM-AP.
1676 */
1677 retval = dap_queue_ap_read(dap_ap(dap, apsel), MEM_AP_REG_BASE, &baseaddr);
1678 if (retval != ERROR_OK)
1679 return retval;
1680 retval = dap_run(dap);
1681 if (retval != ERROR_OK)
1682 return retval;
1683
1684 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1685
1686 return retval;
1687 }
1688
1689 COMMAND_HANDLER(dap_memaccess_command)
1690 {
1691 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1692 uint32_t memaccess_tck;
1693
1694 switch (CMD_ARGC) {
1695 case 0:
1696 memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
1697 break;
1698 case 1:
1699 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1700 break;
1701 default:
1702 return ERROR_COMMAND_SYNTAX_ERROR;
1703 }
1704 dap->ap[dap->apsel].memaccess_tck = memaccess_tck;
1705
1706 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1707 dap->ap[dap->apsel].memaccess_tck);
1708
1709 return ERROR_OK;
1710 }
1711
1712 COMMAND_HANDLER(dap_apsel_command)
1713 {
1714 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1715 uint32_t apsel;
1716
1717 switch (CMD_ARGC) {
1718 case 0:
1719 command_print(CMD_CTX, "%" PRIi32, dap->apsel);
1720 return ERROR_OK;
1721 case 1:
1722 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1723 /* AP address is in bits 31:24 of DP_SELECT */
1724 if (apsel > DP_APSEL_MAX)
1725 return ERROR_COMMAND_SYNTAX_ERROR;
1726 break;
1727 default:
1728 return ERROR_COMMAND_SYNTAX_ERROR;
1729 }
1730
1731 dap->apsel = apsel;
1732 return ERROR_OK;
1733 }
1734
1735 COMMAND_HANDLER(dap_apcsw_command)
1736 {
1737 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1738 uint32_t apcsw = dap->ap[dap->apsel].csw_default;
1739 uint32_t csw_val, csw_mask;
1740
1741 switch (CMD_ARGC) {
1742 case 0:
1743 command_print(CMD_CTX, "ap %" PRIi32 " selected, csw 0x%8.8" PRIx32,
1744 dap->apsel, apcsw);
1745 return ERROR_OK;
1746 case 1:
1747 if (strcmp(CMD_ARGV[0], "default") == 0)
1748 csw_val = CSW_DEFAULT;
1749 else
1750 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1751
1752 if (csw_val & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1753 LOG_ERROR("CSW value cannot include 'Size' and 'AddrInc' bit-fields");
1754 return ERROR_COMMAND_SYNTAX_ERROR;
1755 }
1756 apcsw = csw_val;
1757 break;
1758 case 2:
1759 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1760 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], csw_mask);
1761 if (csw_mask & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1762 LOG_ERROR("CSW mask cannot include 'Size' and 'AddrInc' bit-fields");
1763 return ERROR_COMMAND_SYNTAX_ERROR;
1764 }
1765 apcsw = (apcsw & ~csw_mask) | (csw_val & csw_mask);
1766 break;
1767 default:
1768 return ERROR_COMMAND_SYNTAX_ERROR;
1769 }
1770 dap->ap[dap->apsel].csw_default = apcsw;
1771
1772 return 0;
1773 }
1774
1775
1776
1777 COMMAND_HANDLER(dap_apid_command)
1778 {
1779 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1780 uint32_t apsel, apid;
1781 int retval;
1782
1783 switch (CMD_ARGC) {
1784 case 0:
1785 apsel = dap->apsel;
1786 break;
1787 case 1:
1788 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1789 /* AP address is in bits 31:24 of DP_SELECT */
1790 if (apsel > DP_APSEL_MAX)
1791 return ERROR_COMMAND_SYNTAX_ERROR;
1792 break;
1793 default:
1794 return ERROR_COMMAND_SYNTAX_ERROR;
1795 }
1796
1797 retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
1798 if (retval != ERROR_OK)
1799 return retval;
1800 retval = dap_run(dap);
1801 if (retval != ERROR_OK)
1802 return retval;
1803
1804 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1805
1806 return retval;
1807 }
1808
1809 COMMAND_HANDLER(dap_apreg_command)
1810 {
1811 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1812 uint32_t apsel, reg, value;
1813 struct adiv5_ap *ap;
1814 int retval;
1815
1816 if (CMD_ARGC < 2 || CMD_ARGC > 3)
1817 return ERROR_COMMAND_SYNTAX_ERROR;
1818
1819 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1820 /* AP address is in bits 31:24 of DP_SELECT */
1821 if (apsel > DP_APSEL_MAX)
1822 return ERROR_COMMAND_SYNTAX_ERROR;
1823 ap = dap_ap(dap, apsel);
1824
1825 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg);
1826 if (reg >= 256 || (reg & 3))
1827 return ERROR_COMMAND_SYNTAX_ERROR;
1828
1829 if (CMD_ARGC == 3) {
1830 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
1831 switch (reg) {
1832 case MEM_AP_REG_CSW:
1833 ap->csw_value = 0; /* invalid, in case write fails */
1834 retval = dap_queue_ap_write(ap, reg, value);
1835 if (retval == ERROR_OK)
1836 ap->csw_value = value;
1837 break;
1838 case MEM_AP_REG_TAR:
1839 ap->tar_valid = false; /* invalid, force write */
1840 retval = mem_ap_setup_tar(ap, value);
1841 break;
1842 default:
1843 retval = dap_queue_ap_write(ap, reg, value);
1844 break;
1845 }
1846 } else {
1847 retval = dap_queue_ap_read(ap, reg, &value);
1848 }
1849 if (retval == ERROR_OK)
1850 retval = dap_run(dap);
1851
1852 if (retval != ERROR_OK)
1853 return retval;
1854
1855 if (CMD_ARGC == 2)
1856 command_print(CMD_CTX, "0x%08" PRIx32, value);
1857
1858 return retval;
1859 }
1860
1861 COMMAND_HANDLER(dap_dpreg_command)
1862 {
1863 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1864 uint32_t reg, value;
1865 int retval;
1866
1867 if (CMD_ARGC < 1 || CMD_ARGC > 2)
1868 return ERROR_COMMAND_SYNTAX_ERROR;
1869
1870 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg);
1871 if (reg >= 256 || (reg & 3))
1872 return ERROR_COMMAND_SYNTAX_ERROR;
1873
1874 if (CMD_ARGC == 2) {
1875 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1876 retval = dap_queue_dp_write(dap, reg, value);
1877 } else {
1878 retval = dap_queue_dp_read(dap, reg, &value);
1879 }
1880 if (retval == ERROR_OK)
1881 retval = dap_run(dap);
1882
1883 if (retval != ERROR_OK)
1884 return retval;
1885
1886 if (CMD_ARGC == 1)
1887 command_print(CMD_CTX, "0x%08" PRIx32, value);
1888
1889 return retval;
1890 }
1891
1892 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
1893 {
1894 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1895 uint32_t enable = dap->ti_be_32_quirks;
1896
1897 switch (CMD_ARGC) {
1898 case 0:
1899 break;
1900 case 1:
1901 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], enable);
1902 if (enable > 1)
1903 return ERROR_COMMAND_SYNTAX_ERROR;
1904 break;
1905 default:
1906 return ERROR_COMMAND_SYNTAX_ERROR;
1907 }
1908 dap->ti_be_32_quirks = enable;
1909 command_print(CMD_CTX, "TI BE-32 quirks mode %s",
1910 enable ? "enabled" : "disabled");
1911
1912 return 0;
1913 }
1914
1915 const struct command_registration dap_instance_commands[] = {
1916 {
1917 .name = "info",
1918 .handler = handle_dap_info_command,
1919 .mode = COMMAND_EXEC,
1920 .help = "display ROM table for MEM-AP "
1921 "(default currently selected AP)",
1922 .usage = "[ap_num]",
1923 },
1924 {
1925 .name = "apsel",
1926 .handler = dap_apsel_command,
1927 .mode = COMMAND_ANY,
1928 .help = "Set the currently selected AP (default 0) "
1929 "and display the result",
1930 .usage = "[ap_num]",
1931 },
1932 {
1933 .name = "apcsw",
1934 .handler = dap_apcsw_command,
1935 .mode = COMMAND_ANY,
1936 .help = "Set CSW default bits",
1937 .usage = "[value [mask]]",
1938 },
1939
1940 {
1941 .name = "apid",
1942 .handler = dap_apid_command,
1943 .mode = COMMAND_EXEC,
1944 .help = "return ID register from AP "
1945 "(default currently selected AP)",
1946 .usage = "[ap_num]",
1947 },
1948 {
1949 .name = "apreg",
1950 .handler = dap_apreg_command,
1951 .mode = COMMAND_EXEC,
1952 .help = "read/write a register from AP "
1953 "(reg is byte address of a word register, like 0 4 8...)",
1954 .usage = "ap_num reg [value]",
1955 },
1956 {
1957 .name = "dpreg",
1958 .handler = dap_dpreg_command,
1959 .mode = COMMAND_EXEC,
1960 .help = "read/write a register from DP "
1961 "(reg is byte address (bank << 4 | reg) of a word register, like 0 4 8...)",
1962 .usage = "reg [value]",
1963 },
1964 {
1965 .name = "baseaddr",
1966 .handler = dap_baseaddr_command,
1967 .mode = COMMAND_EXEC,
1968 .help = "return debug base address from MEM-AP "
1969 "(default currently selected AP)",
1970 .usage = "[ap_num]",
1971 },
1972 {
1973 .name = "memaccess",
1974 .handler = dap_memaccess_command,
1975 .mode = COMMAND_EXEC,
1976 .help = "set/get number of extra tck for MEM-AP memory "
1977 "bus access [0-255]",
1978 .usage = "[cycles]",
1979 },
1980 {
1981 .name = "ti_be_32_quirks",
1982 .handler = dap_ti_be_32_quirks_command,
1983 .mode = COMMAND_CONFIG,
1984 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
1985 .usage = "[enable]",
1986 },
1987 COMMAND_REGISTRATION_DONE
1988 };