Fix "unused variable" warnings (errors) detected with GCC 4.7.0 - trivial fixes
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
28
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
36 *
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45 *
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
56 */
57
58 /*
59 * Relevant specifications from ARM include:
60 *
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
63 *
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
66 */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
78
79 /*
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89 * *
90 * DP and MEM-AP register access through APACC and DPACC *
91 * *
92 ***************************************************************************/
93
94 /**
95 * Select one of the APs connected to the specified DAP. The
96 * selection is implicitly used with future AP transactions.
97 * This is a NOP if the specified AP is already selected.
98 *
99 * @param dap The DAP
100 * @param apsel Number of the AP to (implicitly) use with further
101 * transactions. This normally identifies a MEM-AP.
102 */
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t ap)
104 {
105 uint32_t new_ap = (ap << 24) & 0xFF000000;
106
107 if (new_ap != dap->ap_current)
108 {
109 dap->ap_current = new_ap;
110 /* Switching AP invalidates cached values.
111 * Values MUST BE UPDATED BEFORE AP ACCESS.
112 */
113 dap->ap_bank_value = -1;
114 dap->ap_csw_value = -1;
115 dap->ap_tar_value = -1;
116 }
117 }
118
119 /**
120 * Queue transactions setting up transfer parameters for the
121 * currently selected MEM-AP.
122 *
123 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124 * initiate data reads or writes using memory or peripheral addresses.
125 * If the CSW is configured for it, the TAR may be automatically
126 * incremented after each transfer.
127 *
128 * @todo Rename to reflect it being specifically a MEM-AP function.
129 *
130 * @param dap The DAP connected to the MEM-AP.
131 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
132 * matches the cached value, the register is not changed.
133 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
134 * matches the cached address, the register is not changed.
135 *
136 * @return ERROR_OK if the transaction was properly queued, else a fault code.
137 */
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
139 {
140 int retval;
141
142 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143 if (csw != dap->ap_csw_value)
144 {
145 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147 if (retval != ERROR_OK)
148 return retval;
149 dap->ap_csw_value = csw;
150 }
151 if (tar != dap->ap_tar_value)
152 {
153 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155 if (retval != ERROR_OK)
156 return retval;
157 dap->ap_tar_value = tar;
158 }
159 /* Disable TAR cache when autoincrementing */
160 if (csw & CSW_ADDRINC_MASK)
161 dap->ap_tar_value = -1;
162 return ERROR_OK;
163 }
164
165 /**
166 * Asynchronous (queued) read of a word from memory or a system register.
167 *
168 * @param dap The DAP connected to the MEM-AP performing the read.
169 * @param address Address of the 32-bit word to read; it must be
170 * readable by the currently selected MEM-AP.
171 * @param value points to where the word will be stored when the
172 * transaction queue is flushed (assuming no errors).
173 *
174 * @return ERROR_OK for success. Otherwise a fault code.
175 */
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177 uint32_t *value)
178 {
179 int retval;
180
181 /* Use banked addressing (REG_BDx) to avoid some link traffic
182 * (updating TAR) when reading several consecutive addresses.
183 */
184 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185 address & 0xFFFFFFF0);
186 if (retval != ERROR_OK)
187 return retval;
188
189 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
190 }
191
192 /**
193 * Synchronous read of a word from memory or a system register.
194 * As a side effect, this flushes any queued transactions.
195 *
196 * @param dap The DAP connected to the MEM-AP performing the read.
197 * @param address Address of the 32-bit word to read; it must be
198 * readable by the currently selected MEM-AP.
199 * @param value points to where the result will be stored.
200 *
201 * @return ERROR_OK for success; *value holds the result.
202 * Otherwise a fault code.
203 */
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205 uint32_t *value)
206 {
207 int retval;
208
209 retval = mem_ap_read_u32(dap, address, value);
210 if (retval != ERROR_OK)
211 return retval;
212
213 return dap_run(dap);
214 }
215
216 /**
217 * Asynchronous (queued) write of a word to memory or a system register.
218 *
219 * @param dap The DAP connected to the MEM-AP.
220 * @param address Address to be written; it must be writable by
221 * the currently selected MEM-AP.
222 * @param value Word that will be written to the address when transaction
223 * queue is flushed (assuming no errors).
224 *
225 * @return ERROR_OK for success. Otherwise a fault code.
226 */
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228 uint32_t value)
229 {
230 int retval;
231
232 /* Use banked addressing (REG_BDx) to avoid some link traffic
233 * (updating TAR) when writing several consecutive addresses.
234 */
235 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236 address & 0xFFFFFFF0);
237 if (retval != ERROR_OK)
238 return retval;
239
240 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241 value);
242 }
243
244 /**
245 * Synchronous write of a word to memory or a system register.
246 * As a side effect, this flushes any queued transactions.
247 *
248 * @param dap The DAP connected to the MEM-AP.
249 * @param address Address to be written; it must be writable by
250 * the currently selected MEM-AP.
251 * @param value Word that will be written.
252 *
253 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
254 */
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256 uint32_t value)
257 {
258 int retval = mem_ap_write_u32(dap, address, value);
259
260 if (retval != ERROR_OK)
261 return retval;
262
263 return dap_run(dap);
264 }
265
266 /*****************************************************************************
267 * *
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
269 * *
270 * Write a buffer in target order (little endian) *
271 * *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
274 {
275 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276 uint32_t adr = address;
277 const uint8_t* pBuffer = buffer;
278
279 count >>= 2;
280 wcount = count;
281
282 /* if we have an unaligned access - reorder data */
283 if (adr & 0x3u)
284 {
285 for (writecount = 0; writecount < count; writecount++)
286 {
287 int i;
288 uint32_t outvalue;
289 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
290
291 for (i = 0; i < 4; i++)
292 {
293 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294 outvalue >>= 8;
295 adr++;
296 }
297 pBuffer += sizeof(uint32_t);
298 }
299 }
300
301 while (wcount > 0)
302 {
303 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305 if (wcount < blocksize)
306 blocksize = wcount;
307
308 /* handle unaligned data at 4k boundary */
309 if (blocksize == 0)
310 blocksize = 1;
311
312 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313 if (retval != ERROR_OK)
314 return retval;
315
316 for (writecount = 0; writecount < blocksize; writecount++)
317 {
318 retval = dap_queue_ap_write(dap, AP_REG_DRW,
319 *(uint32_t *) ((void *) (buffer + 4 * writecount)));
320 if (retval != ERROR_OK)
321 break;
322 }
323
324 if ((retval = dap_run(dap)) == ERROR_OK)
325 {
326 wcount = wcount - blocksize;
327 address = address + 4 * blocksize;
328 buffer = buffer + 4 * blocksize;
329 }
330 else
331 {
332 errorcount++;
333 }
334
335 if (errorcount > 1)
336 {
337 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
338 return retval;
339 }
340 }
341
342 return retval;
343 }
344
345 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
346 const uint8_t *buffer, int count, uint32_t address)
347 {
348 int retval = ERROR_OK;
349 int wcount, blocksize, writecount, i;
350
351 wcount = count >> 1;
352
353 while (wcount > 0)
354 {
355 int nbytes;
356
357 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
358 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
359
360 if (wcount < blocksize)
361 blocksize = wcount;
362
363 /* handle unaligned data at 4k boundary */
364 if (blocksize == 0)
365 blocksize = 1;
366
367 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
368 if (retval != ERROR_OK)
369 return retval;
370 writecount = blocksize;
371
372 do
373 {
374 nbytes = MIN((writecount << 1), 4);
375
376 if (nbytes < 4)
377 {
378 retval = mem_ap_write_buf_u16(dap, buffer,
379 nbytes, address);
380 if (retval != ERROR_OK)
381 {
382 LOG_WARNING("Block write error address "
383 "0x%" PRIx32 ", count 0x%x",
384 address, count);
385 return retval;
386 }
387
388 address += nbytes >> 1;
389 }
390 else
391 {
392 uint32_t outvalue;
393 memcpy(&outvalue, buffer, sizeof(uint32_t));
394
395 for (i = 0; i < nbytes; i++)
396 {
397 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
398 outvalue >>= 8;
399 address++;
400 }
401
402 memcpy(&outvalue, buffer, sizeof(uint32_t));
403 retval = dap_queue_ap_write(dap,
404 AP_REG_DRW, outvalue);
405 if (retval != ERROR_OK)
406 break;
407
408 if ((retval = dap_run(dap)) != ERROR_OK)
409 {
410 LOG_WARNING("Block write error address "
411 "0x%" PRIx32 ", count 0x%x",
412 address, count);
413 return retval;
414 }
415 }
416
417 buffer += nbytes >> 1;
418 writecount -= nbytes >> 1;
419
420 } while (writecount);
421 wcount -= blocksize;
422 }
423
424 return retval;
425 }
426
427 int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
428 {
429 int retval = ERROR_OK;
430
431 if (count >= 4)
432 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
433
434 while (count > 0)
435 {
436 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
437 if (retval != ERROR_OK)
438 return retval;
439 uint16_t svalue;
440 memcpy(&svalue, buffer, sizeof(uint16_t));
441 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
442 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
443 if (retval != ERROR_OK)
444 break;
445
446 retval = dap_run(dap);
447 if (retval != ERROR_OK)
448 break;
449
450 count -= 2;
451 address += 2;
452 buffer += 2;
453 }
454
455 return retval;
456 }
457
458 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
459 const uint8_t *buffer, int count, uint32_t address)
460 {
461 int retval = ERROR_OK;
462 int wcount, blocksize, writecount, i;
463
464 wcount = count;
465
466 while (wcount > 0)
467 {
468 int nbytes;
469
470 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
471 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
472
473 if (wcount < blocksize)
474 blocksize = wcount;
475
476 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
477 if (retval != ERROR_OK)
478 return retval;
479 writecount = blocksize;
480
481 do
482 {
483 nbytes = MIN(writecount, 4);
484
485 if (nbytes < 4)
486 {
487 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
488 if (retval != ERROR_OK)
489 {
490 LOG_WARNING("Block write error address "
491 "0x%" PRIx32 ", count 0x%x",
492 address, count);
493 return retval;
494 }
495
496 address += nbytes;
497 }
498 else
499 {
500 uint32_t outvalue;
501 memcpy(&outvalue, buffer, sizeof(uint32_t));
502
503 for (i = 0; i < nbytes; i++)
504 {
505 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
506 outvalue >>= 8;
507 address++;
508 }
509
510 memcpy(&outvalue, buffer, sizeof(uint32_t));
511 retval = dap_queue_ap_write(dap,
512 AP_REG_DRW, outvalue);
513 if (retval != ERROR_OK)
514 break;
515
516 if ((retval = dap_run(dap)) != ERROR_OK)
517 {
518 LOG_WARNING("Block write error address "
519 "0x%" PRIx32 ", count 0x%x",
520 address, count);
521 return retval;
522 }
523 }
524
525 buffer += nbytes;
526 writecount -= nbytes;
527
528 } while (writecount);
529 wcount -= blocksize;
530 }
531
532 return retval;
533 }
534
535 int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
536 {
537 int retval = ERROR_OK;
538
539 if (count >= 4)
540 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
541
542 while (count > 0)
543 {
544 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
545 if (retval != ERROR_OK)
546 return retval;
547 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
548 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
549 if (retval != ERROR_OK)
550 break;
551
552 retval = dap_run(dap);
553 if (retval != ERROR_OK)
554 break;
555
556 count--;
557 address++;
558 buffer++;
559 }
560
561 return retval;
562 }
563
564 /* FIXME don't import ... this is a temporary workaround for the
565 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
566 */
567 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
568 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
569 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
570
571 /**
572 * Synchronously read a block of 32-bit words into a buffer
573 * @param dap The DAP connected to the MEM-AP.
574 * @param buffer where the words will be stored (in host byte order).
575 * @param count How many words to read.
576 * @param address Memory address from which to read words; all the
577 * words must be readable by the currently selected MEM-AP.
578 */
579 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
580 int count, uint32_t address)
581 {
582 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
583 uint32_t adr = address;
584 uint8_t* pBuffer = buffer;
585
586 count >>= 2;
587 wcount = count;
588
589 while (wcount > 0)
590 {
591 /* Adjust to read blocks within boundaries aligned to the
592 * TAR autoincrement size (at least 2^10). Autoincrement
593 * mode avoids an extra per-word roundtrip to update TAR.
594 */
595 blocksize = max_tar_block_size(dap->tar_autoincr_block,
596 address);
597 if (wcount < blocksize)
598 blocksize = wcount;
599
600 /* handle unaligned data at 4k boundary */
601 if (blocksize == 0)
602 blocksize = 1;
603
604 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
605 address);
606 if (retval != ERROR_OK)
607 return retval;
608
609 /* FIXME remove these three calls to adi_jtag_dp_scan(),
610 * so this routine becomes transport-neutral. Be careful
611 * not to cause performance problems with JTAG; would it
612 * suffice to loop over dap_queue_ap_read(), or would that
613 * be slower when JTAG is the chosen transport?
614 */
615
616 /* Scan out first read */
617 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
618 DPAP_READ, 0, NULL, NULL);
619 if (retval != ERROR_OK)
620 return retval;
621 for (readcount = 0; readcount < blocksize - 1; readcount++)
622 {
623 /* Scan out next read; scan in posted value for the
624 * previous one. Assumes read is acked "OK/FAULT",
625 * and CTRL_STAT says that meant "OK".
626 */
627 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
628 DPAP_READ, 0, buffer + 4 * readcount,
629 &dap->ack);
630 if (retval != ERROR_OK)
631 return retval;
632 }
633
634 /* Scan in last posted value; RDBUFF has no other effect,
635 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
636 */
637 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
638 DPAP_READ, 0, buffer + 4 * readcount,
639 &dap->ack);
640 if (retval != ERROR_OK)
641 return retval;
642
643 retval = dap_run(dap);
644 if (retval != ERROR_OK)
645 {
646 errorcount++;
647 if (errorcount <= 1)
648 {
649 /* try again */
650 continue;
651 }
652 LOG_WARNING("Block read error address 0x%" PRIx32, address);
653 return retval;
654 }
655 wcount = wcount - blocksize;
656 address += 4 * blocksize;
657 buffer += 4 * blocksize;
658 }
659
660 /* if we have an unaligned access - reorder data */
661 if (adr & 0x3u)
662 {
663 for (readcount = 0; readcount < count; readcount++)
664 {
665 int i;
666 uint32_t data;
667 memcpy(&data, pBuffer, sizeof(uint32_t));
668
669 for (i = 0; i < 4; i++)
670 {
671 *((uint8_t*)pBuffer) =
672 (data >> 8 * (adr & 0x3));
673 pBuffer++;
674 adr++;
675 }
676 }
677 }
678
679 return retval;
680 }
681
682 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
683 uint8_t *buffer, int count, uint32_t address)
684 {
685 uint32_t invalue;
686 int retval = ERROR_OK;
687 int wcount, blocksize, readcount, i;
688
689 wcount = count >> 1;
690
691 while (wcount > 0)
692 {
693 int nbytes;
694
695 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
696 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
697 if (wcount < blocksize)
698 blocksize = wcount;
699
700 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
701 if (retval != ERROR_OK)
702 return retval;
703
704 /* handle unaligned data at 4k boundary */
705 if (blocksize == 0)
706 blocksize = 1;
707 readcount = blocksize;
708
709 do
710 {
711 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
712 if (retval != ERROR_OK)
713 return retval;
714 if ((retval = dap_run(dap)) != ERROR_OK)
715 {
716 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
717 return retval;
718 }
719
720 nbytes = MIN((readcount << 1), 4);
721
722 for (i = 0; i < nbytes; i++)
723 {
724 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
725 buffer++;
726 address++;
727 }
728
729 readcount -= (nbytes >> 1);
730 } while (readcount);
731 wcount -= blocksize;
732 }
733
734 return retval;
735 }
736
737 /**
738 * Synchronously read a block of 16-bit halfwords into a buffer
739 * @param dap The DAP connected to the MEM-AP.
740 * @param buffer where the halfwords will be stored (in host byte order).
741 * @param count How many halfwords to read.
742 * @param address Memory address from which to read words; all the
743 * words must be readable by the currently selected MEM-AP.
744 */
745 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
746 int count, uint32_t address)
747 {
748 uint32_t invalue, i;
749 int retval = ERROR_OK;
750
751 if (count >= 4)
752 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
753
754 while (count > 0)
755 {
756 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
757 if (retval != ERROR_OK)
758 return retval;
759 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
760 if (retval != ERROR_OK)
761 break;
762
763 retval = dap_run(dap);
764 if (retval != ERROR_OK)
765 break;
766
767 if (address & 0x1)
768 {
769 for (i = 0; i < 2; i++)
770 {
771 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
772 buffer++;
773 address++;
774 }
775 }
776 else
777 {
778 uint16_t svalue = (invalue >> 8 * (address & 0x3));
779 memcpy(buffer, &svalue, sizeof(uint16_t));
780 address += 2;
781 buffer += 2;
782 }
783 count -= 2;
784 }
785
786 return retval;
787 }
788
789 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
790 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
791 *
792 * The solution is to arrange for a large out/in scan in this loop and
793 * and convert data afterwards.
794 */
795 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
796 uint8_t *buffer, int count, uint32_t address)
797 {
798 uint32_t invalue;
799 int retval = ERROR_OK;
800 int wcount, blocksize, readcount, i;
801
802 wcount = count;
803
804 while (wcount > 0)
805 {
806 int nbytes;
807
808 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
809 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
810
811 if (wcount < blocksize)
812 blocksize = wcount;
813
814 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
815 if (retval != ERROR_OK)
816 return retval;
817 readcount = blocksize;
818
819 do
820 {
821 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822 if (retval != ERROR_OK)
823 return retval;
824 if ((retval = dap_run(dap)) != ERROR_OK)
825 {
826 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
827 return retval;
828 }
829
830 nbytes = MIN(readcount, 4);
831
832 for (i = 0; i < nbytes; i++)
833 {
834 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
835 buffer++;
836 address++;
837 }
838
839 readcount -= nbytes;
840 } while (readcount);
841 wcount -= blocksize;
842 }
843
844 return retval;
845 }
846
847 /**
848 * Synchronously read a block of bytes into a buffer
849 * @param dap The DAP connected to the MEM-AP.
850 * @param buffer where the bytes will be stored.
851 * @param count How many bytes to read.
852 * @param address Memory address from which to read data; all the
853 * data must be readable by the currently selected MEM-AP.
854 */
855 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
856 int count, uint32_t address)
857 {
858 uint32_t invalue;
859 int retval = ERROR_OK;
860
861 if (count >= 4)
862 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
863
864 while (count > 0)
865 {
866 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
867 if (retval != ERROR_OK)
868 return retval;
869 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
870 if (retval != ERROR_OK)
871 return retval;
872 retval = dap_run(dap);
873 if (retval != ERROR_OK)
874 break;
875
876 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
877 count--;
878 address++;
879 buffer++;
880 }
881
882 return retval;
883 }
884
885 /*--------------------------------------------------------------------*/
886 /* Wrapping function with selection of AP */
887 /*--------------------------------------------------------------------*/
888 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
889 uint32_t address, uint32_t *value)
890 {
891 dap_ap_select(swjdp, ap);
892 return mem_ap_read_u32(swjdp, address, value);
893 }
894
895 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
896 uint32_t address, uint32_t value)
897 {
898 dap_ap_select(swjdp, ap);
899 return mem_ap_write_u32(swjdp, address, value);
900 }
901
902 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
903 uint32_t address, uint32_t *value)
904 {
905 dap_ap_select(swjdp, ap);
906 return mem_ap_read_atomic_u32(swjdp, address, value);
907 }
908
909 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
910 uint32_t address, uint32_t value)
911 {
912 dap_ap_select(swjdp, ap);
913 return mem_ap_write_atomic_u32(swjdp, address, value);
914 }
915
916 int mem_ap_sel_read_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
917 uint8_t *buffer, int count, uint32_t address)
918 {
919 dap_ap_select(swjdp, ap);
920 return mem_ap_read_buf_u8(swjdp, buffer, count, address);
921 }
922
923 int mem_ap_sel_read_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
924 uint8_t *buffer, int count, uint32_t address)
925 {
926 dap_ap_select(swjdp, ap);
927 return mem_ap_read_buf_u16(swjdp, buffer, count, address);
928 }
929
930 int mem_ap_sel_read_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
931 uint8_t *buffer, int count, uint32_t address)
932 {
933 dap_ap_select(swjdp, ap);
934 return mem_ap_read_buf_u32(swjdp, buffer, count, address);
935 }
936
937 int mem_ap_sel_write_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
938 const uint8_t *buffer, int count, uint32_t address)
939 {
940 dap_ap_select(swjdp, ap);
941 return mem_ap_write_buf_u8(swjdp, buffer, count, address);
942 }
943
944 int mem_ap_sel_write_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
945 const uint8_t *buffer, int count, uint32_t address)
946 {
947 dap_ap_select(swjdp, ap);
948 return mem_ap_write_buf_u16(swjdp, buffer, count, address);
949 }
950
951 int mem_ap_sel_write_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
952 const uint8_t *buffer, int count, uint32_t address)
953 {
954 dap_ap_select(swjdp, ap);
955 return mem_ap_write_buf_u32(swjdp, buffer, count, address);
956 }
957
958
959 /*--------------------------------------------------------------------------*/
960
961
962 /* FIXME don't import ... just initialize as
963 * part of DAP transport setup
964 */
965 extern const struct dap_ops jtag_dp_ops;
966
967 /*--------------------------------------------------------------------------*/
968
969 /**
970 * Initialize a DAP. This sets up the power domains, prepares the DP
971 * for further use, and arranges to use AP #0 for all AP operations
972 * until dap_ap-select() changes that policy.
973 *
974 * @param dap The DAP being initialized.
975 *
976 * @todo Rename this. We also need an initialization scheme which account
977 * for SWD transports not just JTAG; that will need to address differences
978 * in layering. (JTAG is useful without any debug target; but not SWD.)
979 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
980 */
981 int ahbap_debugport_init(struct adiv5_dap *dap)
982 {
983 uint32_t ctrlstat;
984 int cnt = 0;
985 int retval;
986
987 LOG_DEBUG(" ");
988
989 /* JTAG-DP or SWJ-DP, in JTAG mode
990 * ... for SWD mode this is patched as part
991 * of link switchover
992 */
993 if (!dap->ops)
994 dap->ops = &jtag_dp_ops;
995
996 /* Default MEM-AP setup.
997 *
998 * REVISIT AP #0 may be an inappropriate default for this.
999 * Should we probe, or take a hint from the caller?
1000 * Presumably we can ignore the possibility of multiple APs.
1001 */
1002 dap->ap_current = !0;
1003 dap_ap_select(dap, 0);
1004
1005 /* DP initialization */
1006
1007 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1008 if (retval != ERROR_OK)
1009 return retval;
1010
1011 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
1012 if (retval != ERROR_OK)
1013 return retval;
1014
1015 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1016 if (retval != ERROR_OK)
1017 return retval;
1018
1019 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
1020 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1021 if (retval != ERROR_OK)
1022 return retval;
1023
1024 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1025 if (retval != ERROR_OK)
1026 return retval;
1027 if ((retval = dap_run(dap)) != ERROR_OK)
1028 return retval;
1029
1030 /* Check that we have debug power domains activated */
1031 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
1032 {
1033 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
1034 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1035 if (retval != ERROR_OK)
1036 return retval;
1037 if ((retval = dap_run(dap)) != ERROR_OK)
1038 return retval;
1039 alive_sleep(10);
1040 }
1041
1042 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
1043 {
1044 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
1045 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1046 if (retval != ERROR_OK)
1047 return retval;
1048 if ((retval = dap_run(dap)) != ERROR_OK)
1049 return retval;
1050 alive_sleep(10);
1051 }
1052
1053 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1054 if (retval != ERROR_OK)
1055 return retval;
1056 /* With debug power on we can activate OVERRUN checking */
1057 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
1058 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1059 if (retval != ERROR_OK)
1060 return retval;
1061 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1062 if (retval != ERROR_OK)
1063 return retval;
1064
1065 return ERROR_OK;
1066 }
1067
1068 /* CID interpretation -- see ARM IHI 0029B section 3
1069 * and ARM IHI 0031A table 13-3.
1070 */
1071 static const char *class_description[16] ={
1072 "Reserved", "ROM table", "Reserved", "Reserved",
1073 "Reserved", "Reserved", "Reserved", "Reserved",
1074 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1075 "Reserved", "OptimoDE DESS",
1076 "Generic IP component", "PrimeCell or System component"
1077 };
1078
1079 static bool
1080 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1081 {
1082 return cid3 == 0xb1 && cid2 == 0x05
1083 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1084 }
1085
1086 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
1087 uint32_t *out_dbgbase, uint32_t *out_apid)
1088 {
1089 uint32_t ap_old;
1090 int retval;
1091 uint32_t dbgbase, apid;
1092
1093 /* AP address is in bits 31:24 of DP_SELECT */
1094 if (ap >= 256)
1095 return ERROR_INVALID_ARGUMENTS;
1096
1097 ap_old = dap->ap_current;
1098 dap_ap_select(dap, ap);
1099
1100 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1101 if (retval != ERROR_OK)
1102 return retval;
1103 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1104 if (retval != ERROR_OK)
1105 return retval;
1106 retval = dap_run(dap);
1107 if (retval != ERROR_OK)
1108 return retval;
1109
1110 /* Excavate the device ID code */
1111 struct jtag_tap *tap = dap->jtag_info->tap;
1112 while (tap != NULL) {
1113 if (tap->hasidcode)
1114 break;
1115 tap = tap->next_tap;
1116 }
1117 if (tap == NULL || !tap->hasidcode)
1118 return ERROR_OK;
1119
1120 dap_ap_select(dap, ap_old);
1121
1122 /* The asignment happens only here to prevent modification of these
1123 * values before they are certain. */
1124 *out_dbgbase = dbgbase;
1125 *out_apid = apid;
1126
1127 return ERROR_OK;
1128 }
1129
1130 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
1131 uint32_t dbgbase, uint8_t type, uint32_t *addr)
1132 {
1133 uint32_t ap_old;
1134 uint32_t romentry, entry_offset = 0, component_base, devtype;
1135 int retval = ERROR_FAIL;
1136
1137 if (ap >= 256)
1138 return ERROR_INVALID_ARGUMENTS;
1139
1140 ap_old = dap->ap_current;
1141 dap_ap_select(dap, ap);
1142
1143 do
1144 {
1145 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1146 entry_offset, &romentry);
1147 if (retval != ERROR_OK)
1148 return retval;
1149
1150 component_base = (dbgbase & 0xFFFFF000)
1151 + (romentry & 0xFFFFF000);
1152
1153 if (romentry & 0x1) {
1154 retval = mem_ap_read_atomic_u32(dap,
1155 (component_base & 0xfffff000) | 0xfcc,
1156 &devtype);
1157 if ((devtype & 0xff) == type) {
1158 *addr = component_base;
1159 retval = ERROR_OK;
1160 break;
1161 }
1162 }
1163 entry_offset += 4;
1164 } while (romentry > 0);
1165
1166 dap_ap_select(dap, ap_old);
1167
1168 return retval;
1169 }
1170
1171 static int dap_info_command(struct command_context *cmd_ctx,
1172 struct adiv5_dap *dap, int ap)
1173 {
1174 int retval;
1175 uint32_t dbgbase, apid;
1176 int romtable_present = 0;
1177 uint8_t mem_ap;
1178 uint32_t ap_old;
1179
1180 retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1181 if (retval != ERROR_OK)
1182 return retval;
1183
1184 ap_old = dap->ap_current;
1185 dap_ap_select(dap, ap);
1186
1187 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1188 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1189 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1190 if (apid)
1191 {
1192 switch (apid&0x0F)
1193 {
1194 case 0:
1195 command_print(cmd_ctx, "\tType is JTAG-AP");
1196 break;
1197 case 1:
1198 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1199 break;
1200 case 2:
1201 command_print(cmd_ctx, "\tType is MEM-AP APB");
1202 break;
1203 default:
1204 command_print(cmd_ctx, "\tUnknown AP type");
1205 break;
1206 }
1207
1208 /* NOTE: a MEM-AP may have a single CoreSight component that's
1209 * not a ROM table ... or have no such components at all.
1210 */
1211 if (mem_ap)
1212 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1213 dbgbase);
1214 }
1215 else
1216 {
1217 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1218 }
1219
1220 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1221 if (romtable_present)
1222 {
1223 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1224 uint16_t entry_offset;
1225
1226 /* bit 16 of apid indicates a memory access port */
1227 if (dbgbase & 0x02)
1228 command_print(cmd_ctx, "\tValid ROM table present");
1229 else
1230 command_print(cmd_ctx, "\tROM table in legacy format");
1231
1232 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1233 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1234 if (retval != ERROR_OK)
1235 return retval;
1236 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1237 if (retval != ERROR_OK)
1238 return retval;
1239 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1240 if (retval != ERROR_OK)
1241 return retval;
1242 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1243 if (retval != ERROR_OK)
1244 return retval;
1245 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1246 if (retval != ERROR_OK)
1247 return retval;
1248 retval = dap_run(dap);
1249 if (retval != ERROR_OK)
1250 return retval;
1251
1252 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1253 command_print(cmd_ctx, "\tCID3 0x%2.2x"
1254 ", CID2 0x%2.2x"
1255 ", CID1 0x%2.2x"
1256 ", CID0 0x%2.2x",
1257 (unsigned) cid3, (unsigned)cid2,
1258 (unsigned) cid1, (unsigned) cid0);
1259 if (memtype & 0x01)
1260 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1261 else
1262 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1263 "Dedicated debug bus.");
1264
1265 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1266 entry_offset = 0;
1267 do
1268 {
1269 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1270 if (retval != ERROR_OK)
1271 return retval;
1272 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1273 if (romentry&0x01)
1274 {
1275 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1276 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1277 uint32_t component_base;
1278 unsigned part_num;
1279 char *type, *full;
1280
1281 component_base = (dbgbase & 0xFFFFF000)
1282 + (romentry & 0xFFFFF000);
1283
1284 /* IDs are in last 4K section */
1285
1286
1287 retval = mem_ap_read_atomic_u32(dap,
1288 component_base + 0xFE0, &c_pid0);
1289 if (retval != ERROR_OK)
1290 return retval;
1291 c_pid0 &= 0xff;
1292 retval = mem_ap_read_atomic_u32(dap,
1293 component_base + 0xFE4, &c_pid1);
1294 if (retval != ERROR_OK)
1295 return retval;
1296 c_pid1 &= 0xff;
1297 retval = mem_ap_read_atomic_u32(dap,
1298 component_base + 0xFE8, &c_pid2);
1299 if (retval != ERROR_OK)
1300 return retval;
1301 c_pid2 &= 0xff;
1302 retval = mem_ap_read_atomic_u32(dap,
1303 component_base + 0xFEC, &c_pid3);
1304 if (retval != ERROR_OK)
1305 return retval;
1306 c_pid3 &= 0xff;
1307 retval = mem_ap_read_atomic_u32(dap,
1308 component_base + 0xFD0, &c_pid4);
1309 if (retval != ERROR_OK)
1310 return retval;
1311 c_pid4 &= 0xff;
1312
1313 retval = mem_ap_read_atomic_u32(dap,
1314 component_base + 0xFF0, &c_cid0);
1315 if (retval != ERROR_OK)
1316 return retval;
1317 c_cid0 &= 0xff;
1318 retval = mem_ap_read_atomic_u32(dap,
1319 component_base + 0xFF4, &c_cid1);
1320 if (retval != ERROR_OK)
1321 return retval;
1322 c_cid1 &= 0xff;
1323 retval = mem_ap_read_atomic_u32(dap,
1324 component_base + 0xFF8, &c_cid2);
1325 if (retval != ERROR_OK)
1326 return retval;
1327 c_cid2 &= 0xff;
1328 retval = mem_ap_read_atomic_u32(dap,
1329 component_base + 0xFFC, &c_cid3);
1330 if (retval != ERROR_OK)
1331 return retval;
1332 c_cid3 &= 0xff;
1333
1334
1335 command_print(cmd_ctx,
1336 "\t\tComponent base address 0x%" PRIx32
1337 ", start address 0x%" PRIx32,
1338 component_base,
1339 /* component may take multiple 4K pages */
1340 component_base - 0x1000*(c_pid4 >> 4));
1341 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1342 (int) (c_cid1 >> 4) & 0xf,
1343 /* See ARM IHI 0029B Table 3-3 */
1344 class_description[(c_cid1 >> 4) & 0xf]);
1345
1346 /* CoreSight component? */
1347 if (((c_cid1 >> 4) & 0x0f) == 9) {
1348 uint32_t devtype;
1349 unsigned minor;
1350 char *major = "Reserved", *subtype = "Reserved";
1351
1352 retval = mem_ap_read_atomic_u32(dap,
1353 (component_base & 0xfffff000) | 0xfcc,
1354 &devtype);
1355 if (retval != ERROR_OK)
1356 return retval;
1357 minor = (devtype >> 4) & 0x0f;
1358 switch (devtype & 0x0f) {
1359 case 0:
1360 major = "Miscellaneous";
1361 switch (minor) {
1362 case 0:
1363 subtype = "other";
1364 break;
1365 case 4:
1366 subtype = "Validation component";
1367 break;
1368 }
1369 break;
1370 case 1:
1371 major = "Trace Sink";
1372 switch (minor) {
1373 case 0:
1374 subtype = "other";
1375 break;
1376 case 1:
1377 subtype = "Port";
1378 break;
1379 case 2:
1380 subtype = "Buffer";
1381 break;
1382 }
1383 break;
1384 case 2:
1385 major = "Trace Link";
1386 switch (minor) {
1387 case 0:
1388 subtype = "other";
1389 break;
1390 case 1:
1391 subtype = "Funnel, router";
1392 break;
1393 case 2:
1394 subtype = "Filter";
1395 break;
1396 case 3:
1397 subtype = "FIFO, buffer";
1398 break;
1399 }
1400 break;
1401 case 3:
1402 major = "Trace Source";
1403 switch (minor) {
1404 case 0:
1405 subtype = "other";
1406 break;
1407 case 1:
1408 subtype = "Processor";
1409 break;
1410 case 2:
1411 subtype = "DSP";
1412 break;
1413 case 3:
1414 subtype = "Engine/Coprocessor";
1415 break;
1416 case 4:
1417 subtype = "Bus";
1418 break;
1419 }
1420 break;
1421 case 4:
1422 major = "Debug Control";
1423 switch (minor) {
1424 case 0:
1425 subtype = "other";
1426 break;
1427 case 1:
1428 subtype = "Trigger Matrix";
1429 break;
1430 case 2:
1431 subtype = "Debug Auth";
1432 break;
1433 }
1434 break;
1435 case 5:
1436 major = "Debug Logic";
1437 switch (minor) {
1438 case 0:
1439 subtype = "other";
1440 break;
1441 case 1:
1442 subtype = "Processor";
1443 break;
1444 case 2:
1445 subtype = "DSP";
1446 break;
1447 case 3:
1448 subtype = "Engine/Coprocessor";
1449 break;
1450 }
1451 break;
1452 }
1453 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1454 (unsigned) (devtype & 0xff),
1455 major, subtype);
1456 /* REVISIT also show 0xfc8 DevId */
1457 }
1458
1459 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1460 command_print(cmd_ctx,
1461 "\t\tCID3 0%2.2x"
1462 ", CID2 0%2.2x"
1463 ", CID1 0%2.2x"
1464 ", CID0 0%2.2x",
1465 (int) c_cid3,
1466 (int) c_cid2,
1467 (int)c_cid1,
1468 (int)c_cid0);
1469 command_print(cmd_ctx,
1470 "\t\tPeripheral ID[4..0] = hex "
1471 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1472 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1473 (int) c_pid1, (int) c_pid0);
1474
1475 /* Part number interpretations are from Cortex
1476 * core specs, the CoreSight components TRM
1477 * (ARM DDI 0314H), CoreSight System Design
1478 * Guide (ARM DGI 0012D) and ETM specs; also
1479 * from chip observation (e.g. TI SDTI).
1480 */
1481 part_num = (c_pid0 & 0xff);
1482 part_num |= (c_pid1 & 0x0f) << 8;
1483 switch (part_num) {
1484 case 0x000:
1485 type = "Cortex-M3 NVIC";
1486 full = "(Interrupt Controller)";
1487 break;
1488 case 0x001:
1489 type = "Cortex-M3 ITM";
1490 full = "(Instrumentation Trace Module)";
1491 break;
1492 case 0x002:
1493 type = "Cortex-M3 DWT";
1494 full = "(Data Watchpoint and Trace)";
1495 break;
1496 case 0x003:
1497 type = "Cortex-M3 FBP";
1498 full = "(Flash Patch and Breakpoint)";
1499 break;
1500 case 0x00d:
1501 type = "CoreSight ETM11";
1502 full = "(Embedded Trace)";
1503 break;
1504 // case 0x113: what?
1505 case 0x120: /* from OMAP3 memmap */
1506 type = "TI SDTI";
1507 full = "(System Debug Trace Interface)";
1508 break;
1509 case 0x343: /* from OMAP3 memmap */
1510 type = "TI DAPCTL";
1511 full = "";
1512 break;
1513 case 0x906:
1514 type = "Coresight CTI";
1515 full = "(Cross Trigger)";
1516 break;
1517 case 0x907:
1518 type = "Coresight ETB";
1519 full = "(Trace Buffer)";
1520 break;
1521 case 0x908:
1522 type = "Coresight CSTF";
1523 full = "(Trace Funnel)";
1524 break;
1525 case 0x910:
1526 type = "CoreSight ETM9";
1527 full = "(Embedded Trace)";
1528 break;
1529 case 0x912:
1530 type = "Coresight TPIU";
1531 full = "(Trace Port Interface Unit)";
1532 break;
1533 case 0x921:
1534 type = "Cortex-A8 ETM";
1535 full = "(Embedded Trace)";
1536 break;
1537 case 0x922:
1538 type = "Cortex-A8 CTI";
1539 full = "(Cross Trigger)";
1540 break;
1541 case 0x923:
1542 type = "Cortex-M3 TPIU";
1543 full = "(Trace Port Interface Unit)";
1544 break;
1545 case 0x924:
1546 type = "Cortex-M3 ETM";
1547 full = "(Embedded Trace)";
1548 break;
1549 case 0x930:
1550 type = "Cortex-R4 ETM";
1551 full = "(Embedded Trace)";
1552 break;
1553 case 0xc08:
1554 type = "Cortex-A8 Debug";
1555 full = "(Debug Unit)";
1556 break;
1557 default:
1558 type = "-*- unrecognized -*-";
1559 full = "";
1560 break;
1561 }
1562 command_print(cmd_ctx, "\t\tPart is %s %s",
1563 type, full);
1564 }
1565 else
1566 {
1567 if (romentry)
1568 command_print(cmd_ctx, "\t\tComponent not present");
1569 else
1570 command_print(cmd_ctx, "\t\tEnd of ROM table");
1571 }
1572 entry_offset += 4;
1573 } while (romentry > 0);
1574 }
1575 else
1576 {
1577 command_print(cmd_ctx, "\tNo ROM table present");
1578 }
1579 dap_ap_select(dap, ap_old);
1580
1581 return ERROR_OK;
1582 }
1583
1584 COMMAND_HANDLER(handle_dap_info_command)
1585 {
1586 struct target *target = get_current_target(CMD_CTX);
1587 struct arm *arm = target_to_arm(target);
1588 struct adiv5_dap *dap = arm->dap;
1589 uint32_t apsel;
1590
1591 switch (CMD_ARGC) {
1592 case 0:
1593 apsel = dap->apsel;
1594 break;
1595 case 1:
1596 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1597 break;
1598 default:
1599 return ERROR_COMMAND_SYNTAX_ERROR;
1600 }
1601
1602 return dap_info_command(CMD_CTX, dap, apsel);
1603 }
1604
1605 COMMAND_HANDLER(dap_baseaddr_command)
1606 {
1607 struct target *target = get_current_target(CMD_CTX);
1608 struct arm *arm = target_to_arm(target);
1609 struct adiv5_dap *dap = arm->dap;
1610
1611 uint32_t apsel, baseaddr;
1612 int retval;
1613
1614 switch (CMD_ARGC) {
1615 case 0:
1616 apsel = dap->apsel;
1617 break;
1618 case 1:
1619 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1620 /* AP address is in bits 31:24 of DP_SELECT */
1621 if (apsel >= 256)
1622 return ERROR_INVALID_ARGUMENTS;
1623 break;
1624 default:
1625 return ERROR_COMMAND_SYNTAX_ERROR;
1626 }
1627
1628 dap_ap_select(dap, apsel);
1629
1630 /* NOTE: assumes we're talking to a MEM-AP, which
1631 * has a base address. There are other kinds of AP,
1632 * though they're not common for now. This should
1633 * use the ID register to verify it's a MEM-AP.
1634 */
1635 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1636 if (retval != ERROR_OK)
1637 return retval;
1638 retval = dap_run(dap);
1639 if (retval != ERROR_OK)
1640 return retval;
1641
1642 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1643
1644 return retval;
1645 }
1646
1647 COMMAND_HANDLER(dap_memaccess_command)
1648 {
1649 struct target *target = get_current_target(CMD_CTX);
1650 struct arm *arm = target_to_arm(target);
1651 struct adiv5_dap *dap = arm->dap;
1652
1653 uint32_t memaccess_tck;
1654
1655 switch (CMD_ARGC) {
1656 case 0:
1657 memaccess_tck = dap->memaccess_tck;
1658 break;
1659 case 1:
1660 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1661 break;
1662 default:
1663 return ERROR_COMMAND_SYNTAX_ERROR;
1664 }
1665 dap->memaccess_tck = memaccess_tck;
1666
1667 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1668 dap->memaccess_tck);
1669
1670 return ERROR_OK;
1671 }
1672
1673 COMMAND_HANDLER(dap_apsel_command)
1674 {
1675 struct target *target = get_current_target(CMD_CTX);
1676 struct arm *arm = target_to_arm(target);
1677 struct adiv5_dap *dap = arm->dap;
1678
1679 uint32_t apsel, apid;
1680 int retval;
1681
1682 switch (CMD_ARGC) {
1683 case 0:
1684 apsel = 0;
1685 break;
1686 case 1:
1687 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1688 /* AP address is in bits 31:24 of DP_SELECT */
1689 if (apsel >= 256)
1690 return ERROR_INVALID_ARGUMENTS;
1691 break;
1692 default:
1693 return ERROR_COMMAND_SYNTAX_ERROR;
1694 }
1695
1696 dap->apsel = apsel;
1697 dap_ap_select(dap, apsel);
1698
1699 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1700 if (retval != ERROR_OK)
1701 return retval;
1702 retval = dap_run(dap);
1703 if (retval != ERROR_OK)
1704 return retval;
1705
1706 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1707 apsel, apid);
1708
1709 return retval;
1710 }
1711
1712 COMMAND_HANDLER(dap_apid_command)
1713 {
1714 struct target *target = get_current_target(CMD_CTX);
1715 struct arm *arm = target_to_arm(target);
1716 struct adiv5_dap *dap = arm->dap;
1717
1718 uint32_t apsel, apid;
1719 int retval;
1720
1721 switch (CMD_ARGC) {
1722 case 0:
1723 apsel = dap->apsel;
1724 break;
1725 case 1:
1726 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1727 /* AP address is in bits 31:24 of DP_SELECT */
1728 if (apsel >= 256)
1729 return ERROR_INVALID_ARGUMENTS;
1730 break;
1731 default:
1732 return ERROR_COMMAND_SYNTAX_ERROR;
1733 }
1734
1735 dap_ap_select(dap, apsel);
1736
1737 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1738 if (retval != ERROR_OK)
1739 return retval;
1740 retval = dap_run(dap);
1741 if (retval != ERROR_OK)
1742 return retval;
1743
1744 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1745
1746 return retval;
1747 }
1748
1749 static const struct command_registration dap_commands[] = {
1750 {
1751 .name = "info",
1752 .handler = handle_dap_info_command,
1753 .mode = COMMAND_EXEC,
1754 .help = "display ROM table for MEM-AP "
1755 "(default currently selected AP)",
1756 .usage = "[ap_num]",
1757 },
1758 {
1759 .name = "apsel",
1760 .handler = dap_apsel_command,
1761 .mode = COMMAND_EXEC,
1762 .help = "Set the currently selected AP (default 0) "
1763 "and display the result",
1764 .usage = "[ap_num]",
1765 },
1766 {
1767 .name = "apid",
1768 .handler = dap_apid_command,
1769 .mode = COMMAND_EXEC,
1770 .help = "return ID register from AP "
1771 "(default currently selected AP)",
1772 .usage = "[ap_num]",
1773 },
1774 {
1775 .name = "baseaddr",
1776 .handler = dap_baseaddr_command,
1777 .mode = COMMAND_EXEC,
1778 .help = "return debug base address from MEM-AP "
1779 "(default currently selected AP)",
1780 .usage = "[ap_num]",
1781 },
1782 {
1783 .name = "memaccess",
1784 .handler = dap_memaccess_command,
1785 .mode = COMMAND_EXEC,
1786 .help = "set/get number of extra tck for MEM-AP memory "
1787 "bus access [0-255]",
1788 .usage = "[cycles]",
1789 },
1790 COMMAND_REGISTRATION_DONE
1791 };
1792
1793 const struct command_registration dap_command_handlers[] = {
1794 {
1795 .name = "dap",
1796 .mode = COMMAND_EXEC,
1797 .help = "DAP command group",
1798 .chain = dap_commands,
1799 },
1800 COMMAND_REGISTRATION_DONE
1801 };
1802
1803

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)