d2ec960a82076f2ab7b3eba7c9b78b578a89da11
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
20 * *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
25 * *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
28 ***************************************************************************/
29
30 /**
31 * @file
32 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
33 * debugging architecture. Compared with previous versions, this includes
34 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
35 * transport, and focusses on memory mapped resources as defined by the
36 * CoreSight architecture.
37 *
38 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
39 * basic components: a Debug Port (DP) transporting messages to and from a
40 * debugger, and an Access Port (AP) accessing resources. Three types of DP
41 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
42 * One uses only SWD for communication, and is called SW-DP. The third can
43 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
44 * is used to access memory mapped resources and is called a MEM-AP. Also a
45 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
46 *
47 * This programming interface allows DAP pipelined operations through a
48 * transaction queue. This primarily affects AP operations (such as using
49 * a MEM-AP to access memory or registers). If the current transaction has
50 * not finished by the time the next one must begin, and the ORUNDETECT bit
51 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
52 * further AP operations will fail. There are two basic methods to avoid
53 * such overrun errors. One involves polling for status instead of using
54 * transaction piplining. The other involves adding delays to ensure the
55 * AP has enough time to complete one operation before starting the next
56 * one. (For JTAG these delays are controlled by memaccess_tck.)
57 */
58
59 /*
60 * Relevant specifications from ARM include:
61 *
62 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031E
63 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
64 *
65 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
66 * Cortex-M3(tm) TRM, ARM DDI 0337G
67 */
68
69 #ifdef HAVE_CONFIG_H
70 #include "config.h"
71 #endif
72
73 #include "jtag/interface.h"
74 #include "arm.h"
75 #include "arm_adi_v5.h"
76 #include "jtag/swd.h"
77 #include "transport/transport.h"
78 #include <helper/jep106.h>
79 #include <helper/time_support.h>
80 #include <helper/list.h>
81 #include <helper/jim-nvp.h>
82
83 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
84
85 /*
86 uint32_t tar_block_size(uint32_t address)
87 Return the largest block starting at address that does not cross a tar block size alignment boundary
88 */
89 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
90 {
91 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
92 }
93
94 /***************************************************************************
95 * *
96 * DP and MEM-AP register access through APACC and DPACC *
97 * *
98 ***************************************************************************/
99
100 static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
101 {
102 csw |= ap->csw_default;
103
104 if (csw != ap->csw_value) {
105 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
106 int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw);
107 if (retval != ERROR_OK) {
108 ap->csw_value = 0;
109 return retval;
110 }
111 ap->csw_value = csw;
112 }
113 return ERROR_OK;
114 }
115
116 static int mem_ap_setup_tar(struct adiv5_ap *ap, uint32_t tar)
117 {
118 if (!ap->tar_valid || tar != ap->tar_value) {
119 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
120 int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, tar);
121 if (retval != ERROR_OK) {
122 ap->tar_valid = false;
123 return retval;
124 }
125 ap->tar_value = tar;
126 ap->tar_valid = true;
127 }
128 return ERROR_OK;
129 }
130
131 static int mem_ap_read_tar(struct adiv5_ap *ap, uint32_t *tar)
132 {
133 int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR, tar);
134 if (retval != ERROR_OK) {
135 ap->tar_valid = false;
136 return retval;
137 }
138
139 retval = dap_run(ap->dap);
140 if (retval != ERROR_OK) {
141 ap->tar_valid = false;
142 return retval;
143 }
144
145 ap->tar_value = *tar;
146 ap->tar_valid = true;
147 return ERROR_OK;
148 }
149
150 static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
151 {
152 switch (ap->csw_value & CSW_ADDRINC_MASK) {
153 case CSW_ADDRINC_SINGLE:
154 switch (ap->csw_value & CSW_SIZE_MASK) {
155 case CSW_8BIT:
156 return 1;
157 case CSW_16BIT:
158 return 2;
159 case CSW_32BIT:
160 return 4;
161 default:
162 return 0;
163 }
164 case CSW_ADDRINC_PACKED:
165 return 4;
166 }
167 return 0;
168 }
169
170 /* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW
171 */
172 static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
173 {
174 if (!ap->tar_valid)
175 return;
176
177 uint32_t inc = mem_ap_get_tar_increment(ap);
178 if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value))
179 ap->tar_valid = false;
180 else
181 ap->tar_value += inc;
182 }
183
184 /**
185 * Queue transactions setting up transfer parameters for the
186 * currently selected MEM-AP.
187 *
188 * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
189 * initiate data reads or writes using memory or peripheral addresses.
190 * If the CSW is configured for it, the TAR may be automatically
191 * incremented after each transfer.
192 *
193 * @param ap The MEM-AP.
194 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
195 * matches the cached value, the register is not changed.
196 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
197 * matches the cached address, the register is not changed.
198 *
199 * @return ERROR_OK if the transaction was properly queued, else a fault code.
200 */
201 static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, uint32_t tar)
202 {
203 int retval;
204 retval = mem_ap_setup_csw(ap, csw);
205 if (retval != ERROR_OK)
206 return retval;
207 retval = mem_ap_setup_tar(ap, tar);
208 if (retval != ERROR_OK)
209 return retval;
210 return ERROR_OK;
211 }
212
213 /**
214 * Asynchronous (queued) read of a word from memory or a system register.
215 *
216 * @param ap The MEM-AP to access.
217 * @param address Address of the 32-bit word to read; it must be
218 * readable by the currently selected MEM-AP.
219 * @param value points to where the word will be stored when the
220 * transaction queue is flushed (assuming no errors).
221 *
222 * @return ERROR_OK for success. Otherwise a fault code.
223 */
224 int mem_ap_read_u32(struct adiv5_ap *ap, uint32_t address,
225 uint32_t *value)
226 {
227 int retval;
228
229 /* Use banked addressing (REG_BDx) to avoid some link traffic
230 * (updating TAR) when reading several consecutive addresses.
231 */
232 retval = mem_ap_setup_transfer(ap,
233 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
234 address & 0xFFFFFFF0);
235 if (retval != ERROR_OK)
236 return retval;
237
238 return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value);
239 }
240
241 /**
242 * Synchronous read of a word from memory or a system register.
243 * As a side effect, this flushes any queued transactions.
244 *
245 * @param ap The MEM-AP to access.
246 * @param address Address of the 32-bit word to read; it must be
247 * readable by the currently selected MEM-AP.
248 * @param value points to where the result will be stored.
249 *
250 * @return ERROR_OK for success; *value holds the result.
251 * Otherwise a fault code.
252 */
253 int mem_ap_read_atomic_u32(struct adiv5_ap *ap, uint32_t address,
254 uint32_t *value)
255 {
256 int retval;
257
258 retval = mem_ap_read_u32(ap, address, value);
259 if (retval != ERROR_OK)
260 return retval;
261
262 return dap_run(ap->dap);
263 }
264
265 /**
266 * Asynchronous (queued) write of a word to memory or a system register.
267 *
268 * @param ap The MEM-AP to access.
269 * @param address Address to be written; it must be writable by
270 * the currently selected MEM-AP.
271 * @param value Word that will be written to the address when transaction
272 * queue is flushed (assuming no errors).
273 *
274 * @return ERROR_OK for success. Otherwise a fault code.
275 */
276 int mem_ap_write_u32(struct adiv5_ap *ap, uint32_t address,
277 uint32_t value)
278 {
279 int retval;
280
281 /* Use banked addressing (REG_BDx) to avoid some link traffic
282 * (updating TAR) when writing several consecutive addresses.
283 */
284 retval = mem_ap_setup_transfer(ap,
285 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
286 address & 0xFFFFFFF0);
287 if (retval != ERROR_OK)
288 return retval;
289
290 return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC),
291 value);
292 }
293
294 /**
295 * Synchronous write of a word to memory or a system register.
296 * As a side effect, this flushes any queued transactions.
297 *
298 * @param ap The MEM-AP to access.
299 * @param address Address to be written; it must be writable by
300 * the currently selected MEM-AP.
301 * @param value Word that will be written.
302 *
303 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
304 */
305 int mem_ap_write_atomic_u32(struct adiv5_ap *ap, uint32_t address,
306 uint32_t value)
307 {
308 int retval = mem_ap_write_u32(ap, address, value);
309
310 if (retval != ERROR_OK)
311 return retval;
312
313 return dap_run(ap->dap);
314 }
315
316 /**
317 * Synchronous write of a block of memory, using a specific access size.
318 *
319 * @param ap The MEM-AP to access.
320 * @param buffer The data buffer to write. No particular alignment is assumed.
321 * @param size Which access size to use, in bytes. 1, 2 or 4.
322 * @param count The number of writes to do (in size units, not bytes).
323 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
324 * @param addrinc Whether the target address should be increased for each write or not. This
325 * should normally be true, except when writing to e.g. a FIFO.
326 * @return ERROR_OK on success, otherwise an error code.
327 */
328 static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
329 uint32_t address, bool addrinc)
330 {
331 struct adiv5_dap *dap = ap->dap;
332 size_t nbytes = size * count;
333 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
334 uint32_t csw_size;
335 uint32_t addr_xor;
336 int retval = ERROR_OK;
337
338 /* TI BE-32 Quirks mode:
339 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
340 * size write address bytes written in order
341 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
342 * 2 TAR ^ 2 (val >> 8), (val)
343 * 1 TAR ^ 3 (val)
344 * For example, if you attempt to write a single byte to address 0, the processor
345 * will actually write a byte to address 3.
346 *
347 * To make writes of size < 4 work as expected, we xor a value with the address before
348 * setting the TAP, and we set the TAP after every transfer rather then relying on
349 * address increment. */
350
351 if (size == 4) {
352 csw_size = CSW_32BIT;
353 addr_xor = 0;
354 } else if (size == 2) {
355 csw_size = CSW_16BIT;
356 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
357 } else if (size == 1) {
358 csw_size = CSW_8BIT;
359 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
360 } else {
361 return ERROR_TARGET_UNALIGNED_ACCESS;
362 }
363
364 if (ap->unaligned_access_bad && (address % size != 0))
365 return ERROR_TARGET_UNALIGNED_ACCESS;
366
367 while (nbytes > 0) {
368 uint32_t this_size = size;
369
370 /* Select packed transfer if possible */
371 if (addrinc && ap->packed_transfers && nbytes >= 4
372 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
373 this_size = 4;
374 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
375 } else {
376 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
377 }
378
379 if (retval != ERROR_OK)
380 break;
381
382 retval = mem_ap_setup_tar(ap, address ^ addr_xor);
383 if (retval != ERROR_OK)
384 return retval;
385
386 /* How many source bytes each transfer will consume, and their location in the DRW,
387 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
388 uint32_t outvalue = 0;
389 uint32_t drw_byte_idx = address;
390 if (dap->ti_be_32_quirks) {
391 switch (this_size) {
392 case 4:
393 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
394 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
395 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
396 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor);
397 break;
398 case 2:
399 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor);
400 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor);
401 break;
402 case 1:
403 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor);
404 break;
405 }
406 } else {
407 switch (this_size) {
408 case 4:
409 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
410 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
411 /* fallthrough */
412 case 2:
413 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
414 /* fallthrough */
415 case 1:
416 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
417 }
418 }
419
420 nbytes -= this_size;
421
422 retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue);
423 if (retval != ERROR_OK)
424 break;
425
426 mem_ap_update_tar_cache(ap);
427 if (addrinc)
428 address += this_size;
429 }
430
431 /* REVISIT: Might want to have a queued version of this function that does not run. */
432 if (retval == ERROR_OK)
433 retval = dap_run(dap);
434
435 if (retval != ERROR_OK) {
436 uint32_t tar;
437 if (mem_ap_read_tar(ap, &tar) == ERROR_OK)
438 LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar);
439 else
440 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
441 }
442
443 return retval;
444 }
445
446 /**
447 * Synchronous read of a block of memory, using a specific access size.
448 *
449 * @param ap The MEM-AP to access.
450 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
451 * @param size Which access size to use, in bytes. 1, 2 or 4.
452 * @param count The number of reads to do (in size units, not bytes).
453 * @param address Address to be read; it must be readable by the currently selected MEM-AP.
454 * @param addrinc Whether the target address should be increased after each read or not. This
455 * should normally be true, except when reading from e.g. a FIFO.
456 * @return ERROR_OK on success, otherwise an error code.
457 */
458 static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
459 uint32_t adr, bool addrinc)
460 {
461 struct adiv5_dap *dap = ap->dap;
462 size_t nbytes = size * count;
463 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
464 uint32_t csw_size;
465 uint32_t address = adr;
466 int retval = ERROR_OK;
467
468 /* TI BE-32 Quirks mode:
469 * Reads on big-endian TMS570 behave strangely differently than writes.
470 * They read from the physical address requested, but with DRW byte-reversed.
471 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
472 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
473 * so avoid them. */
474
475 if (size == 4)
476 csw_size = CSW_32BIT;
477 else if (size == 2)
478 csw_size = CSW_16BIT;
479 else if (size == 1)
480 csw_size = CSW_8BIT;
481 else
482 return ERROR_TARGET_UNALIGNED_ACCESS;
483
484 if (ap->unaligned_access_bad && (adr % size != 0))
485 return ERROR_TARGET_UNALIGNED_ACCESS;
486
487 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
488 * over-allocation if packed transfers are going to be used, but determining the real need at
489 * this point would be messy. */
490 uint32_t *read_buf = calloc(count, sizeof(uint32_t));
491 /* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */
492 uint32_t *read_ptr = read_buf;
493 if (read_buf == NULL) {
494 LOG_ERROR("Failed to allocate read buffer");
495 return ERROR_FAIL;
496 }
497
498 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
499 * useful bytes it contains, and their location in the word, depends on the type of transfer
500 * and alignment. */
501 while (nbytes > 0) {
502 uint32_t this_size = size;
503
504 /* Select packed transfer if possible */
505 if (addrinc && ap->packed_transfers && nbytes >= 4
506 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
507 this_size = 4;
508 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
509 } else {
510 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
511 }
512 if (retval != ERROR_OK)
513 break;
514
515 retval = mem_ap_setup_tar(ap, address);
516 if (retval != ERROR_OK)
517 break;
518
519 retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++);
520 if (retval != ERROR_OK)
521 break;
522
523 nbytes -= this_size;
524 if (addrinc)
525 address += this_size;
526
527 mem_ap_update_tar_cache(ap);
528 }
529
530 if (retval == ERROR_OK)
531 retval = dap_run(dap);
532
533 /* Restore state */
534 address = adr;
535 nbytes = size * count;
536 read_ptr = read_buf;
537
538 /* If something failed, read TAR to find out how much data was successfully read, so we can
539 * at least give the caller what we have. */
540 if (retval != ERROR_OK) {
541 uint32_t tar;
542 if (mem_ap_read_tar(ap, &tar) == ERROR_OK) {
543 /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */
544 LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar);
545 if (nbytes > tar - address)
546 nbytes = tar - address;
547 } else {
548 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
549 nbytes = 0;
550 }
551 }
552
553 /* Replay loop to populate caller's buffer from the correct word and byte lane */
554 while (nbytes > 0) {
555 uint32_t this_size = size;
556
557 if (addrinc && ap->packed_transfers && nbytes >= 4
558 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
559 this_size = 4;
560 }
561
562 if (dap->ti_be_32_quirks) {
563 switch (this_size) {
564 case 4:
565 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
566 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
567 /* fallthrough */
568 case 2:
569 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
570 /* fallthrough */
571 case 1:
572 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
573 }
574 } else {
575 switch (this_size) {
576 case 4:
577 *buffer++ = *read_ptr >> 8 * (address++ & 3);
578 *buffer++ = *read_ptr >> 8 * (address++ & 3);
579 /* fallthrough */
580 case 2:
581 *buffer++ = *read_ptr >> 8 * (address++ & 3);
582 /* fallthrough */
583 case 1:
584 *buffer++ = *read_ptr >> 8 * (address++ & 3);
585 }
586 }
587
588 read_ptr++;
589 nbytes -= this_size;
590 }
591
592 free(read_buf);
593 return retval;
594 }
595
596 int mem_ap_read_buf(struct adiv5_ap *ap,
597 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
598 {
599 return mem_ap_read(ap, buffer, size, count, address, true);
600 }
601
602 int mem_ap_write_buf(struct adiv5_ap *ap,
603 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
604 {
605 return mem_ap_write(ap, buffer, size, count, address, true);
606 }
607
608 int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
609 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
610 {
611 return mem_ap_read(ap, buffer, size, count, address, false);
612 }
613
614 int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
615 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
616 {
617 return mem_ap_write(ap, buffer, size, count, address, false);
618 }
619
620 /*--------------------------------------------------------------------------*/
621
622
623 #define DAP_POWER_DOMAIN_TIMEOUT (10)
624
625 /*--------------------------------------------------------------------------*/
626
627 /**
628 * Invalidate cached DP select and cached TAR and CSW of all APs
629 */
630 void dap_invalidate_cache(struct adiv5_dap *dap)
631 {
632 dap->select = DP_SELECT_INVALID;
633 dap->last_read = NULL;
634
635 int i;
636 for (i = 0; i <= 255; i++) {
637 /* force csw and tar write on the next mem-ap access */
638 dap->ap[i].tar_valid = false;
639 dap->ap[i].csw_value = 0;
640 }
641 }
642
643 /**
644 * Initialize a DAP. This sets up the power domains, prepares the DP
645 * for further use and activates overrun checking.
646 *
647 * @param dap The DAP being initialized.
648 */
649 int dap_dp_init(struct adiv5_dap *dap)
650 {
651 int retval;
652
653 LOG_DEBUG("%s", adiv5_dap_name(dap));
654
655 dap_invalidate_cache(dap);
656
657 /*
658 * Early initialize dap->dp_ctrl_stat.
659 * In jtag mode only, if the following atomic reads fail and set the
660 * sticky error, it will trigger the clearing of the sticky. Without this
661 * initialization system and debug power would be disabled while clearing
662 * the sticky error bit.
663 */
664 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
665
666 for (size_t i = 0; i < 30; i++) {
667 /* DP initialization */
668
669 retval = dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL);
670 if (retval == ERROR_OK)
671 break;
672 }
673
674 /*
675 * This write operation clears the sticky error bit in jtag mode only and
676 * is ignored in swd mode. It also powers-up system and debug domains in
677 * both jtag and swd modes, if not done before.
678 * Actually we do not need to clear the sticky error here because it has
679 * been already cleared (if it was set) in the previous atomic read. This
680 * write could be removed, but this initial part of dap_dp_init() is the
681 * result of years of fine tuning and there are strong concerns about any
682 * unnecessary code change. It doesn't harm, so let's keep it here and
683 * preserve the historical sequence of read/write operations!
684 */
685 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat | SSTICKYERR);
686 if (retval != ERROR_OK)
687 return retval;
688
689 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
690 if (retval != ERROR_OK)
691 return retval;
692
693 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
694 if (retval != ERROR_OK)
695 return retval;
696
697 /* Check that we have debug power domains activated */
698 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
699 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
700 CDBGPWRUPACK, CDBGPWRUPACK,
701 DAP_POWER_DOMAIN_TIMEOUT);
702 if (retval != ERROR_OK)
703 return retval;
704
705 if (!dap->ignore_syspwrupack) {
706 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
707 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
708 CSYSPWRUPACK, CSYSPWRUPACK,
709 DAP_POWER_DOMAIN_TIMEOUT);
710 if (retval != ERROR_OK)
711 return retval;
712 }
713
714 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
715 if (retval != ERROR_OK)
716 return retval;
717
718 /* With debug power on we can activate OVERRUN checking */
719 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
720 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
721 if (retval != ERROR_OK)
722 return retval;
723 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
724 if (retval != ERROR_OK)
725 return retval;
726
727 retval = dap_run(dap);
728 if (retval != ERROR_OK)
729 return retval;
730
731 return retval;
732 }
733
734 /**
735 * Initialize a DAP. This sets up the power domains, prepares the DP
736 * for further use, and arranges to use AP #0 for all AP operations
737 * until dap_ap-select() changes that policy.
738 *
739 * @param ap The MEM-AP being initialized.
740 */
741 int mem_ap_init(struct adiv5_ap *ap)
742 {
743 /* check that we support packed transfers */
744 uint32_t csw, cfg;
745 int retval;
746 struct adiv5_dap *dap = ap->dap;
747
748 ap->tar_valid = false;
749 ap->csw_value = 0; /* force csw and tar write */
750 retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
751 if (retval != ERROR_OK)
752 return retval;
753
754 retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw);
755 if (retval != ERROR_OK)
756 return retval;
757
758 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg);
759 if (retval != ERROR_OK)
760 return retval;
761
762 retval = dap_run(dap);
763 if (retval != ERROR_OK)
764 return retval;
765
766 if (csw & CSW_ADDRINC_PACKED)
767 ap->packed_transfers = true;
768 else
769 ap->packed_transfers = false;
770
771 /* Packed transfers on TI BE-32 processors do not work correctly in
772 * many cases. */
773 if (dap->ti_be_32_quirks)
774 ap->packed_transfers = false;
775
776 LOG_DEBUG("MEM_AP Packed Transfers: %s",
777 ap->packed_transfers ? "enabled" : "disabled");
778
779 /* The ARM ADI spec leaves implementation-defined whether unaligned
780 * memory accesses work, only work partially, or cause a sticky error.
781 * On TI BE-32 processors, reads seem to return garbage in some bytes
782 * and unaligned writes seem to cause a sticky error.
783 * TODO: it would be nice to have a way to detect whether unaligned
784 * operations are supported on other processors. */
785 ap->unaligned_access_bad = dap->ti_be_32_quirks;
786
787 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
788 !!(cfg & 0x04), !!(cfg & 0x02), !!(cfg & 0x01));
789
790 return ERROR_OK;
791 }
792
793 /**
794 * Put the debug link into SWD mode, if the target supports it.
795 * The link's initial mode may be either JTAG (for example,
796 * with SWJ-DP after reset) or SWD.
797 *
798 * Note that targets using the JTAG-DP do not support SWD, and that
799 * some targets which could otherwise support it may have been
800 * configured to disable SWD signaling
801 *
802 * @param dap The DAP used
803 * @return ERROR_OK or else a fault code.
804 */
805 int dap_to_swd(struct adiv5_dap *dap)
806 {
807 int retval;
808
809 LOG_DEBUG("Enter SWD mode");
810
811 if (transport_is_jtag()) {
812 retval = jtag_add_tms_seq(swd_seq_jtag_to_swd_len,
813 swd_seq_jtag_to_swd, TAP_INVALID);
814 if (retval == ERROR_OK)
815 retval = jtag_execute_queue();
816 return retval;
817 }
818
819 if (transport_is_swd()) {
820 const struct swd_driver *swd = adiv5_dap_swd_driver(dap);
821
822 return swd->switch_seq(JTAG_TO_SWD);
823 }
824
825 LOG_ERROR("Nor JTAG nor SWD transport");
826 return ERROR_FAIL;
827 }
828
829 /**
830 * Put the debug link into JTAG mode, if the target supports it.
831 * The link's initial mode may be either SWD or JTAG.
832 *
833 * Note that targets implemented with SW-DP do not support JTAG, and
834 * that some targets which could otherwise support it may have been
835 * configured to disable JTAG signaling
836 *
837 * @param dap The DAP used
838 * @return ERROR_OK or else a fault code.
839 */
840 int dap_to_jtag(struct adiv5_dap *dap)
841 {
842 int retval;
843
844 LOG_DEBUG("Enter JTAG mode");
845
846 if (transport_is_jtag()) {
847 retval = jtag_add_tms_seq(swd_seq_swd_to_jtag_len,
848 swd_seq_swd_to_jtag, TAP_RESET);
849 if (retval == ERROR_OK)
850 retval = jtag_execute_queue();
851 return retval;
852 }
853
854 if (transport_is_swd()) {
855 const struct swd_driver *swd = adiv5_dap_swd_driver(dap);
856
857 return swd->switch_seq(SWD_TO_JTAG);
858 }
859
860 LOG_ERROR("Nor JTAG nor SWD transport");
861 return ERROR_FAIL;
862 }
863
864 /* CID interpretation -- see ARM IHI 0029B section 3
865 * and ARM IHI 0031A table 13-3.
866 */
867 static const char *class_description[16] = {
868 "Reserved", "ROM table", "Reserved", "Reserved",
869 "Reserved", "Reserved", "Reserved", "Reserved",
870 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
871 "Reserved", "OptimoDE DESS",
872 "Generic IP component", "PrimeCell or System component"
873 };
874
875 static bool is_dap_cid_ok(uint32_t cid)
876 {
877 return (cid & 0xffff0fff) == 0xb105000d;
878 }
879
880 /*
881 * This function checks the ID for each access port to find the requested Access Port type
882 */
883 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
884 {
885 int ap_num;
886
887 /* Maximum AP number is 255 since the SELECT register is 8 bits */
888 for (ap_num = 0; ap_num <= DP_APSEL_MAX; ap_num++) {
889
890 /* read the IDR register of the Access Port */
891 uint32_t id_val = 0;
892
893 int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val);
894 if (retval != ERROR_OK)
895 return retval;
896
897 retval = dap_run(dap);
898
899 /* IDR bits:
900 * 31-28 : Revision
901 * 27-24 : JEDEC bank (0x4 for ARM)
902 * 23-17 : JEDEC code (0x3B for ARM)
903 * 16-13 : Class (0b1000=Mem-AP)
904 * 12-8 : Reserved
905 * 7-4 : AP Variant (non-zero for JTAG-AP)
906 * 3-0 : AP Type (0=JTAG-AP 1=AHB-AP 2=APB-AP 4=AXI-AP)
907 */
908
909 /* Reading register for a non-existant AP should not cause an error,
910 * but just to be sure, try to continue searching if an error does happen.
911 */
912 if ((retval == ERROR_OK) && /* Register read success */
913 ((id_val & IDR_JEP106) == IDR_JEP106_ARM) && /* Jedec codes match */
914 ((id_val & IDR_TYPE) == type_to_find)) { /* type matches*/
915
916 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
917 (type_to_find == AP_TYPE_AHB3_AP) ? "AHB3-AP" :
918 (type_to_find == AP_TYPE_AHB5_AP) ? "AHB5-AP" :
919 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
920 (type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" :
921 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown",
922 ap_num, id_val);
923
924 *ap_out = &dap->ap[ap_num];
925 return ERROR_OK;
926 }
927 }
928
929 LOG_DEBUG("No %s found",
930 (type_to_find == AP_TYPE_AHB3_AP) ? "AHB3-AP" :
931 (type_to_find == AP_TYPE_AHB5_AP) ? "AHB5-AP" :
932 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
933 (type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" :
934 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown");
935 return ERROR_FAIL;
936 }
937
938 int dap_get_debugbase(struct adiv5_ap *ap,
939 uint32_t *dbgbase, uint32_t *apid)
940 {
941 struct adiv5_dap *dap = ap->dap;
942 int retval;
943
944 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, dbgbase);
945 if (retval != ERROR_OK)
946 return retval;
947 retval = dap_queue_ap_read(ap, AP_REG_IDR, apid);
948 if (retval != ERROR_OK)
949 return retval;
950 retval = dap_run(dap);
951 if (retval != ERROR_OK)
952 return retval;
953
954 return ERROR_OK;
955 }
956
957 int dap_lookup_cs_component(struct adiv5_ap *ap,
958 uint32_t dbgbase, uint8_t type, uint32_t *addr, int32_t *idx)
959 {
960 uint32_t romentry, entry_offset = 0, component_base, devtype;
961 int retval;
962
963 *addr = 0;
964
965 do {
966 retval = mem_ap_read_atomic_u32(ap, (dbgbase&0xFFFFF000) |
967 entry_offset, &romentry);
968 if (retval != ERROR_OK)
969 return retval;
970
971 component_base = (dbgbase & 0xFFFFF000)
972 + (romentry & 0xFFFFF000);
973
974 if (romentry & 0x1) {
975 uint32_t c_cid1;
976 retval = mem_ap_read_atomic_u32(ap, component_base | 0xff4, &c_cid1);
977 if (retval != ERROR_OK) {
978 LOG_ERROR("Can't read component with base address 0x%" PRIx32
979 ", the corresponding core might be turned off", component_base);
980 return retval;
981 }
982 if (((c_cid1 >> 4) & 0x0f) == 1) {
983 retval = dap_lookup_cs_component(ap, component_base,
984 type, addr, idx);
985 if (retval == ERROR_OK)
986 break;
987 if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
988 return retval;
989 }
990
991 retval = mem_ap_read_atomic_u32(ap,
992 (component_base & 0xfffff000) | 0xfcc,
993 &devtype);
994 if (retval != ERROR_OK)
995 return retval;
996 if ((devtype & 0xff) == type) {
997 if (!*idx) {
998 *addr = component_base;
999 break;
1000 } else
1001 (*idx)--;
1002 }
1003 }
1004 entry_offset += 4;
1005 } while (romentry > 0);
1006
1007 if (!*addr)
1008 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1009
1010 return ERROR_OK;
1011 }
1012
1013 static int dap_read_part_id(struct adiv5_ap *ap, uint32_t component_base, uint32_t *cid, uint64_t *pid)
1014 {
1015 assert((component_base & 0xFFF) == 0);
1016 assert(ap != NULL && cid != NULL && pid != NULL);
1017
1018 uint32_t cid0, cid1, cid2, cid3;
1019 uint32_t pid0, pid1, pid2, pid3, pid4;
1020 int retval;
1021
1022 /* IDs are in last 4K section */
1023 retval = mem_ap_read_u32(ap, component_base + 0xFE0, &pid0);
1024 if (retval != ERROR_OK)
1025 return retval;
1026 retval = mem_ap_read_u32(ap, component_base + 0xFE4, &pid1);
1027 if (retval != ERROR_OK)
1028 return retval;
1029 retval = mem_ap_read_u32(ap, component_base + 0xFE8, &pid2);
1030 if (retval != ERROR_OK)
1031 return retval;
1032 retval = mem_ap_read_u32(ap, component_base + 0xFEC, &pid3);
1033 if (retval != ERROR_OK)
1034 return retval;
1035 retval = mem_ap_read_u32(ap, component_base + 0xFD0, &pid4);
1036 if (retval != ERROR_OK)
1037 return retval;
1038 retval = mem_ap_read_u32(ap, component_base + 0xFF0, &cid0);
1039 if (retval != ERROR_OK)
1040 return retval;
1041 retval = mem_ap_read_u32(ap, component_base + 0xFF4, &cid1);
1042 if (retval != ERROR_OK)
1043 return retval;
1044 retval = mem_ap_read_u32(ap, component_base + 0xFF8, &cid2);
1045 if (retval != ERROR_OK)
1046 return retval;
1047 retval = mem_ap_read_u32(ap, component_base + 0xFFC, &cid3);
1048 if (retval != ERROR_OK)
1049 return retval;
1050
1051 retval = dap_run(ap->dap);
1052 if (retval != ERROR_OK)
1053 return retval;
1054
1055 *cid = (cid3 & 0xff) << 24
1056 | (cid2 & 0xff) << 16
1057 | (cid1 & 0xff) << 8
1058 | (cid0 & 0xff);
1059 *pid = (uint64_t)(pid4 & 0xff) << 32
1060 | (pid3 & 0xff) << 24
1061 | (pid2 & 0xff) << 16
1062 | (pid1 & 0xff) << 8
1063 | (pid0 & 0xff);
1064
1065 return ERROR_OK;
1066 }
1067
1068 /* The designer identity code is encoded as:
1069 * bits 11:8 : JEP106 Bank (number of continuation codes), only valid when bit 7 is 1.
1070 * bit 7 : Set when bits 6:0 represent a JEP106 ID and cleared when bits 6:0 represent
1071 * a legacy ASCII Identity Code.
1072 * bits 6:0 : JEP106 Identity Code (without parity) or legacy ASCII code according to bit 7.
1073 * JEP106 is a standard available from jedec.org
1074 */
1075
1076 /* Part number interpretations are from Cortex
1077 * core specs, the CoreSight components TRM
1078 * (ARM DDI 0314H), CoreSight System Design
1079 * Guide (ARM DGI 0012D) and ETM specs; also
1080 * from chip observation (e.g. TI SDTI).
1081 */
1082
1083 /* The legacy code only used the part number field to identify CoreSight peripherals.
1084 * This meant that the same part number from two different manufacturers looked the same.
1085 * It is desirable for all future additions to identify with both part number and JEP106.
1086 * "ANY_ID" is a wildcard (any JEP106) only to preserve legacy behavior for legacy entries.
1087 */
1088
1089 #define ANY_ID 0x1000
1090
1091 #define ARM_ID 0x4BB
1092
1093 static const struct {
1094 uint16_t designer_id;
1095 uint16_t part_num;
1096 const char *type;
1097 const char *full;
1098 } dap_partnums[] = {
1099 { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
1100 { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
1101 { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
1102 { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
1103 { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
1104 { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
1105 { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
1106 { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
1107 { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
1108 { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
1109 { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
1110 { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
1111 { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
1112 { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
1113 { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
1114 { ARM_ID, 0x4a9, "Cortex-A9 ROM", "(ROM Table)", },
1115 { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
1116 { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
1117 { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
1118 { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
1119 { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
1120 { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
1121 { ARM_ID, 0x4b5, "Cortex-R5 ROM", "(ROM Table)", },
1122 { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
1123 { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
1124 { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
1125 { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
1126 { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
1127 { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
1128 { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
1129 { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
1130 { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
1131 { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
1132 { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
1133 { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
1134 { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
1135 { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
1136 { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
1137 { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
1138 { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
1139 { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
1140 { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
1141 { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
1142 { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
1143 { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
1144 { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
1145 { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
1146 { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
1147 { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
1148 { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
1149 { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
1150 { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
1151 { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
1152 { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
1153 { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
1154 { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
1155 { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
1156 { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
1157 { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
1158 { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
1159 { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
1160 { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
1161 { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
1162 { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitor Unit)", },
1163 { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
1164 { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
1165 { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
1166 { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
1167 { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
1168 { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
1169 { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
1170 { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
1171 { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
1172 { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
1173 { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
1174 { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
1175 { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
1176 { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
1177 { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
1178 { 0x097, 0x9af, "MSP432 ROM", "(ROM Table)" },
1179 { 0x09f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
1180 { 0x0c1, 0x1db, "XMC4500 ROM", "(ROM Table)" },
1181 { 0x0c1, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" },
1182 { 0x0c1, 0x1ed, "XMC1000 ROM", "(ROM Table)" },
1183 { 0x0E5, 0x000, "SHARC+/Blackfin+", "", },
1184 { 0x0F0, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
1185 { 0x3eb, 0x181, "Tegra 186 ROM", "(ROM Table)", },
1186 { 0x3eb, 0x211, "Tegra 210 ROM", "(ROM Table)", },
1187 { 0x3eb, 0x202, "Denver ETM", "(Denver Embedded Trace)", },
1188 { 0x3eb, 0x302, "Denver Debug", "(Debug Unit)", },
1189 { 0x3eb, 0x402, "Denver PMU", "(Performance Monitor Unit)", },
1190 /* legacy comment: 0x113: what? */
1191 { ANY_ID, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
1192 { ANY_ID, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
1193 };
1194
1195 static int dap_rom_display(struct command_invocation *cmd,
1196 struct adiv5_ap *ap, uint32_t dbgbase, int depth)
1197 {
1198 int retval;
1199 uint64_t pid;
1200 uint32_t cid;
1201 char tabs[16] = "";
1202
1203 if (depth > 16) {
1204 command_print(cmd, "\tTables too deep");
1205 return ERROR_FAIL;
1206 }
1207
1208 if (depth)
1209 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1210
1211 uint32_t base_addr = dbgbase & 0xFFFFF000;
1212 command_print(cmd, "\t\tComponent base address 0x%08" PRIx32, base_addr);
1213
1214 retval = dap_read_part_id(ap, base_addr, &cid, &pid);
1215 if (retval != ERROR_OK) {
1216 command_print(cmd, "\t\tCan't read component, the corresponding core might be turned off");
1217 return ERROR_OK; /* Don't abort recursion */
1218 }
1219
1220 if (!is_dap_cid_ok(cid)) {
1221 command_print(cmd, "\t\tInvalid CID 0x%08" PRIx32, cid);
1222 return ERROR_OK; /* Don't abort recursion */
1223 }
1224
1225 /* component may take multiple 4K pages */
1226 uint32_t size = (pid >> 36) & 0xf;
1227 if (size > 0)
1228 command_print(cmd, "\t\tStart address 0x%08" PRIx32, (uint32_t)(base_addr - 0x1000 * size));
1229
1230 command_print(cmd, "\t\tPeripheral ID 0x%010" PRIx64, pid);
1231
1232 uint8_t class = (cid >> 12) & 0xf;
1233 uint16_t part_num = pid & 0xfff;
1234 uint16_t designer_id = ((pid >> 32) & 0xf) << 8 | ((pid >> 12) & 0xff);
1235
1236 if (designer_id & 0x80) {
1237 /* JEP106 code */
1238 command_print(cmd, "\t\tDesigner is 0x%03" PRIx16 ", %s",
1239 designer_id, jep106_manufacturer(designer_id >> 8, designer_id & 0x7f));
1240 } else {
1241 /* Legacy ASCII ID, clear invalid bits */
1242 designer_id &= 0x7f;
1243 command_print(cmd, "\t\tDesigner ASCII code 0x%02" PRIx16 ", %s",
1244 designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
1245 }
1246
1247 /* default values to be overwritten upon finding a match */
1248 const char *type = "Unrecognized";
1249 const char *full = "";
1250
1251 /* search dap_partnums[] array for a match */
1252 for (unsigned entry = 0; entry < ARRAY_SIZE(dap_partnums); entry++) {
1253
1254 if ((dap_partnums[entry].designer_id != designer_id) && (dap_partnums[entry].designer_id != ANY_ID))
1255 continue;
1256
1257 if (dap_partnums[entry].part_num != part_num)
1258 continue;
1259
1260 type = dap_partnums[entry].type;
1261 full = dap_partnums[entry].full;
1262 break;
1263 }
1264
1265 command_print(cmd, "\t\tPart is 0x%" PRIx16", %s %s", part_num, type, full);
1266 command_print(cmd, "\t\tComponent class is 0x%" PRIx8 ", %s", class, class_description[class]);
1267
1268 if (class == 1) { /* ROM Table */
1269 uint32_t memtype;
1270 retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &memtype);
1271 if (retval != ERROR_OK)
1272 return retval;
1273
1274 if (memtype & 0x01)
1275 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1276 else
1277 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1278
1279 /* Read ROM table entries from base address until we get 0x00000000 or reach the reserved area */
1280 for (uint16_t entry_offset = 0; entry_offset < 0xF00; entry_offset += 4) {
1281 uint32_t romentry;
1282 retval = mem_ap_read_atomic_u32(ap, base_addr | entry_offset, &romentry);
1283 if (retval != ERROR_OK)
1284 return retval;
1285 command_print(cmd, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
1286 tabs, entry_offset, romentry);
1287 if (romentry & 0x01) {
1288 /* Recurse */
1289 retval = dap_rom_display(cmd, ap, base_addr + (romentry & 0xFFFFF000), depth + 1);
1290 if (retval != ERROR_OK)
1291 return retval;
1292 } else if (romentry != 0) {
1293 command_print(cmd, "\t\tComponent not present");
1294 } else {
1295 command_print(cmd, "\t%s\tEnd of ROM table", tabs);
1296 break;
1297 }
1298 }
1299 } else if (class == 9) { /* CoreSight component */
1300 const char *major = "Reserved", *subtype = "Reserved";
1301
1302 uint32_t devtype;
1303 retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &devtype);
1304 if (retval != ERROR_OK)
1305 return retval;
1306 unsigned minor = (devtype >> 4) & 0x0f;
1307 switch (devtype & 0x0f) {
1308 case 0:
1309 major = "Miscellaneous";
1310 switch (minor) {
1311 case 0:
1312 subtype = "other";
1313 break;
1314 case 4:
1315 subtype = "Validation component";
1316 break;
1317 }
1318 break;
1319 case 1:
1320 major = "Trace Sink";
1321 switch (minor) {
1322 case 0:
1323 subtype = "other";
1324 break;
1325 case 1:
1326 subtype = "Port";
1327 break;
1328 case 2:
1329 subtype = "Buffer";
1330 break;
1331 case 3:
1332 subtype = "Router";
1333 break;
1334 }
1335 break;
1336 case 2:
1337 major = "Trace Link";
1338 switch (minor) {
1339 case 0:
1340 subtype = "other";
1341 break;
1342 case 1:
1343 subtype = "Funnel, router";
1344 break;
1345 case 2:
1346 subtype = "Filter";
1347 break;
1348 case 3:
1349 subtype = "FIFO, buffer";
1350 break;
1351 }
1352 break;
1353 case 3:
1354 major = "Trace Source";
1355 switch (minor) {
1356 case 0:
1357 subtype = "other";
1358 break;
1359 case 1:
1360 subtype = "Processor";
1361 break;
1362 case 2:
1363 subtype = "DSP";
1364 break;
1365 case 3:
1366 subtype = "Engine/Coprocessor";
1367 break;
1368 case 4:
1369 subtype = "Bus";
1370 break;
1371 case 6:
1372 subtype = "Software";
1373 break;
1374 }
1375 break;
1376 case 4:
1377 major = "Debug Control";
1378 switch (minor) {
1379 case 0:
1380 subtype = "other";
1381 break;
1382 case 1:
1383 subtype = "Trigger Matrix";
1384 break;
1385 case 2:
1386 subtype = "Debug Auth";
1387 break;
1388 case 3:
1389 subtype = "Power Requestor";
1390 break;
1391 }
1392 break;
1393 case 5:
1394 major = "Debug Logic";
1395 switch (minor) {
1396 case 0:
1397 subtype = "other";
1398 break;
1399 case 1:
1400 subtype = "Processor";
1401 break;
1402 case 2:
1403 subtype = "DSP";
1404 break;
1405 case 3:
1406 subtype = "Engine/Coprocessor";
1407 break;
1408 case 4:
1409 subtype = "Bus";
1410 break;
1411 case 5:
1412 subtype = "Memory";
1413 break;
1414 }
1415 break;
1416 case 6:
1417 major = "Performance Monitor";
1418 switch (minor) {
1419 case 0:
1420 subtype = "other";
1421 break;
1422 case 1:
1423 subtype = "Processor";
1424 break;
1425 case 2:
1426 subtype = "DSP";
1427 break;
1428 case 3:
1429 subtype = "Engine/Coprocessor";
1430 break;
1431 case 4:
1432 subtype = "Bus";
1433 break;
1434 case 5:
1435 subtype = "Memory";
1436 break;
1437 }
1438 break;
1439 }
1440 command_print(cmd, "\t\tType is 0x%02" PRIx8 ", %s, %s",
1441 (uint8_t)(devtype & 0xff),
1442 major, subtype);
1443 /* REVISIT also show 0xfc8 DevId */
1444 }
1445
1446 return ERROR_OK;
1447 }
1448
1449 int dap_info_command(struct command_invocation *cmd,
1450 struct adiv5_ap *ap)
1451 {
1452 int retval;
1453 uint32_t dbgbase, apid;
1454 uint8_t mem_ap;
1455
1456 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1457 retval = dap_get_debugbase(ap, &dbgbase, &apid);
1458 if (retval != ERROR_OK)
1459 return retval;
1460
1461 command_print(cmd, "AP ID register 0x%8.8" PRIx32, apid);
1462 if (apid == 0) {
1463 command_print(cmd, "No AP found at this ap 0x%x", ap->ap_num);
1464 return ERROR_FAIL;
1465 }
1466
1467 switch (apid & (IDR_JEP106 | IDR_TYPE)) {
1468 case IDR_JEP106_ARM | AP_TYPE_JTAG_AP:
1469 command_print(cmd, "\tType is JTAG-AP");
1470 break;
1471 case IDR_JEP106_ARM | AP_TYPE_AHB3_AP:
1472 command_print(cmd, "\tType is MEM-AP AHB3");
1473 break;
1474 case IDR_JEP106_ARM | AP_TYPE_AHB5_AP:
1475 command_print(cmd, "\tType is MEM-AP AHB5");
1476 break;
1477 case IDR_JEP106_ARM | AP_TYPE_APB_AP:
1478 command_print(cmd, "\tType is MEM-AP APB");
1479 break;
1480 case IDR_JEP106_ARM | AP_TYPE_AXI_AP:
1481 command_print(cmd, "\tType is MEM-AP AXI");
1482 break;
1483 default:
1484 command_print(cmd, "\tUnknown AP type");
1485 break;
1486 }
1487
1488 /* NOTE: a MEM-AP may have a single CoreSight component that's
1489 * not a ROM table ... or have no such components at all.
1490 */
1491 mem_ap = (apid & IDR_CLASS) == AP_CLASS_MEM_AP;
1492 if (mem_ap) {
1493 command_print(cmd, "MEM-AP BASE 0x%8.8" PRIx32, dbgbase);
1494
1495 if (dbgbase == 0xFFFFFFFF || (dbgbase & 0x3) == 0x2) {
1496 command_print(cmd, "\tNo ROM table present");
1497 } else {
1498 if (dbgbase & 0x01)
1499 command_print(cmd, "\tValid ROM table present");
1500 else
1501 command_print(cmd, "\tROM table in legacy format");
1502
1503 dap_rom_display(cmd, ap, dbgbase & 0xFFFFF000, 0);
1504 }
1505 }
1506
1507 return ERROR_OK;
1508 }
1509
1510 enum adiv5_cfg_param {
1511 CFG_DAP,
1512 CFG_AP_NUM
1513 };
1514
1515 static const Jim_Nvp nvp_config_opts[] = {
1516 { .name = "-dap", .value = CFG_DAP },
1517 { .name = "-ap-num", .value = CFG_AP_NUM },
1518 { .name = NULL, .value = -1 }
1519 };
1520
1521 int adiv5_jim_configure(struct target *target, Jim_GetOptInfo *goi)
1522 {
1523 struct adiv5_private_config *pc;
1524 int e;
1525
1526 pc = (struct adiv5_private_config *)target->private_config;
1527 if (pc == NULL) {
1528 pc = calloc(1, sizeof(struct adiv5_private_config));
1529 pc->ap_num = DP_APSEL_INVALID;
1530 target->private_config = pc;
1531 }
1532
1533 target->has_dap = true;
1534
1535 if (goi->argc > 0) {
1536 Jim_Nvp *n;
1537
1538 Jim_SetEmptyResult(goi->interp);
1539
1540 /* check first if topmost item is for us */
1541 e = Jim_Nvp_name2value_obj(goi->interp, nvp_config_opts,
1542 goi->argv[0], &n);
1543 if (e != JIM_OK)
1544 return JIM_CONTINUE;
1545
1546 e = Jim_GetOpt_Obj(goi, NULL);
1547 if (e != JIM_OK)
1548 return e;
1549
1550 switch (n->value) {
1551 case CFG_DAP:
1552 if (goi->isconfigure) {
1553 Jim_Obj *o_t;
1554 struct adiv5_dap *dap;
1555 e = Jim_GetOpt_Obj(goi, &o_t);
1556 if (e != JIM_OK)
1557 return e;
1558 dap = dap_instance_by_jim_obj(goi->interp, o_t);
1559 if (dap == NULL) {
1560 Jim_SetResultString(goi->interp, "DAP name invalid!", -1);
1561 return JIM_ERR;
1562 }
1563 if (pc->dap != NULL && pc->dap != dap) {
1564 Jim_SetResultString(goi->interp,
1565 "DAP assignment cannot be changed after target was created!", -1);
1566 return JIM_ERR;
1567 }
1568 if (target->tap_configured) {
1569 Jim_SetResultString(goi->interp,
1570 "-chain-position and -dap configparams are mutually exclusive!", -1);
1571 return JIM_ERR;
1572 }
1573 pc->dap = dap;
1574 target->tap = dap->tap;
1575 target->dap_configured = true;
1576 } else {
1577 if (goi->argc != 0) {
1578 Jim_WrongNumArgs(goi->interp,
1579 goi->argc, goi->argv,
1580 "NO PARAMS");
1581 return JIM_ERR;
1582 }
1583
1584 if (pc->dap == NULL) {
1585 Jim_SetResultString(goi->interp, "DAP not configured", -1);
1586 return JIM_ERR;
1587 }
1588 Jim_SetResultString(goi->interp, adiv5_dap_name(pc->dap), -1);
1589 }
1590 break;
1591
1592 case CFG_AP_NUM:
1593 if (goi->isconfigure) {
1594 jim_wide ap_num;
1595 e = Jim_GetOpt_Wide(goi, &ap_num);
1596 if (e != JIM_OK)
1597 return e;
1598 if (ap_num < 0 || ap_num > DP_APSEL_MAX) {
1599 Jim_SetResultString(goi->interp, "Invalid AP number!", -1);
1600 return JIM_ERR;
1601 }
1602 pc->ap_num = ap_num;
1603 } else {
1604 if (goi->argc != 0) {
1605 Jim_WrongNumArgs(goi->interp,
1606 goi->argc, goi->argv,
1607 "NO PARAMS");
1608 return JIM_ERR;
1609 }
1610
1611 if (pc->ap_num == DP_APSEL_INVALID) {
1612 Jim_SetResultString(goi->interp, "AP number not configured", -1);
1613 return JIM_ERR;
1614 }
1615 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, pc->ap_num));
1616 }
1617 break;
1618 }
1619 }
1620
1621 return JIM_OK;
1622 }
1623
1624 int adiv5_verify_config(struct adiv5_private_config *pc)
1625 {
1626 if (pc == NULL)
1627 return ERROR_FAIL;
1628
1629 if (pc->dap == NULL)
1630 return ERROR_FAIL;
1631
1632 return ERROR_OK;
1633 }
1634
1635
1636 COMMAND_HANDLER(handle_dap_info_command)
1637 {
1638 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1639 uint32_t apsel;
1640
1641 switch (CMD_ARGC) {
1642 case 0:
1643 apsel = dap->apsel;
1644 break;
1645 case 1:
1646 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1647 if (apsel > DP_APSEL_MAX)
1648 return ERROR_COMMAND_SYNTAX_ERROR;
1649 break;
1650 default:
1651 return ERROR_COMMAND_SYNTAX_ERROR;
1652 }
1653
1654 return dap_info_command(CMD, &dap->ap[apsel]);
1655 }
1656
1657 COMMAND_HANDLER(dap_baseaddr_command)
1658 {
1659 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1660 uint32_t apsel, baseaddr;
1661 int retval;
1662
1663 switch (CMD_ARGC) {
1664 case 0:
1665 apsel = dap->apsel;
1666 break;
1667 case 1:
1668 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1669 /* AP address is in bits 31:24 of DP_SELECT */
1670 if (apsel > DP_APSEL_MAX)
1671 return ERROR_COMMAND_SYNTAX_ERROR;
1672 break;
1673 default:
1674 return ERROR_COMMAND_SYNTAX_ERROR;
1675 }
1676
1677 /* NOTE: assumes we're talking to a MEM-AP, which
1678 * has a base address. There are other kinds of AP,
1679 * though they're not common for now. This should
1680 * use the ID register to verify it's a MEM-AP.
1681 */
1682 retval = dap_queue_ap_read(dap_ap(dap, apsel), MEM_AP_REG_BASE, &baseaddr);
1683 if (retval != ERROR_OK)
1684 return retval;
1685 retval = dap_run(dap);
1686 if (retval != ERROR_OK)
1687 return retval;
1688
1689 command_print(CMD, "0x%8.8" PRIx32, baseaddr);
1690
1691 return retval;
1692 }
1693
1694 COMMAND_HANDLER(dap_memaccess_command)
1695 {
1696 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1697 uint32_t memaccess_tck;
1698
1699 switch (CMD_ARGC) {
1700 case 0:
1701 memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
1702 break;
1703 case 1:
1704 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1705 break;
1706 default:
1707 return ERROR_COMMAND_SYNTAX_ERROR;
1708 }
1709 dap->ap[dap->apsel].memaccess_tck = memaccess_tck;
1710
1711 command_print(CMD, "memory bus access delay set to %" PRIi32 " tck",
1712 dap->ap[dap->apsel].memaccess_tck);
1713
1714 return ERROR_OK;
1715 }
1716
1717 COMMAND_HANDLER(dap_apsel_command)
1718 {
1719 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1720 uint32_t apsel;
1721
1722 switch (CMD_ARGC) {
1723 case 0:
1724 command_print(CMD, "%" PRIi32, dap->apsel);
1725 return ERROR_OK;
1726 case 1:
1727 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1728 /* AP address is in bits 31:24 of DP_SELECT */
1729 if (apsel > DP_APSEL_MAX)
1730 return ERROR_COMMAND_SYNTAX_ERROR;
1731 break;
1732 default:
1733 return ERROR_COMMAND_SYNTAX_ERROR;
1734 }
1735
1736 dap->apsel = apsel;
1737 return ERROR_OK;
1738 }
1739
1740 COMMAND_HANDLER(dap_apcsw_command)
1741 {
1742 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1743 uint32_t apcsw = dap->ap[dap->apsel].csw_default;
1744 uint32_t csw_val, csw_mask;
1745
1746 switch (CMD_ARGC) {
1747 case 0:
1748 command_print(CMD, "ap %" PRIi32 " selected, csw 0x%8.8" PRIx32,
1749 dap->apsel, apcsw);
1750 return ERROR_OK;
1751 case 1:
1752 if (strcmp(CMD_ARGV[0], "default") == 0)
1753 csw_val = CSW_AHB_DEFAULT;
1754 else
1755 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1756
1757 if (csw_val & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1758 LOG_ERROR("CSW value cannot include 'Size' and 'AddrInc' bit-fields");
1759 return ERROR_COMMAND_SYNTAX_ERROR;
1760 }
1761 apcsw = csw_val;
1762 break;
1763 case 2:
1764 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1765 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], csw_mask);
1766 if (csw_mask & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1767 LOG_ERROR("CSW mask cannot include 'Size' and 'AddrInc' bit-fields");
1768 return ERROR_COMMAND_SYNTAX_ERROR;
1769 }
1770 apcsw = (apcsw & ~csw_mask) | (csw_val & csw_mask);
1771 break;
1772 default:
1773 return ERROR_COMMAND_SYNTAX_ERROR;
1774 }
1775 dap->ap[dap->apsel].csw_default = apcsw;
1776
1777 return 0;
1778 }
1779
1780
1781
1782 COMMAND_HANDLER(dap_apid_command)
1783 {
1784 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1785 uint32_t apsel, apid;
1786 int retval;
1787
1788 switch (CMD_ARGC) {
1789 case 0:
1790 apsel = dap->apsel;
1791 break;
1792 case 1:
1793 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1794 /* AP address is in bits 31:24 of DP_SELECT */
1795 if (apsel > DP_APSEL_MAX)
1796 return ERROR_COMMAND_SYNTAX_ERROR;
1797 break;
1798 default:
1799 return ERROR_COMMAND_SYNTAX_ERROR;
1800 }
1801
1802 retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
1803 if (retval != ERROR_OK)
1804 return retval;
1805 retval = dap_run(dap);
1806 if (retval != ERROR_OK)
1807 return retval;
1808
1809 command_print(CMD, "0x%8.8" PRIx32, apid);
1810
1811 return retval;
1812 }
1813
1814 COMMAND_HANDLER(dap_apreg_command)
1815 {
1816 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1817 uint32_t apsel, reg, value;
1818 struct adiv5_ap *ap;
1819 int retval;
1820
1821 if (CMD_ARGC < 2 || CMD_ARGC > 3)
1822 return ERROR_COMMAND_SYNTAX_ERROR;
1823
1824 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1825 /* AP address is in bits 31:24 of DP_SELECT */
1826 if (apsel > DP_APSEL_MAX)
1827 return ERROR_COMMAND_SYNTAX_ERROR;
1828 ap = dap_ap(dap, apsel);
1829
1830 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg);
1831 if (reg >= 256 || (reg & 3))
1832 return ERROR_COMMAND_SYNTAX_ERROR;
1833
1834 if (CMD_ARGC == 3) {
1835 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
1836 switch (reg) {
1837 case MEM_AP_REG_CSW:
1838 ap->csw_value = 0; /* invalid, in case write fails */
1839 retval = dap_queue_ap_write(ap, reg, value);
1840 if (retval == ERROR_OK)
1841 ap->csw_value = value;
1842 break;
1843 case MEM_AP_REG_TAR:
1844 ap->tar_valid = false; /* invalid, force write */
1845 retval = mem_ap_setup_tar(ap, value);
1846 break;
1847 default:
1848 retval = dap_queue_ap_write(ap, reg, value);
1849 break;
1850 }
1851 } else {
1852 retval = dap_queue_ap_read(ap, reg, &value);
1853 }
1854 if (retval == ERROR_OK)
1855 retval = dap_run(dap);
1856
1857 if (retval != ERROR_OK)
1858 return retval;
1859
1860 if (CMD_ARGC == 2)
1861 command_print(CMD, "0x%08" PRIx32, value);
1862
1863 return retval;
1864 }
1865
1866 COMMAND_HANDLER(dap_dpreg_command)
1867 {
1868 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1869 uint32_t reg, value;
1870 int retval;
1871
1872 if (CMD_ARGC < 1 || CMD_ARGC > 2)
1873 return ERROR_COMMAND_SYNTAX_ERROR;
1874
1875 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg);
1876 if (reg >= 256 || (reg & 3))
1877 return ERROR_COMMAND_SYNTAX_ERROR;
1878
1879 if (CMD_ARGC == 2) {
1880 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1881 retval = dap_queue_dp_write(dap, reg, value);
1882 } else {
1883 retval = dap_queue_dp_read(dap, reg, &value);
1884 }
1885 if (retval == ERROR_OK)
1886 retval = dap_run(dap);
1887
1888 if (retval != ERROR_OK)
1889 return retval;
1890
1891 if (CMD_ARGC == 1)
1892 command_print(CMD, "0x%08" PRIx32, value);
1893
1894 return retval;
1895 }
1896
1897 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
1898 {
1899 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1900 uint32_t enable = dap->ti_be_32_quirks;
1901
1902 switch (CMD_ARGC) {
1903 case 0:
1904 break;
1905 case 1:
1906 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], enable);
1907 if (enable > 1)
1908 return ERROR_COMMAND_SYNTAX_ERROR;
1909 break;
1910 default:
1911 return ERROR_COMMAND_SYNTAX_ERROR;
1912 }
1913 dap->ti_be_32_quirks = enable;
1914 command_print(CMD, "TI BE-32 quirks mode %s",
1915 enable ? "enabled" : "disabled");
1916
1917 return 0;
1918 }
1919
1920 const struct command_registration dap_instance_commands[] = {
1921 {
1922 .name = "info",
1923 .handler = handle_dap_info_command,
1924 .mode = COMMAND_EXEC,
1925 .help = "display ROM table for MEM-AP "
1926 "(default currently selected AP)",
1927 .usage = "[ap_num]",
1928 },
1929 {
1930 .name = "apsel",
1931 .handler = dap_apsel_command,
1932 .mode = COMMAND_ANY,
1933 .help = "Set the currently selected AP (default 0) "
1934 "and display the result",
1935 .usage = "[ap_num]",
1936 },
1937 {
1938 .name = "apcsw",
1939 .handler = dap_apcsw_command,
1940 .mode = COMMAND_ANY,
1941 .help = "Set CSW default bits",
1942 .usage = "[value [mask]]",
1943 },
1944
1945 {
1946 .name = "apid",
1947 .handler = dap_apid_command,
1948 .mode = COMMAND_EXEC,
1949 .help = "return ID register from AP "
1950 "(default currently selected AP)",
1951 .usage = "[ap_num]",
1952 },
1953 {
1954 .name = "apreg",
1955 .handler = dap_apreg_command,
1956 .mode = COMMAND_EXEC,
1957 .help = "read/write a register from AP "
1958 "(reg is byte address of a word register, like 0 4 8...)",
1959 .usage = "ap_num reg [value]",
1960 },
1961 {
1962 .name = "dpreg",
1963 .handler = dap_dpreg_command,
1964 .mode = COMMAND_EXEC,
1965 .help = "read/write a register from DP "
1966 "(reg is byte address (bank << 4 | reg) of a word register, like 0 4 8...)",
1967 .usage = "reg [value]",
1968 },
1969 {
1970 .name = "baseaddr",
1971 .handler = dap_baseaddr_command,
1972 .mode = COMMAND_EXEC,
1973 .help = "return debug base address from MEM-AP "
1974 "(default currently selected AP)",
1975 .usage = "[ap_num]",
1976 },
1977 {
1978 .name = "memaccess",
1979 .handler = dap_memaccess_command,
1980 .mode = COMMAND_EXEC,
1981 .help = "set/get number of extra tck for MEM-AP memory "
1982 "bus access [0-255]",
1983 .usage = "[cycles]",
1984 },
1985 {
1986 .name = "ti_be_32_quirks",
1987 .handler = dap_ti_be_32_quirks_command,
1988 .mode = COMMAND_CONFIG,
1989 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
1990 .usage = "[enable]",
1991 },
1992 COMMAND_REGISTRATION_DONE
1993 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)