cortex_m3: use armv7m's async algorithm implementation
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
28
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
36 *
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45 *
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
56 */
57
58 /*
59 * Relevant specifications from ARM include:
60 *
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
63 *
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
66 */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
78
79 /*
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89 * *
90 * DP and MEM-AP register access through APACC and DPACC *
91 * *
92 ***************************************************************************/
93
94 /**
95 * Select one of the APs connected to the specified DAP. The
96 * selection is implicitly used with future AP transactions.
97 * This is a NOP if the specified AP is already selected.
98 *
99 * @param dap The DAP
100 * @param apsel Number of the AP to (implicitly) use with further
101 * transactions. This normally identifies a MEM-AP.
102 */
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t ap)
104 {
105 uint32_t new_ap = (ap << 24) & 0xFF000000;
106
107 if (new_ap != dap->ap_current)
108 {
109 dap->ap_current = new_ap;
110 /* Switching AP invalidates cached values.
111 * Values MUST BE UPDATED BEFORE AP ACCESS.
112 */
113 dap->ap_bank_value = -1;
114 dap->ap_csw_value = -1;
115 dap->ap_tar_value = -1;
116 }
117 }
118
119 /**
120 * Queue transactions setting up transfer parameters for the
121 * currently selected MEM-AP.
122 *
123 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124 * initiate data reads or writes using memory or peripheral addresses.
125 * If the CSW is configured for it, the TAR may be automatically
126 * incremented after each transfer.
127 *
128 * @todo Rename to reflect it being specifically a MEM-AP function.
129 *
130 * @param dap The DAP connected to the MEM-AP.
131 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
132 * matches the cached value, the register is not changed.
133 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
134 * matches the cached address, the register is not changed.
135 *
136 * @return ERROR_OK if the transaction was properly queued, else a fault code.
137 */
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
139 {
140 int retval;
141
142 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143 if (csw != dap->ap_csw_value)
144 {
145 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147 if (retval != ERROR_OK)
148 return retval;
149 dap->ap_csw_value = csw;
150 }
151 if (tar != dap->ap_tar_value)
152 {
153 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155 if (retval != ERROR_OK)
156 return retval;
157 dap->ap_tar_value = tar;
158 }
159 /* Disable TAR cache when autoincrementing */
160 if (csw & CSW_ADDRINC_MASK)
161 dap->ap_tar_value = -1;
162 return ERROR_OK;
163 }
164
165 /**
166 * Asynchronous (queued) read of a word from memory or a system register.
167 *
168 * @param dap The DAP connected to the MEM-AP performing the read.
169 * @param address Address of the 32-bit word to read; it must be
170 * readable by the currently selected MEM-AP.
171 * @param value points to where the word will be stored when the
172 * transaction queue is flushed (assuming no errors).
173 *
174 * @return ERROR_OK for success. Otherwise a fault code.
175 */
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177 uint32_t *value)
178 {
179 int retval;
180
181 /* Use banked addressing (REG_BDx) to avoid some link traffic
182 * (updating TAR) when reading several consecutive addresses.
183 */
184 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185 address & 0xFFFFFFF0);
186 if (retval != ERROR_OK)
187 return retval;
188
189 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
190 }
191
192 /**
193 * Synchronous read of a word from memory or a system register.
194 * As a side effect, this flushes any queued transactions.
195 *
196 * @param dap The DAP connected to the MEM-AP performing the read.
197 * @param address Address of the 32-bit word to read; it must be
198 * readable by the currently selected MEM-AP.
199 * @param value points to where the result will be stored.
200 *
201 * @return ERROR_OK for success; *value holds the result.
202 * Otherwise a fault code.
203 */
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205 uint32_t *value)
206 {
207 int retval;
208
209 retval = mem_ap_read_u32(dap, address, value);
210 if (retval != ERROR_OK)
211 return retval;
212
213 return dap_run(dap);
214 }
215
216 /**
217 * Asynchronous (queued) write of a word to memory or a system register.
218 *
219 * @param dap The DAP connected to the MEM-AP.
220 * @param address Address to be written; it must be writable by
221 * the currently selected MEM-AP.
222 * @param value Word that will be written to the address when transaction
223 * queue is flushed (assuming no errors).
224 *
225 * @return ERROR_OK for success. Otherwise a fault code.
226 */
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228 uint32_t value)
229 {
230 int retval;
231
232 /* Use banked addressing (REG_BDx) to avoid some link traffic
233 * (updating TAR) when writing several consecutive addresses.
234 */
235 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236 address & 0xFFFFFFF0);
237 if (retval != ERROR_OK)
238 return retval;
239
240 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241 value);
242 }
243
244 /**
245 * Synchronous write of a word to memory or a system register.
246 * As a side effect, this flushes any queued transactions.
247 *
248 * @param dap The DAP connected to the MEM-AP.
249 * @param address Address to be written; it must be writable by
250 * the currently selected MEM-AP.
251 * @param value Word that will be written.
252 *
253 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
254 */
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256 uint32_t value)
257 {
258 int retval = mem_ap_write_u32(dap, address, value);
259
260 if (retval != ERROR_OK)
261 return retval;
262
263 return dap_run(dap);
264 }
265
266 /*****************************************************************************
267 * *
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
269 * *
270 * Write a buffer in target order (little endian) *
271 * *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
274 {
275 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276 uint32_t adr = address;
277 const uint8_t* pBuffer = buffer;
278
279 count >>= 2;
280 wcount = count;
281
282 /* if we have an unaligned access - reorder data */
283 if (adr & 0x3u)
284 {
285 for (writecount = 0; writecount < count; writecount++)
286 {
287 int i;
288 uint32_t outvalue;
289 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
290
291 for (i = 0; i < 4; i++)
292 {
293 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294 outvalue >>= 8;
295 adr++;
296 }
297 pBuffer += sizeof(uint32_t);
298 }
299 }
300
301 while (wcount > 0)
302 {
303 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305 if (wcount < blocksize)
306 blocksize = wcount;
307
308 /* handle unaligned data at 4k boundary */
309 if (blocksize == 0)
310 blocksize = 1;
311
312 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313 if (retval != ERROR_OK)
314 return retval;
315
316 for (writecount = 0; writecount < blocksize; writecount++)
317 {
318 retval = dap_queue_ap_write(dap, AP_REG_DRW,
319 *(uint32_t *) ((void *) (buffer + 4 * writecount)));
320 if (retval != ERROR_OK)
321 break;
322 }
323
324 if ((retval = dap_run(dap)) == ERROR_OK)
325 {
326 wcount = wcount - blocksize;
327 address = address + 4 * blocksize;
328 buffer = buffer + 4 * blocksize;
329 }
330 else
331 {
332 errorcount++;
333 }
334
335 if (errorcount > 1)
336 {
337 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
338 return retval;
339 }
340 }
341
342 return retval;
343 }
344
345 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
346 const uint8_t *buffer, int count, uint32_t address)
347 {
348 int retval = ERROR_OK;
349 int wcount, blocksize, writecount, i;
350
351 wcount = count >> 1;
352
353 while (wcount > 0)
354 {
355 int nbytes;
356
357 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
358 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
359
360 if (wcount < blocksize)
361 blocksize = wcount;
362
363 /* handle unaligned data at 4k boundary */
364 if (blocksize == 0)
365 blocksize = 1;
366
367 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
368 if (retval != ERROR_OK)
369 return retval;
370 writecount = blocksize;
371
372 do
373 {
374 nbytes = MIN((writecount << 1), 4);
375
376 if (nbytes < 4)
377 {
378 retval = mem_ap_write_buf_u16(dap, buffer,
379 nbytes, address);
380 if (retval != ERROR_OK)
381 {
382 LOG_WARNING("Block write error address "
383 "0x%" PRIx32 ", count 0x%x",
384 address, count);
385 return retval;
386 }
387
388 address += nbytes >> 1;
389 }
390 else
391 {
392 uint32_t outvalue;
393 memcpy(&outvalue, buffer, sizeof(uint32_t));
394
395 for (i = 0; i < nbytes; i++)
396 {
397 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
398 outvalue >>= 8;
399 address++;
400 }
401
402 memcpy(&outvalue, buffer, sizeof(uint32_t));
403 retval = dap_queue_ap_write(dap,
404 AP_REG_DRW, outvalue);
405 if (retval != ERROR_OK)
406 break;
407
408 if ((retval = dap_run(dap)) != ERROR_OK)
409 {
410 LOG_WARNING("Block write error address "
411 "0x%" PRIx32 ", count 0x%x",
412 address, count);
413 return retval;
414 }
415 }
416
417 buffer += nbytes >> 1;
418 writecount -= nbytes >> 1;
419
420 } while (writecount);
421 wcount -= blocksize;
422 }
423
424 return retval;
425 }
426
427 int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
428 {
429 int retval = ERROR_OK;
430
431 if (count >= 4)
432 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
433
434 while (count > 0)
435 {
436 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
437 if (retval != ERROR_OK)
438 return retval;
439 uint16_t svalue;
440 memcpy(&svalue, buffer, sizeof(uint16_t));
441 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
442 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
443 if (retval != ERROR_OK)
444 break;
445
446 retval = dap_run(dap);
447 if (retval != ERROR_OK)
448 break;
449
450 count -= 2;
451 address += 2;
452 buffer += 2;
453 }
454
455 return retval;
456 }
457
458 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
459 const uint8_t *buffer, int count, uint32_t address)
460 {
461 int retval = ERROR_OK;
462 int wcount, blocksize, writecount, i;
463
464 wcount = count;
465
466 while (wcount > 0)
467 {
468 int nbytes;
469
470 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
471 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
472
473 if (wcount < blocksize)
474 blocksize = wcount;
475
476 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
477 if (retval != ERROR_OK)
478 return retval;
479 writecount = blocksize;
480
481 do
482 {
483 nbytes = MIN(writecount, 4);
484
485 if (nbytes < 4)
486 {
487 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
488 if (retval != ERROR_OK)
489 {
490 LOG_WARNING("Block write error address "
491 "0x%" PRIx32 ", count 0x%x",
492 address, count);
493 return retval;
494 }
495
496 address += nbytes;
497 }
498 else
499 {
500 uint32_t outvalue;
501 memcpy(&outvalue, buffer, sizeof(uint32_t));
502
503 for (i = 0; i < nbytes; i++)
504 {
505 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
506 outvalue >>= 8;
507 address++;
508 }
509
510 memcpy(&outvalue, buffer, sizeof(uint32_t));
511 retval = dap_queue_ap_write(dap,
512 AP_REG_DRW, outvalue);
513 if (retval != ERROR_OK)
514 break;
515
516 if ((retval = dap_run(dap)) != ERROR_OK)
517 {
518 LOG_WARNING("Block write error address "
519 "0x%" PRIx32 ", count 0x%x",
520 address, count);
521 return retval;
522 }
523 }
524
525 buffer += nbytes;
526 writecount -= nbytes;
527
528 } while (writecount);
529 wcount -= blocksize;
530 }
531
532 return retval;
533 }
534
535 int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
536 {
537 int retval = ERROR_OK;
538
539 if (count >= 4)
540 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
541
542 while (count > 0)
543 {
544 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
545 if (retval != ERROR_OK)
546 return retval;
547 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
548 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
549 if (retval != ERROR_OK)
550 break;
551
552 retval = dap_run(dap);
553 if (retval != ERROR_OK)
554 break;
555
556 count--;
557 address++;
558 buffer++;
559 }
560
561 return retval;
562 }
563
564 /* FIXME don't import ... this is a temporary workaround for the
565 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
566 */
567 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
568 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
569 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
570
571 /**
572 * Synchronously read a block of 32-bit words into a buffer
573 * @param dap The DAP connected to the MEM-AP.
574 * @param buffer where the words will be stored (in host byte order).
575 * @param count How many words to read.
576 * @param address Memory address from which to read words; all the
577 * words must be readable by the currently selected MEM-AP.
578 */
579 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
580 int count, uint32_t address)
581 {
582 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
583 uint32_t adr = address;
584 uint8_t* pBuffer = buffer;
585
586 count >>= 2;
587 wcount = count;
588
589 while (wcount > 0)
590 {
591 /* Adjust to read blocks within boundaries aligned to the
592 * TAR autoincrement size (at least 2^10). Autoincrement
593 * mode avoids an extra per-word roundtrip to update TAR.
594 */
595 blocksize = max_tar_block_size(dap->tar_autoincr_block,
596 address);
597 if (wcount < blocksize)
598 blocksize = wcount;
599
600 /* handle unaligned data at 4k boundary */
601 if (blocksize == 0)
602 blocksize = 1;
603
604 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
605 address);
606 if (retval != ERROR_OK)
607 return retval;
608
609 /* FIXME remove these three calls to adi_jtag_dp_scan(),
610 * so this routine becomes transport-neutral. Be careful
611 * not to cause performance problems with JTAG; would it
612 * suffice to loop over dap_queue_ap_read(), or would that
613 * be slower when JTAG is the chosen transport?
614 */
615
616 /* Scan out first read */
617 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
618 DPAP_READ, 0, NULL, NULL);
619 if (retval != ERROR_OK)
620 return retval;
621 for (readcount = 0; readcount < blocksize - 1; readcount++)
622 {
623 /* Scan out next read; scan in posted value for the
624 * previous one. Assumes read is acked "OK/FAULT",
625 * and CTRL_STAT says that meant "OK".
626 */
627 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
628 DPAP_READ, 0, buffer + 4 * readcount,
629 &dap->ack);
630 if (retval != ERROR_OK)
631 return retval;
632 }
633
634 /* Scan in last posted value; RDBUFF has no other effect,
635 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
636 */
637 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
638 DPAP_READ, 0, buffer + 4 * readcount,
639 &dap->ack);
640 if (retval != ERROR_OK)
641 return retval;
642
643 retval = dap_run(dap);
644 if (retval != ERROR_OK)
645 {
646 errorcount++;
647 if (errorcount <= 1)
648 {
649 /* try again */
650 continue;
651 }
652 LOG_WARNING("Block read error address 0x%" PRIx32, address);
653 return retval;
654 }
655 wcount = wcount - blocksize;
656 address += 4 * blocksize;
657 buffer += 4 * blocksize;
658 }
659
660 /* if we have an unaligned access - reorder data */
661 if (adr & 0x3u)
662 {
663 for (readcount = 0; readcount < count; readcount++)
664 {
665 int i;
666 uint32_t data;
667 memcpy(&data, pBuffer, sizeof(uint32_t));
668
669 for (i = 0; i < 4; i++)
670 {
671 *((uint8_t*)pBuffer) =
672 (data >> 8 * (adr & 0x3));
673 pBuffer++;
674 adr++;
675 }
676 }
677 }
678
679 return retval;
680 }
681
682 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
683 uint8_t *buffer, int count, uint32_t address)
684 {
685 uint32_t invalue;
686 int retval = ERROR_OK;
687 int wcount, blocksize, readcount, i;
688
689 wcount = count >> 1;
690
691 while (wcount > 0)
692 {
693 int nbytes;
694
695 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
696 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
697 if (wcount < blocksize)
698 blocksize = wcount;
699
700 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
701 if (retval != ERROR_OK)
702 return retval;
703
704 /* handle unaligned data at 4k boundary */
705 if (blocksize == 0)
706 blocksize = 1;
707 readcount = blocksize;
708
709 do
710 {
711 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
712 if (retval != ERROR_OK)
713 return retval;
714 if ((retval = dap_run(dap)) != ERROR_OK)
715 {
716 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
717 return retval;
718 }
719
720 nbytes = MIN((readcount << 1), 4);
721
722 for (i = 0; i < nbytes; i++)
723 {
724 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
725 buffer++;
726 address++;
727 }
728
729 readcount -= (nbytes >> 1);
730 } while (readcount);
731 wcount -= blocksize;
732 }
733
734 return retval;
735 }
736
737 /**
738 * Synchronously read a block of 16-bit halfwords into a buffer
739 * @param dap The DAP connected to the MEM-AP.
740 * @param buffer where the halfwords will be stored (in host byte order).
741 * @param count How many halfwords to read.
742 * @param address Memory address from which to read words; all the
743 * words must be readable by the currently selected MEM-AP.
744 */
745 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
746 int count, uint32_t address)
747 {
748 uint32_t invalue, i;
749 int retval = ERROR_OK;
750
751 if (count >= 4)
752 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
753
754 while (count > 0)
755 {
756 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
757 if (retval != ERROR_OK)
758 return retval;
759 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
760 if (retval != ERROR_OK)
761 break;
762
763 retval = dap_run(dap);
764 if (retval != ERROR_OK)
765 break;
766
767 if (address & 0x1)
768 {
769 for (i = 0; i < 2; i++)
770 {
771 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
772 buffer++;
773 address++;
774 }
775 }
776 else
777 {
778 uint16_t svalue = (invalue >> 8 * (address & 0x3));
779 memcpy(buffer, &svalue, sizeof(uint16_t));
780 address += 2;
781 buffer += 2;
782 }
783 count -= 2;
784 }
785
786 return retval;
787 }
788
789 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
790 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
791 *
792 * The solution is to arrange for a large out/in scan in this loop and
793 * and convert data afterwards.
794 */
795 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
796 uint8_t *buffer, int count, uint32_t address)
797 {
798 uint32_t invalue;
799 int retval = ERROR_OK;
800 int wcount, blocksize, readcount, i;
801
802 wcount = count;
803
804 while (wcount > 0)
805 {
806 int nbytes;
807
808 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
809 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
810
811 if (wcount < blocksize)
812 blocksize = wcount;
813
814 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
815 if (retval != ERROR_OK)
816 return retval;
817 readcount = blocksize;
818
819 do
820 {
821 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822 if (retval != ERROR_OK)
823 return retval;
824 if ((retval = dap_run(dap)) != ERROR_OK)
825 {
826 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
827 return retval;
828 }
829
830 nbytes = MIN(readcount, 4);
831
832 for (i = 0; i < nbytes; i++)
833 {
834 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
835 buffer++;
836 address++;
837 }
838
839 readcount -= nbytes;
840 } while (readcount);
841 wcount -= blocksize;
842 }
843
844 return retval;
845 }
846
847 /**
848 * Synchronously read a block of bytes into a buffer
849 * @param dap The DAP connected to the MEM-AP.
850 * @param buffer where the bytes will be stored.
851 * @param count How many bytes to read.
852 * @param address Memory address from which to read data; all the
853 * data must be readable by the currently selected MEM-AP.
854 */
855 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
856 int count, uint32_t address)
857 {
858 uint32_t invalue;
859 int retval = ERROR_OK;
860
861 if (count >= 4)
862 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
863
864 while (count > 0)
865 {
866 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
867 if (retval != ERROR_OK)
868 return retval;
869 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
870 if (retval != ERROR_OK)
871 return retval;
872 retval = dap_run(dap);
873 if (retval != ERROR_OK)
874 break;
875
876 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
877 count--;
878 address++;
879 buffer++;
880 }
881
882 return retval;
883 }
884
885 /*--------------------------------------------------------------------*/
886 /* Wrapping function with selection of AP */
887 /*--------------------------------------------------------------------*/
888 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
889 uint32_t address, uint32_t *value)
890 {
891 dap_ap_select(swjdp, ap);
892 return mem_ap_read_u32(swjdp, address, value);
893 }
894
895 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
896 uint32_t address, uint32_t value)
897 {
898 dap_ap_select(swjdp, ap);
899 return mem_ap_write_u32(swjdp, address, value);
900 }
901
902 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
903 uint32_t address, uint32_t *value)
904 {
905 dap_ap_select(swjdp, ap);
906 return mem_ap_read_atomic_u32(swjdp, address, value);
907 }
908
909 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
910 uint32_t address, uint32_t value)
911 {
912 dap_ap_select(swjdp, ap);
913 return mem_ap_write_atomic_u32(swjdp, address, value);
914 }
915
916 int mem_ap_sel_read_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
917 uint8_t *buffer, int count, uint32_t address)
918 {
919 dap_ap_select(swjdp, ap);
920 return mem_ap_read_buf_u8(swjdp, buffer, count, address);
921 }
922
923 int mem_ap_sel_read_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
924 uint8_t *buffer, int count, uint32_t address)
925 {
926 dap_ap_select(swjdp, ap);
927 return mem_ap_read_buf_u16(swjdp, buffer, count, address);
928 }
929
930 int mem_ap_sel_read_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
931 uint8_t *buffer, int count, uint32_t address)
932 {
933 dap_ap_select(swjdp, ap);
934 return mem_ap_read_buf_u32(swjdp, buffer, count, address);
935 }
936
937 int mem_ap_sel_write_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
938 const uint8_t *buffer, int count, uint32_t address)
939 {
940 dap_ap_select(swjdp, ap);
941 return mem_ap_write_buf_u8(swjdp, buffer, count, address);
942 }
943
944 int mem_ap_sel_write_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
945 const uint8_t *buffer, int count, uint32_t address)
946 {
947 dap_ap_select(swjdp, ap);
948 return mem_ap_write_buf_u16(swjdp, buffer, count, address);
949 }
950
951 int mem_ap_sel_write_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
952 const uint8_t *buffer, int count, uint32_t address)
953 {
954 dap_ap_select(swjdp, ap);
955 return mem_ap_write_buf_u32(swjdp, buffer, count, address);
956 }
957
958 #define MDM_REG_STAT 0x00
959 #define MDM_REG_CTRL 0x04
960 #define MDM_REG_ID 0xfc
961
962 #define MDM_STAT_FMEACK (1<<0)
963 #define MDM_STAT_FREADY (1<<1)
964 #define MDM_STAT_SYSSEC (1<<2)
965 #define MDM_STAT_SYSRES (1<<3)
966 #define MDM_STAT_FMEEN (1<<5)
967 #define MDM_STAT_BACKDOOREN (1<<6)
968 #define MDM_STAT_LPEN (1<<7)
969 #define MDM_STAT_VLPEN (1<<8)
970 #define MDM_STAT_LLSMODEXIT (1<<9)
971 #define MDM_STAT_VLLSXMODEXIT (1<<10)
972 #define MDM_STAT_CORE_HALTED (1<<16)
973 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
974 #define MDM_STAT_CORESLEEPING (1<<18)
975
976 #define MEM_CTRL_FMEIP (1<<0)
977 #define MEM_CTRL_DBG_DIS (1<<1)
978 #define MEM_CTRL_DBG_REQ (1<<2)
979 #define MEM_CTRL_SYS_RES_REQ (1<<3)
980 #define MEM_CTRL_CORE_HOLD_RES (1<<4)
981 #define MEM_CTRL_VLLSX_DBG_REQ (1<<5)
982 #define MEM_CTRL_VLLSX_DBG_ACK (1<<6)
983 #define MEM_CTRL_VLLSX_STAT_ACK (1<<7)
984
985 /**
986 *
987 */
988 int dap_syssec_kinetis_mdmap(struct adiv5_dap *dap)
989 {
990 uint32_t val;
991 int retval;
992 enum reset_types jtag_reset_config = jtag_get_reset_config();
993
994 dap_ap_select(dap, 1);
995
996 /* first check mdm-ap id register */
997 retval = dap_queue_ap_read(dap, MDM_REG_ID, &val);
998 if (retval != ERROR_OK)
999 return retval;
1000 dap_run(dap);
1001
1002 if ( val != 0x001C0000 )
1003 {
1004 LOG_DEBUG("id doesn't match %08X != 0x001C0000",val);
1005 dap_ap_select(dap, 0);
1006 return ERROR_FAIL;
1007 }
1008
1009 /* read and parse status register
1010 * it's important that the device is out of
1011 * reset here
1012 */
1013 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
1014 if (retval != ERROR_OK)
1015 return retval;
1016 dap_run(dap);
1017
1018 LOG_DEBUG("MDM_REG_STAT %08X",val);
1019
1020 if ( (val & (MDM_STAT_SYSSEC|MDM_STAT_FREADY)) != (MDM_STAT_FREADY) )
1021 {
1022 LOG_DEBUG("MDMAP: system is secured, masserase needed");
1023
1024 if ( !(val & MDM_STAT_FMEEN) )
1025 {
1026 LOG_DEBUG("MDMAP: masserase is disabled");
1027 }
1028 else
1029 {
1030 /* we need to assert reset */
1031 if ( jtag_reset_config & RESET_HAS_SRST )
1032 {
1033 /* default to asserting srst */
1034 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1035 {
1036 jtag_add_reset(1, 1);
1037 }
1038 else
1039 {
1040 jtag_add_reset(0, 1);
1041 }
1042 }
1043 else
1044 {
1045 LOG_DEBUG("SRST not configured");
1046 dap_ap_select(dap, 0);
1047 return ERROR_FAIL;
1048 }
1049
1050 while(1)
1051 {
1052 retval = dap_queue_ap_write(dap, MDM_REG_CTRL, MEM_CTRL_FMEIP);
1053 if (retval != ERROR_OK)
1054 return retval;
1055 dap_run(dap);
1056 /* read status register and wait for ready */
1057 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
1058 if (retval != ERROR_OK)
1059 return retval;
1060 dap_run(dap);
1061 LOG_DEBUG("MDM_REG_STAT %08X",val);
1062
1063 if ( (val&1))
1064 break;
1065 }
1066
1067 while(1)
1068 {
1069 retval = dap_queue_ap_write(dap, MDM_REG_CTRL, 0);
1070 if (retval != ERROR_OK)
1071 return retval;
1072 dap_run(dap);
1073 /* read status register */
1074 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
1075 if (retval != ERROR_OK)
1076 return retval;
1077 dap_run(dap);
1078 LOG_DEBUG("MDM_REG_STAT %08X",val);
1079 /* read control register and wait for ready */
1080 retval = dap_queue_ap_read(dap, MDM_REG_CTRL, &val);
1081 if (retval != ERROR_OK)
1082 return retval;
1083 dap_run(dap);
1084 LOG_DEBUG("MDM_REG_CTRL %08X",val);
1085
1086 if ( val == 0x00 )
1087 break;
1088 }
1089 }
1090 }
1091
1092 dap_ap_select(dap, 0);
1093
1094 return ERROR_OK;
1095 }
1096
1097 /** */
1098 struct dap_syssec_filter {
1099 /** */
1100 uint32_t idcode;
1101 /** */
1102 int (*dap_init)(struct adiv5_dap *dap);
1103 };
1104
1105 /** */
1106 static struct dap_syssec_filter dap_syssec_filter_data[] = {
1107 { 0x4BA00477, dap_syssec_kinetis_mdmap }
1108 };
1109
1110
1111 /**
1112 *
1113 */
1114 int dap_syssec(struct adiv5_dap *dap)
1115 {
1116 unsigned int i;
1117 struct jtag_tap *tap;
1118
1119 for(i=0;i<sizeof(dap_syssec_filter_data);i++)
1120 {
1121 tap = dap->jtag_info->tap;
1122
1123 while (tap != NULL)
1124 {
1125 if ( tap->hasidcode && (dap_syssec_filter_data[i].idcode == tap->idcode) )
1126 {
1127 LOG_DEBUG("DAP: mdmap_init for idcode: %08x",tap->idcode);
1128 dap_syssec_filter_data[i].dap_init(dap);
1129 }
1130 tap = tap->next_tap;
1131 }
1132 }
1133
1134 return ERROR_OK;
1135 }
1136
1137 /*--------------------------------------------------------------------------*/
1138
1139
1140 /* FIXME don't import ... just initialize as
1141 * part of DAP transport setup
1142 */
1143 extern const struct dap_ops jtag_dp_ops;
1144
1145 /*--------------------------------------------------------------------------*/
1146
1147 /**
1148 * Initialize a DAP. This sets up the power domains, prepares the DP
1149 * for further use, and arranges to use AP #0 for all AP operations
1150 * until dap_ap-select() changes that policy.
1151 *
1152 * @param dap The DAP being initialized.
1153 *
1154 * @todo Rename this. We also need an initialization scheme which account
1155 * for SWD transports not just JTAG; that will need to address differences
1156 * in layering. (JTAG is useful without any debug target; but not SWD.)
1157 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
1158 */
1159 int ahbap_debugport_init(struct adiv5_dap *dap)
1160 {
1161 uint32_t ctrlstat;
1162 int cnt = 0;
1163 int retval;
1164
1165 LOG_DEBUG(" ");
1166
1167 /* JTAG-DP or SWJ-DP, in JTAG mode
1168 * ... for SWD mode this is patched as part
1169 * of link switchover
1170 */
1171 if (!dap->ops)
1172 dap->ops = &jtag_dp_ops;
1173
1174 /* Default MEM-AP setup.
1175 *
1176 * REVISIT AP #0 may be an inappropriate default for this.
1177 * Should we probe, or take a hint from the caller?
1178 * Presumably we can ignore the possibility of multiple APs.
1179 */
1180 dap->ap_current = !0;
1181 dap_ap_select(dap, 0);
1182
1183 /* DP initialization */
1184
1185 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1186 if (retval != ERROR_OK)
1187 return retval;
1188
1189 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
1190 if (retval != ERROR_OK)
1191 return retval;
1192
1193 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1194 if (retval != ERROR_OK)
1195 return retval;
1196
1197 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
1198 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1199 if (retval != ERROR_OK)
1200 return retval;
1201
1202 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1203 if (retval != ERROR_OK)
1204 return retval;
1205 if ((retval = dap_run(dap)) != ERROR_OK)
1206 return retval;
1207
1208 /* Check that we have debug power domains activated */
1209 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
1210 {
1211 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
1212 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1213 if (retval != ERROR_OK)
1214 return retval;
1215 if ((retval = dap_run(dap)) != ERROR_OK)
1216 return retval;
1217 alive_sleep(10);
1218 }
1219
1220 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
1221 {
1222 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
1223 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1224 if (retval != ERROR_OK)
1225 return retval;
1226 if ((retval = dap_run(dap)) != ERROR_OK)
1227 return retval;
1228 alive_sleep(10);
1229 }
1230
1231 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1232 if (retval != ERROR_OK)
1233 return retval;
1234 /* With debug power on we can activate OVERRUN checking */
1235 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
1236 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1237 if (retval != ERROR_OK)
1238 return retval;
1239 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1240 if (retval != ERROR_OK)
1241 return retval;
1242
1243 dap_syssec(dap);
1244
1245 return ERROR_OK;
1246 }
1247
1248 /* CID interpretation -- see ARM IHI 0029B section 3
1249 * and ARM IHI 0031A table 13-3.
1250 */
1251 static const char *class_description[16] ={
1252 "Reserved", "ROM table", "Reserved", "Reserved",
1253 "Reserved", "Reserved", "Reserved", "Reserved",
1254 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1255 "Reserved", "OptimoDE DESS",
1256 "Generic IP component", "PrimeCell or System component"
1257 };
1258
1259 static bool
1260 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1261 {
1262 return cid3 == 0xb1 && cid2 == 0x05
1263 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1264 }
1265
1266 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
1267 uint32_t *out_dbgbase, uint32_t *out_apid)
1268 {
1269 uint32_t ap_old;
1270 int retval;
1271 uint32_t dbgbase, apid;
1272
1273 /* AP address is in bits 31:24 of DP_SELECT */
1274 if (ap >= 256)
1275 return ERROR_INVALID_ARGUMENTS;
1276
1277 ap_old = dap->ap_current;
1278 dap_ap_select(dap, ap);
1279
1280 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1281 if (retval != ERROR_OK)
1282 return retval;
1283 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1284 if (retval != ERROR_OK)
1285 return retval;
1286 retval = dap_run(dap);
1287 if (retval != ERROR_OK)
1288 return retval;
1289
1290 /* Excavate the device ID code */
1291 struct jtag_tap *tap = dap->jtag_info->tap;
1292 while (tap != NULL) {
1293 if (tap->hasidcode)
1294 break;
1295 tap = tap->next_tap;
1296 }
1297 if (tap == NULL || !tap->hasidcode)
1298 return ERROR_OK;
1299
1300 dap_ap_select(dap, ap_old);
1301
1302 /* The asignment happens only here to prevent modification of these
1303 * values before they are certain. */
1304 *out_dbgbase = dbgbase;
1305 *out_apid = apid;
1306
1307 return ERROR_OK;
1308 }
1309
1310 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
1311 uint32_t dbgbase, uint8_t type, uint32_t *addr)
1312 {
1313 uint32_t ap_old;
1314 uint32_t romentry, entry_offset = 0, component_base, devtype;
1315 int retval = ERROR_FAIL;
1316
1317 if (ap >= 256)
1318 return ERROR_INVALID_ARGUMENTS;
1319
1320 ap_old = dap->ap_current;
1321 dap_ap_select(dap, ap);
1322
1323 do
1324 {
1325 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1326 entry_offset, &romentry);
1327 if (retval != ERROR_OK)
1328 return retval;
1329
1330 component_base = (dbgbase & 0xFFFFF000)
1331 + (romentry & 0xFFFFF000);
1332
1333 if (romentry & 0x1) {
1334 retval = mem_ap_read_atomic_u32(dap,
1335 (component_base & 0xfffff000) | 0xfcc,
1336 &devtype);
1337 if ((devtype & 0xff) == type) {
1338 *addr = component_base;
1339 retval = ERROR_OK;
1340 break;
1341 }
1342 }
1343 entry_offset += 4;
1344 } while (romentry > 0);
1345
1346 dap_ap_select(dap, ap_old);
1347
1348 return retval;
1349 }
1350
1351 static int dap_info_command(struct command_context *cmd_ctx,
1352 struct adiv5_dap *dap, int ap)
1353 {
1354 int retval;
1355 uint32_t dbgbase, apid;
1356 int romtable_present = 0;
1357 uint8_t mem_ap;
1358 uint32_t ap_old;
1359
1360 retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1361 if (retval != ERROR_OK)
1362 return retval;
1363
1364 ap_old = dap->ap_current;
1365 dap_ap_select(dap, ap);
1366
1367 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1368 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1369 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1370 if (apid)
1371 {
1372 switch (apid&0x0F)
1373 {
1374 case 0:
1375 command_print(cmd_ctx, "\tType is JTAG-AP");
1376 break;
1377 case 1:
1378 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1379 break;
1380 case 2:
1381 command_print(cmd_ctx, "\tType is MEM-AP APB");
1382 break;
1383 default:
1384 command_print(cmd_ctx, "\tUnknown AP type");
1385 break;
1386 }
1387
1388 /* NOTE: a MEM-AP may have a single CoreSight component that's
1389 * not a ROM table ... or have no such components at all.
1390 */
1391 if (mem_ap)
1392 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1393 dbgbase);
1394 }
1395 else
1396 {
1397 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1398 }
1399
1400 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1401 if (romtable_present)
1402 {
1403 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1404 uint16_t entry_offset;
1405
1406 /* bit 16 of apid indicates a memory access port */
1407 if (dbgbase & 0x02)
1408 command_print(cmd_ctx, "\tValid ROM table present");
1409 else
1410 command_print(cmd_ctx, "\tROM table in legacy format");
1411
1412 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1413 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1414 if (retval != ERROR_OK)
1415 return retval;
1416 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1417 if (retval != ERROR_OK)
1418 return retval;
1419 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1420 if (retval != ERROR_OK)
1421 return retval;
1422 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1423 if (retval != ERROR_OK)
1424 return retval;
1425 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1426 if (retval != ERROR_OK)
1427 return retval;
1428 retval = dap_run(dap);
1429 if (retval != ERROR_OK)
1430 return retval;
1431
1432 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1433 command_print(cmd_ctx, "\tCID3 0x%2.2x"
1434 ", CID2 0x%2.2x"
1435 ", CID1 0x%2.2x"
1436 ", CID0 0x%2.2x",
1437 (unsigned) cid3, (unsigned)cid2,
1438 (unsigned) cid1, (unsigned) cid0);
1439 if (memtype & 0x01)
1440 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1441 else
1442 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1443 "Dedicated debug bus.");
1444
1445 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1446 entry_offset = 0;
1447 do
1448 {
1449 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1450 if (retval != ERROR_OK)
1451 return retval;
1452 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1453 if (romentry&0x01)
1454 {
1455 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1456 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1457 uint32_t component_base;
1458 unsigned part_num;
1459 char *type, *full;
1460
1461 component_base = (dbgbase & 0xFFFFF000)
1462 + (romentry & 0xFFFFF000);
1463
1464 /* IDs are in last 4K section */
1465
1466
1467 retval = mem_ap_read_atomic_u32(dap,
1468 component_base + 0xFE0, &c_pid0);
1469 if (retval != ERROR_OK)
1470 return retval;
1471 c_pid0 &= 0xff;
1472 retval = mem_ap_read_atomic_u32(dap,
1473 component_base + 0xFE4, &c_pid1);
1474 if (retval != ERROR_OK)
1475 return retval;
1476 c_pid1 &= 0xff;
1477 retval = mem_ap_read_atomic_u32(dap,
1478 component_base + 0xFE8, &c_pid2);
1479 if (retval != ERROR_OK)
1480 return retval;
1481 c_pid2 &= 0xff;
1482 retval = mem_ap_read_atomic_u32(dap,
1483 component_base + 0xFEC, &c_pid3);
1484 if (retval != ERROR_OK)
1485 return retval;
1486 c_pid3 &= 0xff;
1487 retval = mem_ap_read_atomic_u32(dap,
1488 component_base + 0xFD0, &c_pid4);
1489 if (retval != ERROR_OK)
1490 return retval;
1491 c_pid4 &= 0xff;
1492
1493 retval = mem_ap_read_atomic_u32(dap,
1494 component_base + 0xFF0, &c_cid0);
1495 if (retval != ERROR_OK)
1496 return retval;
1497 c_cid0 &= 0xff;
1498 retval = mem_ap_read_atomic_u32(dap,
1499 component_base + 0xFF4, &c_cid1);
1500 if (retval != ERROR_OK)
1501 return retval;
1502 c_cid1 &= 0xff;
1503 retval = mem_ap_read_atomic_u32(dap,
1504 component_base + 0xFF8, &c_cid2);
1505 if (retval != ERROR_OK)
1506 return retval;
1507 c_cid2 &= 0xff;
1508 retval = mem_ap_read_atomic_u32(dap,
1509 component_base + 0xFFC, &c_cid3);
1510 if (retval != ERROR_OK)
1511 return retval;
1512 c_cid3 &= 0xff;
1513
1514
1515 command_print(cmd_ctx,
1516 "\t\tComponent base address 0x%" PRIx32
1517 ", start address 0x%" PRIx32,
1518 component_base,
1519 /* component may take multiple 4K pages */
1520 component_base - 0x1000*(c_pid4 >> 4));
1521 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1522 (int) (c_cid1 >> 4) & 0xf,
1523 /* See ARM IHI 0029B Table 3-3 */
1524 class_description[(c_cid1 >> 4) & 0xf]);
1525
1526 /* CoreSight component? */
1527 if (((c_cid1 >> 4) & 0x0f) == 9) {
1528 uint32_t devtype;
1529 unsigned minor;
1530 char *major = "Reserved", *subtype = "Reserved";
1531
1532 retval = mem_ap_read_atomic_u32(dap,
1533 (component_base & 0xfffff000) | 0xfcc,
1534 &devtype);
1535 if (retval != ERROR_OK)
1536 return retval;
1537 minor = (devtype >> 4) & 0x0f;
1538 switch (devtype & 0x0f) {
1539 case 0:
1540 major = "Miscellaneous";
1541 switch (minor) {
1542 case 0:
1543 subtype = "other";
1544 break;
1545 case 4:
1546 subtype = "Validation component";
1547 break;
1548 }
1549 break;
1550 case 1:
1551 major = "Trace Sink";
1552 switch (minor) {
1553 case 0:
1554 subtype = "other";
1555 break;
1556 case 1:
1557 subtype = "Port";
1558 break;
1559 case 2:
1560 subtype = "Buffer";
1561 break;
1562 }
1563 break;
1564 case 2:
1565 major = "Trace Link";
1566 switch (minor) {
1567 case 0:
1568 subtype = "other";
1569 break;
1570 case 1:
1571 subtype = "Funnel, router";
1572 break;
1573 case 2:
1574 subtype = "Filter";
1575 break;
1576 case 3:
1577 subtype = "FIFO, buffer";
1578 break;
1579 }
1580 break;
1581 case 3:
1582 major = "Trace Source";
1583 switch (minor) {
1584 case 0:
1585 subtype = "other";
1586 break;
1587 case 1:
1588 subtype = "Processor";
1589 break;
1590 case 2:
1591 subtype = "DSP";
1592 break;
1593 case 3:
1594 subtype = "Engine/Coprocessor";
1595 break;
1596 case 4:
1597 subtype = "Bus";
1598 break;
1599 }
1600 break;
1601 case 4:
1602 major = "Debug Control";
1603 switch (minor) {
1604 case 0:
1605 subtype = "other";
1606 break;
1607 case 1:
1608 subtype = "Trigger Matrix";
1609 break;
1610 case 2:
1611 subtype = "Debug Auth";
1612 break;
1613 }
1614 break;
1615 case 5:
1616 major = "Debug Logic";
1617 switch (minor) {
1618 case 0:
1619 subtype = "other";
1620 break;
1621 case 1:
1622 subtype = "Processor";
1623 break;
1624 case 2:
1625 subtype = "DSP";
1626 break;
1627 case 3:
1628 subtype = "Engine/Coprocessor";
1629 break;
1630 }
1631 break;
1632 }
1633 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1634 (unsigned) (devtype & 0xff),
1635 major, subtype);
1636 /* REVISIT also show 0xfc8 DevId */
1637 }
1638
1639 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1640 command_print(cmd_ctx,
1641 "\t\tCID3 0%2.2x"
1642 ", CID2 0%2.2x"
1643 ", CID1 0%2.2x"
1644 ", CID0 0%2.2x",
1645 (int) c_cid3,
1646 (int) c_cid2,
1647 (int)c_cid1,
1648 (int)c_cid0);
1649 command_print(cmd_ctx,
1650 "\t\tPeripheral ID[4..0] = hex "
1651 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1652 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1653 (int) c_pid1, (int) c_pid0);
1654
1655 /* Part number interpretations are from Cortex
1656 * core specs, the CoreSight components TRM
1657 * (ARM DDI 0314H), CoreSight System Design
1658 * Guide (ARM DGI 0012D) and ETM specs; also
1659 * from chip observation (e.g. TI SDTI).
1660 */
1661 part_num = (c_pid0 & 0xff);
1662 part_num |= (c_pid1 & 0x0f) << 8;
1663 switch (part_num) {
1664 case 0x000:
1665 type = "Cortex-M3 NVIC";
1666 full = "(Interrupt Controller)";
1667 break;
1668 case 0x001:
1669 type = "Cortex-M3 ITM";
1670 full = "(Instrumentation Trace Module)";
1671 break;
1672 case 0x002:
1673 type = "Cortex-M3 DWT";
1674 full = "(Data Watchpoint and Trace)";
1675 break;
1676 case 0x003:
1677 type = "Cortex-M3 FBP";
1678 full = "(Flash Patch and Breakpoint)";
1679 break;
1680 case 0x00d:
1681 type = "CoreSight ETM11";
1682 full = "(Embedded Trace)";
1683 break;
1684 // case 0x113: what?
1685 case 0x120: /* from OMAP3 memmap */
1686 type = "TI SDTI";
1687 full = "(System Debug Trace Interface)";
1688 break;
1689 case 0x343: /* from OMAP3 memmap */
1690 type = "TI DAPCTL";
1691 full = "";
1692 break;
1693 case 0x906:
1694 type = "Coresight CTI";
1695 full = "(Cross Trigger)";
1696 break;
1697 case 0x907:
1698 type = "Coresight ETB";
1699 full = "(Trace Buffer)";
1700 break;
1701 case 0x908:
1702 type = "Coresight CSTF";
1703 full = "(Trace Funnel)";
1704 break;
1705 case 0x910:
1706 type = "CoreSight ETM9";
1707 full = "(Embedded Trace)";
1708 break;
1709 case 0x912:
1710 type = "Coresight TPIU";
1711 full = "(Trace Port Interface Unit)";
1712 break;
1713 case 0x921:
1714 type = "Cortex-A8 ETM";
1715 full = "(Embedded Trace)";
1716 break;
1717 case 0x922:
1718 type = "Cortex-A8 CTI";
1719 full = "(Cross Trigger)";
1720 break;
1721 case 0x923:
1722 type = "Cortex-M3 TPIU";
1723 full = "(Trace Port Interface Unit)";
1724 break;
1725 case 0x924:
1726 type = "Cortex-M3 ETM";
1727 full = "(Embedded Trace)";
1728 break;
1729 case 0x930:
1730 type = "Cortex-R4 ETM";
1731 full = "(Embedded Trace)";
1732 break;
1733 case 0xc08:
1734 type = "Cortex-A8 Debug";
1735 full = "(Debug Unit)";
1736 break;
1737 default:
1738 type = "-*- unrecognized -*-";
1739 full = "";
1740 break;
1741 }
1742 command_print(cmd_ctx, "\t\tPart is %s %s",
1743 type, full);
1744 }
1745 else
1746 {
1747 if (romentry)
1748 command_print(cmd_ctx, "\t\tComponent not present");
1749 else
1750 command_print(cmd_ctx, "\t\tEnd of ROM table");
1751 }
1752 entry_offset += 4;
1753 } while (romentry > 0);
1754 }
1755 else
1756 {
1757 command_print(cmd_ctx, "\tNo ROM table present");
1758 }
1759 dap_ap_select(dap, ap_old);
1760
1761 return ERROR_OK;
1762 }
1763
1764 COMMAND_HANDLER(handle_dap_info_command)
1765 {
1766 struct target *target = get_current_target(CMD_CTX);
1767 struct arm *arm = target_to_arm(target);
1768 struct adiv5_dap *dap = arm->dap;
1769 uint32_t apsel;
1770
1771 switch (CMD_ARGC) {
1772 case 0:
1773 apsel = dap->apsel;
1774 break;
1775 case 1:
1776 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1777 break;
1778 default:
1779 return ERROR_COMMAND_SYNTAX_ERROR;
1780 }
1781
1782 return dap_info_command(CMD_CTX, dap, apsel);
1783 }
1784
1785 COMMAND_HANDLER(dap_baseaddr_command)
1786 {
1787 struct target *target = get_current_target(CMD_CTX);
1788 struct arm *arm = target_to_arm(target);
1789 struct adiv5_dap *dap = arm->dap;
1790
1791 uint32_t apsel, baseaddr;
1792 int retval;
1793
1794 switch (CMD_ARGC) {
1795 case 0:
1796 apsel = dap->apsel;
1797 break;
1798 case 1:
1799 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1800 /* AP address is in bits 31:24 of DP_SELECT */
1801 if (apsel >= 256)
1802 return ERROR_INVALID_ARGUMENTS;
1803 break;
1804 default:
1805 return ERROR_COMMAND_SYNTAX_ERROR;
1806 }
1807
1808 dap_ap_select(dap, apsel);
1809
1810 /* NOTE: assumes we're talking to a MEM-AP, which
1811 * has a base address. There are other kinds of AP,
1812 * though they're not common for now. This should
1813 * use the ID register to verify it's a MEM-AP.
1814 */
1815 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1816 if (retval != ERROR_OK)
1817 return retval;
1818 retval = dap_run(dap);
1819 if (retval != ERROR_OK)
1820 return retval;
1821
1822 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1823
1824 return retval;
1825 }
1826
1827 COMMAND_HANDLER(dap_memaccess_command)
1828 {
1829 struct target *target = get_current_target(CMD_CTX);
1830 struct arm *arm = target_to_arm(target);
1831 struct adiv5_dap *dap = arm->dap;
1832
1833 uint32_t memaccess_tck;
1834
1835 switch (CMD_ARGC) {
1836 case 0:
1837 memaccess_tck = dap->memaccess_tck;
1838 break;
1839 case 1:
1840 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1841 break;
1842 default:
1843 return ERROR_COMMAND_SYNTAX_ERROR;
1844 }
1845 dap->memaccess_tck = memaccess_tck;
1846
1847 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1848 dap->memaccess_tck);
1849
1850 return ERROR_OK;
1851 }
1852
1853 COMMAND_HANDLER(dap_apsel_command)
1854 {
1855 struct target *target = get_current_target(CMD_CTX);
1856 struct arm *arm = target_to_arm(target);
1857 struct adiv5_dap *dap = arm->dap;
1858
1859 uint32_t apsel, apid;
1860 int retval;
1861
1862 switch (CMD_ARGC) {
1863 case 0:
1864 apsel = 0;
1865 break;
1866 case 1:
1867 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1868 /* AP address is in bits 31:24 of DP_SELECT */
1869 if (apsel >= 256)
1870 return ERROR_INVALID_ARGUMENTS;
1871 break;
1872 default:
1873 return ERROR_COMMAND_SYNTAX_ERROR;
1874 }
1875
1876 dap->apsel = apsel;
1877 dap_ap_select(dap, apsel);
1878
1879 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1880 if (retval != ERROR_OK)
1881 return retval;
1882 retval = dap_run(dap);
1883 if (retval != ERROR_OK)
1884 return retval;
1885
1886 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1887 apsel, apid);
1888
1889 return retval;
1890 }
1891
1892 COMMAND_HANDLER(dap_apid_command)
1893 {
1894 struct target *target = get_current_target(CMD_CTX);
1895 struct arm *arm = target_to_arm(target);
1896 struct adiv5_dap *dap = arm->dap;
1897
1898 uint32_t apsel, apid;
1899 int retval;
1900
1901 switch (CMD_ARGC) {
1902 case 0:
1903 apsel = dap->apsel;
1904 break;
1905 case 1:
1906 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1907 /* AP address is in bits 31:24 of DP_SELECT */
1908 if (apsel >= 256)
1909 return ERROR_INVALID_ARGUMENTS;
1910 break;
1911 default:
1912 return ERROR_COMMAND_SYNTAX_ERROR;
1913 }
1914
1915 dap_ap_select(dap, apsel);
1916
1917 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1918 if (retval != ERROR_OK)
1919 return retval;
1920 retval = dap_run(dap);
1921 if (retval != ERROR_OK)
1922 return retval;
1923
1924 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1925
1926 return retval;
1927 }
1928
1929 static const struct command_registration dap_commands[] = {
1930 {
1931 .name = "info",
1932 .handler = handle_dap_info_command,
1933 .mode = COMMAND_EXEC,
1934 .help = "display ROM table for MEM-AP "
1935 "(default currently selected AP)",
1936 .usage = "[ap_num]",
1937 },
1938 {
1939 .name = "apsel",
1940 .handler = dap_apsel_command,
1941 .mode = COMMAND_EXEC,
1942 .help = "Set the currently selected AP (default 0) "
1943 "and display the result",
1944 .usage = "[ap_num]",
1945 },
1946 {
1947 .name = "apid",
1948 .handler = dap_apid_command,
1949 .mode = COMMAND_EXEC,
1950 .help = "return ID register from AP "
1951 "(default currently selected AP)",
1952 .usage = "[ap_num]",
1953 },
1954 {
1955 .name = "baseaddr",
1956 .handler = dap_baseaddr_command,
1957 .mode = COMMAND_EXEC,
1958 .help = "return debug base address from MEM-AP "
1959 "(default currently selected AP)",
1960 .usage = "[ap_num]",
1961 },
1962 {
1963 .name = "memaccess",
1964 .handler = dap_memaccess_command,
1965 .mode = COMMAND_EXEC,
1966 .help = "set/get number of extra tck for MEM-AP memory "
1967 "bus access [0-255]",
1968 .usage = "[cycles]",
1969 },
1970 COMMAND_REGISTRATION_DONE
1971 };
1972
1973 const struct command_registration dap_command_handlers[] = {
1974 {
1975 .name = "dap",
1976 .mode = COMMAND_EXEC,
1977 .help = "DAP command group",
1978 .chain = dap_commands,
1979 },
1980 COMMAND_REGISTRATION_DONE
1981 };
1982
1983

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)