stm32: determine all cpu types and use common examine
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
28
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
36 *
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45 *
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
56 */
57
58 /*
59 * Relevant specifications from ARM include:
60 *
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
63 *
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
66 */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
77
78 /*
79 uint32_t tar_block_size(uint32_t address)
80 Return the largest block starting at address that does not cross a tar block size alignment boundary
81 */
82 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
83 {
84 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
85 }
86
87 /***************************************************************************
88 * *
89 * DP and MEM-AP register access through APACC and DPACC *
90 * *
91 ***************************************************************************/
92
93 /**
94 * Select one of the APs connected to the specified DAP. The
95 * selection is implicitly used with future AP transactions.
96 * This is a NOP if the specified AP is already selected.
97 *
98 * @param dap The DAP
99 * @param apsel Number of the AP to (implicitly) use with further
100 * transactions. This normally identifies a MEM-AP.
101 */
102 void dap_ap_select(struct adiv5_dap *dap, uint8_t ap)
103 {
104 uint32_t new_ap = (ap << 24) & 0xFF000000;
105
106 if (new_ap != dap->ap_current) {
107 dap->ap_current = new_ap;
108 /* Switching AP invalidates cached values.
109 * Values MUST BE UPDATED BEFORE AP ACCESS.
110 */
111 dap->ap_bank_value = -1;
112 dap->ap_csw_value = -1;
113 dap->ap_tar_value = -1;
114 }
115 }
116
117 /**
118 * Queue transactions setting up transfer parameters for the
119 * currently selected MEM-AP.
120 *
121 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
122 * initiate data reads or writes using memory or peripheral addresses.
123 * If the CSW is configured for it, the TAR may be automatically
124 * incremented after each transfer.
125 *
126 * @todo Rename to reflect it being specifically a MEM-AP function.
127 *
128 * @param dap The DAP connected to the MEM-AP.
129 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
130 * matches the cached value, the register is not changed.
131 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
132 * matches the cached address, the register is not changed.
133 *
134 * @return ERROR_OK if the transaction was properly queued, else a fault code.
135 */
136 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
137 {
138 int retval;
139
140 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
141 if (csw != dap->ap_csw_value) {
142 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
143 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
144 if (retval != ERROR_OK)
145 return retval;
146 dap->ap_csw_value = csw;
147 }
148 if (tar != dap->ap_tar_value) {
149 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
150 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
151 if (retval != ERROR_OK)
152 return retval;
153 dap->ap_tar_value = tar;
154 }
155 /* Disable TAR cache when autoincrementing */
156 if (csw & CSW_ADDRINC_MASK)
157 dap->ap_tar_value = -1;
158 return ERROR_OK;
159 }
160
161 /**
162 * Asynchronous (queued) read of a word from memory or a system register.
163 *
164 * @param dap The DAP connected to the MEM-AP performing the read.
165 * @param address Address of the 32-bit word to read; it must be
166 * readable by the currently selected MEM-AP.
167 * @param value points to where the word will be stored when the
168 * transaction queue is flushed (assuming no errors).
169 *
170 * @return ERROR_OK for success. Otherwise a fault code.
171 */
172 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
173 uint32_t *value)
174 {
175 int retval;
176
177 /* Use banked addressing (REG_BDx) to avoid some link traffic
178 * (updating TAR) when reading several consecutive addresses.
179 */
180 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
181 address & 0xFFFFFFF0);
182 if (retval != ERROR_OK)
183 return retval;
184
185 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
186 }
187
188 /**
189 * Synchronous read of a word from memory or a system register.
190 * As a side effect, this flushes any queued transactions.
191 *
192 * @param dap The DAP connected to the MEM-AP performing the read.
193 * @param address Address of the 32-bit word to read; it must be
194 * readable by the currently selected MEM-AP.
195 * @param value points to where the result will be stored.
196 *
197 * @return ERROR_OK for success; *value holds the result.
198 * Otherwise a fault code.
199 */
200 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
201 uint32_t *value)
202 {
203 int retval;
204
205 retval = mem_ap_read_u32(dap, address, value);
206 if (retval != ERROR_OK)
207 return retval;
208
209 return dap_run(dap);
210 }
211
212 /**
213 * Asynchronous (queued) write of a word to memory or a system register.
214 *
215 * @param dap The DAP connected to the MEM-AP.
216 * @param address Address to be written; it must be writable by
217 * the currently selected MEM-AP.
218 * @param value Word that will be written to the address when transaction
219 * queue is flushed (assuming no errors).
220 *
221 * @return ERROR_OK for success. Otherwise a fault code.
222 */
223 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
224 uint32_t value)
225 {
226 int retval;
227
228 /* Use banked addressing (REG_BDx) to avoid some link traffic
229 * (updating TAR) when writing several consecutive addresses.
230 */
231 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
232 address & 0xFFFFFFF0);
233 if (retval != ERROR_OK)
234 return retval;
235
236 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
237 value);
238 }
239
240 /**
241 * Synchronous write of a word to memory or a system register.
242 * As a side effect, this flushes any queued transactions.
243 *
244 * @param dap The DAP connected to the MEM-AP.
245 * @param address Address to be written; it must be writable by
246 * the currently selected MEM-AP.
247 * @param value Word that will be written.
248 *
249 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
250 */
251 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
252 uint32_t value)
253 {
254 int retval = mem_ap_write_u32(dap, address, value);
255
256 if (retval != ERROR_OK)
257 return retval;
258
259 return dap_run(dap);
260 }
261
262 /*****************************************************************************
263 * *
264 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
265 * *
266 * Write a buffer in target order (little endian) *
267 * *
268 *****************************************************************************/
269 int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
270 {
271 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
272 uint32_t adr = address;
273 const uint8_t *pBuffer = buffer;
274
275 count >>= 2;
276 wcount = count;
277
278 /* if we have an unaligned access - reorder data */
279 if (adr & 0x3u) {
280 for (writecount = 0; writecount < count; writecount++) {
281 int i;
282 uint32_t outvalue;
283 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
284
285 for (i = 0; i < 4; i++) {
286 *((uint8_t *)pBuffer + (adr & 0x3)) = outvalue;
287 outvalue >>= 8;
288 adr++;
289 }
290 pBuffer += sizeof(uint32_t);
291 }
292 }
293
294 while (wcount > 0) {
295 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
296 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
297 if (wcount < blocksize)
298 blocksize = wcount;
299
300 /* handle unaligned data at 4k boundary */
301 if (blocksize == 0)
302 blocksize = 1;
303
304 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
305 if (retval != ERROR_OK)
306 return retval;
307
308 for (writecount = 0; writecount < blocksize; writecount++) {
309 retval = dap_queue_ap_write(dap, AP_REG_DRW,
310 *(uint32_t *) ((void *) (buffer + 4 * writecount)));
311 if (retval != ERROR_OK)
312 break;
313 }
314
315 retval = dap_run(dap);
316 if (retval == ERROR_OK) {
317 wcount = wcount - blocksize;
318 address = address + 4 * blocksize;
319 buffer = buffer + 4 * blocksize;
320 } else
321 errorcount++;
322
323 if (errorcount > 1) {
324 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
325 return retval;
326 }
327 }
328
329 return retval;
330 }
331
332 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
333 const uint8_t *buffer, int count, uint32_t address)
334 {
335 int retval = ERROR_OK;
336 int wcount, blocksize, writecount, i;
337
338 wcount = count >> 1;
339
340 while (wcount > 0) {
341 int nbytes;
342
343 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
344 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
345
346 if (wcount < blocksize)
347 blocksize = wcount;
348
349 /* handle unaligned data at 4k boundary */
350 if (blocksize == 0)
351 blocksize = 1;
352
353 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
354 if (retval != ERROR_OK)
355 return retval;
356 writecount = blocksize;
357
358 do {
359 nbytes = MIN((writecount << 1), 4);
360
361 if (nbytes < 4) {
362 retval = mem_ap_write_buf_u16(dap, buffer,
363 nbytes, address);
364 if (retval != ERROR_OK) {
365 LOG_WARNING("Block write error address "
366 "0x%" PRIx32 ", count 0x%x",
367 address, count);
368 return retval;
369 }
370
371 address += nbytes >> 1;
372 } else {
373 uint32_t outvalue;
374 memcpy(&outvalue, buffer, sizeof(uint32_t));
375
376 for (i = 0; i < nbytes; i++) {
377 *((uint8_t *)buffer + (address & 0x3)) = outvalue;
378 outvalue >>= 8;
379 address++;
380 }
381
382 memcpy(&outvalue, buffer, sizeof(uint32_t));
383 retval = dap_queue_ap_write(dap,
384 AP_REG_DRW, outvalue);
385 if (retval != ERROR_OK)
386 break;
387
388 retval = dap_run(dap);
389 if (retval != ERROR_OK) {
390 LOG_WARNING("Block write error address "
391 "0x%" PRIx32 ", count 0x%x",
392 address, count);
393 return retval;
394 }
395 }
396
397 buffer += nbytes >> 1;
398 writecount -= nbytes >> 1;
399
400 } while (writecount);
401 wcount -= blocksize;
402 }
403
404 return retval;
405 }
406
407 int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
408 {
409 int retval = ERROR_OK;
410
411 if (count >= 4)
412 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
413
414 while (count > 0) {
415 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
416 if (retval != ERROR_OK)
417 return retval;
418 uint16_t svalue;
419 memcpy(&svalue, buffer, sizeof(uint16_t));
420 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
421 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
422 if (retval != ERROR_OK)
423 break;
424
425 retval = dap_run(dap);
426 if (retval != ERROR_OK)
427 break;
428
429 count -= 2;
430 address += 2;
431 buffer += 2;
432 }
433
434 return retval;
435 }
436
437 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
438 const uint8_t *buffer, int count, uint32_t address)
439 {
440 int retval = ERROR_OK;
441 int wcount, blocksize, writecount, i;
442
443 wcount = count;
444
445 while (wcount > 0) {
446 int nbytes;
447
448 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
449 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
450
451 if (wcount < blocksize)
452 blocksize = wcount;
453
454 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
455 if (retval != ERROR_OK)
456 return retval;
457 writecount = blocksize;
458
459 do {
460 nbytes = MIN(writecount, 4);
461
462 if (nbytes < 4) {
463 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
464 if (retval != ERROR_OK) {
465 LOG_WARNING("Block write error address "
466 "0x%" PRIx32 ", count 0x%x",
467 address, count);
468 return retval;
469 }
470
471 address += nbytes;
472 } else {
473 uint32_t outvalue;
474 memcpy(&outvalue, buffer, sizeof(uint32_t));
475
476 for (i = 0; i < nbytes; i++) {
477 *((uint8_t *)buffer + (address & 0x3)) = outvalue;
478 outvalue >>= 8;
479 address++;
480 }
481
482 memcpy(&outvalue, buffer, sizeof(uint32_t));
483 retval = dap_queue_ap_write(dap,
484 AP_REG_DRW, outvalue);
485 if (retval != ERROR_OK)
486 break;
487
488 retval = dap_run(dap);
489 if (retval != ERROR_OK) {
490 LOG_WARNING("Block write error address "
491 "0x%" PRIx32 ", count 0x%x",
492 address, count);
493 return retval;
494 }
495 }
496
497 buffer += nbytes;
498 writecount -= nbytes;
499
500 } while (writecount);
501 wcount -= blocksize;
502 }
503
504 return retval;
505 }
506
507 int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
508 {
509 int retval = ERROR_OK;
510
511 if (count >= 4)
512 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
513
514 while (count > 0) {
515 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
516 if (retval != ERROR_OK)
517 return retval;
518 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
519 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
520 if (retval != ERROR_OK)
521 break;
522
523 retval = dap_run(dap);
524 if (retval != ERROR_OK)
525 break;
526
527 count--;
528 address++;
529 buffer++;
530 }
531
532 return retval;
533 }
534
535 /* FIXME don't import ... this is a temporary workaround for the
536 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
537 */
538 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
539 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
540 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
541
542 /**
543 * Synchronously read a block of 32-bit words into a buffer
544 * @param dap The DAP connected to the MEM-AP.
545 * @param buffer where the words will be stored (in host byte order).
546 * @param count How many words to read.
547 * @param address Memory address from which to read words; all the
548 * words must be readable by the currently selected MEM-AP.
549 */
550 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
551 int count, uint32_t address)
552 {
553 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
554 uint32_t adr = address;
555 uint8_t *pBuffer = buffer;
556
557 count >>= 2;
558 wcount = count;
559
560 while (wcount > 0) {
561 /* Adjust to read blocks within boundaries aligned to the
562 * TAR autoincrement size (at least 2^10). Autoincrement
563 * mode avoids an extra per-word roundtrip to update TAR.
564 */
565 blocksize = max_tar_block_size(dap->tar_autoincr_block,
566 address);
567 if (wcount < blocksize)
568 blocksize = wcount;
569
570 /* handle unaligned data at 4k boundary */
571 if (blocksize == 0)
572 blocksize = 1;
573
574 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
575 address);
576 if (retval != ERROR_OK)
577 return retval;
578
579 /* FIXME remove these three calls to adi_jtag_dp_scan(),
580 * so this routine becomes transport-neutral. Be careful
581 * not to cause performance problems with JTAG; would it
582 * suffice to loop over dap_queue_ap_read(), or would that
583 * be slower when JTAG is the chosen transport?
584 */
585
586 /* Scan out first read */
587 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
588 DPAP_READ, 0, NULL, NULL);
589 if (retval != ERROR_OK)
590 return retval;
591 for (readcount = 0; readcount < blocksize - 1; readcount++) {
592 /* Scan out next read; scan in posted value for the
593 * previous one. Assumes read is acked "OK/FAULT",
594 * and CTRL_STAT says that meant "OK".
595 */
596 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
597 DPAP_READ, 0, buffer + 4 * readcount,
598 &dap->ack);
599 if (retval != ERROR_OK)
600 return retval;
601 }
602
603 /* Scan in last posted value; RDBUFF has no other effect,
604 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
605 */
606 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
607 DPAP_READ, 0, buffer + 4 * readcount,
608 &dap->ack);
609 if (retval != ERROR_OK)
610 return retval;
611
612 retval = dap_run(dap);
613 if (retval != ERROR_OK) {
614 errorcount++;
615 if (errorcount <= 1) {
616 /* try again */
617 continue;
618 }
619 LOG_WARNING("Block read error address 0x%" PRIx32, address);
620 return retval;
621 }
622 wcount = wcount - blocksize;
623 address += 4 * blocksize;
624 buffer += 4 * blocksize;
625 }
626
627 /* if we have an unaligned access - reorder data */
628 if (adr & 0x3u) {
629 for (readcount = 0; readcount < count; readcount++) {
630 int i;
631 uint32_t data;
632 memcpy(&data, pBuffer, sizeof(uint32_t));
633
634 for (i = 0; i < 4; i++) {
635 *((uint8_t *)pBuffer) =
636 (data >> 8 * (adr & 0x3));
637 pBuffer++;
638 adr++;
639 }
640 }
641 }
642
643 return retval;
644 }
645
646 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
647 uint8_t *buffer, int count, uint32_t address)
648 {
649 uint32_t invalue;
650 int retval = ERROR_OK;
651 int wcount, blocksize, readcount, i;
652
653 wcount = count >> 1;
654
655 while (wcount > 0) {
656 int nbytes;
657
658 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
659 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
660 if (wcount < blocksize)
661 blocksize = wcount;
662
663 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
664 if (retval != ERROR_OK)
665 return retval;
666
667 /* handle unaligned data at 4k boundary */
668 if (blocksize == 0)
669 blocksize = 1;
670 readcount = blocksize;
671
672 do {
673 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
674 if (retval != ERROR_OK)
675 return retval;
676 retval = dap_run(dap);
677 if (retval != ERROR_OK) {
678 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
679 return retval;
680 }
681
682 nbytes = MIN((readcount << 1), 4);
683
684 for (i = 0; i < nbytes; i++) {
685 *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
686 buffer++;
687 address++;
688 }
689
690 readcount -= (nbytes >> 1);
691 } while (readcount);
692 wcount -= blocksize;
693 }
694
695 return retval;
696 }
697
698 /**
699 * Synchronously read a block of 16-bit halfwords into a buffer
700 * @param dap The DAP connected to the MEM-AP.
701 * @param buffer where the halfwords will be stored (in host byte order).
702 * @param count How many halfwords to read.
703 * @param address Memory address from which to read words; all the
704 * words must be readable by the currently selected MEM-AP.
705 */
706 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
707 int count, uint32_t address)
708 {
709 uint32_t invalue, i;
710 int retval = ERROR_OK;
711
712 if (count >= 4)
713 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
714
715 while (count > 0) {
716 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
717 if (retval != ERROR_OK)
718 return retval;
719 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
720 if (retval != ERROR_OK)
721 break;
722
723 retval = dap_run(dap);
724 if (retval != ERROR_OK)
725 break;
726
727 if (address & 0x1) {
728 for (i = 0; i < 2; i++) {
729 *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
730 buffer++;
731 address++;
732 }
733 } else {
734 uint16_t svalue = (invalue >> 8 * (address & 0x3));
735 memcpy(buffer, &svalue, sizeof(uint16_t));
736 address += 2;
737 buffer += 2;
738 }
739 count -= 2;
740 }
741
742 return retval;
743 }
744
745 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
746 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
747 *
748 * The solution is to arrange for a large out/in scan in this loop and
749 * and convert data afterwards.
750 */
751 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
752 uint8_t *buffer, int count, uint32_t address)
753 {
754 uint32_t invalue;
755 int retval = ERROR_OK;
756 int wcount, blocksize, readcount, i;
757
758 wcount = count;
759
760 while (wcount > 0) {
761 int nbytes;
762
763 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
764 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
765
766 if (wcount < blocksize)
767 blocksize = wcount;
768
769 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
770 if (retval != ERROR_OK)
771 return retval;
772 readcount = blocksize;
773
774 do {
775 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
776 if (retval != ERROR_OK)
777 return retval;
778 retval = dap_run(dap);
779 if (retval != ERROR_OK) {
780 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
781 return retval;
782 }
783
784 nbytes = MIN(readcount, 4);
785
786 for (i = 0; i < nbytes; i++) {
787 *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
788 buffer++;
789 address++;
790 }
791
792 readcount -= nbytes;
793 } while (readcount);
794 wcount -= blocksize;
795 }
796
797 return retval;
798 }
799
800 /**
801 * Synchronously read a block of bytes into a buffer
802 * @param dap The DAP connected to the MEM-AP.
803 * @param buffer where the bytes will be stored.
804 * @param count How many bytes to read.
805 * @param address Memory address from which to read data; all the
806 * data must be readable by the currently selected MEM-AP.
807 */
808 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
809 int count, uint32_t address)
810 {
811 uint32_t invalue;
812 int retval = ERROR_OK;
813
814 if (count >= 4)
815 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
816
817 while (count > 0) {
818 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
819 if (retval != ERROR_OK)
820 return retval;
821 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822 if (retval != ERROR_OK)
823 return retval;
824 retval = dap_run(dap);
825 if (retval != ERROR_OK)
826 break;
827
828 *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
829 count--;
830 address++;
831 buffer++;
832 }
833
834 return retval;
835 }
836
837 /*--------------------------------------------------------------------*/
838 /* Wrapping function with selection of AP */
839 /*--------------------------------------------------------------------*/
840 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
841 uint32_t address, uint32_t *value)
842 {
843 dap_ap_select(swjdp, ap);
844 return mem_ap_read_u32(swjdp, address, value);
845 }
846
847 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
848 uint32_t address, uint32_t value)
849 {
850 dap_ap_select(swjdp, ap);
851 return mem_ap_write_u32(swjdp, address, value);
852 }
853
854 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
855 uint32_t address, uint32_t *value)
856 {
857 dap_ap_select(swjdp, ap);
858 return mem_ap_read_atomic_u32(swjdp, address, value);
859 }
860
861 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
862 uint32_t address, uint32_t value)
863 {
864 dap_ap_select(swjdp, ap);
865 return mem_ap_write_atomic_u32(swjdp, address, value);
866 }
867
868 int mem_ap_sel_read_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
869 uint8_t *buffer, int count, uint32_t address)
870 {
871 dap_ap_select(swjdp, ap);
872 return mem_ap_read_buf_u8(swjdp, buffer, count, address);
873 }
874
875 int mem_ap_sel_read_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
876 uint8_t *buffer, int count, uint32_t address)
877 {
878 dap_ap_select(swjdp, ap);
879 return mem_ap_read_buf_u16(swjdp, buffer, count, address);
880 }
881
882 int mem_ap_sel_read_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
883 uint8_t *buffer, int count, uint32_t address)
884 {
885 dap_ap_select(swjdp, ap);
886 return mem_ap_read_buf_u32(swjdp, buffer, count, address);
887 }
888
889 int mem_ap_sel_write_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
890 const uint8_t *buffer, int count, uint32_t address)
891 {
892 dap_ap_select(swjdp, ap);
893 return mem_ap_write_buf_u8(swjdp, buffer, count, address);
894 }
895
896 int mem_ap_sel_write_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
897 const uint8_t *buffer, int count, uint32_t address)
898 {
899 dap_ap_select(swjdp, ap);
900 return mem_ap_write_buf_u16(swjdp, buffer, count, address);
901 }
902
903 int mem_ap_sel_write_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
904 const uint8_t *buffer, int count, uint32_t address)
905 {
906 dap_ap_select(swjdp, ap);
907 return mem_ap_write_buf_u32(swjdp, buffer, count, address);
908 }
909
910 #define MDM_REG_STAT 0x00
911 #define MDM_REG_CTRL 0x04
912 #define MDM_REG_ID 0xfc
913
914 #define MDM_STAT_FMEACK (1<<0)
915 #define MDM_STAT_FREADY (1<<1)
916 #define MDM_STAT_SYSSEC (1<<2)
917 #define MDM_STAT_SYSRES (1<<3)
918 #define MDM_STAT_FMEEN (1<<5)
919 #define MDM_STAT_BACKDOOREN (1<<6)
920 #define MDM_STAT_LPEN (1<<7)
921 #define MDM_STAT_VLPEN (1<<8)
922 #define MDM_STAT_LLSMODEXIT (1<<9)
923 #define MDM_STAT_VLLSXMODEXIT (1<<10)
924 #define MDM_STAT_CORE_HALTED (1<<16)
925 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
926 #define MDM_STAT_CORESLEEPING (1<<18)
927
928 #define MEM_CTRL_FMEIP (1<<0)
929 #define MEM_CTRL_DBG_DIS (1<<1)
930 #define MEM_CTRL_DBG_REQ (1<<2)
931 #define MEM_CTRL_SYS_RES_REQ (1<<3)
932 #define MEM_CTRL_CORE_HOLD_RES (1<<4)
933 #define MEM_CTRL_VLLSX_DBG_REQ (1<<5)
934 #define MEM_CTRL_VLLSX_DBG_ACK (1<<6)
935 #define MEM_CTRL_VLLSX_STAT_ACK (1<<7)
936
937 /**
938 *
939 */
940 int dap_syssec_kinetis_mdmap(struct adiv5_dap *dap)
941 {
942 uint32_t val;
943 int retval;
944 enum reset_types jtag_reset_config = jtag_get_reset_config();
945
946 dap_ap_select(dap, 1);
947
948 /* first check mdm-ap id register */
949 retval = dap_queue_ap_read(dap, MDM_REG_ID, &val);
950 if (retval != ERROR_OK)
951 return retval;
952 dap_run(dap);
953
954 if (val != 0x001C0000) {
955 LOG_DEBUG("id doesn't match %08X != 0x001C0000", val);
956 dap_ap_select(dap, 0);
957 return ERROR_FAIL;
958 }
959
960 /* read and parse status register
961 * it's important that the device is out of
962 * reset here
963 */
964 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
965 if (retval != ERROR_OK)
966 return retval;
967 dap_run(dap);
968
969 LOG_DEBUG("MDM_REG_STAT %08X", val);
970
971 if ((val & (MDM_STAT_SYSSEC|MDM_STAT_FREADY)) != (MDM_STAT_FREADY)) {
972 LOG_DEBUG("MDMAP: system is secured, masserase needed");
973
974 if (!(val & MDM_STAT_FMEEN))
975 LOG_DEBUG("MDMAP: masserase is disabled");
976 else {
977 /* we need to assert reset */
978 if (jtag_reset_config & RESET_HAS_SRST) {
979 /* default to asserting srst */
980 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
981 jtag_add_reset(1, 1);
982 else
983 jtag_add_reset(0, 1);
984 } else {
985 LOG_DEBUG("SRST not configured");
986 dap_ap_select(dap, 0);
987 return ERROR_FAIL;
988 }
989
990 while (1) {
991 retval = dap_queue_ap_write(dap, MDM_REG_CTRL, MEM_CTRL_FMEIP);
992 if (retval != ERROR_OK)
993 return retval;
994 dap_run(dap);
995 /* read status register and wait for ready */
996 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
997 if (retval != ERROR_OK)
998 return retval;
999 dap_run(dap);
1000 LOG_DEBUG("MDM_REG_STAT %08X", val);
1001
1002 if ((val & 1))
1003 break;
1004 }
1005
1006 while (1) {
1007 retval = dap_queue_ap_write(dap, MDM_REG_CTRL, 0);
1008 if (retval != ERROR_OK)
1009 return retval;
1010 dap_run(dap);
1011 /* read status register */
1012 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
1013 if (retval != ERROR_OK)
1014 return retval;
1015 dap_run(dap);
1016 LOG_DEBUG("MDM_REG_STAT %08X", val);
1017 /* read control register and wait for ready */
1018 retval = dap_queue_ap_read(dap, MDM_REG_CTRL, &val);
1019 if (retval != ERROR_OK)
1020 return retval;
1021 dap_run(dap);
1022 LOG_DEBUG("MDM_REG_CTRL %08X", val);
1023
1024 if (val == 0x00)
1025 break;
1026 }
1027 }
1028 }
1029
1030 dap_ap_select(dap, 0);
1031
1032 return ERROR_OK;
1033 }
1034
1035 /** */
1036 struct dap_syssec_filter {
1037 /** */
1038 uint32_t idcode;
1039 /** */
1040 int (*dap_init)(struct adiv5_dap *dap);
1041 };
1042
1043 /** */
1044 static struct dap_syssec_filter dap_syssec_filter_data[] = {
1045 { 0x4BA00477, dap_syssec_kinetis_mdmap }
1046 };
1047
1048 /**
1049 *
1050 */
1051 int dap_syssec(struct adiv5_dap *dap)
1052 {
1053 unsigned int i;
1054 struct jtag_tap *tap;
1055
1056 for (i = 0; i < sizeof(dap_syssec_filter_data); i++) {
1057 tap = dap->jtag_info->tap;
1058
1059 while (tap != NULL) {
1060 if (tap->hasidcode && (dap_syssec_filter_data[i].idcode == tap->idcode)) {
1061 LOG_DEBUG("DAP: mdmap_init for idcode: %08x", tap->idcode);
1062 dap_syssec_filter_data[i].dap_init(dap);
1063 }
1064 tap = tap->next_tap;
1065 }
1066 }
1067
1068 return ERROR_OK;
1069 }
1070
1071 /*--------------------------------------------------------------------------*/
1072
1073
1074 /* FIXME don't import ... just initialize as
1075 * part of DAP transport setup
1076 */
1077 extern const struct dap_ops jtag_dp_ops;
1078
1079 /*--------------------------------------------------------------------------*/
1080
1081 /**
1082 * Initialize a DAP. This sets up the power domains, prepares the DP
1083 * for further use, and arranges to use AP #0 for all AP operations
1084 * until dap_ap-select() changes that policy.
1085 *
1086 * @param dap The DAP being initialized.
1087 *
1088 * @todo Rename this. We also need an initialization scheme which account
1089 * for SWD transports not just JTAG; that will need to address differences
1090 * in layering. (JTAG is useful without any debug target; but not SWD.)
1091 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
1092 */
1093 int ahbap_debugport_init(struct adiv5_dap *dap)
1094 {
1095 uint32_t ctrlstat;
1096 int cnt = 0;
1097 int retval;
1098
1099 LOG_DEBUG(" ");
1100
1101 /* test for initialized low level jtag hardware
1102 * this always fails for stlink hardware
1103 */
1104 if (!dap->jtag_info) {
1105 LOG_DEBUG("No low level jtag hardware found");
1106 return ERROR_OK;
1107 }
1108
1109 /* JTAG-DP or SWJ-DP, in JTAG mode
1110 * ... for SWD mode this is patched as part
1111 * of link switchover
1112 */
1113 if (!dap->ops)
1114 dap->ops = &jtag_dp_ops;
1115
1116 /* Default MEM-AP setup.
1117 *
1118 * REVISIT AP #0 may be an inappropriate default for this.
1119 * Should we probe, or take a hint from the caller?
1120 * Presumably we can ignore the possibility of multiple APs.
1121 */
1122 dap->ap_current = !0;
1123 dap_ap_select(dap, 0);
1124
1125 /* DP initialization */
1126
1127 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1128 if (retval != ERROR_OK)
1129 return retval;
1130
1131 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
1132 if (retval != ERROR_OK)
1133 return retval;
1134
1135 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1136 if (retval != ERROR_OK)
1137 return retval;
1138
1139 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
1140 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1141 if (retval != ERROR_OK)
1142 return retval;
1143
1144 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1145 if (retval != ERROR_OK)
1146 return retval;
1147 retval = dap_run(dap);
1148 if (retval != ERROR_OK)
1149 return retval;
1150
1151 /* Check that we have debug power domains activated */
1152 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10)) {
1153 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
1154 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1155 if (retval != ERROR_OK)
1156 return retval;
1157 retval = dap_run(dap);
1158 if (retval != ERROR_OK)
1159 return retval;
1160 alive_sleep(10);
1161 }
1162
1163 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10)) {
1164 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
1165 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1166 if (retval != ERROR_OK)
1167 return retval;
1168 retval = dap_run(dap);
1169 if (retval != ERROR_OK)
1170 return retval;
1171 alive_sleep(10);
1172 }
1173
1174 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1175 if (retval != ERROR_OK)
1176 return retval;
1177 /* With debug power on we can activate OVERRUN checking */
1178 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
1179 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1180 if (retval != ERROR_OK)
1181 return retval;
1182 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1183 if (retval != ERROR_OK)
1184 return retval;
1185
1186 dap_syssec(dap);
1187
1188 return ERROR_OK;
1189 }
1190
1191 /* CID interpretation -- see ARM IHI 0029B section 3
1192 * and ARM IHI 0031A table 13-3.
1193 */
1194 static const char *class_description[16] = {
1195 "Reserved", "ROM table", "Reserved", "Reserved",
1196 "Reserved", "Reserved", "Reserved", "Reserved",
1197 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1198 "Reserved", "OptimoDE DESS",
1199 "Generic IP component", "PrimeCell or System component"
1200 };
1201
1202 static bool is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1203 {
1204 return cid3 == 0xb1 && cid2 == 0x05
1205 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1206 }
1207
1208 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
1209 uint32_t *out_dbgbase, uint32_t *out_apid)
1210 {
1211 uint32_t ap_old;
1212 int retval;
1213 uint32_t dbgbase, apid;
1214
1215 /* AP address is in bits 31:24 of DP_SELECT */
1216 if (ap >= 256)
1217 return ERROR_COMMAND_SYNTAX_ERROR;
1218
1219 ap_old = dap->ap_current;
1220 dap_ap_select(dap, ap);
1221
1222 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1223 if (retval != ERROR_OK)
1224 return retval;
1225 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1226 if (retval != ERROR_OK)
1227 return retval;
1228 retval = dap_run(dap);
1229 if (retval != ERROR_OK)
1230 return retval;
1231
1232 /* Excavate the device ID code */
1233 struct jtag_tap *tap = dap->jtag_info->tap;
1234 while (tap != NULL) {
1235 if (tap->hasidcode)
1236 break;
1237 tap = tap->next_tap;
1238 }
1239 if (tap == NULL || !tap->hasidcode)
1240 return ERROR_OK;
1241
1242 dap_ap_select(dap, ap_old);
1243
1244 /* The asignment happens only here to prevent modification of these
1245 * values before they are certain. */
1246 *out_dbgbase = dbgbase;
1247 *out_apid = apid;
1248
1249 return ERROR_OK;
1250 }
1251
1252 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
1253 uint32_t dbgbase, uint8_t type, uint32_t *addr)
1254 {
1255 uint32_t ap_old;
1256 uint32_t romentry, entry_offset = 0, component_base, devtype;
1257 int retval = ERROR_FAIL;
1258
1259 if (ap >= 256)
1260 return ERROR_COMMAND_SYNTAX_ERROR;
1261
1262 ap_old = dap->ap_current;
1263 dap_ap_select(dap, ap);
1264
1265 do {
1266 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1267 entry_offset, &romentry);
1268 if (retval != ERROR_OK)
1269 return retval;
1270
1271 component_base = (dbgbase & 0xFFFFF000)
1272 + (romentry & 0xFFFFF000);
1273
1274 if (romentry & 0x1) {
1275 retval = mem_ap_read_atomic_u32(dap,
1276 (component_base & 0xfffff000) | 0xfcc,
1277 &devtype);
1278 if ((devtype & 0xff) == type) {
1279 *addr = component_base;
1280 retval = ERROR_OK;
1281 break;
1282 }
1283 }
1284 entry_offset += 4;
1285 } while (romentry > 0);
1286
1287 dap_ap_select(dap, ap_old);
1288
1289 return retval;
1290 }
1291
1292 static int dap_info_command(struct command_context *cmd_ctx,
1293 struct adiv5_dap *dap, int ap)
1294 {
1295 int retval;
1296 uint32_t dbgbase = 0, apid = 0; /* Silence gcc by initializing */
1297 int romtable_present = 0;
1298 uint8_t mem_ap;
1299 uint32_t ap_old;
1300
1301 retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1302 if (retval != ERROR_OK)
1303 return retval;
1304
1305 ap_old = dap->ap_current;
1306 dap_ap_select(dap, ap);
1307
1308 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1309 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1310 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1311 if (apid) {
1312 switch (apid&0x0F) {
1313 case 0:
1314 command_print(cmd_ctx, "\tType is JTAG-AP");
1315 break;
1316 case 1:
1317 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1318 break;
1319 case 2:
1320 command_print(cmd_ctx, "\tType is MEM-AP APB");
1321 break;
1322 default:
1323 command_print(cmd_ctx, "\tUnknown AP type");
1324 break;
1325 }
1326
1327 /* NOTE: a MEM-AP may have a single CoreSight component that's
1328 * not a ROM table ... or have no such components at all.
1329 */
1330 if (mem_ap)
1331 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32, dbgbase);
1332 } else
1333 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1334
1335 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1336 if (romtable_present) {
1337 uint32_t cid0, cid1, cid2, cid3, memtype, romentry;
1338 uint16_t entry_offset;
1339
1340 /* bit 16 of apid indicates a memory access port */
1341 if (dbgbase & 0x02)
1342 command_print(cmd_ctx, "\tValid ROM table present");
1343 else
1344 command_print(cmd_ctx, "\tROM table in legacy format");
1345
1346 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1347 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1348 if (retval != ERROR_OK)
1349 return retval;
1350 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1351 if (retval != ERROR_OK)
1352 return retval;
1353 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1354 if (retval != ERROR_OK)
1355 return retval;
1356 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1357 if (retval != ERROR_OK)
1358 return retval;
1359 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1360 if (retval != ERROR_OK)
1361 return retval;
1362 retval = dap_run(dap);
1363 if (retval != ERROR_OK)
1364 return retval;
1365
1366 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1367 command_print(cmd_ctx, "\tCID3 0x%2.2x"
1368 ", CID2 0x%2.2x"
1369 ", CID1 0x%2.2x"
1370 ", CID0 0x%2.2x",
1371 (unsigned) cid3, (unsigned)cid2,
1372 (unsigned) cid1, (unsigned) cid0);
1373 if (memtype & 0x01)
1374 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1375 else
1376 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1377 "Dedicated debug bus.");
1378
1379 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1380 entry_offset = 0;
1381 do {
1382 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1383 if (retval != ERROR_OK)
1384 return retval;
1385 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "", entry_offset, romentry);
1386 if (romentry & 0x01) {
1387 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1388 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1389 uint32_t component_base;
1390 unsigned part_num;
1391 char *type, *full;
1392
1393 component_base = (dbgbase & 0xFFFFF000) + (romentry & 0xFFFFF000);
1394
1395 /* IDs are in last 4K section */
1396 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE0, &c_pid0);
1397 if (retval != ERROR_OK)
1398 return retval;
1399 c_pid0 &= 0xff;
1400 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE4, &c_pid1);
1401 if (retval != ERROR_OK)
1402 return retval;
1403 c_pid1 &= 0xff;
1404 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE8, &c_pid2);
1405 if (retval != ERROR_OK)
1406 return retval;
1407 c_pid2 &= 0xff;
1408 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFEC, &c_pid3);
1409 if (retval != ERROR_OK)
1410 return retval;
1411 c_pid3 &= 0xff;
1412 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFD0, &c_pid4);
1413 if (retval != ERROR_OK)
1414 return retval;
1415 c_pid4 &= 0xff;
1416
1417 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF0, &c_cid0);
1418 if (retval != ERROR_OK)
1419 return retval;
1420 c_cid0 &= 0xff;
1421 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF4, &c_cid1);
1422 if (retval != ERROR_OK)
1423 return retval;
1424 c_cid1 &= 0xff;
1425 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF8, &c_cid2);
1426 if (retval != ERROR_OK)
1427 return retval;
1428 c_cid2 &= 0xff;
1429 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFFC, &c_cid3);
1430 if (retval != ERROR_OK)
1431 return retval;
1432 c_cid3 &= 0xff;
1433
1434 command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32 ","
1435 "start address 0x%" PRIx32, component_base,
1436 /* component may take multiple 4K pages */
1437 component_base - 0x1000*(c_pid4 >> 4));
1438 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1439 (int) (c_cid1 >> 4) & 0xf,
1440 /* See ARM IHI 0029B Table 3-3 */
1441 class_description[(c_cid1 >> 4) & 0xf]);
1442
1443 /* CoreSight component? */
1444 if (((c_cid1 >> 4) & 0x0f) == 9) {
1445 uint32_t devtype;
1446 unsigned minor;
1447 char *major = "Reserved", *subtype = "Reserved";
1448
1449 retval = mem_ap_read_atomic_u32(dap,
1450 (component_base & 0xfffff000) | 0xfcc,
1451 &devtype);
1452 if (retval != ERROR_OK)
1453 return retval;
1454 minor = (devtype >> 4) & 0x0f;
1455 switch (devtype & 0x0f) {
1456 case 0:
1457 major = "Miscellaneous";
1458 switch (minor) {
1459 case 0:
1460 subtype = "other";
1461 break;
1462 case 4:
1463 subtype = "Validation component";
1464 break;
1465 }
1466 break;
1467 case 1:
1468 major = "Trace Sink";
1469 switch (minor) {
1470 case 0:
1471 subtype = "other";
1472 break;
1473 case 1:
1474 subtype = "Port";
1475 break;
1476 case 2:
1477 subtype = "Buffer";
1478 break;
1479 }
1480 break;
1481 case 2:
1482 major = "Trace Link";
1483 switch (minor) {
1484 case 0:
1485 subtype = "other";
1486 break;
1487 case 1:
1488 subtype = "Funnel, router";
1489 break;
1490 case 2:
1491 subtype = "Filter";
1492 break;
1493 case 3:
1494 subtype = "FIFO, buffer";
1495 break;
1496 }
1497 break;
1498 case 3:
1499 major = "Trace Source";
1500 switch (minor) {
1501 case 0:
1502 subtype = "other";
1503 break;
1504 case 1:
1505 subtype = "Processor";
1506 break;
1507 case 2:
1508 subtype = "DSP";
1509 break;
1510 case 3:
1511 subtype = "Engine/Coprocessor";
1512 break;
1513 case 4:
1514 subtype = "Bus";
1515 break;
1516 }
1517 break;
1518 case 4:
1519 major = "Debug Control";
1520 switch (minor) {
1521 case 0:
1522 subtype = "other";
1523 break;
1524 case 1:
1525 subtype = "Trigger Matrix";
1526 break;
1527 case 2:
1528 subtype = "Debug Auth";
1529 break;
1530 }
1531 break;
1532 case 5:
1533 major = "Debug Logic";
1534 switch (minor) {
1535 case 0:
1536 subtype = "other";
1537 break;
1538 case 1:
1539 subtype = "Processor";
1540 break;
1541 case 2:
1542 subtype = "DSP";
1543 break;
1544 case 3:
1545 subtype = "Engine/Coprocessor";
1546 break;
1547 }
1548 break;
1549 }
1550 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1551 (unsigned) (devtype & 0xff),
1552 major, subtype);
1553 /* REVISIT also show 0xfc8 DevId */
1554 }
1555
1556 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1557 command_print(cmd_ctx,
1558 "\t\tCID3 0%2.2x"
1559 ", CID2 0%2.2x"
1560 ", CID1 0%2.2x"
1561 ", CID0 0%2.2x",
1562 (int) c_cid3,
1563 (int) c_cid2,
1564 (int)c_cid1,
1565 (int)c_cid0);
1566 command_print(cmd_ctx,
1567 "\t\tPeripheral ID[4..0] = hex "
1568 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1569 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1570 (int) c_pid1, (int) c_pid0);
1571
1572 /* Part number interpretations are from Cortex
1573 * core specs, the CoreSight components TRM
1574 * (ARM DDI 0314H), CoreSight System Design
1575 * Guide (ARM DGI 0012D) and ETM specs; also
1576 * from chip observation (e.g. TI SDTI).
1577 */
1578 part_num = (c_pid0 & 0xff);
1579 part_num |= (c_pid1 & 0x0f) << 8;
1580 switch (part_num) {
1581 case 0x000:
1582 type = "Cortex-M3 NVIC";
1583 full = "(Interrupt Controller)";
1584 break;
1585 case 0x001:
1586 type = "Cortex-M3 ITM";
1587 full = "(Instrumentation Trace Module)";
1588 break;
1589 case 0x002:
1590 type = "Cortex-M3 DWT";
1591 full = "(Data Watchpoint and Trace)";
1592 break;
1593 case 0x003:
1594 type = "Cortex-M3 FBP";
1595 full = "(Flash Patch and Breakpoint)";
1596 break;
1597 case 0x00d:
1598 type = "CoreSight ETM11";
1599 full = "(Embedded Trace)";
1600 break;
1601 /* case 0x113: what? */
1602 case 0x120: /* from OMAP3 memmap */
1603 type = "TI SDTI";
1604 full = "(System Debug Trace Interface)";
1605 break;
1606 case 0x343: /* from OMAP3 memmap */
1607 type = "TI DAPCTL";
1608 full = "";
1609 break;
1610 case 0x906:
1611 type = "Coresight CTI";
1612 full = "(Cross Trigger)";
1613 break;
1614 case 0x907:
1615 type = "Coresight ETB";
1616 full = "(Trace Buffer)";
1617 break;
1618 case 0x908:
1619 type = "Coresight CSTF";
1620 full = "(Trace Funnel)";
1621 break;
1622 case 0x910:
1623 type = "CoreSight ETM9";
1624 full = "(Embedded Trace)";
1625 break;
1626 case 0x912:
1627 type = "Coresight TPIU";
1628 full = "(Trace Port Interface Unit)";
1629 break;
1630 case 0x921:
1631 type = "Cortex-A8 ETM";
1632 full = "(Embedded Trace)";
1633 break;
1634 case 0x922:
1635 type = "Cortex-A8 CTI";
1636 full = "(Cross Trigger)";
1637 break;
1638 case 0x923:
1639 type = "Cortex-M3 TPIU";
1640 full = "(Trace Port Interface Unit)";
1641 break;
1642 case 0x924:
1643 type = "Cortex-M3 ETM";
1644 full = "(Embedded Trace)";
1645 break;
1646 case 0x930:
1647 type = "Cortex-R4 ETM";
1648 full = "(Embedded Trace)";
1649 break;
1650 case 0xc08:
1651 type = "Cortex-A8 Debug";
1652 full = "(Debug Unit)";
1653 break;
1654 default:
1655 type = "-*- unrecognized -*-";
1656 full = "";
1657 break;
1658 }
1659 command_print(cmd_ctx, "\t\tPart is %s %s",
1660 type, full);
1661 } else {
1662 if (romentry)
1663 command_print(cmd_ctx, "\t\tComponent not present");
1664 else
1665 command_print(cmd_ctx, "\t\tEnd of ROM table");
1666 }
1667 entry_offset += 4;
1668 } while (romentry > 0);
1669 } else
1670 command_print(cmd_ctx, "\tNo ROM table present");
1671 dap_ap_select(dap, ap_old);
1672
1673 return ERROR_OK;
1674 }
1675
1676 COMMAND_HANDLER(handle_dap_info_command)
1677 {
1678 struct target *target = get_current_target(CMD_CTX);
1679 struct arm *arm = target_to_arm(target);
1680 struct adiv5_dap *dap = arm->dap;
1681 uint32_t apsel;
1682
1683 switch (CMD_ARGC) {
1684 case 0:
1685 apsel = dap->apsel;
1686 break;
1687 case 1:
1688 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1689 break;
1690 default:
1691 return ERROR_COMMAND_SYNTAX_ERROR;
1692 }
1693
1694 return dap_info_command(CMD_CTX, dap, apsel);
1695 }
1696
1697 COMMAND_HANDLER(dap_baseaddr_command)
1698 {
1699 struct target *target = get_current_target(CMD_CTX);
1700 struct arm *arm = target_to_arm(target);
1701 struct adiv5_dap *dap = arm->dap;
1702
1703 uint32_t apsel, baseaddr;
1704 int retval;
1705
1706 switch (CMD_ARGC) {
1707 case 0:
1708 apsel = dap->apsel;
1709 break;
1710 case 1:
1711 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1712 /* AP address is in bits 31:24 of DP_SELECT */
1713 if (apsel >= 256)
1714 return ERROR_COMMAND_SYNTAX_ERROR;
1715 break;
1716 default:
1717 return ERROR_COMMAND_SYNTAX_ERROR;
1718 }
1719
1720 dap_ap_select(dap, apsel);
1721
1722 /* NOTE: assumes we're talking to a MEM-AP, which
1723 * has a base address. There are other kinds of AP,
1724 * though they're not common for now. This should
1725 * use the ID register to verify it's a MEM-AP.
1726 */
1727 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1728 if (retval != ERROR_OK)
1729 return retval;
1730 retval = dap_run(dap);
1731 if (retval != ERROR_OK)
1732 return retval;
1733
1734 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1735
1736 return retval;
1737 }
1738
1739 COMMAND_HANDLER(dap_memaccess_command)
1740 {
1741 struct target *target = get_current_target(CMD_CTX);
1742 struct arm *arm = target_to_arm(target);
1743 struct adiv5_dap *dap = arm->dap;
1744
1745 uint32_t memaccess_tck;
1746
1747 switch (CMD_ARGC) {
1748 case 0:
1749 memaccess_tck = dap->memaccess_tck;
1750 break;
1751 case 1:
1752 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1753 break;
1754 default:
1755 return ERROR_COMMAND_SYNTAX_ERROR;
1756 }
1757 dap->memaccess_tck = memaccess_tck;
1758
1759 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1760 dap->memaccess_tck);
1761
1762 return ERROR_OK;
1763 }
1764
1765 COMMAND_HANDLER(dap_apsel_command)
1766 {
1767 struct target *target = get_current_target(CMD_CTX);
1768 struct arm *arm = target_to_arm(target);
1769 struct adiv5_dap *dap = arm->dap;
1770
1771 uint32_t apsel, apid;
1772 int retval;
1773
1774 switch (CMD_ARGC) {
1775 case 0:
1776 apsel = 0;
1777 break;
1778 case 1:
1779 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1780 /* AP address is in bits 31:24 of DP_SELECT */
1781 if (apsel >= 256)
1782 return ERROR_COMMAND_SYNTAX_ERROR;
1783 break;
1784 default:
1785 return ERROR_COMMAND_SYNTAX_ERROR;
1786 }
1787
1788 dap->apsel = apsel;
1789 dap_ap_select(dap, apsel);
1790
1791 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1792 if (retval != ERROR_OK)
1793 return retval;
1794 retval = dap_run(dap);
1795 if (retval != ERROR_OK)
1796 return retval;
1797
1798 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1799 apsel, apid);
1800
1801 return retval;
1802 }
1803
1804 COMMAND_HANDLER(dap_apid_command)
1805 {
1806 struct target *target = get_current_target(CMD_CTX);
1807 struct arm *arm = target_to_arm(target);
1808 struct adiv5_dap *dap = arm->dap;
1809
1810 uint32_t apsel, apid;
1811 int retval;
1812
1813 switch (CMD_ARGC) {
1814 case 0:
1815 apsel = dap->apsel;
1816 break;
1817 case 1:
1818 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1819 /* AP address is in bits 31:24 of DP_SELECT */
1820 if (apsel >= 256)
1821 return ERROR_COMMAND_SYNTAX_ERROR;
1822 break;
1823 default:
1824 return ERROR_COMMAND_SYNTAX_ERROR;
1825 }
1826
1827 dap_ap_select(dap, apsel);
1828
1829 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1830 if (retval != ERROR_OK)
1831 return retval;
1832 retval = dap_run(dap);
1833 if (retval != ERROR_OK)
1834 return retval;
1835
1836 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1837
1838 return retval;
1839 }
1840
1841 static const struct command_registration dap_commands[] = {
1842 {
1843 .name = "info",
1844 .handler = handle_dap_info_command,
1845 .mode = COMMAND_EXEC,
1846 .help = "display ROM table for MEM-AP "
1847 "(default currently selected AP)",
1848 .usage = "[ap_num]",
1849 },
1850 {
1851 .name = "apsel",
1852 .handler = dap_apsel_command,
1853 .mode = COMMAND_EXEC,
1854 .help = "Set the currently selected AP (default 0) "
1855 "and display the result",
1856 .usage = "[ap_num]",
1857 },
1858 {
1859 .name = "apid",
1860 .handler = dap_apid_command,
1861 .mode = COMMAND_EXEC,
1862 .help = "return ID register from AP "
1863 "(default currently selected AP)",
1864 .usage = "[ap_num]",
1865 },
1866 {
1867 .name = "baseaddr",
1868 .handler = dap_baseaddr_command,
1869 .mode = COMMAND_EXEC,
1870 .help = "return debug base address from MEM-AP "
1871 "(default currently selected AP)",
1872 .usage = "[ap_num]",
1873 },
1874 {
1875 .name = "memaccess",
1876 .handler = dap_memaccess_command,
1877 .mode = COMMAND_EXEC,
1878 .help = "set/get number of extra tck for MEM-AP memory "
1879 "bus access [0-255]",
1880 .usage = "[cycles]",
1881 },
1882 COMMAND_REGISTRATION_DONE
1883 };
1884
1885 const struct command_registration dap_command_handlers[] = {
1886 {
1887 .name = "dap",
1888 .mode = COMMAND_EXEC,
1889 .help = "DAP command group",
1890 .usage = "",
1891 .chain = dap_commands,
1892 },
1893 COMMAND_REGISTRATION_DONE
1894 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)