Fix "unused variable" warnings (errors) detected with GCC 4.7.0 - trivial fixes
[openocd.git] / src / target / arm920t.c
1
2 /***************************************************************************
3 * Copyright (C) 2005 by Dominic Rath *
4 * Dominic.Rath@gmx.de *
5 * *
6 * This program is free software; you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation; either version 2 of the License, or *
9 * (at your option) any later version. *
10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program; if not, write to the *
18 * Free Software Foundation, Inc., *
19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
20 ***************************************************************************/
21 #ifdef HAVE_CONFIG_H
22 #include "config.h"
23 #endif
24
25 #include "arm920t.h"
26 #include <helper/time_support.h>
27 #include "target_type.h"
28 #include "register.h"
29 #include "arm_opcodes.h"
30
31
32 /*
33 * For information about the ARM920T, see ARM DDI 0151C especially
34 * Chapter 9 about debug support, which shows how to manipulate each
35 * of the different scan chains:
36 *
37 * 0 ... ARM920 signals, e.g. to rest of SOC (unused here)
38 * 1 ... debugging; watchpoint and breakpoint status, etc; also
39 * MMU and cache access in conjunction with scan chain 15
40 * 2 ... EmbeddedICE
41 * 3 ... external boundary scan (SoC-specific, unused here)
42 * 4 ... access to cache tag RAM
43 * 6 ... ETM9
44 * 15 ... access coprocessor 15, "physical" or "interpreted" modes
45 * "interpreted" works with a few actual MRC/MCR instructions
46 * "physical" provides register-like behaviors. Section 9.6.7
47 * covers these details.
48 *
49 * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
50 */
51
52 #if 0
53 #define _DEBUG_INSTRUCTION_EXECUTION_
54 #endif
55
56 /* Table 9-8 shows scan chain 15 format during physical access mode, using a
57 * dedicated 6-bit address space (encoded in bits 33:38). Writes use one
58 * JTAG scan, while reads use two.
59 *
60 * Table 9-9 lists the thirteen registers which support physical access.
61 * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
62 * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
63 *
64 * x == bit[38]
65 * y == bits[37:34]
66 * z == bit[33]
67 */
68 #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
69
70 /* Registers supporting physical Read access (from table 9-9) */
71 #define CP15PHYS_CACHETYPE ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
72 #define CP15PHYS_ICACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
73 #define CP15PHYS_DCACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
74 /* NOTE: several more registers support only physical read access */
75
76 /* Registers supporting physical Read/Write access (from table 9-9) */
77 #define CP15PHYS_CTRL ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
78 #define CP15PHYS_PID ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
79 #define CP15PHYS_TESTSTATE ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
80 #define CP15PHYS_ICACHE ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
81 #define CP15PHYS_DCACHE ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
82
83 static int arm920t_read_cp15_physical(struct target *target,
84 int reg_addr, uint32_t *value)
85 {
86 struct arm920t_common *arm920t = target_to_arm920(target);
87 struct arm_jtag *jtag_info;
88 struct scan_field fields[4];
89 uint8_t access_type_buf = 1;
90 uint8_t reg_addr_buf = reg_addr & 0x3f;
91 uint8_t nr_w_buf = 0;
92 int retval;
93
94 jtag_info = &arm920t->arm7_9_common.jtag_info;
95
96 retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
97 if (retval != ERROR_OK)
98 return retval;
99 retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
100 if (retval != ERROR_OK)
101 return retval;
102
103 fields[0].num_bits = 1;
104 fields[0].out_value = &access_type_buf;
105 fields[0].in_value = NULL;
106
107 fields[1].num_bits = 32;
108 fields[1].out_value = NULL;
109 fields[1].in_value = NULL;
110
111 fields[2].num_bits = 6;
112 fields[2].out_value = &reg_addr_buf;
113 fields[2].in_value = NULL;
114
115 fields[3].num_bits = 1;
116 fields[3].out_value = &nr_w_buf;
117 fields[3].in_value = NULL;
118
119 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
120
121 fields[1].in_value = (uint8_t *)value;
122
123 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
124
125 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
126
127 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
128 jtag_execute_queue();
129 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
130 #endif
131
132 return ERROR_OK;
133 }
134
135 static int arm920t_write_cp15_physical(struct target *target,
136 int reg_addr, uint32_t value)
137 {
138 struct arm920t_common *arm920t = target_to_arm920(target);
139 struct arm_jtag *jtag_info;
140 struct scan_field fields[4];
141 uint8_t access_type_buf = 1;
142 uint8_t reg_addr_buf = reg_addr & 0x3f;
143 uint8_t nr_w_buf = 1;
144 uint8_t value_buf[4];
145 int retval;
146
147 jtag_info = &arm920t->arm7_9_common.jtag_info;
148
149 buf_set_u32(value_buf, 0, 32, value);
150
151 retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
152 if (retval != ERROR_OK)
153 return retval;
154 retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
155 if (retval != ERROR_OK)
156 return retval;
157
158 fields[0].num_bits = 1;
159 fields[0].out_value = &access_type_buf;
160 fields[0].in_value = NULL;
161
162 fields[1].num_bits = 32;
163 fields[1].out_value = value_buf;
164 fields[1].in_value = NULL;
165
166 fields[2].num_bits = 6;
167 fields[2].out_value = &reg_addr_buf;
168 fields[2].in_value = NULL;
169
170 fields[3].num_bits = 1;
171 fields[3].out_value = &nr_w_buf;
172 fields[3].in_value = NULL;
173
174 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
175
176 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
177 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
178 #endif
179
180 return ERROR_OK;
181 }
182
183 /* See table 9-10 for scan chain 15 format during interpreted access mode.
184 * If the TESTSTATE register is set for interpreted access, certain CP15
185 * MRC and MCR instructions may be executed through scan chain 15.
186 *
187 * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
188 * executed using scan chain 15 interpreted mode.
189 */
190 static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
191 uint32_t arm_opcode)
192 {
193 int retval;
194 struct arm920t_common *arm920t = target_to_arm920(target);
195 struct arm_jtag *jtag_info;
196 struct scan_field fields[4];
197 uint8_t access_type_buf = 0; /* interpreted access */
198 uint8_t reg_addr_buf = 0x0;
199 uint8_t nr_w_buf = 0;
200 uint8_t cp15_opcode_buf[4];
201
202 jtag_info = &arm920t->arm7_9_common.jtag_info;
203
204 retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
205 if (retval != ERROR_OK)
206 return retval;
207 retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
208 if (retval != ERROR_OK)
209 return retval;
210
211 buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
212
213 fields[0].num_bits = 1;
214 fields[0].out_value = &access_type_buf;
215 fields[0].in_value = NULL;
216
217 fields[1].num_bits = 32;
218 fields[1].out_value = cp15_opcode_buf;
219 fields[1].in_value = NULL;
220
221 fields[2].num_bits = 6;
222 fields[2].out_value = &reg_addr_buf;
223 fields[2].in_value = NULL;
224
225 fields[3].num_bits = 1;
226 fields[3].out_value = &nr_w_buf;
227 fields[3].in_value = NULL;
228
229 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
230
231 arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
232 arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
233 retval = arm7_9_execute_sys_speed(target);
234 if (retval != ERROR_OK)
235 return retval;
236
237 if ((retval = jtag_execute_queue()) != ERROR_OK)
238 {
239 LOG_ERROR("failed executing JTAG queue");
240 return retval;
241 }
242
243 return ERROR_OK;
244 }
245
246 static int arm920t_read_cp15_interpreted(struct target *target,
247 uint32_t cp15_opcode, uint32_t address, uint32_t *value)
248 {
249 struct arm *armv4_5 = target_to_arm(target);
250 uint32_t* regs_p[1];
251 uint32_t regs[2];
252 uint32_t cp15c15 = 0x0;
253 struct reg *r = armv4_5->core_cache->reg_list;
254
255 /* load address into R1 */
256 regs[1] = address;
257 arm9tdmi_write_core_regs(target, 0x2, regs);
258
259 /* read-modify-write CP15 test state register
260 * to enable interpreted access mode */
261 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
262 jtag_execute_queue();
263 cp15c15 |= 1; /* set interpret mode */
264 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
265
266 /* execute CP15 instruction and ARM load (reading from coprocessor) */
267 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
268
269 /* disable interpreted access mode */
270 cp15c15 &= ~1U; /* clear interpret mode */
271 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
272
273 /* retrieve value from R0 */
274 regs_p[0] = value;
275 arm9tdmi_read_core_regs(target, 0x1, regs_p);
276 jtag_execute_queue();
277
278 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
279 LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
280 cp15_opcode, address, *value);
281 #endif
282
283 if (!is_arm_mode(armv4_5->core_mode))
284 {
285 LOG_ERROR("not a valid arm core mode - communication failure?");
286 return ERROR_FAIL;
287 }
288
289 r[0].dirty = 1;
290 r[1].dirty = 1;
291
292 return ERROR_OK;
293 }
294
295 static
296 int arm920t_write_cp15_interpreted(struct target *target,
297 uint32_t cp15_opcode, uint32_t value, uint32_t address)
298 {
299 uint32_t cp15c15 = 0x0;
300 struct arm *armv4_5 = target_to_arm(target);
301 uint32_t regs[2];
302 struct reg *r = armv4_5->core_cache->reg_list;
303
304 /* load value, address into R0, R1 */
305 regs[0] = value;
306 regs[1] = address;
307 arm9tdmi_write_core_regs(target, 0x3, regs);
308
309 /* read-modify-write CP15 test state register
310 * to enable interpreted access mode */
311 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
312 jtag_execute_queue();
313 cp15c15 |= 1; /* set interpret mode */
314 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
315
316 /* execute CP15 instruction and ARM store (writing to coprocessor) */
317 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
318
319 /* disable interpreted access mode */
320 cp15c15 &= ~1U; /* set interpret mode */
321 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
322
323 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
324 LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
325 cp15_opcode, value, address);
326 #endif
327
328 if (!is_arm_mode(armv4_5->core_mode))
329 {
330 LOG_ERROR("not a valid arm core mode - communication failure?");
331 return ERROR_FAIL;
332 }
333
334 r[0].dirty = 1;
335 r[1].dirty = 1;
336
337 return ERROR_OK;
338 }
339
340 // EXPORTED to FA256
341 int arm920t_get_ttb(struct target *target, uint32_t *result)
342 {
343 int retval;
344 uint32_t ttb = 0x0;
345
346 if ((retval = arm920t_read_cp15_interpreted(target,
347 /* FIXME use opcode macro */
348 0xeebf0f51, 0x0, &ttb)) != ERROR_OK)
349 return retval;
350
351 *result = ttb;
352 return ERROR_OK;
353 }
354
355 // EXPORTED to FA256
356 int arm920t_disable_mmu_caches(struct target *target, int mmu,
357 int d_u_cache, int i_cache)
358 {
359 uint32_t cp15_control;
360 int retval;
361
362 /* read cp15 control register */
363 retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
364 if (retval != ERROR_OK)
365 return retval;
366 retval = jtag_execute_queue();
367 if (retval != ERROR_OK)
368 return retval;
369
370 if (mmu)
371 cp15_control &= ~0x1U;
372
373 if (d_u_cache)
374 cp15_control &= ~0x4U;
375
376 if (i_cache)
377 cp15_control &= ~0x1000U;
378
379 retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
380 return retval;
381 }
382
383 // EXPORTED to FA256
384 int arm920t_enable_mmu_caches(struct target *target, int mmu,
385 int d_u_cache, int i_cache)
386 {
387 uint32_t cp15_control;
388 int retval;
389
390 /* read cp15 control register */
391 retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
392 if (retval != ERROR_OK)
393 return retval;
394 retval = jtag_execute_queue();
395 if (retval != ERROR_OK)
396 return retval;
397
398 if (mmu)
399 cp15_control |= 0x1U;
400
401 if (d_u_cache)
402 cp15_control |= 0x4U;
403
404 if (i_cache)
405 cp15_control |= 0x1000U;
406
407 retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
408 return retval;
409 }
410
411 // EXPORTED to FA256
412 int arm920t_post_debug_entry(struct target *target)
413 {
414 uint32_t cp15c15;
415 struct arm920t_common *arm920t = target_to_arm920(target);
416 int retval;
417
418 /* examine cp15 control reg */
419 retval = arm920t_read_cp15_physical(target,
420 CP15PHYS_CTRL, &arm920t->cp15_control_reg);
421 if (retval != ERROR_OK)
422 return retval;
423 retval = jtag_execute_queue();
424 if (retval != ERROR_OK)
425 return retval;
426 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg);
427
428 if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1)
429 {
430 uint32_t cache_type_reg;
431 /* identify caches */
432 retval = arm920t_read_cp15_physical(target,
433 CP15PHYS_CACHETYPE, &cache_type_reg);
434 if (retval != ERROR_OK)
435 return retval;
436 retval = jtag_execute_queue();
437 if (retval != ERROR_OK)
438 return retval;
439 armv4_5_identify_cache(cache_type_reg,
440 &arm920t->armv4_5_mmu.armv4_5_cache);
441 }
442
443 arm920t->armv4_5_mmu.mmu_enabled =
444 (arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
445 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
446 (arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
447 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
448 (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
449
450 /* save i/d fault status and address register */
451 /* FIXME use opcode macros */
452 retval = arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
453 if (retval != ERROR_OK)
454 return retval;
455 retval = arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
456 if (retval != ERROR_OK)
457 return retval;
458 retval = arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
459 if (retval != ERROR_OK)
460 return retval;
461 retval = arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
462 if (retval != ERROR_OK)
463 return retval;
464
465 LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32
466 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32,
467 arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
468
469 if (arm920t->preserve_cache)
470 {
471 /* read-modify-write CP15 test state register
472 * to disable I/D-cache linefills */
473 retval = arm920t_read_cp15_physical(target,
474 CP15PHYS_TESTSTATE, &cp15c15);
475 if (retval != ERROR_OK)
476 return retval;
477 retval = jtag_execute_queue();
478 if (retval != ERROR_OK)
479 return retval;
480 cp15c15 |= 0x600;
481 retval = arm920t_write_cp15_physical(target,
482 CP15PHYS_TESTSTATE, cp15c15);
483 if (retval != ERROR_OK)
484 return retval;
485 }
486 return ERROR_OK;
487 }
488
489 // EXPORTED to FA256
490 void arm920t_pre_restore_context(struct target *target)
491 {
492 uint32_t cp15c15;
493 struct arm920t_common *arm920t = target_to_arm920(target);
494
495 /* restore i/d fault status and address register */
496 arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
497 arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
498 arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
499 arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
500
501 /* read-modify-write CP15 test state register
502 * to reenable I/D-cache linefills */
503 if (arm920t->preserve_cache)
504 {
505 arm920t_read_cp15_physical(target,
506 CP15PHYS_TESTSTATE, &cp15c15);
507 jtag_execute_queue();
508 cp15c15 &= ~0x600U;
509 arm920t_write_cp15_physical(target,
510 CP15PHYS_TESTSTATE, cp15c15);
511 }
512 }
513
514 static const char arm920_not[] = "target is not an ARM920";
515
516 static int arm920t_verify_pointer(struct command_context *cmd_ctx,
517 struct arm920t_common *arm920t)
518 {
519 if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
520 command_print(cmd_ctx, arm920_not);
521 return ERROR_TARGET_INVALID;
522 }
523
524 return ERROR_OK;
525 }
526
527 /** Logs summary of ARM920 state for a halted target. */
528 int arm920t_arch_state(struct target *target)
529 {
530 static const char *state[] =
531 {
532 "disabled", "enabled"
533 };
534
535 struct arm920t_common *arm920t = target_to_arm920(target);
536
537 if (arm920t->common_magic != ARM920T_COMMON_MAGIC)
538 {
539 LOG_ERROR("BUG: %s", arm920_not);
540 return ERROR_TARGET_INVALID;
541 }
542
543 arm_arch_state(target);
544 LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
545 state[arm920t->armv4_5_mmu.mmu_enabled],
546 state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
547 state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
548
549 return ERROR_OK;
550 }
551
552 static int arm920_mmu(struct target *target, int *enabled)
553 {
554 if (target->state != TARGET_HALTED) {
555 LOG_ERROR("%s: target not halted", __func__);
556 return ERROR_TARGET_INVALID;
557 }
558
559 *enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
560 return ERROR_OK;
561 }
562
563 static int arm920_virt2phys(struct target *target,
564 uint32_t virt, uint32_t *phys)
565 {
566 uint32_t cb;
567 struct arm920t_common *arm920t = target_to_arm920(target);
568
569 uint32_t ret;
570 int retval = armv4_5_mmu_translate_va(target,
571 &arm920t->armv4_5_mmu, virt, &cb, &ret);
572 if (retval != ERROR_OK)
573 return retval;
574 *phys = ret;
575 return ERROR_OK;
576 }
577
578 /** Reads a buffer, in the specified word size, with current MMU settings. */
579 int arm920t_read_memory(struct target *target, uint32_t address,
580 uint32_t size, uint32_t count, uint8_t *buffer)
581 {
582 int retval;
583
584 retval = arm7_9_read_memory(target, address, size, count, buffer);
585
586 return retval;
587 }
588
589
590 static int arm920t_read_phys_memory(struct target *target,
591 uint32_t address, uint32_t size,
592 uint32_t count, uint8_t *buffer)
593 {
594 struct arm920t_common *arm920t = target_to_arm920(target);
595
596 return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
597 address, size, count, buffer);
598 }
599
600 static int arm920t_write_phys_memory(struct target *target,
601 uint32_t address, uint32_t size,
602 uint32_t count, const uint8_t *buffer)
603 {
604 struct arm920t_common *arm920t = target_to_arm920(target);
605
606 return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
607 address, size, count, buffer);
608 }
609
610
611 /** Writes a buffer, in the specified word size, with current MMU settings. */
612 int arm920t_write_memory(struct target *target, uint32_t address,
613 uint32_t size, uint32_t count, const uint8_t *buffer)
614 {
615 int retval;
616 const uint32_t cache_mask = ~0x1f; /* cache line size : 32 byte */
617 struct arm920t_common *arm920t = target_to_arm920(target);
618
619 /* FIX!!!! this should be cleaned up and made much more general. The
620 * plan is to write up and test on arm920t specifically and
621 * then generalize and clean up afterwards.
622 *
623 * Also it should be moved to the callbacks that handle breakpoints
624 * specifically and not the generic memory write fn's. See XScale code.
625 */
626 if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) &&
627 ((size==2) || (size==4)))
628 {
629 /* special case the handling of single word writes to
630 * bypass MMU, to allow implementation of breakpoints
631 * in memory marked read only
632 * by MMU
633 */
634 uint32_t cb;
635 uint32_t pa;
636
637 /*
638 * We need physical address and cb
639 */
640 retval = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu,
641 address, &cb, &pa);
642 if (retval != ERROR_OK)
643 return retval;
644
645 if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
646 {
647 if (cb & 0x1)
648 {
649 LOG_DEBUG("D-Cache buffered, "
650 "drain write buffer");
651 /*
652 * Buffered ?
653 * Drain write buffer - MCR p15,0,Rd,c7,c10,4
654 */
655
656 retval = arm920t_write_cp15_interpreted(target,
657 ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
658 0x0, 0);
659 if (retval != ERROR_OK)
660 return retval;
661 }
662
663 if (cb == 0x3)
664 {
665 /*
666 * Write back memory ? -> clean cache
667 *
668 * There is no way to clean cache lines using
669 * cp15 scan chain, so copy the full cache
670 * line from cache to physical memory.
671 */
672 uint8_t data[32];
673
674 LOG_DEBUG("D-Cache in 'write back' mode, "
675 "flush cache line");
676
677 retval = target_read_memory(target,
678 address & cache_mask, 1,
679 sizeof(data), &data[0]);
680 if (retval != ERROR_OK)
681 return retval;
682
683 retval = armv4_5_mmu_write_physical(target,
684 &arm920t->armv4_5_mmu,
685 pa & cache_mask, 1,
686 sizeof(data), &data[0]);
687 if (retval != ERROR_OK)
688 return retval;
689 }
690
691 /* Cached ? */
692 if (cb & 0x2)
693 {
694 /*
695 * Cached ? -> Invalidate data cache using MVA
696 *
697 * MCR p15,0,Rd,c7,c6,1
698 */
699 LOG_DEBUG("D-Cache enabled, "
700 "invalidate cache line");
701
702 retval = arm920t_write_cp15_interpreted(target,
703 ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
704 address & cache_mask);
705 if (retval != ERROR_OK)
706 return retval;
707 }
708 }
709
710 /* write directly to physical memory,
711 * bypassing any read only MMU bits, etc.
712 */
713 retval = armv4_5_mmu_write_physical(target,
714 &arm920t->armv4_5_mmu, pa, size,
715 count, buffer);
716 if (retval != ERROR_OK)
717 return retval;
718 } else
719 {
720 if ((retval = arm7_9_write_memory(target, address,
721 size, count, buffer)) != ERROR_OK)
722 return retval;
723 }
724
725 /* If ICache is enabled, we have to invalidate affected ICache lines
726 * the DCache is forced to write-through,
727 * so we don't have to clean it here
728 */
729 if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
730 {
731 if (count <= 1)
732 {
733 /* invalidate ICache single entry with MVA
734 * mcr 15, 0, r0, cr7, cr5, {1}
735 */
736 LOG_DEBUG("I-Cache enabled, "
737 "invalidating affected I-Cache line");
738 retval = arm920t_write_cp15_interpreted(target,
739 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
740 0x0, address & cache_mask);
741 if (retval != ERROR_OK)
742 return retval;
743 }
744 else
745 {
746 /* invalidate ICache
747 * mcr 15, 0, r0, cr7, cr5, {0}
748 */
749 retval = arm920t_write_cp15_interpreted(target,
750 ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
751 0x0, 0x0);
752 if (retval != ERROR_OK)
753 return retval;
754 }
755 }
756
757 return ERROR_OK;
758 }
759
760 // EXPORTED to FA256
761 int arm920t_soft_reset_halt(struct target *target)
762 {
763 int retval = ERROR_OK;
764 struct arm920t_common *arm920t = target_to_arm920(target);
765 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
766 struct arm *armv4_5 = &arm7_9->armv4_5_common;
767 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
768
769 if ((retval = target_halt(target)) != ERROR_OK)
770 {
771 return retval;
772 }
773
774 long long then = timeval_ms();
775 int timeout;
776 while (!(timeout = ((timeval_ms()-then) > 1000)))
777 {
778 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)
779 == 0)
780 {
781 embeddedice_read_reg(dbg_stat);
782 if ((retval = jtag_execute_queue()) != ERROR_OK)
783 {
784 return retval;
785 }
786 } else
787 {
788 break;
789 }
790 if (debug_level >= 3)
791 {
792 /* do not eat all CPU, time out after 1 se*/
793 alive_sleep(100);
794 } else
795 {
796 keep_alive();
797 }
798 }
799 if (timeout)
800 {
801 LOG_ERROR("Failed to halt CPU after 1 sec");
802 return ERROR_TARGET_TIMEOUT;
803 }
804
805 target->state = TARGET_HALTED;
806
807 /* SVC, ARM state, IRQ and FIQ disabled */
808 uint32_t cpsr;
809
810 cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
811 cpsr &= ~0xff;
812 cpsr |= 0xd3;
813 arm_set_cpsr(armv4_5, cpsr);
814 armv4_5->cpsr->dirty = 1;
815
816 /* start fetching from 0x0 */
817 buf_set_u32(armv4_5->pc->value, 0, 32, 0x0);
818 armv4_5->pc->dirty = 1;
819 armv4_5->pc->valid = 1;
820
821 arm920t_disable_mmu_caches(target, 1, 1, 1);
822 arm920t->armv4_5_mmu.mmu_enabled = 0;
823 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
824 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
825
826 return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
827 }
828
829 /* FIXME remove forward decls */
830 static int arm920t_mrc(struct target *target, int cpnum,
831 uint32_t op1, uint32_t op2,
832 uint32_t CRn, uint32_t CRm,
833 uint32_t *value);
834 static int arm920t_mcr(struct target *target, int cpnum,
835 uint32_t op1, uint32_t op2,
836 uint32_t CRn, uint32_t CRm,
837 uint32_t value);
838
839 static int arm920t_init_arch_info(struct target *target,
840 struct arm920t_common *arm920t, struct jtag_tap *tap)
841 {
842 struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
843
844 arm7_9->armv4_5_common.mrc = arm920t_mrc;
845 arm7_9->armv4_5_common.mcr = arm920t_mcr;
846
847 /* initialize arm7/arm9 specific info (including armv4_5) */
848 arm9tdmi_init_arch_info(target, arm7_9, tap);
849
850 arm920t->common_magic = ARM920T_COMMON_MAGIC;
851
852 arm7_9->post_debug_entry = arm920t_post_debug_entry;
853 arm7_9->pre_restore_context = arm920t_pre_restore_context;
854
855 arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
856 arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
857 arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
858 arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
859 arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
860 arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
861 arm920t->armv4_5_mmu.has_tiny_pages = 1;
862 arm920t->armv4_5_mmu.mmu_enabled = 0;
863
864 /* disabling linefills leads to lockups, so keep them enabled for now
865 * this doesn't affect correctness, but might affect timing issues, if
866 * important data is evicted from the cache during the debug session
867 * */
868 arm920t->preserve_cache = 0;
869
870 /* override hw single-step capability from ARM9TDMI */
871 arm7_9->has_single_step = 1;
872
873 return ERROR_OK;
874 }
875
876 static int arm920t_target_create(struct target *target, Jim_Interp *interp)
877 {
878 struct arm920t_common *arm920t;
879
880 arm920t = calloc(1,sizeof(struct arm920t_common));
881 return arm920t_init_arch_info(target, arm920t, target->tap);
882 }
883
884 COMMAND_HANDLER(arm920t_handle_read_cache_command)
885 {
886 int retval = ERROR_OK;
887 struct target *target = get_current_target(CMD_CTX);
888 struct arm920t_common *arm920t = target_to_arm920(target);
889 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
890 struct arm *armv4_5 = &arm7_9->armv4_5_common;
891 uint32_t cp15c15;
892 uint32_t cp15_ctrl, cp15_ctrl_saved;
893 uint32_t regs[16];
894 uint32_t *regs_p[16];
895 uint32_t C15_C_D_Ind, C15_C_I_Ind;
896 int i;
897 FILE *output;
898 int segment, index_t;
899 struct reg *r;
900
901 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
902 if (retval != ERROR_OK)
903 return retval;
904
905 if (CMD_ARGC != 1)
906 {
907 command_print(CMD_CTX, "usage: arm920t read_cache <filename>");
908 return ERROR_OK;
909 }
910
911 if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
912 {
913 LOG_DEBUG("error opening cache content file");
914 return ERROR_OK;
915 }
916
917 for (i = 0; i < 16; i++)
918 regs_p[i] = &regs[i];
919
920 /* disable MMU and Caches */
921 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
922 if ((retval = jtag_execute_queue()) != ERROR_OK)
923 {
924 return retval;
925 }
926 cp15_ctrl_saved = cp15_ctrl;
927 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
928 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
929 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
930
931 /* read CP15 test state register */
932 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
933 jtag_execute_queue();
934
935 /* read DCache content */
936 fprintf(output, "DCache:\n");
937
938 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
939 for (segment = 0;
940 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
941 segment++)
942 {
943 fprintf(output, "\nsegment: %i\n----------", segment);
944
945 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
946 regs[0] = 0x0 | (segment << 5);
947 arm9tdmi_write_core_regs(target, 0x1, regs);
948
949 /* set interpret mode */
950 cp15c15 |= 0x1;
951 arm920t_write_cp15_physical(target,
952 CP15PHYS_TESTSTATE, cp15c15);
953
954 /* D CAM Read, loads current victim into C15.C.D.Ind */
955 arm920t_execute_cp15(target,
956 ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(1, 0));
957
958 /* read current victim */
959 arm920t_read_cp15_physical(target,
960 CP15PHYS_DCACHE_IDX, &C15_C_D_Ind);
961
962 /* clear interpret mode */
963 cp15c15 &= ~0x1;
964 arm920t_write_cp15_physical(target,
965 CP15PHYS_TESTSTATE, cp15c15);
966
967 for (index_t = 0; index_t < 64; index_t++)
968 {
969 /* Ra:
970 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
971 */
972 regs[0] = 0x0 | (segment << 5) | (index_t << 26);
973 arm9tdmi_write_core_regs(target, 0x1, regs);
974
975 /* set interpret mode */
976 cp15c15 |= 0x1;
977 arm920t_write_cp15_physical(target,
978 CP15PHYS_TESTSTATE, cp15c15);
979
980 /* Write DCache victim */
981 arm920t_execute_cp15(target,
982 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
983
984 /* Read D RAM */
985 arm920t_execute_cp15(target,
986 ARMV4_5_MCR(15,2,0,15,10,2),
987 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
988
989 /* Read D CAM */
990 arm920t_execute_cp15(target,
991 ARMV4_5_MCR(15,2,0,15,6,2),
992 ARMV4_5_LDR(9, 0));
993
994 /* clear interpret mode */
995 cp15c15 &= ~0x1;
996 arm920t_write_cp15_physical(target,
997 CP15PHYS_TESTSTATE, cp15c15);
998
999 /* read D RAM and CAM content */
1000 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
1001 if ((retval = jtag_execute_queue()) != ERROR_OK)
1002 {
1003 return retval;
1004 }
1005
1006 /* mask LFSR[6] */
1007 regs[9] &= 0xfffffffe;
1008 fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8"
1009 PRIx32 ", content (%s):\n",
1010 segment, index_t, regs[9],
1011 (regs[9] & 0x10) ? "valid" : "invalid");
1012
1013 for (i = 1; i < 9; i++)
1014 {
1015 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1016 i-1, regs[i]);
1017 }
1018
1019 }
1020
1021 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1022 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
1023 arm9tdmi_write_core_regs(target, 0x1, regs);
1024
1025 /* set interpret mode */
1026 cp15c15 |= 0x1;
1027 arm920t_write_cp15_physical(target,
1028 CP15PHYS_TESTSTATE, cp15c15);
1029
1030 /* Write DCache victim */
1031 arm920t_execute_cp15(target,
1032 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
1033
1034 /* clear interpret mode */
1035 cp15c15 &= ~0x1;
1036 arm920t_write_cp15_physical(target,
1037 CP15PHYS_TESTSTATE, cp15c15);
1038 }
1039
1040 /* read ICache content */
1041 fprintf(output, "ICache:\n");
1042
1043 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
1044 for (segment = 0;
1045 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
1046 segment++)
1047 {
1048 fprintf(output, "segment: %i\n----------", segment);
1049
1050 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
1051 regs[0] = 0x0 | (segment << 5);
1052 arm9tdmi_write_core_regs(target, 0x1, regs);
1053
1054 /* set interpret mode */
1055 cp15c15 |= 0x1;
1056 arm920t_write_cp15_physical(target,
1057 CP15PHYS_TESTSTATE, cp15c15);
1058
1059 /* I CAM Read, loads current victim into C15.C.I.Ind */
1060 arm920t_execute_cp15(target,
1061 ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(1, 0));
1062
1063 /* read current victim */
1064 arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX,
1065 &C15_C_I_Ind);
1066
1067 /* clear interpret mode */
1068 cp15c15 &= ~0x1;
1069 arm920t_write_cp15_physical(target,
1070 CP15PHYS_TESTSTATE, cp15c15);
1071
1072 for (index_t = 0; index_t < 64; index_t++)
1073 {
1074 /* Ra:
1075 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
1076 */
1077 regs[0] = 0x0 | (segment << 5) | (index_t << 26);
1078 arm9tdmi_write_core_regs(target, 0x1, regs);
1079
1080 /* set interpret mode */
1081 cp15c15 |= 0x1;
1082 arm920t_write_cp15_physical(target,
1083 CP15PHYS_TESTSTATE, cp15c15);
1084
1085 /* Write ICache victim */
1086 arm920t_execute_cp15(target,
1087 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1088
1089 /* Read I RAM */
1090 arm920t_execute_cp15(target,
1091 ARMV4_5_MCR(15,2,0,15,9,2),
1092 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
1093
1094 /* Read I CAM */
1095 arm920t_execute_cp15(target,
1096 ARMV4_5_MCR(15,2,0,15,5,2),
1097 ARMV4_5_LDR(9, 0));
1098
1099 /* clear interpret mode */
1100 cp15c15 &= ~0x1;
1101 arm920t_write_cp15_physical(target,
1102 CP15PHYS_TESTSTATE, cp15c15);
1103
1104 /* read I RAM and CAM content */
1105 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
1106 if ((retval = jtag_execute_queue()) != ERROR_OK)
1107 {
1108 return retval;
1109 }
1110
1111 /* mask LFSR[6] */
1112 regs[9] &= 0xfffffffe;
1113 fprintf(output, "\nsegment: %i, index: %i, "
1114 "CAM: 0x%8.8" PRIx32 ", content (%s):\n",
1115 segment, index_t, regs[9],
1116 (regs[9] & 0x10) ? "valid" : "invalid");
1117
1118 for (i = 1; i < 9; i++)
1119 {
1120 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1121 i-1, regs[i]);
1122 }
1123 }
1124
1125 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1126 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
1127 arm9tdmi_write_core_regs(target, 0x1, regs);
1128
1129 /* set interpret mode */
1130 cp15c15 |= 0x1;
1131 arm920t_write_cp15_physical(target,
1132 CP15PHYS_TESTSTATE, cp15c15);
1133
1134 /* Write ICache victim */
1135 arm920t_execute_cp15(target,
1136 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1137
1138 /* clear interpret mode */
1139 cp15c15 &= ~0x1;
1140 arm920t_write_cp15_physical(target,
1141 CP15PHYS_TESTSTATE, cp15c15);
1142 }
1143
1144 /* restore CP15 MMU and Cache settings */
1145 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1146
1147 command_print(CMD_CTX, "cache content successfully output to %s",
1148 CMD_ARGV[0]);
1149
1150 fclose(output);
1151
1152 if (!is_arm_mode(armv4_5->core_mode))
1153 {
1154 LOG_ERROR("not a valid arm core mode - communication failure?");
1155 return ERROR_FAIL;
1156 }
1157
1158 /* force writeback of the valid data */
1159 r = armv4_5->core_cache->reg_list;
1160 r[0].dirty = r[0].valid;
1161 r[1].dirty = r[1].valid;
1162 r[2].dirty = r[2].valid;
1163 r[3].dirty = r[3].valid;
1164 r[4].dirty = r[4].valid;
1165 r[5].dirty = r[5].valid;
1166 r[6].dirty = r[6].valid;
1167 r[7].dirty = r[7].valid;
1168
1169 r = arm_reg_current(armv4_5, 8);
1170 r->dirty = r->valid;
1171
1172 r = arm_reg_current(armv4_5, 9);
1173 r->dirty = r->valid;
1174
1175 return ERROR_OK;
1176 }
1177
1178 COMMAND_HANDLER(arm920t_handle_read_mmu_command)
1179 {
1180 int retval = ERROR_OK;
1181 struct target *target = get_current_target(CMD_CTX);
1182 struct arm920t_common *arm920t = target_to_arm920(target);
1183 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1184 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1185 uint32_t cp15c15;
1186 uint32_t cp15_ctrl, cp15_ctrl_saved;
1187 uint32_t regs[16];
1188 uint32_t *regs_p[16];
1189 int i;
1190 FILE *output;
1191 uint32_t Dlockdown, Ilockdown;
1192 struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
1193 int victim;
1194 struct reg *r;
1195
1196 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1197 if (retval != ERROR_OK)
1198 return retval;
1199
1200 if (CMD_ARGC != 1)
1201 {
1202 command_print(CMD_CTX, "usage: arm920t read_mmu <filename>");
1203 return ERROR_OK;
1204 }
1205
1206 if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
1207 {
1208 LOG_DEBUG("error opening mmu content file");
1209 return ERROR_OK;
1210 }
1211
1212 for (i = 0; i < 16; i++)
1213 regs_p[i] = &regs[i];
1214
1215 /* disable MMU and Caches */
1216 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
1217 if ((retval = jtag_execute_queue()) != ERROR_OK)
1218 {
1219 return retval;
1220 }
1221 cp15_ctrl_saved = cp15_ctrl;
1222 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
1223 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
1224 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
1225
1226 /* read CP15 test state register */
1227 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
1228 if ((retval = jtag_execute_queue()) != ERROR_OK)
1229 {
1230 return retval;
1231 }
1232
1233 /* prepare reading D TLB content
1234 * */
1235
1236 /* set interpret mode */
1237 cp15c15 |= 0x1;
1238 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1239
1240 /* Read D TLB lockdown */
1241 arm920t_execute_cp15(target,
1242 ARMV4_5_MRC(15,0,0,10,0,0), ARMV4_5_LDR(1, 0));
1243
1244 /* clear interpret mode */
1245 cp15c15 &= ~0x1;
1246 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1247
1248 /* read D TLB lockdown stored to r1 */
1249 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1250 if ((retval = jtag_execute_queue()) != ERROR_OK)
1251 {
1252 return retval;
1253 }
1254 Dlockdown = regs[1];
1255
1256 for (victim = 0; victim < 64; victim += 8)
1257 {
1258 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1259 * base remains unchanged, victim goes through entries 0 to 63
1260 */
1261 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1262 arm9tdmi_write_core_regs(target, 0x2, regs);
1263
1264 /* set interpret mode */
1265 cp15c15 |= 0x1;
1266 arm920t_write_cp15_physical(target,
1267 CP15PHYS_TESTSTATE, cp15c15);
1268
1269 /* Write D TLB lockdown */
1270 arm920t_execute_cp15(target,
1271 ARMV4_5_MCR(15,0,0,10,0,0),
1272 ARMV4_5_STR(1, 0));
1273
1274 /* Read D TLB CAM */
1275 arm920t_execute_cp15(target,
1276 ARMV4_5_MCR(15,4,0,15,6,4),
1277 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1278
1279 /* clear interpret mode */
1280 cp15c15 &= ~0x1;
1281 arm920t_write_cp15_physical(target,
1282 CP15PHYS_TESTSTATE, cp15c15);
1283
1284 /* read D TLB CAM content stored to r2-r9 */
1285 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1286 if ((retval = jtag_execute_queue()) != ERROR_OK)
1287 {
1288 return retval;
1289 }
1290
1291 for (i = 0; i < 8; i++)
1292 d_tlb[victim + i].cam = regs[i + 2];
1293 }
1294
1295 for (victim = 0; victim < 64; victim++)
1296 {
1297 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1298 * base remains unchanged, victim goes through entries 0 to 63
1299 */
1300 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1301 arm9tdmi_write_core_regs(target, 0x2, regs);
1302
1303 /* set interpret mode */
1304 cp15c15 |= 0x1;
1305 arm920t_write_cp15_physical(target,
1306 CP15PHYS_TESTSTATE, cp15c15);
1307
1308 /* Write D TLB lockdown */
1309 arm920t_execute_cp15(target,
1310 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1311
1312 /* Read D TLB RAM1 */
1313 arm920t_execute_cp15(target,
1314 ARMV4_5_MCR(15,4,0,15,10,4), ARMV4_5_LDR(2,0));
1315
1316 /* Read D TLB RAM2 */
1317 arm920t_execute_cp15(target,
1318 ARMV4_5_MCR(15,4,0,15,2,5), ARMV4_5_LDR(3,0));
1319
1320 /* clear interpret mode */
1321 cp15c15 &= ~0x1;
1322 arm920t_write_cp15_physical(target,
1323 CP15PHYS_TESTSTATE, cp15c15);
1324
1325 /* read D TLB RAM content stored to r2 and r3 */
1326 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1327 if ((retval = jtag_execute_queue()) != ERROR_OK)
1328 {
1329 return retval;
1330 }
1331
1332 d_tlb[victim].ram1 = regs[2];
1333 d_tlb[victim].ram2 = regs[3];
1334 }
1335
1336 /* restore D TLB lockdown */
1337 regs[1] = Dlockdown;
1338 arm9tdmi_write_core_regs(target, 0x2, regs);
1339
1340 /* Write D TLB lockdown */
1341 arm920t_execute_cp15(target,
1342 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1343
1344 /* prepare reading I TLB content
1345 * */
1346
1347 /* set interpret mode */
1348 cp15c15 |= 0x1;
1349 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1350
1351 /* Read I TLB lockdown */
1352 arm920t_execute_cp15(target,
1353 ARMV4_5_MRC(15,0,0,10,0,1), ARMV4_5_LDR(1, 0));
1354
1355 /* clear interpret mode */
1356 cp15c15 &= ~0x1;
1357 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1358
1359 /* read I TLB lockdown stored to r1 */
1360 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1361 if ((retval = jtag_execute_queue()) != ERROR_OK)
1362 {
1363 return retval;
1364 }
1365 Ilockdown = regs[1];
1366
1367 for (victim = 0; victim < 64; victim += 8)
1368 {
1369 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1370 * base remains unchanged, victim goes through entries 0 to 63
1371 */
1372 regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
1373 arm9tdmi_write_core_regs(target, 0x2, regs);
1374
1375 /* set interpret mode */
1376 cp15c15 |= 0x1;
1377 arm920t_write_cp15_physical(target,
1378 CP15PHYS_TESTSTATE, cp15c15);
1379
1380 /* Write I TLB lockdown */
1381 arm920t_execute_cp15(target,
1382 ARMV4_5_MCR(15,0,0,10,0,1),
1383 ARMV4_5_STR(1, 0));
1384
1385 /* Read I TLB CAM */
1386 arm920t_execute_cp15(target,
1387 ARMV4_5_MCR(15,4,0,15,5,4),
1388 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1389
1390 /* clear interpret mode */
1391 cp15c15 &= ~0x1;
1392 arm920t_write_cp15_physical(target,
1393 CP15PHYS_TESTSTATE, cp15c15);
1394
1395 /* read I TLB CAM content stored to r2-r9 */
1396 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1397 if ((retval = jtag_execute_queue()) != ERROR_OK)
1398 {
1399 return retval;
1400 }
1401
1402 for (i = 0; i < 8; i++)
1403 i_tlb[i + victim].cam = regs[i + 2];
1404 }
1405
1406 for (victim = 0; victim < 64; victim++)
1407 {
1408 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1409 * base remains unchanged, victim goes through entries 0 to 63
1410 */
1411 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1412 arm9tdmi_write_core_regs(target, 0x2, regs);
1413
1414 /* set interpret mode */
1415 cp15c15 |= 0x1;
1416 arm920t_write_cp15_physical(target,
1417 CP15PHYS_TESTSTATE, cp15c15);
1418
1419 /* Write I TLB lockdown */
1420 arm920t_execute_cp15(target,
1421 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1422
1423 /* Read I TLB RAM1 */
1424 arm920t_execute_cp15(target,
1425 ARMV4_5_MCR(15,4,0,15,9,4), ARMV4_5_LDR(2,0));
1426
1427 /* Read I TLB RAM2 */
1428 arm920t_execute_cp15(target,
1429 ARMV4_5_MCR(15,4,0,15,1,5), ARMV4_5_LDR(3,0));
1430
1431 /* clear interpret mode */
1432 cp15c15 &= ~0x1;
1433 arm920t_write_cp15_physical(target,
1434 CP15PHYS_TESTSTATE, cp15c15);
1435
1436 /* read I TLB RAM content stored to r2 and r3 */
1437 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1438 if ((retval = jtag_execute_queue()) != ERROR_OK)
1439 {
1440 return retval;
1441 }
1442
1443 i_tlb[victim].ram1 = regs[2];
1444 i_tlb[victim].ram2 = regs[3];
1445 }
1446
1447 /* restore I TLB lockdown */
1448 regs[1] = Ilockdown;
1449 arm9tdmi_write_core_regs(target, 0x2, regs);
1450
1451 /* Write I TLB lockdown */
1452 arm920t_execute_cp15(target,
1453 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1454
1455 /* restore CP15 MMU and Cache settings */
1456 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1457
1458 /* output data to file */
1459 fprintf(output, "D TLB content:\n");
1460 for (i = 0; i < 64; i++)
1461 {
1462 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1463 " 0x%8.8" PRIx32 " %s\n",
1464 i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2,
1465 (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1466 }
1467
1468 fprintf(output, "\n\nI TLB content:\n");
1469 for (i = 0; i < 64; i++)
1470 {
1471 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1472 " 0x%8.8" PRIx32 " %s\n",
1473 i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2,
1474 (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1475 }
1476
1477 command_print(CMD_CTX, "mmu content successfully output to %s",
1478 CMD_ARGV[0]);
1479
1480 fclose(output);
1481
1482 if (!is_arm_mode(armv4_5->core_mode))
1483 {
1484 LOG_ERROR("not a valid arm core mode - communication failure?");
1485 return ERROR_FAIL;
1486 }
1487
1488 /* force writeback of the valid data */
1489 r = armv4_5->core_cache->reg_list;
1490 r[0].dirty = r[0].valid;
1491 r[1].dirty = r[1].valid;
1492 r[2].dirty = r[2].valid;
1493 r[3].dirty = r[3].valid;
1494 r[4].dirty = r[4].valid;
1495 r[5].dirty = r[5].valid;
1496 r[6].dirty = r[6].valid;
1497 r[7].dirty = r[7].valid;
1498
1499 r = arm_reg_current(armv4_5, 8);
1500 r->dirty = r->valid;
1501
1502 r = arm_reg_current(armv4_5, 9);
1503 r->dirty = r->valid;
1504
1505 return ERROR_OK;
1506 }
1507
1508 COMMAND_HANDLER(arm920t_handle_cp15_command)
1509 {
1510 int retval;
1511 struct target *target = get_current_target(CMD_CTX);
1512 struct arm920t_common *arm920t = target_to_arm920(target);
1513
1514 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1515 if (retval != ERROR_OK)
1516 return retval;
1517
1518 if (target->state != TARGET_HALTED)
1519 {
1520 command_print(CMD_CTX, "target must be stopped for "
1521 "\"%s\" command", CMD_NAME);
1522 return ERROR_OK;
1523 }
1524
1525 /* one argument, read a register.
1526 * two arguments, write it.
1527 */
1528 if (CMD_ARGC >= 1)
1529 {
1530 int address;
1531 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
1532
1533 if (CMD_ARGC == 1)
1534 {
1535 uint32_t value;
1536 if ((retval = arm920t_read_cp15_physical(target,
1537 address, &value)) != ERROR_OK)
1538 {
1539 command_print(CMD_CTX,
1540 "couldn't access reg %i", address);
1541 return ERROR_OK;
1542 }
1543 if ((retval = jtag_execute_queue()) != ERROR_OK)
1544 {
1545 return retval;
1546 }
1547
1548 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1549 address, value);
1550 }
1551 else if (CMD_ARGC == 2)
1552 {
1553 uint32_t value;
1554 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1555 retval = arm920t_write_cp15_physical(target,
1556 address, value);
1557 if (retval != ERROR_OK)
1558 {
1559 command_print(CMD_CTX,
1560 "couldn't access reg %i", address);
1561 /* REVISIT why lie? "return retval"? */
1562 return ERROR_OK;
1563 }
1564 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1565 address, value);
1566 }
1567 }
1568
1569 return ERROR_OK;
1570 }
1571
1572 COMMAND_HANDLER(arm920t_handle_cp15i_command)
1573 {
1574 int retval;
1575 struct target *target = get_current_target(CMD_CTX);
1576 struct arm920t_common *arm920t = target_to_arm920(target);
1577
1578 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1579 if (retval != ERROR_OK)
1580 return retval;
1581
1582
1583 if (target->state != TARGET_HALTED)
1584 {
1585 command_print(CMD_CTX, "target must be stopped for "
1586 "\"%s\" command", CMD_NAME);
1587 return ERROR_OK;
1588 }
1589
1590 /* one argument, read a register.
1591 * two arguments, write it.
1592 */
1593 if (CMD_ARGC >= 1)
1594 {
1595 uint32_t opcode;
1596 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);
1597
1598 if (CMD_ARGC == 1)
1599 {
1600 uint32_t value;
1601 retval = arm920t_read_cp15_interpreted(target,
1602 opcode, 0x0, &value);
1603 if (retval != ERROR_OK)
1604 {
1605 command_print(CMD_CTX,
1606 "couldn't execute %8.8" PRIx32,
1607 opcode);
1608 /* REVISIT why lie? "return retval"? */
1609 return ERROR_OK;
1610 }
1611
1612 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1613 opcode, value);
1614 }
1615 else if (CMD_ARGC == 2)
1616 {
1617 uint32_t value;
1618 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1619 retval = arm920t_write_cp15_interpreted(target,
1620 opcode, value, 0);
1621 if (retval != ERROR_OK)
1622 {
1623 command_print(CMD_CTX,
1624 "couldn't execute %8.8" PRIx32,
1625 opcode);
1626 /* REVISIT why lie? "return retval"? */
1627 return ERROR_OK;
1628 }
1629 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1630 opcode, value);
1631 }
1632 else if (CMD_ARGC == 3)
1633 {
1634 uint32_t value;
1635 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1636 uint32_t address;
1637 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
1638 retval = arm920t_write_cp15_interpreted(target,
1639 opcode, value, address);
1640 if (retval != ERROR_OK)
1641 {
1642 command_print(CMD_CTX,
1643 "couldn't execute %8.8" PRIx32, opcode);
1644 /* REVISIT why lie? "return retval"? */
1645 return ERROR_OK;
1646 }
1647 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32
1648 " %8.8" PRIx32, opcode, value, address);
1649 }
1650 }
1651 else
1652 {
1653 command_print(CMD_CTX,
1654 "usage: arm920t cp15i <opcode> [value] [address]");
1655 }
1656
1657 return ERROR_OK;
1658 }
1659
1660 COMMAND_HANDLER(arm920t_handle_cache_info_command)
1661 {
1662 int retval;
1663 struct target *target = get_current_target(CMD_CTX);
1664 struct arm920t_common *arm920t = target_to_arm920(target);
1665
1666 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1667 if (retval != ERROR_OK)
1668 return retval;
1669
1670 return armv4_5_handle_cache_info_command(CMD_CTX,
1671 &arm920t->armv4_5_mmu.armv4_5_cache);
1672 }
1673
1674
1675 static int arm920t_mrc(struct target *target, int cpnum,
1676 uint32_t op1, uint32_t op2,
1677 uint32_t CRn, uint32_t CRm,
1678 uint32_t *value)
1679 {
1680 if (cpnum!=15)
1681 {
1682 LOG_ERROR("Only cp15 is supported");
1683 return ERROR_FAIL;
1684 }
1685
1686 /* read "to" r0 */
1687 return arm920t_read_cp15_interpreted(target,
1688 ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
1689 0, value);
1690 }
1691
1692 static int arm920t_mcr(struct target *target, int cpnum,
1693 uint32_t op1, uint32_t op2,
1694 uint32_t CRn, uint32_t CRm,
1695 uint32_t value)
1696 {
1697 if (cpnum!=15)
1698 {
1699 LOG_ERROR("Only cp15 is supported");
1700 return ERROR_FAIL;
1701 }
1702
1703 /* write "from" r0 */
1704 return arm920t_write_cp15_interpreted(target,
1705 ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
1706 0, value);
1707 }
1708
1709 static const struct command_registration arm920t_exec_command_handlers[] = {
1710 {
1711 .name = "cp15",
1712 .handler = arm920t_handle_cp15_command,
1713 .mode = COMMAND_EXEC,
1714 .help = "display/modify cp15 register",
1715 .usage = "regnum [value]",
1716 },
1717 {
1718 .name = "cp15i",
1719 .handler = arm920t_handle_cp15i_command,
1720 .mode = COMMAND_EXEC,
1721 /* prefer using less error-prone "arm mcr" or "arm mrc" */
1722 .help = "display/modify cp15 register using ARM opcode"
1723 " (DEPRECATED)",
1724 .usage = "instruction [value [address]]",
1725 },
1726 {
1727 .name = "cache_info",
1728 .handler = arm920t_handle_cache_info_command,
1729 .mode = COMMAND_EXEC,
1730 .help = "display information about target caches",
1731 },
1732 {
1733 .name = "read_cache",
1734 .handler = arm920t_handle_read_cache_command,
1735 .mode = COMMAND_EXEC,
1736 .help = "dump I/D cache content to file",
1737 .usage = "filename",
1738 },
1739 {
1740 .name = "read_mmu",
1741 .handler = arm920t_handle_read_mmu_command,
1742 .mode = COMMAND_EXEC,
1743 .help = "dump I/D mmu content to file",
1744 .usage = "filename",
1745 },
1746 COMMAND_REGISTRATION_DONE
1747 };
1748 const struct command_registration arm920t_command_handlers[] = {
1749 {
1750 .chain = arm9tdmi_command_handlers,
1751 },
1752 {
1753 .name = "arm920t",
1754 .mode = COMMAND_ANY,
1755 .help = "arm920t command group",
1756 .chain = arm920t_exec_command_handlers,
1757 },
1758 COMMAND_REGISTRATION_DONE
1759 };
1760
1761 /** Holds methods for ARM920 targets. */
1762 struct target_type arm920t_target =
1763 {
1764 .name = "arm920t",
1765
1766 .poll = arm7_9_poll,
1767 .arch_state = arm920t_arch_state,
1768
1769 .target_request_data = arm7_9_target_request_data,
1770
1771 .halt = arm7_9_halt,
1772 .resume = arm7_9_resume,
1773 .step = arm7_9_step,
1774
1775 .assert_reset = arm7_9_assert_reset,
1776 .deassert_reset = arm7_9_deassert_reset,
1777 .soft_reset_halt = arm920t_soft_reset_halt,
1778
1779 .get_gdb_reg_list = arm_get_gdb_reg_list,
1780
1781 .read_memory = arm920t_read_memory,
1782 .write_memory = arm920t_write_memory,
1783 .read_phys_memory = arm920t_read_phys_memory,
1784 .write_phys_memory = arm920t_write_phys_memory,
1785 .mmu = arm920_mmu,
1786 .virt2phys = arm920_virt2phys,
1787
1788 .bulk_write_memory = arm7_9_bulk_write_memory,
1789
1790 .checksum_memory = arm_checksum_memory,
1791 .blank_check_memory = arm_blank_check_memory,
1792
1793 .run_algorithm = armv4_5_run_algorithm,
1794
1795 .add_breakpoint = arm7_9_add_breakpoint,
1796 .remove_breakpoint = arm7_9_remove_breakpoint,
1797 .add_watchpoint = arm7_9_add_watchpoint,
1798 .remove_watchpoint = arm7_9_remove_watchpoint,
1799
1800 .commands = arm920t_command_handlers,
1801 .target_create = arm920t_target_create,
1802 .init_target = arm9tdmi_init_target,
1803 .examine = arm7_9_examine,
1804 .check_reset = arm7_9_check_reset,
1805 };