target/arm920t: change prototype of arm920t_verify_pointer()
[openocd.git] / src / target / arm920t.c
1
2 /***************************************************************************
3 * Copyright (C) 2005 by Dominic Rath *
4 * Dominic.Rath@gmx.de *
5 * *
6 * This program is free software; you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation; either version 2 of the License, or *
9 * (at your option) any later version. *
10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
18 ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "arm920t.h"
25 #include <helper/time_support.h>
26 #include "target_type.h"
27 #include "register.h"
28 #include "arm_opcodes.h"
29
30 /*
31 * For information about the ARM920T, see ARM DDI 0151C especially
32 * Chapter 9 about debug support, which shows how to manipulate each
33 * of the different scan chains:
34 *
35 * 0 ... ARM920 signals, e.g. to rest of SOC (unused here)
36 * 1 ... debugging; watchpoint and breakpoint status, etc; also
37 * MMU and cache access in conjunction with scan chain 15
38 * 2 ... EmbeddedICE
39 * 3 ... external boundary scan (SoC-specific, unused here)
40 * 4 ... access to cache tag RAM
41 * 6 ... ETM9
42 * 15 ... access coprocessor 15, "physical" or "interpreted" modes
43 * "interpreted" works with a few actual MRC/MCR instructions
44 * "physical" provides register-like behaviors. Section 9.6.7
45 * covers these details.
46 *
47 * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
48 */
49
50 #if 0
51 #define _DEBUG_INSTRUCTION_EXECUTION_
52 #endif
53
54 /* Table 9-8 shows scan chain 15 format during physical access mode, using a
55 * dedicated 6-bit address space (encoded in bits 33:38). Writes use one
56 * JTAG scan, while reads use two.
57 *
58 * Table 9-9 lists the thirteen registers which support physical access.
59 * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
60 * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
61 *
62 * x == bit[38]
63 * y == bits[37:34]
64 * z == bit[33]
65 */
66 #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
67
68 /* Registers supporting physical Read access (from table 9-9) */
69 #define CP15PHYS_CACHETYPE ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
70 #define CP15PHYS_ICACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
71 #define CP15PHYS_DCACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
72 /* NOTE: several more registers support only physical read access */
73
74 /* Registers supporting physical Read/Write access (from table 9-9) */
75 #define CP15PHYS_CTRL ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
76 #define CP15PHYS_PID ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
77 #define CP15PHYS_TESTSTATE ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
78 #define CP15PHYS_ICACHE ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
79 #define CP15PHYS_DCACHE ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
80
81 static int arm920t_read_cp15_physical(struct target *target,
82 int reg_addr, uint32_t *value)
83 {
84 struct arm920t_common *arm920t = target_to_arm920(target);
85 struct arm_jtag *jtag_info;
86 struct scan_field fields[4];
87 uint8_t access_type_buf = 1;
88 uint8_t reg_addr_buf = reg_addr & 0x3f;
89 uint8_t nr_w_buf = 0;
90 int retval;
91
92 jtag_info = &arm920t->arm7_9_common.jtag_info;
93
94 retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
95 if (retval != ERROR_OK)
96 return retval;
97 retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
98 if (retval != ERROR_OK)
99 return retval;
100
101 fields[0].num_bits = 1;
102 fields[0].out_value = &access_type_buf;
103 fields[0].in_value = NULL;
104
105 fields[1].num_bits = 32;
106 fields[1].out_value = NULL;
107 fields[1].in_value = NULL;
108
109 fields[2].num_bits = 6;
110 fields[2].out_value = &reg_addr_buf;
111 fields[2].in_value = NULL;
112
113 fields[3].num_bits = 1;
114 fields[3].out_value = &nr_w_buf;
115 fields[3].in_value = NULL;
116
117 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
118
119 fields[1].in_value = (uint8_t *)value;
120
121 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
122
123 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
124
125 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
126 jtag_execute_queue();
127 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
128 #endif
129
130 return ERROR_OK;
131 }
132
133 static int arm920t_write_cp15_physical(struct target *target,
134 int reg_addr, uint32_t value)
135 {
136 struct arm920t_common *arm920t = target_to_arm920(target);
137 struct arm_jtag *jtag_info;
138 struct scan_field fields[4];
139 uint8_t access_type_buf = 1;
140 uint8_t reg_addr_buf = reg_addr & 0x3f;
141 uint8_t nr_w_buf = 1;
142 uint8_t value_buf[4];
143 int retval;
144
145 jtag_info = &arm920t->arm7_9_common.jtag_info;
146
147 buf_set_u32(value_buf, 0, 32, value);
148
149 retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
150 if (retval != ERROR_OK)
151 return retval;
152 retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
153 if (retval != ERROR_OK)
154 return retval;
155
156 fields[0].num_bits = 1;
157 fields[0].out_value = &access_type_buf;
158 fields[0].in_value = NULL;
159
160 fields[1].num_bits = 32;
161 fields[1].out_value = value_buf;
162 fields[1].in_value = NULL;
163
164 fields[2].num_bits = 6;
165 fields[2].out_value = &reg_addr_buf;
166 fields[2].in_value = NULL;
167
168 fields[3].num_bits = 1;
169 fields[3].out_value = &nr_w_buf;
170 fields[3].in_value = NULL;
171
172 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
173
174 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
175 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
176 #endif
177
178 return ERROR_OK;
179 }
180
181 /* See table 9-10 for scan chain 15 format during interpreted access mode.
182 * If the TESTSTATE register is set for interpreted access, certain CP15
183 * MRC and MCR instructions may be executed through scan chain 15.
184 *
185 * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
186 * executed using scan chain 15 interpreted mode.
187 */
188 static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
189 uint32_t arm_opcode)
190 {
191 int retval;
192 struct arm920t_common *arm920t = target_to_arm920(target);
193 struct arm_jtag *jtag_info;
194 struct scan_field fields[4];
195 uint8_t access_type_buf = 0; /* interpreted access */
196 uint8_t reg_addr_buf = 0x0;
197 uint8_t nr_w_buf = 0;
198 uint8_t cp15_opcode_buf[4];
199
200 jtag_info = &arm920t->arm7_9_common.jtag_info;
201
202 retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
203 if (retval != ERROR_OK)
204 return retval;
205 retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
206 if (retval != ERROR_OK)
207 return retval;
208
209 buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
210
211 fields[0].num_bits = 1;
212 fields[0].out_value = &access_type_buf;
213 fields[0].in_value = NULL;
214
215 fields[1].num_bits = 32;
216 fields[1].out_value = cp15_opcode_buf;
217 fields[1].in_value = NULL;
218
219 fields[2].num_bits = 6;
220 fields[2].out_value = &reg_addr_buf;
221 fields[2].in_value = NULL;
222
223 fields[3].num_bits = 1;
224 fields[3].out_value = &nr_w_buf;
225 fields[3].in_value = NULL;
226
227 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
228
229 arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
230 arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
231 retval = arm7_9_execute_sys_speed(target);
232 if (retval != ERROR_OK)
233 return retval;
234
235 retval = jtag_execute_queue();
236 if (retval != ERROR_OK) {
237 LOG_ERROR("failed executing JTAG queue");
238 return retval;
239 }
240
241 return ERROR_OK;
242 }
243
244 static int arm920t_read_cp15_interpreted(struct target *target,
245 uint32_t cp15_opcode, uint32_t address, uint32_t *value)
246 {
247 struct arm *arm = target_to_arm(target);
248 uint32_t *regs_p[1];
249 uint32_t regs[2];
250 uint32_t cp15c15 = 0x0;
251 struct reg *r = arm->core_cache->reg_list;
252
253 /* load address into R1 */
254 regs[1] = address;
255 arm9tdmi_write_core_regs(target, 0x2, regs);
256
257 /* read-modify-write CP15 test state register
258 * to enable interpreted access mode */
259 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
260 jtag_execute_queue();
261 cp15c15 |= 1; /* set interpret mode */
262 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
263
264 /* execute CP15 instruction and ARM load (reading from coprocessor) */
265 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
266
267 /* disable interpreted access mode */
268 cp15c15 &= ~1U; /* clear interpret mode */
269 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
270
271 /* retrieve value from R0 */
272 regs_p[0] = value;
273 arm9tdmi_read_core_regs(target, 0x1, regs_p);
274 jtag_execute_queue();
275
276 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
277 LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
278 cp15_opcode, address, *value);
279 #endif
280
281 if (!is_arm_mode(arm->core_mode)) {
282 LOG_ERROR("not a valid arm core mode - communication failure?");
283 return ERROR_FAIL;
284 }
285
286 r[0].dirty = true;
287 r[1].dirty = true;
288
289 return ERROR_OK;
290 }
291
292 static
293 int arm920t_write_cp15_interpreted(struct target *target,
294 uint32_t cp15_opcode, uint32_t value, uint32_t address)
295 {
296 uint32_t cp15c15 = 0x0;
297 struct arm *arm = target_to_arm(target);
298 uint32_t regs[2];
299 struct reg *r = arm->core_cache->reg_list;
300
301 /* load value, address into R0, R1 */
302 regs[0] = value;
303 regs[1] = address;
304 arm9tdmi_write_core_regs(target, 0x3, regs);
305
306 /* read-modify-write CP15 test state register
307 * to enable interpreted access mode */
308 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
309 jtag_execute_queue();
310 cp15c15 |= 1; /* set interpret mode */
311 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
312
313 /* execute CP15 instruction and ARM store (writing to coprocessor) */
314 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
315
316 /* disable interpreted access mode */
317 cp15c15 &= ~1U; /* set interpret mode */
318 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
319
320 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
321 LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
322 cp15_opcode, value, address);
323 #endif
324
325 if (!is_arm_mode(arm->core_mode)) {
326 LOG_ERROR("not a valid arm core mode - communication failure?");
327 return ERROR_FAIL;
328 }
329
330 r[0].dirty = true;
331 r[1].dirty = true;
332
333 return ERROR_OK;
334 }
335
336 /* EXPORTED to FA256 */
337 int arm920t_get_ttb(struct target *target, uint32_t *result)
338 {
339 int retval;
340 uint32_t ttb = 0x0;
341
342 retval = arm920t_read_cp15_interpreted(target,
343 /* FIXME use opcode macro */
344 0xeebf0f51, 0x0, &ttb);
345 if (retval != ERROR_OK)
346 return retval;
347
348 *result = ttb;
349 return ERROR_OK;
350 }
351
352 /* EXPORTED to FA256 */
353 int arm920t_disable_mmu_caches(struct target *target, int mmu,
354 int d_u_cache, int i_cache)
355 {
356 uint32_t cp15_control;
357 int retval;
358
359 /* read cp15 control register */
360 retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
361 if (retval != ERROR_OK)
362 return retval;
363 retval = jtag_execute_queue();
364 if (retval != ERROR_OK)
365 return retval;
366
367 if (mmu)
368 cp15_control &= ~0x1U;
369
370 if (d_u_cache)
371 cp15_control &= ~0x4U;
372
373 if (i_cache)
374 cp15_control &= ~0x1000U;
375
376 retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
377 return retval;
378 }
379
380 /* EXPORTED to FA256 */
381 int arm920t_enable_mmu_caches(struct target *target, int mmu,
382 int d_u_cache, int i_cache)
383 {
384 uint32_t cp15_control;
385 int retval;
386
387 /* read cp15 control register */
388 retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
389 if (retval != ERROR_OK)
390 return retval;
391 retval = jtag_execute_queue();
392 if (retval != ERROR_OK)
393 return retval;
394
395 if (mmu)
396 cp15_control |= 0x1U;
397
398 if (d_u_cache)
399 cp15_control |= 0x4U;
400
401 if (i_cache)
402 cp15_control |= 0x1000U;
403
404 retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
405 return retval;
406 }
407
408 /* EXPORTED to FA256 */
409 int arm920t_post_debug_entry(struct target *target)
410 {
411 uint32_t cp15c15;
412 struct arm920t_common *arm920t = target_to_arm920(target);
413 int retval;
414
415 /* examine cp15 control reg */
416 retval = arm920t_read_cp15_physical(target,
417 CP15PHYS_CTRL, &arm920t->cp15_control_reg);
418 if (retval != ERROR_OK)
419 return retval;
420 retval = jtag_execute_queue();
421 if (retval != ERROR_OK)
422 return retval;
423 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg);
424
425 if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1) {
426 uint32_t cache_type_reg;
427 /* identify caches */
428 retval = arm920t_read_cp15_physical(target,
429 CP15PHYS_CACHETYPE, &cache_type_reg);
430 if (retval != ERROR_OK)
431 return retval;
432 retval = jtag_execute_queue();
433 if (retval != ERROR_OK)
434 return retval;
435 armv4_5_identify_cache(cache_type_reg,
436 &arm920t->armv4_5_mmu.armv4_5_cache);
437 }
438
439 arm920t->armv4_5_mmu.mmu_enabled =
440 (arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
441 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
442 (arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
443 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
444 (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
445
446 /* save i/d fault status and address register
447 * FIXME use opcode macros */
448 retval = arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
449 if (retval != ERROR_OK)
450 return retval;
451 retval = arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
452 if (retval != ERROR_OK)
453 return retval;
454 retval = arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
455 if (retval != ERROR_OK)
456 return retval;
457 retval = arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
458 if (retval != ERROR_OK)
459 return retval;
460
461 LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32
462 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32,
463 arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
464
465 if (arm920t->preserve_cache) {
466 /* read-modify-write CP15 test state register
467 * to disable I/D-cache linefills */
468 retval = arm920t_read_cp15_physical(target,
469 CP15PHYS_TESTSTATE, &cp15c15);
470 if (retval != ERROR_OK)
471 return retval;
472 retval = jtag_execute_queue();
473 if (retval != ERROR_OK)
474 return retval;
475 cp15c15 |= 0x600;
476 retval = arm920t_write_cp15_physical(target,
477 CP15PHYS_TESTSTATE, cp15c15);
478 if (retval != ERROR_OK)
479 return retval;
480 }
481 return ERROR_OK;
482 }
483
484 /* EXPORTED to FA256 */
485 void arm920t_pre_restore_context(struct target *target)
486 {
487 uint32_t cp15c15;
488 struct arm920t_common *arm920t = target_to_arm920(target);
489
490 /* restore i/d fault status and address register */
491 arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
492 arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
493 arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
494 arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
495
496 /* read-modify-write CP15 test state register
497 * to reenable I/D-cache linefills */
498 if (arm920t->preserve_cache) {
499 arm920t_read_cp15_physical(target,
500 CP15PHYS_TESTSTATE, &cp15c15);
501 jtag_execute_queue();
502 cp15c15 &= ~0x600U;
503 arm920t_write_cp15_physical(target,
504 CP15PHYS_TESTSTATE, cp15c15);
505 }
506 }
507
508 static const char arm920_not[] = "target is not an ARM920";
509
510 static int arm920t_verify_pointer(struct command_invocation *cmd,
511 struct arm920t_common *arm920t)
512 {
513 if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
514 command_print(cmd->ctx, arm920_not);
515 return ERROR_TARGET_INVALID;
516 }
517
518 return ERROR_OK;
519 }
520
521 /** Logs summary of ARM920 state for a halted target. */
522 int arm920t_arch_state(struct target *target)
523 {
524 static const char *state[] = {
525 "disabled", "enabled"
526 };
527
528 struct arm920t_common *arm920t = target_to_arm920(target);
529
530 if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
531 LOG_ERROR("BUG: %s", arm920_not);
532 return ERROR_TARGET_INVALID;
533 }
534
535 arm_arch_state(target);
536 LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
537 state[arm920t->armv4_5_mmu.mmu_enabled],
538 state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
539 state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
540
541 return ERROR_OK;
542 }
543
544 static int arm920_mmu(struct target *target, int *enabled)
545 {
546 if (target->state != TARGET_HALTED) {
547 LOG_ERROR("%s: target not halted", __func__);
548 return ERROR_TARGET_INVALID;
549 }
550
551 *enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
552 return ERROR_OK;
553 }
554
555 static int arm920_virt2phys(struct target *target,
556 target_addr_t virt, target_addr_t *phys)
557 {
558 uint32_t cb;
559 struct arm920t_common *arm920t = target_to_arm920(target);
560
561 uint32_t ret;
562 int retval = armv4_5_mmu_translate_va(target,
563 &arm920t->armv4_5_mmu, virt, &cb, &ret);
564 if (retval != ERROR_OK)
565 return retval;
566 *phys = ret;
567 return ERROR_OK;
568 }
569
570 /** Reads a buffer, in the specified word size, with current MMU settings. */
571 int arm920t_read_memory(struct target *target, target_addr_t address,
572 uint32_t size, uint32_t count, uint8_t *buffer)
573 {
574 int retval;
575
576 retval = arm7_9_read_memory(target, address, size, count, buffer);
577
578 return retval;
579 }
580
581
582 static int arm920t_read_phys_memory(struct target *target,
583 target_addr_t address, uint32_t size,
584 uint32_t count, uint8_t *buffer)
585 {
586 struct arm920t_common *arm920t = target_to_arm920(target);
587
588 return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
589 address, size, count, buffer);
590 }
591
592 static int arm920t_write_phys_memory(struct target *target,
593 target_addr_t address, uint32_t size,
594 uint32_t count, const uint8_t *buffer)
595 {
596 struct arm920t_common *arm920t = target_to_arm920(target);
597
598 return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
599 address, size, count, buffer);
600 }
601
602 /** Writes a buffer, in the specified word size, with current MMU settings. */
603 int arm920t_write_memory(struct target *target, target_addr_t address,
604 uint32_t size, uint32_t count, const uint8_t *buffer)
605 {
606 int retval;
607 const uint32_t cache_mask = ~0x1f; /* cache line size : 32 byte */
608 struct arm920t_common *arm920t = target_to_arm920(target);
609
610 /* FIX!!!! this should be cleaned up and made much more general. The
611 * plan is to write up and test on arm920t specifically and
612 * then generalize and clean up afterwards.
613 *
614 * Also it should be moved to the callbacks that handle breakpoints
615 * specifically and not the generic memory write fn's. See XScale code.
616 */
617 if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) &&
618 ((size == 2) || (size == 4))) {
619 /* special case the handling of single word writes to
620 * bypass MMU, to allow implementation of breakpoints
621 * in memory marked read only
622 * by MMU
623 */
624 uint32_t cb;
625 uint32_t pa;
626
627 /*
628 * We need physical address and cb
629 */
630 retval = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu,
631 address, &cb, &pa);
632 if (retval != ERROR_OK)
633 return retval;
634
635 if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled) {
636 if (cb & 0x1) {
637 LOG_DEBUG("D-Cache buffered, "
638 "drain write buffer");
639 /*
640 * Buffered ?
641 * Drain write buffer - MCR p15,0,Rd,c7,c10,4
642 */
643
644 retval = arm920t_write_cp15_interpreted(target,
645 ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
646 0x0, 0);
647 if (retval != ERROR_OK)
648 return retval;
649 }
650
651 if (cb == 0x3) {
652 /*
653 * Write back memory ? -> clean cache
654 *
655 * There is no way to clean cache lines using
656 * cp15 scan chain, so copy the full cache
657 * line from cache to physical memory.
658 */
659 uint8_t data[32];
660
661 LOG_DEBUG("D-Cache in 'write back' mode, "
662 "flush cache line");
663
664 retval = target_read_memory(target,
665 address & cache_mask, 1,
666 sizeof(data), &data[0]);
667 if (retval != ERROR_OK)
668 return retval;
669
670 retval = armv4_5_mmu_write_physical(target,
671 &arm920t->armv4_5_mmu,
672 pa & cache_mask, 1,
673 sizeof(data), &data[0]);
674 if (retval != ERROR_OK)
675 return retval;
676 }
677
678 /* Cached ? */
679 if (cb & 0x2) {
680 /*
681 * Cached ? -> Invalidate data cache using MVA
682 *
683 * MCR p15,0,Rd,c7,c6,1
684 */
685 LOG_DEBUG("D-Cache enabled, "
686 "invalidate cache line");
687
688 retval = arm920t_write_cp15_interpreted(target,
689 ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
690 address & cache_mask);
691 if (retval != ERROR_OK)
692 return retval;
693 }
694 }
695
696 /* write directly to physical memory,
697 * bypassing any read only MMU bits, etc.
698 */
699 retval = armv4_5_mmu_write_physical(target,
700 &arm920t->armv4_5_mmu, pa, size,
701 count, buffer);
702 if (retval != ERROR_OK)
703 return retval;
704 } else {
705 retval = arm7_9_write_memory(target, address, size, count, buffer);
706 if (retval != ERROR_OK)
707 return retval;
708 }
709
710 /* If ICache is enabled, we have to invalidate affected ICache lines
711 * the DCache is forced to write-through,
712 * so we don't have to clean it here
713 */
714 if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled) {
715 if (count <= 1) {
716 /* invalidate ICache single entry with MVA
717 * mcr 15, 0, r0, cr7, cr5, {1}
718 */
719 LOG_DEBUG("I-Cache enabled, "
720 "invalidating affected I-Cache line");
721 retval = arm920t_write_cp15_interpreted(target,
722 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
723 0x0, address & cache_mask);
724 if (retval != ERROR_OK)
725 return retval;
726 } else {
727 /* invalidate ICache
728 * mcr 15, 0, r0, cr7, cr5, {0}
729 */
730 retval = arm920t_write_cp15_interpreted(target,
731 ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
732 0x0, 0x0);
733 if (retval != ERROR_OK)
734 return retval;
735 }
736 }
737
738 return ERROR_OK;
739 }
740
741 /* EXPORTED to FA256 */
742 int arm920t_soft_reset_halt(struct target *target)
743 {
744 int retval = ERROR_OK;
745 struct arm920t_common *arm920t = target_to_arm920(target);
746 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
747 struct arm *arm = &arm7_9->arm;
748 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
749
750 retval = target_halt(target);
751 if (retval != ERROR_OK)
752 return retval;
753
754 int64_t then = timeval_ms();
755 bool timeout;
756 while (!(timeout = ((timeval_ms()-then) > 1000))) {
757 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) == 0) {
758 embeddedice_read_reg(dbg_stat);
759 retval = jtag_execute_queue();
760 if (retval != ERROR_OK)
761 return retval;
762 } else
763 break;
764 if (debug_level >= 3) {
765 /* do not eat all CPU, time out after 1 se*/
766 alive_sleep(100);
767 } else
768 keep_alive();
769 }
770 if (timeout) {
771 LOG_ERROR("Failed to halt CPU after 1 sec");
772 return ERROR_TARGET_TIMEOUT;
773 }
774
775 target->state = TARGET_HALTED;
776
777 /* SVC, ARM state, IRQ and FIQ disabled */
778 uint32_t cpsr;
779
780 cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
781 cpsr &= ~0xff;
782 cpsr |= 0xd3;
783 arm_set_cpsr(arm, cpsr);
784 arm->cpsr->dirty = true;
785
786 /* start fetching from 0x0 */
787 buf_set_u32(arm->pc->value, 0, 32, 0x0);
788 arm->pc->dirty = true;
789 arm->pc->valid = true;
790
791 arm920t_disable_mmu_caches(target, 1, 1, 1);
792 arm920t->armv4_5_mmu.mmu_enabled = 0;
793 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
794 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
795
796 return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
797 }
798
799 /* FIXME remove forward decls */
800 static int arm920t_mrc(struct target *target, int cpnum,
801 uint32_t op1, uint32_t op2,
802 uint32_t CRn, uint32_t CRm,
803 uint32_t *value);
804 static int arm920t_mcr(struct target *target, int cpnum,
805 uint32_t op1, uint32_t op2,
806 uint32_t CRn, uint32_t CRm,
807 uint32_t value);
808
809 static int arm920t_init_arch_info(struct target *target,
810 struct arm920t_common *arm920t, struct jtag_tap *tap)
811 {
812 struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
813
814 arm7_9->arm.mrc = arm920t_mrc;
815 arm7_9->arm.mcr = arm920t_mcr;
816
817 /* initialize arm7/arm9 specific info (including armv4_5) */
818 arm9tdmi_init_arch_info(target, arm7_9, tap);
819
820 arm920t->common_magic = ARM920T_COMMON_MAGIC;
821
822 arm7_9->post_debug_entry = arm920t_post_debug_entry;
823 arm7_9->pre_restore_context = arm920t_pre_restore_context;
824 arm7_9->write_memory = arm920t_write_memory;
825
826 arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
827 arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
828 arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
829 arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
830 arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
831 arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
832 arm920t->armv4_5_mmu.has_tiny_pages = 1;
833 arm920t->armv4_5_mmu.mmu_enabled = 0;
834
835 /* disabling linefills leads to lockups, so keep them enabled for now
836 * this doesn't affect correctness, but might affect timing issues, if
837 * important data is evicted from the cache during the debug session
838 * */
839 arm920t->preserve_cache = 0;
840
841 /* override hw single-step capability from ARM9TDMI */
842 arm7_9->has_single_step = 1;
843
844 return ERROR_OK;
845 }
846
847 static int arm920t_target_create(struct target *target, Jim_Interp *interp)
848 {
849 struct arm920t_common *arm920t;
850
851 arm920t = calloc(1, sizeof(struct arm920t_common));
852 return arm920t_init_arch_info(target, arm920t, target->tap);
853 }
854
855 COMMAND_HANDLER(arm920t_handle_read_cache_command)
856 {
857 int retval = ERROR_OK;
858 struct target *target = get_current_target(CMD_CTX);
859 struct arm920t_common *arm920t = target_to_arm920(target);
860 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
861 struct arm *arm = &arm7_9->arm;
862 uint32_t cp15c15;
863 uint32_t cp15_ctrl, cp15_ctrl_saved;
864 uint32_t regs[16];
865 uint32_t *regs_p[16];
866 uint32_t C15_C_D_Ind, C15_C_I_Ind;
867 int i;
868 FILE *output;
869 int segment, index_t;
870 struct reg *r;
871
872 retval = arm920t_verify_pointer(CMD, arm920t);
873 if (retval != ERROR_OK)
874 return retval;
875
876 if (CMD_ARGC != 1)
877 return ERROR_COMMAND_SYNTAX_ERROR;
878
879 output = fopen(CMD_ARGV[0], "w");
880 if (output == NULL) {
881 LOG_DEBUG("error opening cache content file");
882 return ERROR_OK;
883 }
884
885 for (i = 0; i < 16; i++)
886 regs_p[i] = &regs[i];
887
888 /* disable MMU and Caches */
889 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
890 retval = jtag_execute_queue();
891 if (retval != ERROR_OK)
892 return retval;
893 cp15_ctrl_saved = cp15_ctrl;
894 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
895 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
896 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
897
898 /* read CP15 test state register */
899 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
900 jtag_execute_queue();
901
902 /* read DCache content */
903 fprintf(output, "DCache:\n");
904
905 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
906 for (segment = 0;
907 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
908 segment++) {
909 fprintf(output, "\nsegment: %i\n----------", segment);
910
911 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
912 regs[0] = 0x0 | (segment << 5);
913 arm9tdmi_write_core_regs(target, 0x1, regs);
914
915 /* set interpret mode */
916 cp15c15 |= 0x1;
917 arm920t_write_cp15_physical(target,
918 CP15PHYS_TESTSTATE, cp15c15);
919
920 /* D CAM Read, loads current victim into C15.C.D.Ind */
921 arm920t_execute_cp15(target,
922 ARMV4_5_MCR(15, 2, 0, 15, 6, 2), ARMV4_5_LDR(1, 0));
923
924 /* read current victim */
925 arm920t_read_cp15_physical(target,
926 CP15PHYS_DCACHE_IDX, &C15_C_D_Ind);
927
928 /* clear interpret mode */
929 cp15c15 &= ~0x1;
930 arm920t_write_cp15_physical(target,
931 CP15PHYS_TESTSTATE, cp15c15);
932
933 for (index_t = 0; index_t < 64; index_t++) {
934 /* Ra:
935 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
936 */
937 regs[0] = 0x0 | (segment << 5) | (index_t << 26);
938 arm9tdmi_write_core_regs(target, 0x1, regs);
939
940 /* set interpret mode */
941 cp15c15 |= 0x1;
942 arm920t_write_cp15_physical(target,
943 CP15PHYS_TESTSTATE, cp15c15);
944
945 /* Write DCache victim */
946 arm920t_execute_cp15(target,
947 ARMV4_5_MCR(15, 0, 0, 9, 1, 0), ARMV4_5_LDR(1, 0));
948
949 /* Read D RAM */
950 arm920t_execute_cp15(target,
951 ARMV4_5_MCR(15, 2, 0, 15, 10, 2),
952 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
953
954 /* Read D CAM */
955 arm920t_execute_cp15(target,
956 ARMV4_5_MCR(15, 2, 0, 15, 6, 2),
957 ARMV4_5_LDR(9, 0));
958
959 /* clear interpret mode */
960 cp15c15 &= ~0x1;
961 arm920t_write_cp15_physical(target,
962 CP15PHYS_TESTSTATE, cp15c15);
963
964 /* read D RAM and CAM content */
965 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
966 retval = jtag_execute_queue();
967 if (retval != ERROR_OK)
968 return retval;
969
970 /* mask LFSR[6] */
971 regs[9] &= 0xfffffffe;
972 fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8"
973 PRIx32 ", content (%s):\n",
974 segment, index_t, regs[9],
975 (regs[9] & 0x10) ? "valid" : "invalid");
976
977 for (i = 1; i < 9; i++) {
978 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
979 i-1, regs[i]);
980 }
981
982 }
983
984 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
985 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
986 arm9tdmi_write_core_regs(target, 0x1, regs);
987
988 /* set interpret mode */
989 cp15c15 |= 0x1;
990 arm920t_write_cp15_physical(target,
991 CP15PHYS_TESTSTATE, cp15c15);
992
993 /* Write DCache victim */
994 arm920t_execute_cp15(target,
995 ARMV4_5_MCR(15, 0, 0, 9, 1, 0), ARMV4_5_LDR(1, 0));
996
997 /* clear interpret mode */
998 cp15c15 &= ~0x1;
999 arm920t_write_cp15_physical(target,
1000 CP15PHYS_TESTSTATE, cp15c15);
1001 }
1002
1003 /* read ICache content */
1004 fprintf(output, "ICache:\n");
1005
1006 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
1007 for (segment = 0;
1008 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
1009 segment++) {
1010 fprintf(output, "segment: %i\n----------", segment);
1011
1012 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
1013 regs[0] = 0x0 | (segment << 5);
1014 arm9tdmi_write_core_regs(target, 0x1, regs);
1015
1016 /* set interpret mode */
1017 cp15c15 |= 0x1;
1018 arm920t_write_cp15_physical(target,
1019 CP15PHYS_TESTSTATE, cp15c15);
1020
1021 /* I CAM Read, loads current victim into C15.C.I.Ind */
1022 arm920t_execute_cp15(target,
1023 ARMV4_5_MCR(15, 2, 0, 15, 5, 2), ARMV4_5_LDR(1, 0));
1024
1025 /* read current victim */
1026 arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX,
1027 &C15_C_I_Ind);
1028
1029 /* clear interpret mode */
1030 cp15c15 &= ~0x1;
1031 arm920t_write_cp15_physical(target,
1032 CP15PHYS_TESTSTATE, cp15c15);
1033
1034 for (index_t = 0; index_t < 64; index_t++) {
1035 /* Ra:
1036 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
1037 */
1038 regs[0] = 0x0 | (segment << 5) | (index_t << 26);
1039 arm9tdmi_write_core_regs(target, 0x1, regs);
1040
1041 /* set interpret mode */
1042 cp15c15 |= 0x1;
1043 arm920t_write_cp15_physical(target,
1044 CP15PHYS_TESTSTATE, cp15c15);
1045
1046 /* Write ICache victim */
1047 arm920t_execute_cp15(target,
1048 ARMV4_5_MCR(15, 0, 0, 9, 1, 1), ARMV4_5_LDR(1, 0));
1049
1050 /* Read I RAM */
1051 arm920t_execute_cp15(target,
1052 ARMV4_5_MCR(15, 2, 0, 15, 9, 2),
1053 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
1054
1055 /* Read I CAM */
1056 arm920t_execute_cp15(target,
1057 ARMV4_5_MCR(15, 2, 0, 15, 5, 2),
1058 ARMV4_5_LDR(9, 0));
1059
1060 /* clear interpret mode */
1061 cp15c15 &= ~0x1;
1062 arm920t_write_cp15_physical(target,
1063 CP15PHYS_TESTSTATE, cp15c15);
1064
1065 /* read I RAM and CAM content */
1066 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
1067 retval = jtag_execute_queue();
1068 if (retval != ERROR_OK)
1069 return retval;
1070
1071 /* mask LFSR[6] */
1072 regs[9] &= 0xfffffffe;
1073 fprintf(output, "\nsegment: %i, index: %i, "
1074 "CAM: 0x%8.8" PRIx32 ", content (%s):\n",
1075 segment, index_t, regs[9],
1076 (regs[9] & 0x10) ? "valid" : "invalid");
1077
1078 for (i = 1; i < 9; i++) {
1079 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1080 i-1, regs[i]);
1081 }
1082 }
1083
1084 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1085 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
1086 arm9tdmi_write_core_regs(target, 0x1, regs);
1087
1088 /* set interpret mode */
1089 cp15c15 |= 0x1;
1090 arm920t_write_cp15_physical(target,
1091 CP15PHYS_TESTSTATE, cp15c15);
1092
1093 /* Write ICache victim */
1094 arm920t_execute_cp15(target,
1095 ARMV4_5_MCR(15, 0, 0, 9, 1, 1), ARMV4_5_LDR(1, 0));
1096
1097 /* clear interpret mode */
1098 cp15c15 &= ~0x1;
1099 arm920t_write_cp15_physical(target,
1100 CP15PHYS_TESTSTATE, cp15c15);
1101 }
1102
1103 /* restore CP15 MMU and Cache settings */
1104 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1105
1106 command_print(CMD_CTX, "cache content successfully output to %s",
1107 CMD_ARGV[0]);
1108
1109 fclose(output);
1110
1111 if (!is_arm_mode(arm->core_mode)) {
1112 LOG_ERROR("not a valid arm core mode - communication failure?");
1113 return ERROR_FAIL;
1114 }
1115
1116 /* force writeback of the valid data */
1117 r = arm->core_cache->reg_list;
1118 r[0].dirty = r[0].valid;
1119 r[1].dirty = r[1].valid;
1120 r[2].dirty = r[2].valid;
1121 r[3].dirty = r[3].valid;
1122 r[4].dirty = r[4].valid;
1123 r[5].dirty = r[5].valid;
1124 r[6].dirty = r[6].valid;
1125 r[7].dirty = r[7].valid;
1126
1127 r = arm_reg_current(arm, 8);
1128 r->dirty = r->valid;
1129
1130 r = arm_reg_current(arm, 9);
1131 r->dirty = r->valid;
1132
1133 return ERROR_OK;
1134 }
1135
1136 COMMAND_HANDLER(arm920t_handle_read_mmu_command)
1137 {
1138 int retval = ERROR_OK;
1139 struct target *target = get_current_target(CMD_CTX);
1140 struct arm920t_common *arm920t = target_to_arm920(target);
1141 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1142 struct arm *arm = &arm7_9->arm;
1143 uint32_t cp15c15;
1144 uint32_t cp15_ctrl, cp15_ctrl_saved;
1145 uint32_t regs[16];
1146 uint32_t *regs_p[16];
1147 int i;
1148 FILE *output;
1149 uint32_t Dlockdown, Ilockdown;
1150 struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
1151 int victim;
1152 struct reg *r;
1153
1154 retval = arm920t_verify_pointer(CMD, arm920t);
1155 if (retval != ERROR_OK)
1156 return retval;
1157
1158 if (CMD_ARGC != 1)
1159 return ERROR_COMMAND_SYNTAX_ERROR;
1160
1161 output = fopen(CMD_ARGV[0], "w");
1162 if (output == NULL) {
1163 LOG_DEBUG("error opening mmu content file");
1164 return ERROR_OK;
1165 }
1166
1167 for (i = 0; i < 16; i++)
1168 regs_p[i] = &regs[i];
1169
1170 /* disable MMU and Caches */
1171 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
1172 retval = jtag_execute_queue();
1173 if (retval != ERROR_OK)
1174 return retval;
1175 cp15_ctrl_saved = cp15_ctrl;
1176 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
1177 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
1178 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
1179
1180 /* read CP15 test state register */
1181 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
1182 retval = jtag_execute_queue();
1183 if (retval != ERROR_OK)
1184 return retval;
1185
1186 /* prepare reading D TLB content
1187 * */
1188
1189 /* set interpret mode */
1190 cp15c15 |= 0x1;
1191 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1192
1193 /* Read D TLB lockdown */
1194 arm920t_execute_cp15(target,
1195 ARMV4_5_MRC(15, 0, 0, 10, 0, 0), ARMV4_5_LDR(1, 0));
1196
1197 /* clear interpret mode */
1198 cp15c15 &= ~0x1;
1199 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1200
1201 /* read D TLB lockdown stored to r1 */
1202 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1203 retval = jtag_execute_queue();
1204 if (retval != ERROR_OK)
1205 return retval;
1206 Dlockdown = regs[1];
1207
1208 for (victim = 0; victim < 64; victim += 8) {
1209 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1210 * base remains unchanged, victim goes through entries 0 to 63
1211 */
1212 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1213 arm9tdmi_write_core_regs(target, 0x2, regs);
1214
1215 /* set interpret mode */
1216 cp15c15 |= 0x1;
1217 arm920t_write_cp15_physical(target,
1218 CP15PHYS_TESTSTATE, cp15c15);
1219
1220 /* Write D TLB lockdown */
1221 arm920t_execute_cp15(target,
1222 ARMV4_5_MCR(15, 0, 0, 10, 0, 0),
1223 ARMV4_5_STR(1, 0));
1224
1225 /* Read D TLB CAM */
1226 arm920t_execute_cp15(target,
1227 ARMV4_5_MCR(15, 4, 0, 15, 6, 4),
1228 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1229
1230 /* clear interpret mode */
1231 cp15c15 &= ~0x1;
1232 arm920t_write_cp15_physical(target,
1233 CP15PHYS_TESTSTATE, cp15c15);
1234
1235 /* read D TLB CAM content stored to r2-r9 */
1236 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1237 retval = jtag_execute_queue();
1238 if (retval != ERROR_OK)
1239 return retval;
1240
1241 for (i = 0; i < 8; i++)
1242 d_tlb[victim + i].cam = regs[i + 2];
1243 }
1244
1245 for (victim = 0; victim < 64; victim++) {
1246 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1247 * base remains unchanged, victim goes through entries 0 to 63
1248 */
1249 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1250 arm9tdmi_write_core_regs(target, 0x2, regs);
1251
1252 /* set interpret mode */
1253 cp15c15 |= 0x1;
1254 arm920t_write_cp15_physical(target,
1255 CP15PHYS_TESTSTATE, cp15c15);
1256
1257 /* Write D TLB lockdown */
1258 arm920t_execute_cp15(target,
1259 ARMV4_5_MCR(15, 0, 0, 10, 0, 0), ARMV4_5_STR(1, 0));
1260
1261 /* Read D TLB RAM1 */
1262 arm920t_execute_cp15(target,
1263 ARMV4_5_MCR(15, 4, 0, 15, 10, 4), ARMV4_5_LDR(2, 0));
1264
1265 /* Read D TLB RAM2 */
1266 arm920t_execute_cp15(target,
1267 ARMV4_5_MCR(15, 4, 0, 15, 2, 5), ARMV4_5_LDR(3, 0));
1268
1269 /* clear interpret mode */
1270 cp15c15 &= ~0x1;
1271 arm920t_write_cp15_physical(target,
1272 CP15PHYS_TESTSTATE, cp15c15);
1273
1274 /* read D TLB RAM content stored to r2 and r3 */
1275 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1276 retval = jtag_execute_queue();
1277 if (retval != ERROR_OK)
1278 return retval;
1279
1280 d_tlb[victim].ram1 = regs[2];
1281 d_tlb[victim].ram2 = regs[3];
1282 }
1283
1284 /* restore D TLB lockdown */
1285 regs[1] = Dlockdown;
1286 arm9tdmi_write_core_regs(target, 0x2, regs);
1287
1288 /* Write D TLB lockdown */
1289 arm920t_execute_cp15(target,
1290 ARMV4_5_MCR(15, 0, 0, 10, 0, 0), ARMV4_5_STR(1, 0));
1291
1292 /* prepare reading I TLB content
1293 * */
1294
1295 /* set interpret mode */
1296 cp15c15 |= 0x1;
1297 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1298
1299 /* Read I TLB lockdown */
1300 arm920t_execute_cp15(target,
1301 ARMV4_5_MRC(15, 0, 0, 10, 0, 1), ARMV4_5_LDR(1, 0));
1302
1303 /* clear interpret mode */
1304 cp15c15 &= ~0x1;
1305 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1306
1307 /* read I TLB lockdown stored to r1 */
1308 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1309 retval = jtag_execute_queue();
1310 if (retval != ERROR_OK)
1311 return retval;
1312 Ilockdown = regs[1];
1313
1314 for (victim = 0; victim < 64; victim += 8) {
1315 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1316 * base remains unchanged, victim goes through entries 0 to 63
1317 */
1318 regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
1319 arm9tdmi_write_core_regs(target, 0x2, regs);
1320
1321 /* set interpret mode */
1322 cp15c15 |= 0x1;
1323 arm920t_write_cp15_physical(target,
1324 CP15PHYS_TESTSTATE, cp15c15);
1325
1326 /* Write I TLB lockdown */
1327 arm920t_execute_cp15(target,
1328 ARMV4_5_MCR(15, 0, 0, 10, 0, 1),
1329 ARMV4_5_STR(1, 0));
1330
1331 /* Read I TLB CAM */
1332 arm920t_execute_cp15(target,
1333 ARMV4_5_MCR(15, 4, 0, 15, 5, 4),
1334 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1335
1336 /* clear interpret mode */
1337 cp15c15 &= ~0x1;
1338 arm920t_write_cp15_physical(target,
1339 CP15PHYS_TESTSTATE, cp15c15);
1340
1341 /* read I TLB CAM content stored to r2-r9 */
1342 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1343 retval = jtag_execute_queue();
1344 if (retval != ERROR_OK)
1345 return retval;
1346
1347 for (i = 0; i < 8; i++)
1348 i_tlb[i + victim].cam = regs[i + 2];
1349 }
1350
1351 for (victim = 0; victim < 64; victim++) {
1352 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1353 * base remains unchanged, victim goes through entries 0 to 63
1354 */
1355 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1356 arm9tdmi_write_core_regs(target, 0x2, regs);
1357
1358 /* set interpret mode */
1359 cp15c15 |= 0x1;
1360 arm920t_write_cp15_physical(target,
1361 CP15PHYS_TESTSTATE, cp15c15);
1362
1363 /* Write I TLB lockdown */
1364 arm920t_execute_cp15(target,
1365 ARMV4_5_MCR(15, 0, 0, 10, 0, 1), ARMV4_5_STR(1, 0));
1366
1367 /* Read I TLB RAM1 */
1368 arm920t_execute_cp15(target,
1369 ARMV4_5_MCR(15, 4, 0, 15, 9, 4), ARMV4_5_LDR(2, 0));
1370
1371 /* Read I TLB RAM2 */
1372 arm920t_execute_cp15(target,
1373 ARMV4_5_MCR(15, 4, 0, 15, 1, 5), ARMV4_5_LDR(3, 0));
1374
1375 /* clear interpret mode */
1376 cp15c15 &= ~0x1;
1377 arm920t_write_cp15_physical(target,
1378 CP15PHYS_TESTSTATE, cp15c15);
1379
1380 /* read I TLB RAM content stored to r2 and r3 */
1381 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1382 retval = jtag_execute_queue();
1383 if (retval != ERROR_OK)
1384 return retval;
1385
1386 i_tlb[victim].ram1 = regs[2];
1387 i_tlb[victim].ram2 = regs[3];
1388 }
1389
1390 /* restore I TLB lockdown */
1391 regs[1] = Ilockdown;
1392 arm9tdmi_write_core_regs(target, 0x2, regs);
1393
1394 /* Write I TLB lockdown */
1395 arm920t_execute_cp15(target,
1396 ARMV4_5_MCR(15, 0, 0, 10, 0, 1), ARMV4_5_STR(1, 0));
1397
1398 /* restore CP15 MMU and Cache settings */
1399 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1400
1401 /* output data to file */
1402 fprintf(output, "D TLB content:\n");
1403 for (i = 0; i < 64; i++) {
1404 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1405 " 0x%8.8" PRIx32 " %s\n",
1406 i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2,
1407 (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1408 }
1409
1410 fprintf(output, "\n\nI TLB content:\n");
1411 for (i = 0; i < 64; i++) {
1412 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1413 " 0x%8.8" PRIx32 " %s\n",
1414 i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2,
1415 (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1416 }
1417
1418 command_print(CMD_CTX, "mmu content successfully output to %s",
1419 CMD_ARGV[0]);
1420
1421 fclose(output);
1422
1423 if (!is_arm_mode(arm->core_mode)) {
1424 LOG_ERROR("not a valid arm core mode - communication failure?");
1425 return ERROR_FAIL;
1426 }
1427
1428 /* force writeback of the valid data */
1429 r = arm->core_cache->reg_list;
1430 r[0].dirty = r[0].valid;
1431 r[1].dirty = r[1].valid;
1432 r[2].dirty = r[2].valid;
1433 r[3].dirty = r[3].valid;
1434 r[4].dirty = r[4].valid;
1435 r[5].dirty = r[5].valid;
1436 r[6].dirty = r[6].valid;
1437 r[7].dirty = r[7].valid;
1438
1439 r = arm_reg_current(arm, 8);
1440 r->dirty = r->valid;
1441
1442 r = arm_reg_current(arm, 9);
1443 r->dirty = r->valid;
1444
1445 return ERROR_OK;
1446 }
1447
1448 COMMAND_HANDLER(arm920t_handle_cp15_command)
1449 {
1450 int retval;
1451 struct target *target = get_current_target(CMD_CTX);
1452 struct arm920t_common *arm920t = target_to_arm920(target);
1453
1454 retval = arm920t_verify_pointer(CMD, arm920t);
1455 if (retval != ERROR_OK)
1456 return retval;
1457
1458 if (target->state != TARGET_HALTED) {
1459 command_print(CMD_CTX, "target must be stopped for "
1460 "\"%s\" command", CMD_NAME);
1461 return ERROR_OK;
1462 }
1463
1464 /* one argument, read a register.
1465 * two arguments, write it.
1466 */
1467 if (CMD_ARGC >= 1) {
1468 int address;
1469 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
1470
1471 if (CMD_ARGC == 1) {
1472 uint32_t value;
1473 retval = arm920t_read_cp15_physical(target, address, &value);
1474 if (retval != ERROR_OK) {
1475 command_print(CMD_CTX,
1476 "couldn't access reg %i", address);
1477 return ERROR_OK;
1478 }
1479 retval = jtag_execute_queue();
1480 if (retval != ERROR_OK)
1481 return retval;
1482
1483 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1484 address, value);
1485 } else if (CMD_ARGC == 2) {
1486 uint32_t value;
1487 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1488 retval = arm920t_write_cp15_physical(target,
1489 address, value);
1490 if (retval != ERROR_OK) {
1491 command_print(CMD_CTX,
1492 "couldn't access reg %i", address);
1493 /* REVISIT why lie? "return retval"? */
1494 return ERROR_OK;
1495 }
1496 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1497 address, value);
1498 }
1499 }
1500
1501 return ERROR_OK;
1502 }
1503
1504 COMMAND_HANDLER(arm920t_handle_cp15i_command)
1505 {
1506 int retval;
1507 struct target *target = get_current_target(CMD_CTX);
1508 struct arm920t_common *arm920t = target_to_arm920(target);
1509
1510 retval = arm920t_verify_pointer(CMD, arm920t);
1511 if (retval != ERROR_OK)
1512 return retval;
1513
1514
1515 if (target->state != TARGET_HALTED) {
1516 command_print(CMD_CTX, "target must be stopped for "
1517 "\"%s\" command", CMD_NAME);
1518 return ERROR_OK;
1519 }
1520
1521 /* one argument, read a register.
1522 * two arguments, write it.
1523 */
1524 if (CMD_ARGC >= 1) {
1525 uint32_t opcode;
1526 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);
1527
1528 if (CMD_ARGC == 1) {
1529 uint32_t value;
1530 retval = arm920t_read_cp15_interpreted(target,
1531 opcode, 0x0, &value);
1532 if (retval != ERROR_OK) {
1533 command_print(CMD_CTX,
1534 "couldn't execute %8.8" PRIx32,
1535 opcode);
1536 /* REVISIT why lie? "return retval"? */
1537 return ERROR_OK;
1538 }
1539
1540 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1541 opcode, value);
1542 } else if (CMD_ARGC == 2) {
1543 uint32_t value;
1544 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1545 retval = arm920t_write_cp15_interpreted(target,
1546 opcode, value, 0);
1547 if (retval != ERROR_OK) {
1548 command_print(CMD_CTX,
1549 "couldn't execute %8.8" PRIx32,
1550 opcode);
1551 /* REVISIT why lie? "return retval"? */
1552 return ERROR_OK;
1553 }
1554 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1555 opcode, value);
1556 } else if (CMD_ARGC == 3) {
1557 uint32_t value;
1558 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1559 uint32_t address;
1560 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
1561 retval = arm920t_write_cp15_interpreted(target,
1562 opcode, value, address);
1563 if (retval != ERROR_OK) {
1564 command_print(CMD_CTX,
1565 "couldn't execute %8.8" PRIx32, opcode);
1566 /* REVISIT why lie? "return retval"? */
1567 return ERROR_OK;
1568 }
1569 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32
1570 " %8.8" PRIx32, opcode, value, address);
1571 }
1572 } else
1573 return ERROR_COMMAND_SYNTAX_ERROR;
1574
1575 return ERROR_OK;
1576 }
1577
1578 COMMAND_HANDLER(arm920t_handle_cache_info_command)
1579 {
1580 int retval;
1581 struct target *target = get_current_target(CMD_CTX);
1582 struct arm920t_common *arm920t = target_to_arm920(target);
1583
1584 retval = arm920t_verify_pointer(CMD, arm920t);
1585 if (retval != ERROR_OK)
1586 return retval;
1587
1588 return armv4_5_handle_cache_info_command(CMD_CTX,
1589 &arm920t->armv4_5_mmu.armv4_5_cache);
1590 }
1591
1592
1593 static int arm920t_mrc(struct target *target, int cpnum,
1594 uint32_t op1, uint32_t op2,
1595 uint32_t CRn, uint32_t CRm,
1596 uint32_t *value)
1597 {
1598 if (cpnum != 15) {
1599 LOG_ERROR("Only cp15 is supported");
1600 return ERROR_FAIL;
1601 }
1602
1603 /* read "to" r0 */
1604 return arm920t_read_cp15_interpreted(target,
1605 ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
1606 0, value);
1607 }
1608
1609 static int arm920t_mcr(struct target *target, int cpnum,
1610 uint32_t op1, uint32_t op2,
1611 uint32_t CRn, uint32_t CRm,
1612 uint32_t value)
1613 {
1614 if (cpnum != 15) {
1615 LOG_ERROR("Only cp15 is supported");
1616 return ERROR_FAIL;
1617 }
1618
1619 /* write "from" r0 */
1620 return arm920t_write_cp15_interpreted(target,
1621 ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
1622 0, value);
1623 }
1624
1625 static const struct command_registration arm920t_exec_command_handlers[] = {
1626 {
1627 .name = "cp15",
1628 .handler = arm920t_handle_cp15_command,
1629 .mode = COMMAND_EXEC,
1630 .help = "display/modify cp15 register",
1631 .usage = "regnum [value]",
1632 },
1633 {
1634 .name = "cp15i",
1635 .handler = arm920t_handle_cp15i_command,
1636 .mode = COMMAND_EXEC,
1637 /* prefer using less error-prone "arm mcr" or "arm mrc" */
1638 .help = "display/modify cp15 register using ARM opcode"
1639 " (DEPRECATED)",
1640 .usage = "instruction [value [address]]",
1641 },
1642 {
1643 .name = "cache_info",
1644 .handler = arm920t_handle_cache_info_command,
1645 .mode = COMMAND_EXEC,
1646 .usage = "",
1647 .help = "display information about target caches",
1648 },
1649 {
1650 .name = "read_cache",
1651 .handler = arm920t_handle_read_cache_command,
1652 .mode = COMMAND_EXEC,
1653 .help = "dump I/D cache content to file",
1654 .usage = "filename",
1655 },
1656 {
1657 .name = "read_mmu",
1658 .handler = arm920t_handle_read_mmu_command,
1659 .mode = COMMAND_EXEC,
1660 .help = "dump I/D mmu content to file",
1661 .usage = "filename",
1662 },
1663 COMMAND_REGISTRATION_DONE
1664 };
1665 const struct command_registration arm920t_command_handlers[] = {
1666 {
1667 .chain = arm9tdmi_command_handlers,
1668 },
1669 {
1670 .name = "arm920t",
1671 .mode = COMMAND_ANY,
1672 .help = "arm920t command group",
1673 .usage = "",
1674 .chain = arm920t_exec_command_handlers,
1675 },
1676 COMMAND_REGISTRATION_DONE
1677 };
1678
1679 /** Holds methods for ARM920 targets. */
1680 struct target_type arm920t_target = {
1681 .name = "arm920t",
1682
1683 .poll = arm7_9_poll,
1684 .arch_state = arm920t_arch_state,
1685
1686 .target_request_data = arm7_9_target_request_data,
1687
1688 .halt = arm7_9_halt,
1689 .resume = arm7_9_resume,
1690 .step = arm7_9_step,
1691
1692 .assert_reset = arm7_9_assert_reset,
1693 .deassert_reset = arm7_9_deassert_reset,
1694 .soft_reset_halt = arm920t_soft_reset_halt,
1695
1696 .get_gdb_arch = arm_get_gdb_arch,
1697 .get_gdb_reg_list = arm_get_gdb_reg_list,
1698
1699 .read_memory = arm920t_read_memory,
1700 .write_memory = arm7_9_write_memory_opt,
1701 .read_phys_memory = arm920t_read_phys_memory,
1702 .write_phys_memory = arm920t_write_phys_memory,
1703 .mmu = arm920_mmu,
1704 .virt2phys = arm920_virt2phys,
1705
1706 .checksum_memory = arm_checksum_memory,
1707 .blank_check_memory = arm_blank_check_memory,
1708
1709 .run_algorithm = armv4_5_run_algorithm,
1710
1711 .add_breakpoint = arm7_9_add_breakpoint,
1712 .remove_breakpoint = arm7_9_remove_breakpoint,
1713 .add_watchpoint = arm7_9_add_watchpoint,
1714 .remove_watchpoint = arm7_9_remove_watchpoint,
1715
1716 .commands = arm920t_command_handlers,
1717 .target_create = arm920t_target_create,
1718 .init_target = arm9tdmi_init_target,
1719 .examine = arm7_9_examine,
1720 .check_reset = arm7_9_check_reset,
1721 };