fix instruction refilling bug when using software breakpoints on a big-endian arm926e...
[openocd.git] / src / target / arm7_9_common.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2009 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2008 by Hongtao Zheng *
12 * hontor@126.com *
13 * *
14 * Copyright (C) 2009 by David Brownell *
15 * *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
20 * *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
25 * *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program; if not, write to the *
28 * Free Software Foundation, Inc., *
29 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
30 ***************************************************************************/
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
34
35 #include "breakpoints.h"
36 #include "embeddedice.h"
37 #include "target_request.h"
38 #include "etm.h"
39 #include <helper/time_support.h>
40 #include "arm_simulator.h"
41 #include "arm_semihosting.h"
42 #include "algorithm.h"
43 #include "register.h"
44 #include "armv4_5.h"
45
46
47 /**
48 * @file
49 * Hold common code supporting the ARM7 and ARM9 core generations.
50 *
51 * While the ARM core implementations evolved substantially during these
52 * two generations, they look quite similar from the JTAG perspective.
53 * Both have similar debug facilities, based on the same two scan chains
54 * providing access to the core and to an EmbeddedICE module. Both can
55 * support similar ETM and ETB modules, for tracing. And both expose
56 * what could be viewed as "ARM Classic", with multiple processor modes,
57 * shadowed registers, and support for the Thumb instruction set.
58 *
59 * Processor differences include things like presence or absence of MMU
60 * and cache, pipeline sizes, use of a modified Harvard Architecure
61 * (with separate instruction and data busses from the CPU), support
62 * for cpu clock gating during idle, and more.
63 */
64
65 static int arm7_9_debug_entry(struct target *target);
66
67 /**
68 * Clear watchpoints for an ARM7/9 target.
69 *
70 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
71 * @return JTAG error status after executing queue
72 */
73 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
74 {
75 LOG_DEBUG("-");
76 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
77 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
78 arm7_9->sw_breakpoint_count = 0;
79 arm7_9->sw_breakpoints_added = 0;
80 arm7_9->wp0_used = 0;
81 arm7_9->wp1_used = arm7_9->wp1_used_default;
82 arm7_9->wp_available = arm7_9->wp_available_max;
83
84 return jtag_execute_queue();
85 }
86
87 /**
88 * Assign a watchpoint to one of the two available hardware comparators in an
89 * ARM7 or ARM9 target.
90 *
91 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
92 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
93 */
94 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
95 {
96 if (!arm7_9->wp0_used)
97 {
98 arm7_9->wp0_used = 1;
99 breakpoint->set = 1;
100 arm7_9->wp_available--;
101 }
102 else if (!arm7_9->wp1_used)
103 {
104 arm7_9->wp1_used = 1;
105 breakpoint->set = 2;
106 arm7_9->wp_available--;
107 }
108 else
109 {
110 LOG_ERROR("BUG: no hardware comparator available");
111 }
112 LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
113 breakpoint->unique_id,
114 breakpoint->address,
115 breakpoint->set );
116 }
117
118 /**
119 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
120 *
121 * @param arm7_9 Pointer to common struct for ARM7/9 targets
122 * @return Error codes if there is a problem finding a watchpoint or the result
123 * of executing the JTAG queue
124 */
125 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
126 {
127 if (arm7_9->sw_breakpoints_added)
128 {
129 return ERROR_OK;
130 }
131 if (arm7_9->wp_available < 1)
132 {
133 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
134 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
135 }
136 arm7_9->wp_available--;
137
138 /* pick a breakpoint unit */
139 if (!arm7_9->wp0_used)
140 {
141 arm7_9->sw_breakpoints_added = 1;
142 arm7_9->wp0_used = 3;
143 } else if (!arm7_9->wp1_used)
144 {
145 arm7_9->sw_breakpoints_added = 2;
146 arm7_9->wp1_used = 3;
147 }
148 else
149 {
150 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
151 return ERROR_FAIL;
152 }
153
154 if (arm7_9->sw_breakpoints_added == 1)
155 {
156 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
157 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
158 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
159 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
160 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
161 }
162 else if (arm7_9->sw_breakpoints_added == 2)
163 {
164 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
165 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
166 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
167 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
168 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
169 }
170 else
171 {
172 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
173 return ERROR_FAIL;
174 }
175 LOG_DEBUG("SW BP using hw wp: %d",
176 arm7_9->sw_breakpoints_added );
177
178 return jtag_execute_queue();
179 }
180
181 /**
182 * Setup the common pieces for an ARM7/9 target after reset or on startup.
183 *
184 * @param target Pointer to an ARM7/9 target to setup
185 * @return Result of clearing the watchpoints on the target
186 */
187 static int arm7_9_setup(struct target *target)
188 {
189 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
190
191 return arm7_9_clear_watchpoints(arm7_9);
192 }
193
194 /**
195 * Set either a hardware or software breakpoint on an ARM7/9 target. The
196 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
197 * might have erased the values in Embedded ICE.
198 *
199 * @param target Pointer to the target device to set the breakpoints on
200 * @param breakpoint Pointer to the breakpoint to be set
201 * @return For hardware breakpoints, this is the result of executing the JTAG
202 * queue. For software breakpoints, this will be the status of the
203 * required memory reads and writes
204 */
205 static int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
206 {
207 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
208 int retval = ERROR_OK;
209
210 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
211 breakpoint->unique_id,
212 breakpoint->address,
213 breakpoint->type);
214
215 if (target->state != TARGET_HALTED)
216 {
217 LOG_WARNING("target not halted");
218 return ERROR_TARGET_NOT_HALTED;
219 }
220
221 if (breakpoint->type == BKPT_HARD)
222 {
223 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
224 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
225
226 /* reassign a hw breakpoint */
227 if (breakpoint->set == 0)
228 {
229 arm7_9_assign_wp(arm7_9, breakpoint);
230 }
231
232 if (breakpoint->set == 1)
233 {
234 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
235 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
236 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
237 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
238 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
239 }
240 else if (breakpoint->set == 2)
241 {
242 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
243 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
244 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
245 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
246 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
247 }
248 else
249 {
250 LOG_ERROR("BUG: no hardware comparator available");
251 return ERROR_OK;
252 }
253
254 retval = jtag_execute_queue();
255 }
256 else if (breakpoint->type == BKPT_SOFT)
257 {
258 /* did we already set this breakpoint? */
259 if (breakpoint->set)
260 return ERROR_OK;
261
262 if (breakpoint->length == 4)
263 {
264 uint32_t verify = 0xffffffff;
265 /* keep the original instruction in target endianness */
266 if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
267 {
268 return retval;
269 }
270 /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
271 if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
272 {
273 return retval;
274 }
275
276 if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
277 {
278 return retval;
279 }
280 if (verify != arm7_9->arm_bkpt)
281 {
282 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
283 return ERROR_OK;
284 }
285 }
286 else
287 {
288 uint16_t verify = 0xffff;
289 /* keep the original instruction in target endianness */
290 if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
291 {
292 return retval;
293 }
294 /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
295 if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
296 {
297 return retval;
298 }
299
300 if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
301 {
302 return retval;
303 }
304 if (verify != arm7_9->thumb_bkpt)
305 {
306 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
307 return ERROR_OK;
308 }
309 }
310
311 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
312 return retval;
313
314 arm7_9->sw_breakpoint_count++;
315
316 breakpoint->set = 1;
317 }
318
319 return retval;
320 }
321
322 /**
323 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
324 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
325 * will be updated. Otherwise, the software breakpoint will be restored to its
326 * original instruction if it hasn't already been modified.
327 *
328 * @param target Pointer to ARM7/9 target to unset the breakpoint from
329 * @param breakpoint Pointer to breakpoint to be unset
330 * @return For hardware breakpoints, this is the result of executing the JTAG
331 * queue. For software breakpoints, this will be the status of the
332 * required memory reads and writes
333 */
334 static int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
335 {
336 int retval = ERROR_OK;
337 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
338
339 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
340 breakpoint->unique_id,
341 breakpoint->address );
342
343 if (!breakpoint->set)
344 {
345 LOG_WARNING("breakpoint not set");
346 return ERROR_OK;
347 }
348
349 if (breakpoint->type == BKPT_HARD)
350 {
351 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
352 breakpoint->unique_id,
353 breakpoint->set );
354 if (breakpoint->set == 1)
355 {
356 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
357 arm7_9->wp0_used = 0;
358 arm7_9->wp_available++;
359 }
360 else if (breakpoint->set == 2)
361 {
362 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
363 arm7_9->wp1_used = 0;
364 arm7_9->wp_available++;
365 }
366 retval = jtag_execute_queue();
367 breakpoint->set = 0;
368 }
369 else
370 {
371 /* restore original instruction (kept in target endianness) */
372 if (breakpoint->length == 4)
373 {
374 uint32_t current_instr;
375 /* check that user program as not modified breakpoint instruction */
376 if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
377 {
378 return retval;
379 }
380 current_instr = target_buffer_get_u32(target, (uint8_t *)&current_instr);
381 if (current_instr == arm7_9->arm_bkpt)
382 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
383 {
384 return retval;
385 }
386 }
387 else
388 {
389 uint16_t current_instr;
390 /* check that user program as not modified breakpoint instruction */
391 if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
392 {
393 return retval;
394 }
395 if (current_instr == arm7_9->thumb_bkpt)
396 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
397 {
398 return retval;
399 }
400 }
401
402 if (--arm7_9->sw_breakpoint_count==0)
403 {
404 /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
405 if (arm7_9->sw_breakpoints_added == 1)
406 {
407 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
408 }
409 else if (arm7_9->sw_breakpoints_added == 2)
410 {
411 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
412 }
413 }
414
415 breakpoint->set = 0;
416 }
417
418 return retval;
419 }
420
421 /**
422 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
423 * dangling breakpoints and that the desired breakpoint can be added.
424 *
425 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
426 * @param breakpoint Pointer to the breakpoint to be added
427 * @return An error status if there is a problem adding the breakpoint or the
428 * result of setting the breakpoint
429 */
430 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
431 {
432 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
433
434 if (arm7_9->breakpoint_count == 0)
435 {
436 /* make sure we don't have any dangling breakpoints. This is vital upon
437 * GDB connect/disconnect
438 */
439 arm7_9_clear_watchpoints(arm7_9);
440 }
441
442 if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
443 {
444 LOG_INFO("no watchpoint unit available for hardware breakpoint");
445 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
446 }
447
448 if ((breakpoint->length != 2) && (breakpoint->length != 4))
449 {
450 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
451 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
452 }
453
454 if (breakpoint->type == BKPT_HARD)
455 {
456 arm7_9_assign_wp(arm7_9, breakpoint);
457 }
458
459 arm7_9->breakpoint_count++;
460
461 return arm7_9_set_breakpoint(target, breakpoint);
462 }
463
464 /**
465 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
466 * dangling breakpoints and updates available watchpoints if it is a hardware
467 * breakpoint.
468 *
469 * @param target Pointer to the target to have a breakpoint removed
470 * @param breakpoint Pointer to the breakpoint to be removed
471 * @return Error status if there was a problem unsetting the breakpoint or the
472 * watchpoints could not be cleared
473 */
474 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
475 {
476 int retval = ERROR_OK;
477 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
478
479 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
480 {
481 return retval;
482 }
483
484 if (breakpoint->type == BKPT_HARD)
485 arm7_9->wp_available++;
486
487 arm7_9->breakpoint_count--;
488 if (arm7_9->breakpoint_count == 0)
489 {
490 /* make sure we don't have any dangling breakpoints */
491 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
492 {
493 return retval;
494 }
495 }
496
497 return ERROR_OK;
498 }
499
500 /**
501 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
502 * considered a bug to call this function when there are no available watchpoint
503 * units.
504 *
505 * @param target Pointer to an ARM7/9 target to set a watchpoint on
506 * @param watchpoint Pointer to the watchpoint to be set
507 * @return Error status if watchpoint set fails or the result of executing the
508 * JTAG queue
509 */
510 static int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
511 {
512 int retval = ERROR_OK;
513 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
514 int rw_mask = 1;
515 uint32_t mask;
516
517 mask = watchpoint->length - 1;
518
519 if (target->state != TARGET_HALTED)
520 {
521 LOG_WARNING("target not halted");
522 return ERROR_TARGET_NOT_HALTED;
523 }
524
525 if (watchpoint->rw == WPT_ACCESS)
526 rw_mask = 0;
527 else
528 rw_mask = 1;
529
530 if (!arm7_9->wp0_used)
531 {
532 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
533 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
534 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
535 if (watchpoint->mask != 0xffffffffu)
536 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
537 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
538 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
539
540 if ((retval = jtag_execute_queue()) != ERROR_OK)
541 {
542 return retval;
543 }
544 watchpoint->set = 1;
545 arm7_9->wp0_used = 2;
546 }
547 else if (!arm7_9->wp1_used)
548 {
549 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
550 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
551 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
552 if (watchpoint->mask != 0xffffffffu)
553 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
554 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
555 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
556
557 if ((retval = jtag_execute_queue()) != ERROR_OK)
558 {
559 return retval;
560 }
561 watchpoint->set = 2;
562 arm7_9->wp1_used = 2;
563 }
564 else
565 {
566 LOG_ERROR("BUG: no hardware comparator available");
567 return ERROR_OK;
568 }
569
570 return ERROR_OK;
571 }
572
573 /**
574 * Unset an existing watchpoint and clear the used watchpoint unit.
575 *
576 * @param target Pointer to the target to have the watchpoint removed
577 * @param watchpoint Pointer to the watchpoint to be removed
578 * @return Error status while trying to unset the watchpoint or the result of
579 * executing the JTAG queue
580 */
581 static int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
582 {
583 int retval = ERROR_OK;
584 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
585
586 if (target->state != TARGET_HALTED)
587 {
588 LOG_WARNING("target not halted");
589 return ERROR_TARGET_NOT_HALTED;
590 }
591
592 if (!watchpoint->set)
593 {
594 LOG_WARNING("breakpoint not set");
595 return ERROR_OK;
596 }
597
598 if (watchpoint->set == 1)
599 {
600 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
601 if ((retval = jtag_execute_queue()) != ERROR_OK)
602 {
603 return retval;
604 }
605 arm7_9->wp0_used = 0;
606 }
607 else if (watchpoint->set == 2)
608 {
609 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
610 if ((retval = jtag_execute_queue()) != ERROR_OK)
611 {
612 return retval;
613 }
614 arm7_9->wp1_used = 0;
615 }
616 watchpoint->set = 0;
617
618 return ERROR_OK;
619 }
620
621 /**
622 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
623 * available, an error response is returned.
624 *
625 * @param target Pointer to the ARM7/9 target to add a watchpoint to
626 * @param watchpoint Pointer to the watchpoint to be added
627 * @return Error status while trying to add the watchpoint
628 */
629 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
630 {
631 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
632
633 if (arm7_9->wp_available < 1)
634 {
635 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
636 }
637
638 if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
639 {
640 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
641 }
642
643 arm7_9->wp_available--;
644
645 return ERROR_OK;
646 }
647
648 /**
649 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
650 * the used watchpoint unit will be reopened.
651 *
652 * @param target Pointer to the target to remove a watchpoint from
653 * @param watchpoint Pointer to the watchpoint to be removed
654 * @return Result of trying to unset the watchpoint
655 */
656 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
657 {
658 int retval = ERROR_OK;
659 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
660
661 if (watchpoint->set)
662 {
663 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
664 {
665 return retval;
666 }
667 }
668
669 arm7_9->wp_available++;
670
671 return ERROR_OK;
672 }
673
674 /**
675 * Restarts the target by sending a RESTART instruction and moving the JTAG
676 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
677 * asserted by the processor.
678 *
679 * @param target Pointer to target to issue commands to
680 * @return Error status if there is a timeout or a problem while executing the
681 * JTAG queue
682 */
683 int arm7_9_execute_sys_speed(struct target *target)
684 {
685 int retval;
686 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
687 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
688 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
689
690 /* set RESTART instruction */
691 if (arm7_9->need_bypass_before_restart) {
692 arm7_9->need_bypass_before_restart = 0;
693 arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
694 }
695 arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
696
697 long long then = timeval_ms();
698 int timeout;
699 while (!(timeout = ((timeval_ms()-then) > 1000)))
700 {
701 /* read debug status register */
702 embeddedice_read_reg(dbg_stat);
703 if ((retval = jtag_execute_queue()) != ERROR_OK)
704 return retval;
705 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
706 && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
707 break;
708 if (debug_level >= 3)
709 {
710 alive_sleep(100);
711 } else
712 {
713 keep_alive();
714 }
715 }
716 if (timeout)
717 {
718 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
719 return ERROR_TARGET_TIMEOUT;
720 }
721
722 return ERROR_OK;
723 }
724
725 /**
726 * Restarts the target by sending a RESTART instruction and moving the JTAG
727 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
728 * waiting until they are.
729 *
730 * @param target Pointer to the target to issue commands to
731 * @return Always ERROR_OK
732 */
733 static int arm7_9_execute_fast_sys_speed(struct target *target)
734 {
735 static int set = 0;
736 static uint8_t check_value[4], check_mask[4];
737
738 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
739 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
740 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
741
742 /* set RESTART instruction */
743 if (arm7_9->need_bypass_before_restart) {
744 arm7_9->need_bypass_before_restart = 0;
745 arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
746 }
747 arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
748
749 if (!set)
750 {
751 /* check for DBGACK and SYSCOMP set (others don't care) */
752
753 /* NB! These are constants that must be available until after next jtag_execute() and
754 * we evaluate the values upon first execution in lieu of setting up these constants
755 * during early setup.
756 * */
757 buf_set_u32(check_value, 0, 32, 0x9);
758 buf_set_u32(check_mask, 0, 32, 0x9);
759 set = 1;
760 }
761
762 /* read debug status register */
763 embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
764
765 return ERROR_OK;
766 }
767
768 /**
769 * Get some data from the ARM7/9 target.
770 *
771 * @param target Pointer to the ARM7/9 target to read data from
772 * @param size The number of 32bit words to be read
773 * @param buffer Pointer to the buffer that will hold the data
774 * @return The result of receiving data from the Embedded ICE unit
775 */
776 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
777 {
778 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
779 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
780 uint32_t *data;
781 int retval = ERROR_OK;
782 uint32_t i;
783
784 data = malloc(size * (sizeof(uint32_t)));
785
786 retval = embeddedice_receive(jtag_info, data, size);
787
788 /* return the 32-bit ints in the 8-bit array */
789 for (i = 0; i < size; i++)
790 {
791 h_u32_to_le(buffer + (i * 4), data[i]);
792 }
793
794 free(data);
795
796 return retval;
797 }
798
799 /**
800 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
801 * target is running and the DCC control register has the W bit high, this will
802 * execute the request on the target.
803 *
804 * @param priv Void pointer expected to be a struct target pointer
805 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
806 * from the Embedded ICE unit
807 */
808 static int arm7_9_handle_target_request(void *priv)
809 {
810 int retval = ERROR_OK;
811 struct target *target = priv;
812 if (!target_was_examined(target))
813 return ERROR_OK;
814 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
815 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
816 struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
817
818 if (!target->dbg_msg_enabled)
819 return ERROR_OK;
820
821 if (target->state == TARGET_RUNNING)
822 {
823 /* read DCC control register */
824 embeddedice_read_reg(dcc_control);
825 if ((retval = jtag_execute_queue()) != ERROR_OK)
826 {
827 return retval;
828 }
829
830 /* check W bit */
831 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
832 {
833 uint32_t request;
834
835 if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
836 {
837 return retval;
838 }
839 if ((retval = target_request(target, request)) != ERROR_OK)
840 {
841 return retval;
842 }
843 }
844 }
845
846 return ERROR_OK;
847 }
848
849 /**
850 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
851 * is manipulated to the right halted state based on its current state. This is
852 * what happens:
853 *
854 * <table>
855 * <tr><th > State</th><th > Action</th></tr>
856 * <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
857 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
858 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
859 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
860 * </table>
861 *
862 * If the target does not end up in the halted state, a warning is produced. If
863 * DBGACK is cleared, then the target is expected to either be running or
864 * running in debug.
865 *
866 * @param target Pointer to the ARM7/9 target to poll
867 * @return ERROR_OK or an error status if a command fails
868 */
869 int arm7_9_poll(struct target *target)
870 {
871 int retval;
872 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
873 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
874
875 /* read debug status register */
876 embeddedice_read_reg(dbg_stat);
877 if ((retval = jtag_execute_queue()) != ERROR_OK)
878 {
879 return retval;
880 }
881
882 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
883 {
884 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
885 if (target->state == TARGET_UNKNOWN)
886 {
887 /* Starting OpenOCD with target in debug-halt */
888 target->state = TARGET_RUNNING;
889 LOG_DEBUG("DBGACK already set during server startup.");
890 }
891 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
892 {
893 target->state = TARGET_HALTED;
894
895 if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
896 return retval;
897
898 if (arm_semihosting(target, &retval) != 0)
899 return retval;
900
901 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
902 {
903 return retval;
904 }
905 }
906 if (target->state == TARGET_DEBUG_RUNNING)
907 {
908 target->state = TARGET_HALTED;
909 if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
910 return retval;
911
912 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
913 {
914 return retval;
915 }
916 }
917 if (target->state != TARGET_HALTED)
918 {
919 LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
920 }
921 }
922 else
923 {
924 if (target->state != TARGET_DEBUG_RUNNING)
925 target->state = TARGET_RUNNING;
926 }
927
928 return ERROR_OK;
929 }
930
931 /**
932 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
933 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
934 * affected) completely stop the JTAG clock while the core is held in reset
935 * (SRST). It isn't possible to program the halt condition once reset is
936 * asserted, hence a hook that allows the target to set up its reset-halt
937 * condition is setup prior to asserting reset.
938 *
939 * @param target Pointer to an ARM7/9 target to assert reset on
940 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
941 */
942 int arm7_9_assert_reset(struct target *target)
943 {
944 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
945 enum reset_types jtag_reset_config = jtag_get_reset_config();
946 bool use_event = false;
947
948 LOG_DEBUG("target->state: %s",
949 target_state_name(target));
950
951 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
952 use_event = true;
953 else if (!(jtag_reset_config & RESET_HAS_SRST)) {
954 LOG_ERROR("%s: how to reset?", target_name(target));
955 return ERROR_FAIL;
956 }
957
958 /* At this point trst has been asserted/deasserted once. We would
959 * like to program EmbeddedICE while SRST is asserted, instead of
960 * depending on SRST to leave that module alone. However, many CPUs
961 * gate the JTAG clock while SRST is asserted; or JTAG may need
962 * clock stability guarantees (adaptive clocking might help).
963 *
964 * So we assume JTAG access during SRST is off the menu unless it's
965 * been specifically enabled.
966 */
967 bool srst_asserted = false;
968
969 if (!use_event
970 && !(jtag_reset_config & RESET_SRST_PULLS_TRST)
971 && (jtag_reset_config & RESET_SRST_NO_GATING))
972 {
973 jtag_add_reset(0, 1);
974 srst_asserted = true;
975 }
976
977 if (target->reset_halt)
978 {
979 /*
980 * For targets that don't support communication while SRST is
981 * asserted, we need to set up the reset vector catch first.
982 *
983 * When we use TRST+SRST and that's equivalent to a power-up
984 * reset, these settings may well be reset anyway; so setting
985 * them here won't matter.
986 */
987 if (arm7_9->has_vector_catch)
988 {
989 /* program vector catch register to catch reset */
990 embeddedice_write_reg(&arm7_9->eice_cache
991 ->reg_list[EICE_VEC_CATCH], 0x1);
992
993 /* extra runtest added as issues were found with
994 * certain ARM9 cores (maybe more) - AT91SAM9260
995 * and STR9
996 */
997 jtag_add_runtest(1, TAP_IDLE);
998 }
999 else
1000 {
1001 /* program watchpoint unit to match on reset vector
1002 * address
1003 */
1004 embeddedice_write_reg(&arm7_9->eice_cache
1005 ->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1006 embeddedice_write_reg(&arm7_9->eice_cache
1007 ->reg_list[EICE_W0_ADDR_MASK], 0x3);
1008 embeddedice_write_reg(&arm7_9->eice_cache
1009 ->reg_list[EICE_W0_DATA_MASK],
1010 0xffffffff);
1011 embeddedice_write_reg(&arm7_9->eice_cache
1012 ->reg_list[EICE_W0_CONTROL_VALUE],
1013 EICE_W_CTRL_ENABLE);
1014 embeddedice_write_reg(&arm7_9->eice_cache
1015 ->reg_list[EICE_W0_CONTROL_MASK],
1016 ~EICE_W_CTRL_nOPC & 0xff);
1017 }
1018 }
1019
1020 if (use_event) {
1021 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1022 } else {
1023 /* If we use SRST ... we'd like to issue just SRST, but the
1024 * board or chip may be set up so we have to assert TRST as
1025 * well. On some chips that combination is equivalent to a
1026 * power-up reset, and generally clobbers EICE state.
1027 */
1028 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1029 jtag_add_reset(1, 1);
1030 else if (!srst_asserted)
1031 jtag_add_reset(0, 1);
1032 jtag_add_sleep(50000);
1033 }
1034
1035 target->state = TARGET_RESET;
1036 register_cache_invalidate(arm7_9->armv4_5_common.core_cache);
1037
1038 /* REVISIT why isn't standard debug entry logic sufficient?? */
1039 if (target->reset_halt
1040 && (!(jtag_reset_config & RESET_SRST_PULLS_TRST)
1041 || use_event))
1042 {
1043 /* debug entry was prepared above */
1044 target->debug_reason = DBG_REASON_DBGRQ;
1045 }
1046
1047 return ERROR_OK;
1048 }
1049
1050 /**
1051 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
1052 * and the target is being reset into a halt, a warning will be triggered
1053 * because it is not possible to reset into a halted mode in this case. The
1054 * target is halted using the target's functions.
1055 *
1056 * @param target Pointer to the target to have the reset deasserted
1057 * @return ERROR_OK or an error from polling or halting the target
1058 */
1059 int arm7_9_deassert_reset(struct target *target)
1060 {
1061 int retval = ERROR_OK;
1062 LOG_DEBUG("target->state: %s",
1063 target_state_name(target));
1064
1065 /* deassert reset lines */
1066 jtag_add_reset(0, 0);
1067
1068 enum reset_types jtag_reset_config = jtag_get_reset_config();
1069 if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1070 {
1071 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1072 /* set up embedded ice registers again */
1073 if ((retval = target_examine_one(target)) != ERROR_OK)
1074 return retval;
1075
1076 if ((retval = target_poll(target)) != ERROR_OK)
1077 {
1078 return retval;
1079 }
1080
1081 if ((retval = target_halt(target)) != ERROR_OK)
1082 {
1083 return retval;
1084 }
1085
1086 }
1087 return retval;
1088 }
1089
1090 /**
1091 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1092 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1093 * vector catch was used, it is restored. Otherwise, the control value is
1094 * restored and the watchpoint unit is restored if it was in use.
1095 *
1096 * @param target Pointer to the ARM7/9 target to have halt cleared
1097 * @return Always ERROR_OK
1098 */
1099 static int arm7_9_clear_halt(struct target *target)
1100 {
1101 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1102 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1103
1104 /* we used DBGRQ only if we didn't come out of reset */
1105 if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1106 {
1107 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1108 */
1109 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1110 embeddedice_store_reg(dbg_ctrl);
1111 }
1112 else
1113 {
1114 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1115 {
1116 /* if we came out of reset, and vector catch is supported, we used
1117 * vector catch to enter debug state
1118 * restore the register in that case
1119 */
1120 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1121 }
1122 else
1123 {
1124 /* restore registers if watchpoint unit 0 was in use
1125 */
1126 if (arm7_9->wp0_used)
1127 {
1128 if (arm7_9->debug_entry_from_reset)
1129 {
1130 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1131 }
1132 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1133 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1134 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1135 }
1136 /* control value always has to be restored, as it was either disabled,
1137 * or enabled with possibly different bits
1138 */
1139 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1140 }
1141 }
1142
1143 return ERROR_OK;
1144 }
1145
1146 /**
1147 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1148 * and then there is a wait until the processor shows the halt. This wait can
1149 * timeout and results in an error being returned. The software reset involves
1150 * clearing the halt, updating the debug control register, changing to ARM mode,
1151 * reset of the program counter, and reset of all of the registers.
1152 *
1153 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1154 * @return Error status if any of the commands fail, otherwise ERROR_OK
1155 */
1156 int arm7_9_soft_reset_halt(struct target *target)
1157 {
1158 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1159 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1160 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1161 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1162 int i;
1163 int retval;
1164
1165 /* FIX!!! replace some of this code with tcl commands
1166 *
1167 * halt # the halt command is synchronous
1168 * armv4_5 core_state arm
1169 *
1170 */
1171
1172 if ((retval = target_halt(target)) != ERROR_OK)
1173 return retval;
1174
1175 long long then = timeval_ms();
1176 int timeout;
1177 while (!(timeout = ((timeval_ms()-then) > 1000)))
1178 {
1179 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1180 break;
1181 embeddedice_read_reg(dbg_stat);
1182 if ((retval = jtag_execute_queue()) != ERROR_OK)
1183 return retval;
1184 if (debug_level >= 3)
1185 {
1186 alive_sleep(100);
1187 } else
1188 {
1189 keep_alive();
1190 }
1191 }
1192 if (timeout)
1193 {
1194 LOG_ERROR("Failed to halt CPU after 1 sec");
1195 return ERROR_TARGET_TIMEOUT;
1196 }
1197 target->state = TARGET_HALTED;
1198
1199 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1200 * ensure that DBGRQ is cleared
1201 */
1202 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1203 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1204 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1205 embeddedice_store_reg(dbg_ctrl);
1206
1207 if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1208 {
1209 return retval;
1210 }
1211
1212 /* if the target is in Thumb state, change to ARM state */
1213 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1214 {
1215 uint32_t r0_thumb, pc_thumb;
1216 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1217 /* Entered debug from Thumb mode */
1218 armv4_5->core_state = ARM_STATE_THUMB;
1219 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1220 }
1221
1222 /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1223
1224 /* all register content is now invalid */
1225 register_cache_invalidate(armv4_5->core_cache);
1226
1227 /* SVC, ARM state, IRQ and FIQ disabled */
1228 uint32_t cpsr;
1229
1230 cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
1231 cpsr &= ~0xff;
1232 cpsr |= 0xd3;
1233 arm_set_cpsr(armv4_5, cpsr);
1234 armv4_5->cpsr->dirty = 1;
1235
1236 /* start fetching from 0x0 */
1237 buf_set_u32(armv4_5->pc->value, 0, 32, 0x0);
1238 armv4_5->pc->dirty = 1;
1239 armv4_5->pc->valid = 1;
1240
1241 /* reset registers */
1242 for (i = 0; i <= 14; i++)
1243 {
1244 struct reg *r = arm_reg_current(armv4_5, i);
1245
1246 buf_set_u32(r->value, 0, 32, 0xffffffff);
1247 r->dirty = 1;
1248 r->valid = 1;
1249 }
1250
1251 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1252 {
1253 return retval;
1254 }
1255
1256 return ERROR_OK;
1257 }
1258
1259 /**
1260 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1261 * line or by programming a watchpoint to trigger on any address. It is
1262 * considered a bug to call this function while the target is in the
1263 * TARGET_RESET state.
1264 *
1265 * @param target Pointer to the ARM7/9 target to be halted
1266 * @return Always ERROR_OK
1267 */
1268 int arm7_9_halt(struct target *target)
1269 {
1270 if (target->state == TARGET_RESET)
1271 {
1272 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1273 return ERROR_OK;
1274 }
1275
1276 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1277 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1278
1279 LOG_DEBUG("target->state: %s",
1280 target_state_name(target));
1281
1282 if (target->state == TARGET_HALTED)
1283 {
1284 LOG_DEBUG("target was already halted");
1285 return ERROR_OK;
1286 }
1287
1288 if (target->state == TARGET_UNKNOWN)
1289 {
1290 LOG_WARNING("target was in unknown state when halt was requested");
1291 }
1292
1293 if (arm7_9->use_dbgrq)
1294 {
1295 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1296 */
1297 if (arm7_9->set_special_dbgrq) {
1298 arm7_9->set_special_dbgrq(target);
1299 } else {
1300 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1301 embeddedice_store_reg(dbg_ctrl);
1302 }
1303 }
1304 else
1305 {
1306 /* program watchpoint unit to match on any address
1307 */
1308 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1309 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1310 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1311 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1312 }
1313
1314 target->debug_reason = DBG_REASON_DBGRQ;
1315
1316 return ERROR_OK;
1317 }
1318
1319 /**
1320 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1321 * ARM. The JTAG queue is then executed and the reason for debug entry is
1322 * examined. Once done, the target is verified to be halted and the processor
1323 * is forced into ARM mode. The core registers are saved for the current core
1324 * mode and the program counter (register 15) is updated as needed. The core
1325 * registers and CPSR and SPSR are saved for restoration later.
1326 *
1327 * @param target Pointer to target that is entering debug mode
1328 * @return Error code if anything fails, otherwise ERROR_OK
1329 */
1330 static int arm7_9_debug_entry(struct target *target)
1331 {
1332 int i;
1333 uint32_t context[16];
1334 uint32_t* context_p[16];
1335 uint32_t r0_thumb, pc_thumb;
1336 uint32_t cpsr, cpsr_mask = 0;
1337 int retval;
1338 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1339 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1340 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1341 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1342
1343 #ifdef _DEBUG_ARM7_9_
1344 LOG_DEBUG("-");
1345 #endif
1346
1347 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1348 * ensure that DBGRQ is cleared
1349 */
1350 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1351 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1352 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1353 embeddedice_store_reg(dbg_ctrl);
1354
1355 if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1356 {
1357 return retval;
1358 }
1359
1360 if ((retval = jtag_execute_queue()) != ERROR_OK)
1361 {
1362 return retval;
1363 }
1364
1365 if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1366 return retval;
1367
1368
1369 if (target->state != TARGET_HALTED)
1370 {
1371 LOG_WARNING("target not halted");
1372 return ERROR_TARGET_NOT_HALTED;
1373 }
1374
1375 /* if the target is in Thumb state, change to ARM state */
1376 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1377 {
1378 LOG_DEBUG("target entered debug from Thumb state");
1379 /* Entered debug from Thumb mode */
1380 armv4_5->core_state = ARM_STATE_THUMB;
1381 cpsr_mask = 1 << 5;
1382 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1383 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1384 ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1385 } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1386 /* \todo Get some vaguely correct handling of Jazelle, if
1387 * anyone ever uses it and full info becomes available.
1388 * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1389 * B.7.3 for the reverse. That'd be the bare minimum...
1390 */
1391 LOG_DEBUG("target entered debug from Jazelle state");
1392 armv4_5->core_state = ARM_STATE_JAZELLE;
1393 cpsr_mask = 1 << 24;
1394 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1395 } else {
1396 LOG_DEBUG("target entered debug from ARM state");
1397 /* Entered debug from ARM mode */
1398 armv4_5->core_state = ARM_STATE_ARM;
1399 }
1400
1401 for (i = 0; i < 16; i++)
1402 context_p[i] = &context[i];
1403 /* save core registers (r0 - r15 of current core mode) */
1404 arm7_9->read_core_regs(target, 0xffff, context_p);
1405
1406 arm7_9->read_xpsr(target, &cpsr, 0);
1407
1408 if ((retval = jtag_execute_queue()) != ERROR_OK)
1409 return retval;
1410
1411 /* Sync our CPSR copy with J or T bits EICE reported, but
1412 * which we then erased by putting the core into ARM mode.
1413 */
1414 arm_set_cpsr(armv4_5, cpsr | cpsr_mask);
1415
1416 if (!is_arm_mode(armv4_5->core_mode))
1417 {
1418 target->state = TARGET_UNKNOWN;
1419 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1420 return ERROR_TARGET_FAILURE;
1421 }
1422
1423 LOG_DEBUG("target entered debug state in %s mode",
1424 arm_mode_name(armv4_5->core_mode));
1425
1426 if (armv4_5->core_state == ARM_STATE_THUMB)
1427 {
1428 LOG_DEBUG("thumb state, applying fixups");
1429 context[0] = r0_thumb;
1430 context[15] = pc_thumb;
1431 } else if (armv4_5->core_state == ARM_STATE_ARM)
1432 {
1433 /* adjust value stored by STM */
1434 context[15] -= 3 * 4;
1435 }
1436
1437 if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1438 context[15] -= 3 * ((armv4_5->core_state == ARM_STATE_ARM) ? 4 : 2);
1439 else
1440 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARM_STATE_ARM) ? 4 : 2);
1441
1442 for (i = 0; i <= 15; i++)
1443 {
1444 struct reg *r = arm_reg_current(armv4_5, i);
1445
1446 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1447
1448 buf_set_u32(r->value, 0, 32, context[i]);
1449 /* r0 and r15 (pc) have to be restored later */
1450 r->dirty = (i == 0) || (i == 15);
1451 r->valid = 1;
1452 }
1453
1454 LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1455
1456 /* exceptions other than USR & SYS have a saved program status register */
1457 if (armv4_5->spsr) {
1458 uint32_t spsr;
1459 arm7_9->read_xpsr(target, &spsr, 1);
1460 if ((retval = jtag_execute_queue()) != ERROR_OK)
1461 {
1462 return retval;
1463 }
1464 buf_set_u32(armv4_5->spsr->value, 0, 32, spsr);
1465 armv4_5->spsr->dirty = 0;
1466 armv4_5->spsr->valid = 1;
1467 }
1468
1469 if ((retval = jtag_execute_queue()) != ERROR_OK)
1470 return retval;
1471
1472 if (arm7_9->post_debug_entry)
1473 arm7_9->post_debug_entry(target);
1474
1475 return ERROR_OK;
1476 }
1477
1478 /**
1479 * Validate the full context for an ARM7/9 target in all processor modes. If
1480 * there are any invalid registers for the target, they will all be read. This
1481 * includes the PSR.
1482 *
1483 * @param target Pointer to the ARM7/9 target to capture the full context from
1484 * @return Error if the target is not halted, has an invalid core mode, or if
1485 * the JTAG queue fails to execute
1486 */
1487 static int arm7_9_full_context(struct target *target)
1488 {
1489 int i;
1490 int retval;
1491 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1492 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1493
1494 LOG_DEBUG("-");
1495
1496 if (target->state != TARGET_HALTED)
1497 {
1498 LOG_WARNING("target not halted");
1499 return ERROR_TARGET_NOT_HALTED;
1500 }
1501
1502 if (!is_arm_mode(armv4_5->core_mode))
1503 return ERROR_FAIL;
1504
1505 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1506 * SYS shares registers with User, so we don't touch SYS
1507 */
1508 for (i = 0; i < 6; i++)
1509 {
1510 uint32_t mask = 0;
1511 uint32_t* reg_p[16];
1512 int j;
1513 int valid = 1;
1514
1515 /* check if there are invalid registers in the current mode
1516 */
1517 for (j = 0; j <= 16; j++)
1518 {
1519 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1520 valid = 0;
1521 }
1522
1523 if (!valid)
1524 {
1525 uint32_t tmp_cpsr;
1526
1527 /* change processor mode (and mask T bit) */
1528 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8)
1529 & 0xe0;
1530 tmp_cpsr |= armv4_5_number_to_mode(i);
1531 tmp_cpsr &= ~0x20;
1532 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1533
1534 for (j = 0; j < 15; j++)
1535 {
1536 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1537 {
1538 reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1539 mask |= 1 << j;
1540 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1541 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1542 }
1543 }
1544
1545 /* if only the PSR is invalid, mask is all zeroes */
1546 if (mask)
1547 arm7_9->read_core_regs(target, mask, reg_p);
1548
1549 /* check if the PSR has to be read */
1550 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1551 {
1552 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1553 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1554 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1555 }
1556 }
1557 }
1558
1559 /* restore processor mode (mask T bit) */
1560 arm7_9->write_xpsr_im8(target,
1561 buf_get_u32(armv4_5->cpsr->value, 0, 8) & ~0x20,
1562 0, 0);
1563
1564 if ((retval = jtag_execute_queue()) != ERROR_OK)
1565 {
1566 return retval;
1567 }
1568 return ERROR_OK;
1569 }
1570
1571 /**
1572 * Restore the processor context on an ARM7/9 target. The full processor
1573 * context is analyzed to see if any of the registers are dirty on this end, but
1574 * have a valid new value. If this is the case, the processor is changed to the
1575 * appropriate mode and the new register values are written out to the
1576 * processor. If there happens to be a dirty register with an invalid value, an
1577 * error will be logged.
1578 *
1579 * @param target Pointer to the ARM7/9 target to have its context restored
1580 * @return Error status if the target is not halted or the core mode in the
1581 * armv4_5 struct is invalid.
1582 */
1583 static int arm7_9_restore_context(struct target *target)
1584 {
1585 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1586 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1587 struct reg *reg;
1588 struct arm_reg *reg_arch_info;
1589 enum arm_mode current_mode = armv4_5->core_mode;
1590 int i, j;
1591 int dirty;
1592 int mode_change;
1593
1594 LOG_DEBUG("-");
1595
1596 if (target->state != TARGET_HALTED)
1597 {
1598 LOG_WARNING("target not halted");
1599 return ERROR_TARGET_NOT_HALTED;
1600 }
1601
1602 if (arm7_9->pre_restore_context)
1603 arm7_9->pre_restore_context(target);
1604
1605 if (!is_arm_mode(armv4_5->core_mode))
1606 return ERROR_FAIL;
1607
1608 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1609 * SYS shares registers with User, so we don't touch SYS
1610 */
1611 for (i = 0; i < 6; i++)
1612 {
1613 LOG_DEBUG("examining %s mode",
1614 arm_mode_name(armv4_5->core_mode));
1615 dirty = 0;
1616 mode_change = 0;
1617 /* check if there are dirty registers in the current mode
1618 */
1619 for (j = 0; j <= 16; j++)
1620 {
1621 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1622 reg_arch_info = reg->arch_info;
1623 if (reg->dirty == 1)
1624 {
1625 if (reg->valid == 1)
1626 {
1627 dirty = 1;
1628 LOG_DEBUG("examining dirty reg: %s", reg->name);
1629 if ((reg_arch_info->mode != ARM_MODE_ANY)
1630 && (reg_arch_info->mode != current_mode)
1631 && !((reg_arch_info->mode == ARM_MODE_USR) && (armv4_5->core_mode == ARM_MODE_SYS))
1632 && !((reg_arch_info->mode == ARM_MODE_SYS) && (armv4_5->core_mode == ARM_MODE_USR)))
1633 {
1634 mode_change = 1;
1635 LOG_DEBUG("require mode change");
1636 }
1637 }
1638 else
1639 {
1640 LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1641 }
1642 }
1643 }
1644
1645 if (dirty)
1646 {
1647 uint32_t mask = 0x0;
1648 int num_regs = 0;
1649 uint32_t regs[16];
1650
1651 if (mode_change)
1652 {
1653 uint32_t tmp_cpsr;
1654
1655 /* change processor mode (mask T bit) */
1656 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value,
1657 0, 8) & 0xe0;
1658 tmp_cpsr |= armv4_5_number_to_mode(i);
1659 tmp_cpsr &= ~0x20;
1660 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1661 current_mode = armv4_5_number_to_mode(i);
1662 }
1663
1664 for (j = 0; j <= 14; j++)
1665 {
1666 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1667 reg_arch_info = reg->arch_info;
1668
1669
1670 if (reg->dirty == 1)
1671 {
1672 regs[j] = buf_get_u32(reg->value, 0, 32);
1673 mask |= 1 << j;
1674 num_regs++;
1675 reg->dirty = 0;
1676 reg->valid = 1;
1677 LOG_DEBUG("writing register %i mode %s "
1678 "with value 0x%8.8" PRIx32, j,
1679 arm_mode_name(armv4_5->core_mode),
1680 regs[j]);
1681 }
1682 }
1683
1684 if (mask)
1685 {
1686 arm7_9->write_core_regs(target, mask, regs);
1687 }
1688
1689 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1690 reg_arch_info = reg->arch_info;
1691 if ((reg->dirty) && (reg_arch_info->mode != ARM_MODE_ANY))
1692 {
1693 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1694 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1695 }
1696 }
1697 }
1698
1699 if (!armv4_5->cpsr->dirty && (armv4_5->core_mode != current_mode))
1700 {
1701 /* restore processor mode (mask T bit) */
1702 uint32_t tmp_cpsr;
1703
1704 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
1705 tmp_cpsr |= armv4_5_number_to_mode(i);
1706 tmp_cpsr &= ~0x20;
1707 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1708 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1709 }
1710 else if (armv4_5->cpsr->dirty)
1711 {
1712 /* CPSR has been changed, full restore necessary (mask T bit) */
1713 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1714 buf_get_u32(armv4_5->cpsr->value, 0, 32));
1715 arm7_9->write_xpsr(target,
1716 buf_get_u32(armv4_5->cpsr->value, 0, 32)
1717 & ~0x20, 0);
1718 armv4_5->cpsr->dirty = 0;
1719 armv4_5->cpsr->valid = 1;
1720 }
1721
1722 /* restore PC */
1723 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32,
1724 buf_get_u32(armv4_5->pc->value, 0, 32));
1725 arm7_9->write_pc(target, buf_get_u32(armv4_5->pc->value, 0, 32));
1726 armv4_5->pc->dirty = 0;
1727
1728 return ERROR_OK;
1729 }
1730
1731 /**
1732 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1733 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1734 * restart.
1735 *
1736 * @param target Pointer to the ARM7/9 target to be restarted
1737 * @return Result of executing the JTAG queue
1738 */
1739 static int arm7_9_restart_core(struct target *target)
1740 {
1741 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1742 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1743
1744 /* set RESTART instruction */
1745 if (arm7_9->need_bypass_before_restart) {
1746 arm7_9->need_bypass_before_restart = 0;
1747 arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
1748 }
1749 arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
1750
1751 jtag_add_runtest(1, TAP_IDLE);
1752 return jtag_execute_queue();
1753 }
1754
1755 /**
1756 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1757 * iterated through and are set on the target if they aren't already set.
1758 *
1759 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1760 */
1761 static void arm7_9_enable_watchpoints(struct target *target)
1762 {
1763 struct watchpoint *watchpoint = target->watchpoints;
1764
1765 while (watchpoint)
1766 {
1767 if (watchpoint->set == 0)
1768 arm7_9_set_watchpoint(target, watchpoint);
1769 watchpoint = watchpoint->next;
1770 }
1771 }
1772
1773 /**
1774 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1775 * iterated through and are set on the target.
1776 *
1777 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1778 */
1779 static void arm7_9_enable_breakpoints(struct target *target)
1780 {
1781 struct breakpoint *breakpoint = target->breakpoints;
1782
1783 /* set any pending breakpoints */
1784 while (breakpoint)
1785 {
1786 arm7_9_set_breakpoint(target, breakpoint);
1787 breakpoint = breakpoint->next;
1788 }
1789 }
1790
1791 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1792 {
1793 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1794 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1795 struct breakpoint *breakpoint = target->breakpoints;
1796 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1797 int err, retval = ERROR_OK;
1798
1799 LOG_DEBUG("-");
1800
1801 if (target->state != TARGET_HALTED)
1802 {
1803 LOG_WARNING("target not halted");
1804 return ERROR_TARGET_NOT_HALTED;
1805 }
1806
1807 if (!debug_execution)
1808 {
1809 target_free_all_working_areas(target);
1810 }
1811
1812 /* current = 1: continue on current pc, otherwise continue at <address> */
1813 if (!current)
1814 buf_set_u32(armv4_5->pc->value, 0, 32, address);
1815
1816 uint32_t current_pc;
1817 current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
1818
1819 /* the front-end may request us not to handle breakpoints */
1820 if (handle_breakpoints)
1821 {
1822 breakpoint = breakpoint_find(target,
1823 buf_get_u32(armv4_5->pc->value, 0, 32));
1824 if (breakpoint != NULL)
1825 {
1826 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1827 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1828 {
1829 return retval;
1830 }
1831
1832 /* calculate PC of next instruction */
1833 uint32_t next_pc;
1834 if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1835 {
1836 uint32_t current_opcode;
1837 target_read_u32(target, current_pc, &current_opcode);
1838 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1839 return retval;
1840 }
1841
1842 LOG_DEBUG("enable single-step");
1843 arm7_9->enable_single_step(target, next_pc);
1844
1845 target->debug_reason = DBG_REASON_SINGLESTEP;
1846
1847 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1848 {
1849 return retval;
1850 }
1851
1852 if (armv4_5->core_state == ARM_STATE_ARM)
1853 arm7_9->branch_resume(target);
1854 else if (armv4_5->core_state == ARM_STATE_THUMB)
1855 {
1856 arm7_9->branch_resume_thumb(target);
1857 }
1858 else
1859 {
1860 LOG_ERROR("unhandled core state");
1861 return ERROR_FAIL;
1862 }
1863
1864 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1865 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1866 err = arm7_9_execute_sys_speed(target);
1867
1868 LOG_DEBUG("disable single-step");
1869 arm7_9->disable_single_step(target);
1870
1871 if (err != ERROR_OK)
1872 {
1873 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1874 {
1875 return retval;
1876 }
1877 target->state = TARGET_UNKNOWN;
1878 return err;
1879 }
1880
1881 arm7_9_debug_entry(target);
1882 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32,
1883 buf_get_u32(armv4_5->pc->value, 0, 32));
1884
1885 LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1886 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1887 {
1888 return retval;
1889 }
1890 }
1891 }
1892
1893 /* enable any pending breakpoints and watchpoints */
1894 arm7_9_enable_breakpoints(target);
1895 arm7_9_enable_watchpoints(target);
1896
1897 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1898 {
1899 return retval;
1900 }
1901
1902 if (armv4_5->core_state == ARM_STATE_ARM)
1903 {
1904 arm7_9->branch_resume(target);
1905 }
1906 else if (armv4_5->core_state == ARM_STATE_THUMB)
1907 {
1908 arm7_9->branch_resume_thumb(target);
1909 }
1910 else
1911 {
1912 LOG_ERROR("unhandled core state");
1913 return ERROR_FAIL;
1914 }
1915
1916 /* deassert DBGACK and INTDIS */
1917 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1918 /* INTDIS only when we really resume, not during debug execution */
1919 if (!debug_execution)
1920 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1921 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1922
1923 if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1924 {
1925 return retval;
1926 }
1927
1928 target->debug_reason = DBG_REASON_NOTHALTED;
1929
1930 if (!debug_execution)
1931 {
1932 /* registers are now invalid */
1933 register_cache_invalidate(armv4_5->core_cache);
1934 target->state = TARGET_RUNNING;
1935 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1936 {
1937 return retval;
1938 }
1939 }
1940 else
1941 {
1942 target->state = TARGET_DEBUG_RUNNING;
1943 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1944 {
1945 return retval;
1946 }
1947 }
1948
1949 LOG_DEBUG("target resumed");
1950
1951 return ERROR_OK;
1952 }
1953
1954 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1955 {
1956 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1957 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1958 uint32_t current_pc;
1959 current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
1960
1961 if (next_pc != current_pc)
1962 {
1963 /* setup an inverse breakpoint on the current PC
1964 * - comparator 1 matches the current address
1965 * - rangeout from comparator 1 is connected to comparator 0 rangein
1966 * - comparator 0 matches any address, as long as rangein is low */
1967 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1968 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1969 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1970 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1971 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1972 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1973 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1974 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1975 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1976 }
1977 else
1978 {
1979 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1980 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1981 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1982 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1983 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1984 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1985 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1986 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1987 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1988 }
1989 }
1990
1991 void arm7_9_disable_eice_step(struct target *target)
1992 {
1993 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1994
1995 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1996 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1997 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1998 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1999 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
2000 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
2001 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
2002 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
2003 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
2004 }
2005
2006 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
2007 {
2008 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2009 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2010 struct breakpoint *breakpoint = NULL;
2011 int err, retval;
2012
2013 if (target->state != TARGET_HALTED)
2014 {
2015 LOG_WARNING("target not halted");
2016 return ERROR_TARGET_NOT_HALTED;
2017 }
2018
2019 /* current = 1: continue on current pc, otherwise continue at <address> */
2020 if (!current)
2021 buf_set_u32(armv4_5->pc->value, 0, 32, address);
2022
2023 uint32_t current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
2024
2025 /* the front-end may request us not to handle breakpoints */
2026 if (handle_breakpoints)
2027 breakpoint = breakpoint_find(target, current_pc);
2028 if (breakpoint != NULL) {
2029 retval = arm7_9_unset_breakpoint(target, breakpoint);
2030 if (retval != ERROR_OK)
2031 return retval;
2032 }
2033
2034 target->debug_reason = DBG_REASON_SINGLESTEP;
2035
2036 /* calculate PC of next instruction */
2037 uint32_t next_pc;
2038 if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2039 {
2040 uint32_t current_opcode;
2041 target_read_u32(target, current_pc, &current_opcode);
2042 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2043 return retval;
2044 }
2045
2046 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2047 {
2048 return retval;
2049 }
2050
2051 arm7_9->enable_single_step(target, next_pc);
2052
2053 if (armv4_5->core_state == ARM_STATE_ARM)
2054 {
2055 arm7_9->branch_resume(target);
2056 }
2057 else if (armv4_5->core_state == ARM_STATE_THUMB)
2058 {
2059 arm7_9->branch_resume_thumb(target);
2060 }
2061 else
2062 {
2063 LOG_ERROR("unhandled core state");
2064 return ERROR_FAIL;
2065 }
2066
2067 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2068 {
2069 return retval;
2070 }
2071
2072 err = arm7_9_execute_sys_speed(target);
2073 arm7_9->disable_single_step(target);
2074
2075 /* registers are now invalid */
2076 register_cache_invalidate(armv4_5->core_cache);
2077
2078 if (err != ERROR_OK)
2079 {
2080 target->state = TARGET_UNKNOWN;
2081 } else {
2082 arm7_9_debug_entry(target);
2083 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2084 {
2085 return retval;
2086 }
2087 LOG_DEBUG("target stepped");
2088 }
2089
2090 if (breakpoint)
2091 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2092 {
2093 return retval;
2094 }
2095
2096 return err;
2097 }
2098
2099 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
2100 int num, enum arm_mode mode)
2101 {
2102 uint32_t* reg_p[16];
2103 uint32_t value;
2104 int retval;
2105 struct arm_reg *areg = r->arch_info;
2106 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2107 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2108
2109 if (!is_arm_mode(armv4_5->core_mode))
2110 return ERROR_FAIL;
2111 if ((num < 0) || (num > 16))
2112 return ERROR_INVALID_ARGUMENTS;
2113
2114 if ((mode != ARM_MODE_ANY)
2115 && (mode != armv4_5->core_mode)
2116 && (areg->mode != ARM_MODE_ANY))
2117 {
2118 uint32_t tmp_cpsr;
2119
2120 /* change processor mode (mask T bit) */
2121 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2122 tmp_cpsr |= mode;
2123 tmp_cpsr &= ~0x20;
2124 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2125 }
2126
2127 if ((num >= 0) && (num <= 15))
2128 {
2129 /* read a normal core register */
2130 reg_p[num] = &value;
2131
2132 arm7_9->read_core_regs(target, 1 << num, reg_p);
2133 }
2134 else
2135 {
2136 /* read a program status register
2137 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2138 */
2139 arm7_9->read_xpsr(target, &value, areg->mode != ARM_MODE_ANY);
2140 }
2141
2142 if ((retval = jtag_execute_queue()) != ERROR_OK)
2143 {
2144 return retval;
2145 }
2146
2147 r->valid = 1;
2148 r->dirty = 0;
2149 buf_set_u32(r->value, 0, 32, value);
2150
2151 if ((mode != ARM_MODE_ANY)
2152 && (mode != armv4_5->core_mode)
2153 && (areg->mode != ARM_MODE_ANY)) {
2154 /* restore processor mode (mask T bit) */
2155 arm7_9->write_xpsr_im8(target,
2156 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2157 & ~0x20, 0, 0);
2158 }
2159
2160 return ERROR_OK;
2161 }
2162
2163 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2164 int num, enum arm_mode mode, uint32_t value)
2165 {
2166 uint32_t reg[16];
2167 struct arm_reg *areg = r->arch_info;
2168 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2169 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2170
2171 if (!is_arm_mode(armv4_5->core_mode))
2172 return ERROR_FAIL;
2173 if ((num < 0) || (num > 16))
2174 return ERROR_INVALID_ARGUMENTS;
2175
2176 if ((mode != ARM_MODE_ANY)
2177 && (mode != armv4_5->core_mode)
2178 && (areg->mode != ARM_MODE_ANY)) {
2179 uint32_t tmp_cpsr;
2180
2181 /* change processor mode (mask T bit) */
2182 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2183 tmp_cpsr |= mode;
2184 tmp_cpsr &= ~0x20;
2185 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2186 }
2187
2188 if ((num >= 0) && (num <= 15))
2189 {
2190 /* write a normal core register */
2191 reg[num] = value;
2192
2193 arm7_9->write_core_regs(target, 1 << num, reg);
2194 }
2195 else
2196 {
2197 /* write a program status register
2198 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2199 */
2200 int spsr = (areg->mode != ARM_MODE_ANY);
2201
2202 /* if we're writing the CPSR, mask the T bit */
2203 if (!spsr)
2204 value &= ~0x20;
2205
2206 arm7_9->write_xpsr(target, value, spsr);
2207 }
2208
2209 r->valid = 1;
2210 r->dirty = 0;
2211
2212 if ((mode != ARM_MODE_ANY)
2213 && (mode != armv4_5->core_mode)
2214 && (areg->mode != ARM_MODE_ANY)) {
2215 /* restore processor mode (mask T bit) */
2216 arm7_9->write_xpsr_im8(target,
2217 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2218 & ~0x20, 0, 0);
2219 }
2220
2221 return jtag_execute_queue();
2222 }
2223
2224 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2225 {
2226 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2227 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2228 uint32_t reg[16];
2229 uint32_t num_accesses = 0;
2230 int thisrun_accesses;
2231 int i;
2232 uint32_t cpsr;
2233 int retval;
2234 int last_reg = 0;
2235
2236 LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2237
2238 if (target->state != TARGET_HALTED)
2239 {
2240 LOG_WARNING("target not halted");
2241 return ERROR_TARGET_NOT_HALTED;
2242 }
2243
2244 /* sanitize arguments */
2245 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2246 return ERROR_INVALID_ARGUMENTS;
2247
2248 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2249 return ERROR_TARGET_UNALIGNED_ACCESS;
2250
2251 /* load the base register with the address of the first word */
2252 reg[0] = address;
2253 arm7_9->write_core_regs(target, 0x1, reg);
2254
2255 int j = 0;
2256
2257 switch (size)
2258 {
2259 case 4:
2260 while (num_accesses < count)
2261 {
2262 uint32_t reg_list;
2263 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2264 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2265
2266 if (last_reg <= thisrun_accesses)
2267 last_reg = thisrun_accesses;
2268
2269 arm7_9->load_word_regs(target, reg_list);
2270
2271 /* fast memory reads are only safe when the target is running
2272 * from a sufficiently high clock (32 kHz is usually too slow)
2273 */
2274 if (arm7_9->fast_memory_access)
2275 retval = arm7_9_execute_fast_sys_speed(target);
2276 else
2277 retval = arm7_9_execute_sys_speed(target);
2278 if (retval != ERROR_OK)
2279 return retval;
2280
2281 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2282
2283 /* advance buffer, count number of accesses */
2284 buffer += thisrun_accesses * 4;
2285 num_accesses += thisrun_accesses;
2286
2287 if ((j++%1024) == 0)
2288 {
2289 keep_alive();
2290 }
2291 }
2292 break;
2293 case 2:
2294 while (num_accesses < count)
2295 {
2296 uint32_t reg_list;
2297 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2298 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2299
2300 for (i = 1; i <= thisrun_accesses; i++)
2301 {
2302 if (i > last_reg)
2303 last_reg = i;
2304 arm7_9->load_hword_reg(target, i);
2305 /* fast memory reads are only safe when the target is running
2306 * from a sufficiently high clock (32 kHz is usually too slow)
2307 */
2308 if (arm7_9->fast_memory_access)
2309 retval = arm7_9_execute_fast_sys_speed(target);
2310 else
2311 retval = arm7_9_execute_sys_speed(target);
2312 if (retval != ERROR_OK)
2313 {
2314 return retval;
2315 }
2316
2317 }
2318
2319 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2320
2321 /* advance buffer, count number of accesses */
2322 buffer += thisrun_accesses * 2;
2323 num_accesses += thisrun_accesses;
2324
2325 if ((j++%1024) == 0)
2326 {
2327 keep_alive();
2328 }
2329 }
2330 break;
2331 case 1:
2332 while (num_accesses < count)
2333 {
2334 uint32_t reg_list;
2335 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2336 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2337
2338 for (i = 1; i <= thisrun_accesses; i++)
2339 {
2340 if (i > last_reg)
2341 last_reg = i;
2342 arm7_9->load_byte_reg(target, i);
2343 /* fast memory reads are only safe when the target is running
2344 * from a sufficiently high clock (32 kHz is usually too slow)
2345 */
2346 if (arm7_9->fast_memory_access)
2347 retval = arm7_9_execute_fast_sys_speed(target);
2348 else
2349 retval = arm7_9_execute_sys_speed(target);
2350 if (retval != ERROR_OK)
2351 {
2352 return retval;
2353 }
2354 }
2355
2356 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2357
2358 /* advance buffer, count number of accesses */
2359 buffer += thisrun_accesses * 1;
2360 num_accesses += thisrun_accesses;
2361
2362 if ((j++%1024) == 0)
2363 {
2364 keep_alive();
2365 }
2366 }
2367 break;
2368 }
2369
2370 if (!is_arm_mode(armv4_5->core_mode))
2371 return ERROR_FAIL;
2372
2373 for (i = 0; i <= last_reg; i++) {
2374 struct reg *r = arm_reg_current(armv4_5, i);
2375
2376 r->dirty = r->valid;
2377 }
2378
2379 arm7_9->read_xpsr(target, &cpsr, 0);
2380 if ((retval = jtag_execute_queue()) != ERROR_OK)
2381 {
2382 LOG_ERROR("JTAG error while reading cpsr");
2383 return ERROR_TARGET_DATA_ABORT;
2384 }
2385
2386 if (((cpsr & 0x1f) == ARM_MODE_ABT) && (armv4_5->core_mode != ARM_MODE_ABT))
2387 {
2388 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2389
2390 arm7_9->write_xpsr_im8(target,
2391 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2392 & ~0x20, 0, 0);
2393
2394 return ERROR_TARGET_DATA_ABORT;
2395 }
2396
2397 return ERROR_OK;
2398 }
2399
2400 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2401 {
2402 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2403 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2404 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2405
2406 uint32_t reg[16];
2407 uint32_t num_accesses = 0;
2408 int thisrun_accesses;
2409 int i;
2410 uint32_t cpsr;
2411 int retval;
2412 int last_reg = 0;
2413
2414 #ifdef _DEBUG_ARM7_9_
2415 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2416 #endif
2417
2418 if (target->state != TARGET_HALTED)
2419 {
2420 LOG_WARNING("target not halted");
2421 return ERROR_TARGET_NOT_HALTED;
2422 }
2423
2424 /* sanitize arguments */
2425 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2426 return ERROR_INVALID_ARGUMENTS;
2427
2428 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2429 return ERROR_TARGET_UNALIGNED_ACCESS;
2430
2431 /* load the base register with the address of the first word */
2432 reg[0] = address;
2433 arm7_9->write_core_regs(target, 0x1, reg);
2434
2435 /* Clear DBGACK, to make sure memory fetches work as expected */
2436 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2437 embeddedice_store_reg(dbg_ctrl);
2438
2439 switch (size)
2440 {
2441 case 4:
2442 while (num_accesses < count)
2443 {
2444 uint32_t reg_list;
2445 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2446 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2447
2448 for (i = 1; i <= thisrun_accesses; i++)
2449 {
2450 if (i > last_reg)
2451 last_reg = i;
2452 reg[i] = target_buffer_get_u32(target, buffer);
2453 buffer += 4;
2454 }
2455
2456 arm7_9->write_core_regs(target, reg_list, reg);
2457
2458 arm7_9->store_word_regs(target, reg_list);
2459
2460 /* fast memory writes are only safe when the target is running
2461 * from a sufficiently high clock (32 kHz is usually too slow)
2462 */
2463 if (arm7_9->fast_memory_access)
2464 retval = arm7_9_execute_fast_sys_speed(target);
2465 else
2466 retval = arm7_9_execute_sys_speed(target);
2467 if (retval != ERROR_OK)
2468 {
2469 return retval;
2470 }
2471
2472 num_accesses += thisrun_accesses;
2473 }
2474 break;
2475 case 2:
2476 while (num_accesses < count)
2477 {
2478 uint32_t reg_list;
2479 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2480 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2481
2482 for (i = 1; i <= thisrun_accesses; i++)
2483 {
2484 if (i > last_reg)
2485 last_reg = i;
2486 reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2487 buffer += 2;
2488 }
2489
2490 arm7_9->write_core_regs(target, reg_list, reg);
2491
2492 for (i = 1; i <= thisrun_accesses; i++)
2493 {
2494 arm7_9->store_hword_reg(target, i);
2495
2496 /* fast memory writes are only safe when the target is running
2497 * from a sufficiently high clock (32 kHz is usually too slow)
2498 */
2499 if (arm7_9->fast_memory_access)
2500 retval = arm7_9_execute_fast_sys_speed(target);
2501 else
2502 retval = arm7_9_execute_sys_speed(target);
2503 if (retval != ERROR_OK)
2504 {
2505 return retval;
2506 }
2507 }
2508
2509 num_accesses += thisrun_accesses;
2510 }
2511 break;
2512 case 1:
2513 while (num_accesses < count)
2514 {
2515 uint32_t reg_list;
2516 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2517 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2518
2519 for (i = 1; i <= thisrun_accesses; i++)
2520 {
2521 if (i > last_reg)
2522 last_reg = i;
2523 reg[i] = *buffer++ & 0xff;
2524 }
2525
2526 arm7_9->write_core_regs(target, reg_list, reg);
2527
2528 for (i = 1; i <= thisrun_accesses; i++)
2529 {
2530 arm7_9->store_byte_reg(target, i);
2531 /* fast memory writes are only safe when the target is running
2532 * from a sufficiently high clock (32 kHz is usually too slow)
2533 */
2534 if (arm7_9->fast_memory_access)
2535 retval = arm7_9_execute_fast_sys_speed(target);
2536 else
2537 retval = arm7_9_execute_sys_speed(target);
2538 if (retval != ERROR_OK)
2539 {
2540 return retval;
2541 }
2542
2543 }
2544
2545 num_accesses += thisrun_accesses;
2546 }
2547 break;
2548 }
2549
2550 /* Re-Set DBGACK */
2551 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2552 embeddedice_store_reg(dbg_ctrl);
2553
2554 if (!is_arm_mode(armv4_5->core_mode))
2555 return ERROR_FAIL;
2556
2557 for (i = 0; i <= last_reg; i++) {
2558 struct reg *r = arm_reg_current(armv4_5, i);
2559
2560 r->dirty = r->valid;
2561 }
2562
2563 arm7_9->read_xpsr(target, &cpsr, 0);
2564 if ((retval = jtag_execute_queue()) != ERROR_OK)
2565 {
2566 LOG_ERROR("JTAG error while reading cpsr");
2567 return ERROR_TARGET_DATA_ABORT;
2568 }
2569
2570 if (((cpsr & 0x1f) == ARM_MODE_ABT) && (armv4_5->core_mode != ARM_MODE_ABT))
2571 {
2572 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2573
2574 arm7_9->write_xpsr_im8(target,
2575 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2576 & ~0x20, 0, 0);
2577
2578 return ERROR_TARGET_DATA_ABORT;
2579 }
2580
2581 return ERROR_OK;
2582 }
2583
2584 static int dcc_count;
2585 static uint8_t *dcc_buffer;
2586
2587 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2588 {
2589 int retval = ERROR_OK;
2590 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2591
2592 if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2593 return retval;
2594
2595 int little = target->endianness == TARGET_LITTLE_ENDIAN;
2596 int count = dcc_count;
2597 uint8_t *buffer = dcc_buffer;
2598 if (count > 2)
2599 {
2600 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2601 * core function repeated. */
2602 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2603 buffer += 4;
2604
2605 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2606 uint8_t reg_addr = ice_reg->addr & 0x1f;
2607 struct jtag_tap *tap;
2608 tap = ice_reg->jtag_info->tap;
2609
2610 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2611 buffer += (count-2)*4;
2612
2613 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2614 } else
2615 {
2616 int i;
2617 for (i = 0; i < count; i++)
2618 {
2619 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2620 buffer += 4;
2621 }
2622 }
2623
2624 if ((retval = target_halt(target))!= ERROR_OK)
2625 {
2626 return retval;
2627 }
2628 return target_wait_state(target, TARGET_HALTED, 500);
2629 }
2630
2631 static const uint32_t dcc_code[] =
2632 {
2633 /* r0 == input, points to memory buffer
2634 * r1 == scratch
2635 */
2636
2637 /* spin until DCC control (c0) reports data arrived */
2638 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
2639 0xe3110001, /* tst r1, #1 */
2640 0x0afffffc, /* bne w */
2641
2642 /* read word from DCC (c1), write to memory */
2643 0xee111e10, /* mrc p14, #0, r1, c1, c0 */
2644 0xe4801004, /* str r1, [r0], #4 */
2645
2646 /* repeat */
2647 0xeafffff9 /* b w */
2648 };
2649
2650 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2651 {
2652 int retval;
2653 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2654 int i;
2655
2656 if (!arm7_9->dcc_downloads)
2657 return target_write_memory(target, address, 4, count, buffer);
2658
2659 /* regrab previously allocated working_area, or allocate a new one */
2660 if (!arm7_9->dcc_working_area)
2661 {
2662 uint8_t dcc_code_buf[6 * 4];
2663
2664 /* make sure we have a working area */
2665 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2666 {
2667 LOG_INFO("no working area available, falling back to memory writes");
2668 return target_write_memory(target, address, 4, count, buffer);
2669 }
2670
2671 /* copy target instructions to target endianness */
2672 for (i = 0; i < 6; i++)
2673 {
2674 target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2675 }
2676
2677 /* write DCC code to working area */
2678 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2679 {
2680 return retval;
2681 }
2682 }
2683
2684 struct arm_algorithm armv4_5_info;
2685 struct reg_param reg_params[1];
2686
2687 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
2688 armv4_5_info.core_mode = ARM_MODE_SVC;
2689 armv4_5_info.core_state = ARM_STATE_ARM;
2690
2691 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2692
2693 buf_set_u32(reg_params[0].value, 0, 32, address);
2694
2695 dcc_count = count;
2696 dcc_buffer = buffer;
2697 retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2698 arm7_9->dcc_working_area->address,
2699 arm7_9->dcc_working_area->address + 6*4,
2700 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2701
2702 if (retval == ERROR_OK)
2703 {
2704 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2705 if (endaddress != (address + count*4))
2706 {
2707 LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2708 retval = ERROR_FAIL;
2709 }
2710 }
2711
2712 destroy_reg_param(&reg_params[0]);
2713
2714 return retval;
2715 }
2716
2717 /**
2718 * Perform per-target setup that requires JTAG access.
2719 */
2720 int arm7_9_examine(struct target *target)
2721 {
2722 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2723 int retval;
2724
2725 if (!target_was_examined(target)) {
2726 struct reg_cache *t, **cache_p;
2727
2728 t = embeddedice_build_reg_cache(target, arm7_9);
2729 if (t == NULL)
2730 return ERROR_FAIL;
2731
2732 cache_p = register_get_last_cache_p(&target->reg_cache);
2733 (*cache_p) = t;
2734 arm7_9->eice_cache = (*cache_p);
2735
2736 if (arm7_9->armv4_5_common.etm)
2737 (*cache_p)->next = etm_build_reg_cache(target,
2738 &arm7_9->jtag_info,
2739 arm7_9->armv4_5_common.etm);
2740
2741 target_set_examined(target);
2742 }
2743
2744 retval = embeddedice_setup(target);
2745 if (retval == ERROR_OK)
2746 retval = arm7_9_setup(target);
2747 if (retval == ERROR_OK && arm7_9->armv4_5_common.etm)
2748 retval = etm_setup(target);
2749 return retval;
2750 }
2751
2752
2753 int arm7_9_check_reset(struct target *target)
2754 {
2755 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2756
2757 if (get_target_reset_nag() && !arm7_9->dcc_downloads)
2758 {
2759 LOG_WARNING("NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2760 }
2761
2762 if (get_target_reset_nag() && (target->working_area_size == 0))
2763 {
2764 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2765 }
2766
2767 if (get_target_reset_nag() && !arm7_9->fast_memory_access)
2768 {
2769 LOG_WARNING("NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2770 }
2771
2772 return ERROR_OK;
2773 }
2774
2775 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2776 {
2777 struct target *target = get_current_target(CMD_CTX);
2778 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2779
2780 if (!is_arm7_9(arm7_9))
2781 {
2782 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2783 return ERROR_TARGET_INVALID;
2784 }
2785
2786 if (CMD_ARGC > 0)
2787 COMMAND_PARSE_ENABLE(CMD_ARGV[0],arm7_9->use_dbgrq);
2788
2789 command_print(CMD_CTX, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2790
2791 return ERROR_OK;
2792 }
2793
2794 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2795 {
2796 struct target *target = get_current_target(CMD_CTX);
2797 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2798
2799 if (!is_arm7_9(arm7_9))
2800 {
2801 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2802 return ERROR_TARGET_INVALID;
2803 }
2804
2805 if (CMD_ARGC > 0)
2806 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2807
2808 command_print(CMD_CTX, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2809
2810 return ERROR_OK;
2811 }
2812
2813 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2814 {
2815 struct target *target = get_current_target(CMD_CTX);
2816 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2817
2818 if (!is_arm7_9(arm7_9))
2819 {
2820 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2821 return ERROR_TARGET_INVALID;
2822 }
2823
2824 if (CMD_ARGC > 0)
2825 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2826
2827 command_print(CMD_CTX, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2828
2829 return ERROR_OK;
2830 }
2831
2832 static int arm7_9_setup_semihosting(struct target *target, int enable)
2833 {
2834 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2835
2836 if (!is_arm7_9(arm7_9))
2837 {
2838 LOG_USER("current target isn't an ARM7/ARM9 target");
2839 return ERROR_TARGET_INVALID;
2840 }
2841
2842 if (arm7_9->has_vector_catch) {
2843 struct reg *vector_catch = &arm7_9->eice_cache
2844 ->reg_list[EICE_VEC_CATCH];
2845
2846 if (!vector_catch->valid)
2847 embeddedice_read_reg(vector_catch);
2848 buf_set_u32(vector_catch->value, 2, 1, enable);
2849 embeddedice_store_reg(vector_catch);
2850 } else {
2851 /* TODO: allow optional high vectors and/or BKPT_HARD */
2852 if (enable)
2853 breakpoint_add(target, 8, 4, BKPT_SOFT);
2854 else
2855 breakpoint_remove(target, 8);
2856 }
2857
2858 return ERROR_OK;
2859 }
2860
2861 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2862 {
2863 int retval = ERROR_OK;
2864 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2865
2866 arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2867
2868 if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
2869 return retval;
2870
2871 /* caller must have allocated via calloc(), so everything's zeroed */
2872
2873 arm7_9->wp_available_max = 2;
2874
2875 arm7_9->fast_memory_access = false;
2876 arm7_9->dcc_downloads = false;
2877
2878 armv4_5->arch_info = arm7_9;
2879 armv4_5->read_core_reg = arm7_9_read_core_reg;
2880 armv4_5->write_core_reg = arm7_9_write_core_reg;
2881 armv4_5->full_context = arm7_9_full_context;
2882 armv4_5->setup_semihosting = arm7_9_setup_semihosting;
2883
2884 retval = arm_init_arch_info(target, armv4_5);
2885 if (retval != ERROR_OK)
2886 return retval;
2887
2888 return target_register_timer_callback(arm7_9_handle_target_request,
2889 1, 1, target);
2890 }
2891
2892 static const struct command_registration arm7_9_any_command_handlers[] = {
2893 {
2894 "dbgrq",
2895 .handler = handle_arm7_9_dbgrq_command,
2896 .mode = COMMAND_ANY,
2897 .usage = "['enable'|'disable']",
2898 .help = "use EmbeddedICE dbgrq instead of breakpoint "
2899 "for target halt requests",
2900 },
2901 {
2902 "fast_memory_access",
2903 .handler = handle_arm7_9_fast_memory_access_command,
2904 .mode = COMMAND_ANY,
2905 .usage = "['enable'|'disable']",
2906 .help = "use fast memory accesses instead of slower "
2907 "but potentially safer accesses",
2908 },
2909 {
2910 "dcc_downloads",
2911 .handler = handle_arm7_9_dcc_downloads_command,
2912 .mode = COMMAND_ANY,
2913 .usage = "['enable'|'disable']",
2914 .help = "use DCC downloads for larger memory writes",
2915 },
2916 COMMAND_REGISTRATION_DONE
2917 };
2918 const struct command_registration arm7_9_command_handlers[] = {
2919 {
2920 .chain = arm_command_handlers,
2921 },
2922 {
2923 .chain = etm_command_handlers,
2924 },
2925 {
2926 .name = "arm7_9",
2927 .mode = COMMAND_ANY,
2928 .help = "arm7/9 specific commands",
2929 .chain = arm7_9_any_command_handlers,
2930 },
2931 COMMAND_REGISTRATION_DONE
2932 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)