ARM: simplify CPSR handling
[openocd.git] / src / target / arm7_9_common.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2008 by Hongtao Zheng *
12 * hontor@126.com *
13 * *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
18 * *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
23 * *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program; if not, write to the *
26 * Free Software Foundation, Inc., *
27 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
28 ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include "breakpoints.h"
34 #include "embeddedice.h"
35 #include "target_request.h"
36 #include "etm.h"
37 #include "time_support.h"
38 #include "arm_simulator.h"
39 #include "algorithm.h"
40 #include "register.h"
41
42
43 /**
44 * @file
45 * Hold common code supporting the ARM7 and ARM9 core generations.
46 *
47 * While the ARM core implementations evolved substantially during these
48 * two generations, they look quite similar from the JTAG perspective.
49 * Both have similar debug facilities, based on the same two scan chains
50 * providing access to the core and to an EmbeddedICE module. Both can
51 * support similar ETM and ETB modules, for tracing. And both expose
52 * what could be viewed as "ARM Classic", with multiple processor modes,
53 * shadowed registers, and support for the Thumb instruction set.
54 *
55 * Processor differences include things like presence or absence of MMU
56 * and cache, pipeline sizes, use of a modified Harvard Architecure
57 * (with separate instruction and data busses from the CPU), support
58 * for cpu clock gating during idle, and more.
59 */
60
61 static int arm7_9_debug_entry(struct target *target);
62
63 /**
64 * Clear watchpoints for an ARM7/9 target.
65 *
66 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
67 * @return JTAG error status after executing queue
68 */
69 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
70 {
71 LOG_DEBUG("-");
72 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
73 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
74 arm7_9->sw_breakpoint_count = 0;
75 arm7_9->sw_breakpoints_added = 0;
76 arm7_9->wp0_used = 0;
77 arm7_9->wp1_used = arm7_9->wp1_used_default;
78 arm7_9->wp_available = arm7_9->wp_available_max;
79
80 return jtag_execute_queue();
81 }
82
83 /**
84 * Assign a watchpoint to one of the two available hardware comparators in an
85 * ARM7 or ARM9 target.
86 *
87 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
88 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
89 */
90 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
91 {
92 if (!arm7_9->wp0_used)
93 {
94 arm7_9->wp0_used = 1;
95 breakpoint->set = 1;
96 arm7_9->wp_available--;
97 }
98 else if (!arm7_9->wp1_used)
99 {
100 arm7_9->wp1_used = 1;
101 breakpoint->set = 2;
102 arm7_9->wp_available--;
103 }
104 else
105 {
106 LOG_ERROR("BUG: no hardware comparator available");
107 }
108 LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
109 breakpoint->unique_id,
110 breakpoint->address,
111 breakpoint->set );
112 }
113
114 /**
115 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
116 *
117 * @param arm7_9 Pointer to common struct for ARM7/9 targets
118 * @return Error codes if there is a problem finding a watchpoint or the result
119 * of executing the JTAG queue
120 */
121 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
122 {
123 if (arm7_9->sw_breakpoints_added)
124 {
125 return ERROR_OK;
126 }
127 if (arm7_9->wp_available < 1)
128 {
129 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
130 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
131 }
132 arm7_9->wp_available--;
133
134 /* pick a breakpoint unit */
135 if (!arm7_9->wp0_used)
136 {
137 arm7_9->sw_breakpoints_added = 1;
138 arm7_9->wp0_used = 3;
139 } else if (!arm7_9->wp1_used)
140 {
141 arm7_9->sw_breakpoints_added = 2;
142 arm7_9->wp1_used = 3;
143 }
144 else
145 {
146 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
147 return ERROR_FAIL;
148 }
149
150 if (arm7_9->sw_breakpoints_added == 1)
151 {
152 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
153 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
154 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
155 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
156 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
157 }
158 else if (arm7_9->sw_breakpoints_added == 2)
159 {
160 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
161 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
162 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
163 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
164 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
165 }
166 else
167 {
168 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
169 return ERROR_FAIL;
170 }
171 LOG_DEBUG("SW BP using hw wp: %d",
172 arm7_9->sw_breakpoints_added );
173
174 return jtag_execute_queue();
175 }
176
177 /**
178 * Setup the common pieces for an ARM7/9 target after reset or on startup.
179 *
180 * @param target Pointer to an ARM7/9 target to setup
181 * @return Result of clearing the watchpoints on the target
182 */
183 int arm7_9_setup(struct target *target)
184 {
185 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
186
187 return arm7_9_clear_watchpoints(arm7_9);
188 }
189
190 /**
191 * Set either a hardware or software breakpoint on an ARM7/9 target. The
192 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
193 * might have erased the values in Embedded ICE.
194 *
195 * @param target Pointer to the target device to set the breakpoints on
196 * @param breakpoint Pointer to the breakpoint to be set
197 * @return For hardware breakpoints, this is the result of executing the JTAG
198 * queue. For software breakpoints, this will be the status of the
199 * required memory reads and writes
200 */
201 int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
202 {
203 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
204 int retval = ERROR_OK;
205
206 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
207 breakpoint->unique_id,
208 breakpoint->address,
209 breakpoint->type);
210
211 if (target->state != TARGET_HALTED)
212 {
213 LOG_WARNING("target not halted");
214 return ERROR_TARGET_NOT_HALTED;
215 }
216
217 if (breakpoint->type == BKPT_HARD)
218 {
219 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
220 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
221
222 /* reassign a hw breakpoint */
223 if (breakpoint->set == 0)
224 {
225 arm7_9_assign_wp(arm7_9, breakpoint);
226 }
227
228 if (breakpoint->set == 1)
229 {
230 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
231 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
232 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
233 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
234 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
235 }
236 else if (breakpoint->set == 2)
237 {
238 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
239 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
240 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
241 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
242 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
243 }
244 else
245 {
246 LOG_ERROR("BUG: no hardware comparator available");
247 return ERROR_OK;
248 }
249
250 retval = jtag_execute_queue();
251 }
252 else if (breakpoint->type == BKPT_SOFT)
253 {
254 /* did we already set this breakpoint? */
255 if (breakpoint->set)
256 return ERROR_OK;
257
258 if (breakpoint->length == 4)
259 {
260 uint32_t verify = 0xffffffff;
261 /* keep the original instruction in target endianness */
262 if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
263 {
264 return retval;
265 }
266 /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
267 if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
268 {
269 return retval;
270 }
271
272 if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
273 {
274 return retval;
275 }
276 if (verify != arm7_9->arm_bkpt)
277 {
278 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
279 return ERROR_OK;
280 }
281 }
282 else
283 {
284 uint16_t verify = 0xffff;
285 /* keep the original instruction in target endianness */
286 if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
287 {
288 return retval;
289 }
290 /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
291 if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
292 {
293 return retval;
294 }
295
296 if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
297 {
298 return retval;
299 }
300 if (verify != arm7_9->thumb_bkpt)
301 {
302 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
303 return ERROR_OK;
304 }
305 }
306
307 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
308 return retval;
309
310 arm7_9->sw_breakpoint_count++;
311
312 breakpoint->set = 1;
313 }
314
315 return retval;
316 }
317
318 /**
319 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
320 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
321 * will be updated. Otherwise, the software breakpoint will be restored to its
322 * original instruction if it hasn't already been modified.
323 *
324 * @param target Pointer to ARM7/9 target to unset the breakpoint from
325 * @param breakpoint Pointer to breakpoint to be unset
326 * @return For hardware breakpoints, this is the result of executing the JTAG
327 * queue. For software breakpoints, this will be the status of the
328 * required memory reads and writes
329 */
330 int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
331 {
332 int retval = ERROR_OK;
333 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
334
335 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
336 breakpoint->unique_id,
337 breakpoint->address );
338
339 if (!breakpoint->set)
340 {
341 LOG_WARNING("breakpoint not set");
342 return ERROR_OK;
343 }
344
345 if (breakpoint->type == BKPT_HARD)
346 {
347 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
348 breakpoint->unique_id,
349 breakpoint->set );
350 if (breakpoint->set == 1)
351 {
352 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
353 arm7_9->wp0_used = 0;
354 arm7_9->wp_available++;
355 }
356 else if (breakpoint->set == 2)
357 {
358 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
359 arm7_9->wp1_used = 0;
360 arm7_9->wp_available++;
361 }
362 retval = jtag_execute_queue();
363 breakpoint->set = 0;
364 }
365 else
366 {
367 /* restore original instruction (kept in target endianness) */
368 if (breakpoint->length == 4)
369 {
370 uint32_t current_instr;
371 /* check that user program as not modified breakpoint instruction */
372 if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
373 {
374 return retval;
375 }
376 if (current_instr == arm7_9->arm_bkpt)
377 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
378 {
379 return retval;
380 }
381 }
382 else
383 {
384 uint16_t current_instr;
385 /* check that user program as not modified breakpoint instruction */
386 if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
387 {
388 return retval;
389 }
390 if (current_instr == arm7_9->thumb_bkpt)
391 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
392 {
393 return retval;
394 }
395 }
396
397 if (--arm7_9->sw_breakpoint_count==0)
398 {
399 /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
400 if (arm7_9->sw_breakpoints_added == 1)
401 {
402 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
403 }
404 else if (arm7_9->sw_breakpoints_added == 2)
405 {
406 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
407 }
408 }
409
410 breakpoint->set = 0;
411 }
412
413 return retval;
414 }
415
416 /**
417 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
418 * dangling breakpoints and that the desired breakpoint can be added.
419 *
420 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
421 * @param breakpoint Pointer to the breakpoint to be added
422 * @return An error status if there is a problem adding the breakpoint or the
423 * result of setting the breakpoint
424 */
425 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
426 {
427 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
428
429 if (target->state != TARGET_HALTED)
430 {
431 LOG_WARNING("target not halted");
432 return ERROR_TARGET_NOT_HALTED;
433 }
434
435 if (arm7_9->breakpoint_count == 0)
436 {
437 /* make sure we don't have any dangling breakpoints. This is vital upon
438 * GDB connect/disconnect
439 */
440 arm7_9_clear_watchpoints(arm7_9);
441 }
442
443 if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
444 {
445 LOG_INFO("no watchpoint unit available for hardware breakpoint");
446 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
447 }
448
449 if ((breakpoint->length != 2) && (breakpoint->length != 4))
450 {
451 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
452 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
453 }
454
455 if (breakpoint->type == BKPT_HARD)
456 {
457 arm7_9_assign_wp(arm7_9, breakpoint);
458 }
459
460 arm7_9->breakpoint_count++;
461
462 return arm7_9_set_breakpoint(target, breakpoint);
463 }
464
465 /**
466 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
467 * dangling breakpoints and updates available watchpoints if it is a hardware
468 * breakpoint.
469 *
470 * @param target Pointer to the target to have a breakpoint removed
471 * @param breakpoint Pointer to the breakpoint to be removed
472 * @return Error status if there was a problem unsetting the breakpoint or the
473 * watchpoints could not be cleared
474 */
475 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
476 {
477 int retval = ERROR_OK;
478 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
479
480 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
481 {
482 return retval;
483 }
484
485 if (breakpoint->type == BKPT_HARD)
486 arm7_9->wp_available++;
487
488 arm7_9->breakpoint_count--;
489 if (arm7_9->breakpoint_count == 0)
490 {
491 /* make sure we don't have any dangling breakpoints */
492 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
493 {
494 return retval;
495 }
496 }
497
498 return ERROR_OK;
499 }
500
501 /**
502 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
503 * considered a bug to call this function when there are no available watchpoint
504 * units.
505 *
506 * @param target Pointer to an ARM7/9 target to set a watchpoint on
507 * @param watchpoint Pointer to the watchpoint to be set
508 * @return Error status if watchpoint set fails or the result of executing the
509 * JTAG queue
510 */
511 int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
512 {
513 int retval = ERROR_OK;
514 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
515 int rw_mask = 1;
516 uint32_t mask;
517
518 mask = watchpoint->length - 1;
519
520 if (target->state != TARGET_HALTED)
521 {
522 LOG_WARNING("target not halted");
523 return ERROR_TARGET_NOT_HALTED;
524 }
525
526 if (watchpoint->rw == WPT_ACCESS)
527 rw_mask = 0;
528 else
529 rw_mask = 1;
530
531 if (!arm7_9->wp0_used)
532 {
533 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
534 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
535 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
536 if (watchpoint->mask != 0xffffffffu)
537 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
538 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
539 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
540
541 if ((retval = jtag_execute_queue()) != ERROR_OK)
542 {
543 return retval;
544 }
545 watchpoint->set = 1;
546 arm7_9->wp0_used = 2;
547 }
548 else if (!arm7_9->wp1_used)
549 {
550 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
551 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
552 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
553 if (watchpoint->mask != 0xffffffffu)
554 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
555 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
556 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
557
558 if ((retval = jtag_execute_queue()) != ERROR_OK)
559 {
560 return retval;
561 }
562 watchpoint->set = 2;
563 arm7_9->wp1_used = 2;
564 }
565 else
566 {
567 LOG_ERROR("BUG: no hardware comparator available");
568 return ERROR_OK;
569 }
570
571 return ERROR_OK;
572 }
573
574 /**
575 * Unset an existing watchpoint and clear the used watchpoint unit.
576 *
577 * @param target Pointer to the target to have the watchpoint removed
578 * @param watchpoint Pointer to the watchpoint to be removed
579 * @return Error status while trying to unset the watchpoint or the result of
580 * executing the JTAG queue
581 */
582 int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
583 {
584 int retval = ERROR_OK;
585 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
586
587 if (target->state != TARGET_HALTED)
588 {
589 LOG_WARNING("target not halted");
590 return ERROR_TARGET_NOT_HALTED;
591 }
592
593 if (!watchpoint->set)
594 {
595 LOG_WARNING("breakpoint not set");
596 return ERROR_OK;
597 }
598
599 if (watchpoint->set == 1)
600 {
601 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
602 if ((retval = jtag_execute_queue()) != ERROR_OK)
603 {
604 return retval;
605 }
606 arm7_9->wp0_used = 0;
607 }
608 else if (watchpoint->set == 2)
609 {
610 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
611 if ((retval = jtag_execute_queue()) != ERROR_OK)
612 {
613 return retval;
614 }
615 arm7_9->wp1_used = 0;
616 }
617 watchpoint->set = 0;
618
619 return ERROR_OK;
620 }
621
622 /**
623 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
624 * available, an error response is returned.
625 *
626 * @param target Pointer to the ARM7/9 target to add a watchpoint to
627 * @param watchpoint Pointer to the watchpoint to be added
628 * @return Error status while trying to add the watchpoint
629 */
630 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
631 {
632 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
633
634 if (target->state != TARGET_HALTED)
635 {
636 LOG_WARNING("target not halted");
637 return ERROR_TARGET_NOT_HALTED;
638 }
639
640 if (arm7_9->wp_available < 1)
641 {
642 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
643 }
644
645 if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
646 {
647 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
648 }
649
650 arm7_9->wp_available--;
651
652 return ERROR_OK;
653 }
654
655 /**
656 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
657 * the used watchpoint unit will be reopened.
658 *
659 * @param target Pointer to the target to remove a watchpoint from
660 * @param watchpoint Pointer to the watchpoint to be removed
661 * @return Result of trying to unset the watchpoint
662 */
663 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
664 {
665 int retval = ERROR_OK;
666 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
667
668 if (watchpoint->set)
669 {
670 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
671 {
672 return retval;
673 }
674 }
675
676 arm7_9->wp_available++;
677
678 return ERROR_OK;
679 }
680
681 /**
682 * Restarts the target by sending a RESTART instruction and moving the JTAG
683 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
684 * asserted by the processor.
685 *
686 * @param target Pointer to target to issue commands to
687 * @return Error status if there is a timeout or a problem while executing the
688 * JTAG queue
689 */
690 int arm7_9_execute_sys_speed(struct target *target)
691 {
692 int retval;
693 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
694 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
695 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
696
697 /* set RESTART instruction */
698 jtag_set_end_state(TAP_IDLE);
699 if (arm7_9->need_bypass_before_restart) {
700 arm7_9->need_bypass_before_restart = 0;
701 arm_jtag_set_instr(jtag_info, 0xf, NULL);
702 }
703 arm_jtag_set_instr(jtag_info, 0x4, NULL);
704
705 long long then = timeval_ms();
706 int timeout;
707 while (!(timeout = ((timeval_ms()-then) > 1000)))
708 {
709 /* read debug status register */
710 embeddedice_read_reg(dbg_stat);
711 if ((retval = jtag_execute_queue()) != ERROR_OK)
712 return retval;
713 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
714 && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
715 break;
716 if (debug_level >= 3)
717 {
718 alive_sleep(100);
719 } else
720 {
721 keep_alive();
722 }
723 }
724 if (timeout)
725 {
726 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
727 return ERROR_TARGET_TIMEOUT;
728 }
729
730 return ERROR_OK;
731 }
732
733 /**
734 * Restarts the target by sending a RESTART instruction and moving the JTAG
735 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
736 * waiting until they are.
737 *
738 * @param target Pointer to the target to issue commands to
739 * @return Always ERROR_OK
740 */
741 int arm7_9_execute_fast_sys_speed(struct target *target)
742 {
743 static int set = 0;
744 static uint8_t check_value[4], check_mask[4];
745
746 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
747 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
748 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
749
750 /* set RESTART instruction */
751 jtag_set_end_state(TAP_IDLE);
752 if (arm7_9->need_bypass_before_restart) {
753 arm7_9->need_bypass_before_restart = 0;
754 arm_jtag_set_instr(jtag_info, 0xf, NULL);
755 }
756 arm_jtag_set_instr(jtag_info, 0x4, NULL);
757
758 if (!set)
759 {
760 /* check for DBGACK and SYSCOMP set (others don't care) */
761
762 /* NB! These are constants that must be available until after next jtag_execute() and
763 * we evaluate the values upon first execution in lieu of setting up these constants
764 * during early setup.
765 * */
766 buf_set_u32(check_value, 0, 32, 0x9);
767 buf_set_u32(check_mask, 0, 32, 0x9);
768 set = 1;
769 }
770
771 /* read debug status register */
772 embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
773
774 return ERROR_OK;
775 }
776
777 /**
778 * Get some data from the ARM7/9 target.
779 *
780 * @param target Pointer to the ARM7/9 target to read data from
781 * @param size The number of 32bit words to be read
782 * @param buffer Pointer to the buffer that will hold the data
783 * @return The result of receiving data from the Embedded ICE unit
784 */
785 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
786 {
787 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
788 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
789 uint32_t *data;
790 int retval = ERROR_OK;
791 uint32_t i;
792
793 data = malloc(size * (sizeof(uint32_t)));
794
795 retval = embeddedice_receive(jtag_info, data, size);
796
797 /* return the 32-bit ints in the 8-bit array */
798 for (i = 0; i < size; i++)
799 {
800 h_u32_to_le(buffer + (i * 4), data[i]);
801 }
802
803 free(data);
804
805 return retval;
806 }
807
808 /**
809 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
810 * target is running and the DCC control register has the W bit high, this will
811 * execute the request on the target.
812 *
813 * @param priv Void pointer expected to be a struct target pointer
814 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
815 * from the Embedded ICE unit
816 */
817 int arm7_9_handle_target_request(void *priv)
818 {
819 int retval = ERROR_OK;
820 struct target *target = priv;
821 if (!target_was_examined(target))
822 return ERROR_OK;
823 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
824 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
825 struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
826
827 if (!target->dbg_msg_enabled)
828 return ERROR_OK;
829
830 if (target->state == TARGET_RUNNING)
831 {
832 /* read DCC control register */
833 embeddedice_read_reg(dcc_control);
834 if ((retval = jtag_execute_queue()) != ERROR_OK)
835 {
836 return retval;
837 }
838
839 /* check W bit */
840 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
841 {
842 uint32_t request;
843
844 if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
845 {
846 return retval;
847 }
848 if ((retval = target_request(target, request)) != ERROR_OK)
849 {
850 return retval;
851 }
852 }
853 }
854
855 return ERROR_OK;
856 }
857
858 /**
859 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
860 * is manipulated to the right halted state based on its current state. This is
861 * what happens:
862 *
863 * <table>
864 * <tr><th > State</th><th > Action</th></tr>
865 * <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
866 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
867 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
868 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
869 * </table>
870 *
871 * If the target does not end up in the halted state, a warning is produced. If
872 * DBGACK is cleared, then the target is expected to either be running or
873 * running in debug.
874 *
875 * @param target Pointer to the ARM7/9 target to poll
876 * @return ERROR_OK or an error status if a command fails
877 */
878 int arm7_9_poll(struct target *target)
879 {
880 int retval;
881 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
882 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
883
884 /* read debug status register */
885 embeddedice_read_reg(dbg_stat);
886 if ((retval = jtag_execute_queue()) != ERROR_OK)
887 {
888 return retval;
889 }
890
891 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
892 {
893 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
894 if (target->state == TARGET_UNKNOWN)
895 {
896 /* Starting OpenOCD with target in debug-halt */
897 target->state = TARGET_RUNNING;
898 LOG_DEBUG("DBGACK already set during server startup.");
899 }
900 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
901 {
902 int check_pc = 0;
903 if (target->state == TARGET_RESET)
904 {
905 if (target->reset_halt)
906 {
907 enum reset_types jtag_reset_config = jtag_get_reset_config();
908 if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
909 {
910 check_pc = 1;
911 }
912 }
913 }
914
915 target->state = TARGET_HALTED;
916
917 if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
918 return retval;
919
920 if (check_pc)
921 {
922 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
923 uint32_t t=*((uint32_t *)reg->value);
924 if (t != 0)
925 {
926 LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
927 }
928 }
929
930 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
931 {
932 return retval;
933 }
934 }
935 if (target->state == TARGET_DEBUG_RUNNING)
936 {
937 target->state = TARGET_HALTED;
938 if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
939 return retval;
940
941 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
942 {
943 return retval;
944 }
945 }
946 if (target->state != TARGET_HALTED)
947 {
948 LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
949 }
950 }
951 else
952 {
953 if (target->state != TARGET_DEBUG_RUNNING)
954 target->state = TARGET_RUNNING;
955 }
956
957 return ERROR_OK;
958 }
959
960 /**
961 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
962 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
963 * affected) completely stop the JTAG clock while the core is held in reset
964 * (SRST). It isn't possible to program the halt condition once reset is
965 * asserted, hence a hook that allows the target to set up its reset-halt
966 * condition is setup prior to asserting reset.
967 *
968 * @param target Pointer to an ARM7/9 target to assert reset on
969 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
970 */
971 int arm7_9_assert_reset(struct target *target)
972 {
973 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
974
975 LOG_DEBUG("target->state: %s",
976 target_state_name(target));
977
978 enum reset_types jtag_reset_config = jtag_get_reset_config();
979 if (!(jtag_reset_config & RESET_HAS_SRST))
980 {
981 LOG_ERROR("Can't assert SRST");
982 return ERROR_FAIL;
983 }
984
985 /* At this point trst has been asserted/deasserted once. We would
986 * like to program EmbeddedICE while SRST is asserted, instead of
987 * depending on SRST to leave that module alone. However, many CPUs
988 * gate the JTAG clock while SRST is asserted; or JTAG may need
989 * clock stability guarantees (adaptive clocking might help).
990 *
991 * So we assume JTAG access during SRST is off the menu unless it's
992 * been specifically enabled.
993 */
994 bool srst_asserted = false;
995
996 if (((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
997 && (jtag_reset_config & RESET_SRST_NO_GATING))
998 {
999 jtag_add_reset(0, 1);
1000 srst_asserted = true;
1001 }
1002
1003 if (target->reset_halt)
1004 {
1005 /*
1006 * Some targets do not support communication while SRST is asserted. We need to
1007 * set up the reset vector catch here.
1008 *
1009 * If TRST is asserted, then these settings will be reset anyway, so setting them
1010 * here is harmless.
1011 */
1012 if (arm7_9->has_vector_catch)
1013 {
1014 /* program vector catch register to catch reset vector */
1015 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
1016
1017 /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
1018 jtag_add_runtest(1, jtag_get_end_state());
1019 }
1020 else
1021 {
1022 /* program watchpoint unit to match on reset vector address */
1023 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1024 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
1025 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1026 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1027 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1028 }
1029 }
1030
1031 /* here we should issue an SRST only, but we may have to assert TRST as well */
1032 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1033 {
1034 jtag_add_reset(1, 1);
1035 } else if (!srst_asserted)
1036 {
1037 jtag_add_reset(0, 1);
1038 }
1039
1040 target->state = TARGET_RESET;
1041 jtag_add_sleep(50000);
1042
1043 register_cache_invalidate(arm7_9->armv4_5_common.core_cache);
1044
1045 if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0))
1046 {
1047 /* debug entry was already prepared in arm7_9_assert_reset() */
1048 target->debug_reason = DBG_REASON_DBGRQ;
1049 }
1050
1051 return ERROR_OK;
1052 }
1053
1054 /**
1055 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
1056 * and the target is being reset into a halt, a warning will be triggered
1057 * because it is not possible to reset into a halted mode in this case. The
1058 * target is halted using the target's functions.
1059 *
1060 * @param target Pointer to the target to have the reset deasserted
1061 * @return ERROR_OK or an error from polling or halting the target
1062 */
1063 int arm7_9_deassert_reset(struct target *target)
1064 {
1065 int retval = ERROR_OK;
1066 LOG_DEBUG("target->state: %s",
1067 target_state_name(target));
1068
1069 /* deassert reset lines */
1070 jtag_add_reset(0, 0);
1071
1072 enum reset_types jtag_reset_config = jtag_get_reset_config();
1073 if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1074 {
1075 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1076 /* set up embedded ice registers again */
1077 if ((retval = target_examine_one(target)) != ERROR_OK)
1078 return retval;
1079
1080 if ((retval = target_poll(target)) != ERROR_OK)
1081 {
1082 return retval;
1083 }
1084
1085 if ((retval = target_halt(target)) != ERROR_OK)
1086 {
1087 return retval;
1088 }
1089
1090 }
1091 return retval;
1092 }
1093
1094 /**
1095 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1096 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1097 * vector catch was used, it is restored. Otherwise, the control value is
1098 * restored and the watchpoint unit is restored if it was in use.
1099 *
1100 * @param target Pointer to the ARM7/9 target to have halt cleared
1101 * @return Always ERROR_OK
1102 */
1103 int arm7_9_clear_halt(struct target *target)
1104 {
1105 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1106 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1107
1108 /* we used DBGRQ only if we didn't come out of reset */
1109 if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1110 {
1111 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1112 */
1113 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1114 embeddedice_store_reg(dbg_ctrl);
1115 }
1116 else
1117 {
1118 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1119 {
1120 /* if we came out of reset, and vector catch is supported, we used
1121 * vector catch to enter debug state
1122 * restore the register in that case
1123 */
1124 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1125 }
1126 else
1127 {
1128 /* restore registers if watchpoint unit 0 was in use
1129 */
1130 if (arm7_9->wp0_used)
1131 {
1132 if (arm7_9->debug_entry_from_reset)
1133 {
1134 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1135 }
1136 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1137 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1138 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1139 }
1140 /* control value always has to be restored, as it was either disabled,
1141 * or enabled with possibly different bits
1142 */
1143 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1144 }
1145 }
1146
1147 return ERROR_OK;
1148 }
1149
1150 /**
1151 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1152 * and then there is a wait until the processor shows the halt. This wait can
1153 * timeout and results in an error being returned. The software reset involves
1154 * clearing the halt, updating the debug control register, changing to ARM mode,
1155 * reset of the program counter, and reset of all of the registers.
1156 *
1157 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1158 * @return Error status if any of the commands fail, otherwise ERROR_OK
1159 */
1160 int arm7_9_soft_reset_halt(struct target *target)
1161 {
1162 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1163 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1164 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1165 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1166 int i;
1167 int retval;
1168
1169 /* FIX!!! replace some of this code with tcl commands
1170 *
1171 * halt # the halt command is synchronous
1172 * armv4_5 core_state arm
1173 *
1174 */
1175
1176 if ((retval = target_halt(target)) != ERROR_OK)
1177 return retval;
1178
1179 long long then = timeval_ms();
1180 int timeout;
1181 while (!(timeout = ((timeval_ms()-then) > 1000)))
1182 {
1183 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1184 break;
1185 embeddedice_read_reg(dbg_stat);
1186 if ((retval = jtag_execute_queue()) != ERROR_OK)
1187 return retval;
1188 if (debug_level >= 3)
1189 {
1190 alive_sleep(100);
1191 } else
1192 {
1193 keep_alive();
1194 }
1195 }
1196 if (timeout)
1197 {
1198 LOG_ERROR("Failed to halt CPU after 1 sec");
1199 return ERROR_TARGET_TIMEOUT;
1200 }
1201 target->state = TARGET_HALTED;
1202
1203 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1204 * ensure that DBGRQ is cleared
1205 */
1206 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1207 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1208 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1209 embeddedice_store_reg(dbg_ctrl);
1210
1211 if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1212 {
1213 return retval;
1214 }
1215
1216 /* if the target is in Thumb state, change to ARM state */
1217 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1218 {
1219 uint32_t r0_thumb, pc_thumb;
1220 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1221 /* Entered debug from Thumb mode */
1222 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1223 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1224 }
1225
1226 /* all register content is now invalid */
1227 register_cache_invalidate(armv4_5->core_cache);
1228
1229 /* SVC, ARM state, IRQ and FIQ disabled */
1230 buf_set_u32(armv4_5->cpsr->value, 0, 8, 0xd3);
1231 armv4_5->cpsr->dirty = 1;
1232 armv4_5->cpsr->valid = 1;
1233
1234 /* start fetching from 0x0 */
1235 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1236 armv4_5->core_cache->reg_list[15].dirty = 1;
1237 armv4_5->core_cache->reg_list[15].valid = 1;
1238
1239 armv4_5->core_mode = ARMV4_5_MODE_SVC;
1240 armv4_5->core_state = ARMV4_5_STATE_ARM;
1241
1242 /* reset registers */
1243 for (i = 0; i <= 14; i++)
1244 {
1245 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, 0xffffffff);
1246 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
1247 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1248 }
1249
1250 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1251 {
1252 return retval;
1253 }
1254
1255 return ERROR_OK;
1256 }
1257
1258 /**
1259 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1260 * line or by programming a watchpoint to trigger on any address. It is
1261 * considered a bug to call this function while the target is in the
1262 * TARGET_RESET state.
1263 *
1264 * @param target Pointer to the ARM7/9 target to be halted
1265 * @return Always ERROR_OK
1266 */
1267 int arm7_9_halt(struct target *target)
1268 {
1269 if (target->state == TARGET_RESET)
1270 {
1271 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1272 return ERROR_OK;
1273 }
1274
1275 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1276 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1277
1278 LOG_DEBUG("target->state: %s",
1279 target_state_name(target));
1280
1281 if (target->state == TARGET_HALTED)
1282 {
1283 LOG_DEBUG("target was already halted");
1284 return ERROR_OK;
1285 }
1286
1287 if (target->state == TARGET_UNKNOWN)
1288 {
1289 LOG_WARNING("target was in unknown state when halt was requested");
1290 }
1291
1292 if (arm7_9->use_dbgrq)
1293 {
1294 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1295 */
1296 if (arm7_9->set_special_dbgrq) {
1297 arm7_9->set_special_dbgrq(target);
1298 } else {
1299 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1300 embeddedice_store_reg(dbg_ctrl);
1301 }
1302 }
1303 else
1304 {
1305 /* program watchpoint unit to match on any address
1306 */
1307 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1308 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1309 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1310 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1311 }
1312
1313 target->debug_reason = DBG_REASON_DBGRQ;
1314
1315 return ERROR_OK;
1316 }
1317
1318 /**
1319 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1320 * ARM. The JTAG queue is then executed and the reason for debug entry is
1321 * examined. Once done, the target is verified to be halted and the processor
1322 * is forced into ARM mode. The core registers are saved for the current core
1323 * mode and the program counter (register 15) is updated as needed. The core
1324 * registers and CPSR and SPSR are saved for restoration later.
1325 *
1326 * @param target Pointer to target that is entering debug mode
1327 * @return Error code if anything fails, otherwise ERROR_OK
1328 */
1329 static int arm7_9_debug_entry(struct target *target)
1330 {
1331 int i;
1332 uint32_t context[16];
1333 uint32_t* context_p[16];
1334 uint32_t r0_thumb, pc_thumb;
1335 uint32_t cpsr;
1336 int retval;
1337 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1338 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1339 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1340 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1341
1342 #ifdef _DEBUG_ARM7_9_
1343 LOG_DEBUG("-");
1344 #endif
1345
1346 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1347 * ensure that DBGRQ is cleared
1348 */
1349 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1350 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1351 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1352 embeddedice_store_reg(dbg_ctrl);
1353
1354 if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1355 {
1356 return retval;
1357 }
1358
1359 if ((retval = jtag_execute_queue()) != ERROR_OK)
1360 {
1361 return retval;
1362 }
1363
1364 if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1365 return retval;
1366
1367
1368 if (target->state != TARGET_HALTED)
1369 {
1370 LOG_WARNING("target not halted");
1371 return ERROR_TARGET_NOT_HALTED;
1372 }
1373
1374 /* if the target is in Thumb state, change to ARM state */
1375 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1376 {
1377 LOG_DEBUG("target entered debug from Thumb state");
1378 /* Entered debug from Thumb mode */
1379 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1380 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1381 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32 ", pc_thumb: 0x%8.8" PRIx32 "", r0_thumb, pc_thumb);
1382 }
1383 else
1384 {
1385 LOG_DEBUG("target entered debug from ARM state");
1386 /* Entered debug from ARM mode */
1387 armv4_5->core_state = ARMV4_5_STATE_ARM;
1388 }
1389
1390 for (i = 0; i < 16; i++)
1391 context_p[i] = &context[i];
1392 /* save core registers (r0 - r15 of current core mode) */
1393 arm7_9->read_core_regs(target, 0xffff, context_p);
1394
1395 arm7_9->read_xpsr(target, &cpsr, 0);
1396
1397 if ((retval = jtag_execute_queue()) != ERROR_OK)
1398 return retval;
1399
1400 /* if the core has been executing in Thumb state, set the T bit */
1401 if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1402 cpsr |= 0x20;
1403
1404 buf_set_u32(armv4_5->cpsr->value, 0, 32, cpsr);
1405 armv4_5->cpsr->dirty = 0;
1406 armv4_5->cpsr->valid = 1;
1407
1408 armv4_5->core_mode = cpsr & 0x1f;
1409
1410 if (!is_arm_mode(armv4_5->core_mode))
1411 {
1412 target->state = TARGET_UNKNOWN;
1413 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1414 return ERROR_TARGET_FAILURE;
1415 }
1416
1417 LOG_DEBUG("target entered debug state in %s mode",
1418 arm_mode_name(armv4_5->core_mode));
1419
1420 if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1421 {
1422 LOG_DEBUG("thumb state, applying fixups");
1423 context[0] = r0_thumb;
1424 context[15] = pc_thumb;
1425 } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1426 {
1427 /* adjust value stored by STM */
1428 context[15] -= 3 * 4;
1429 }
1430
1431 if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1432 context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1433 else
1434 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1435
1436 for (i = 0; i <= 15; i++)
1437 {
1438 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1439 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, context[i]);
1440 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0;
1441 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1442 }
1443
1444 LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1445
1446 /* exceptions other than USR & SYS have a saved program status register */
1447 if ((armv4_5->core_mode != ARMV4_5_MODE_USR) && (armv4_5->core_mode != ARMV4_5_MODE_SYS))
1448 {
1449 uint32_t spsr;
1450 arm7_9->read_xpsr(target, &spsr, 1);
1451 if ((retval = jtag_execute_queue()) != ERROR_OK)
1452 {
1453 return retval;
1454 }
1455 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, spsr);
1456 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
1457 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
1458 }
1459
1460 /* r0 and r15 (pc) have to be restored later */
1461 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid;
1462 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid;
1463
1464 if ((retval = jtag_execute_queue()) != ERROR_OK)
1465 return retval;
1466
1467 if (arm7_9->post_debug_entry)
1468 arm7_9->post_debug_entry(target);
1469
1470 return ERROR_OK;
1471 }
1472
1473 /**
1474 * Validate the full context for an ARM7/9 target in all processor modes. If
1475 * there are any invalid registers for the target, they will all be read. This
1476 * includes the PSR.
1477 *
1478 * @param target Pointer to the ARM7/9 target to capture the full context from
1479 * @return Error if the target is not halted, has an invalid core mode, or if
1480 * the JTAG queue fails to execute
1481 */
1482 int arm7_9_full_context(struct target *target)
1483 {
1484 int i;
1485 int retval;
1486 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1487 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1488
1489 LOG_DEBUG("-");
1490
1491 if (target->state != TARGET_HALTED)
1492 {
1493 LOG_WARNING("target not halted");
1494 return ERROR_TARGET_NOT_HALTED;
1495 }
1496
1497 if (!is_arm_mode(armv4_5->core_mode))
1498 return ERROR_FAIL;
1499
1500 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1501 * SYS shares registers with User, so we don't touch SYS
1502 */
1503 for (i = 0; i < 6; i++)
1504 {
1505 uint32_t mask = 0;
1506 uint32_t* reg_p[16];
1507 int j;
1508 int valid = 1;
1509
1510 /* check if there are invalid registers in the current mode
1511 */
1512 for (j = 0; j <= 16; j++)
1513 {
1514 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1515 valid = 0;
1516 }
1517
1518 if (!valid)
1519 {
1520 uint32_t tmp_cpsr;
1521
1522 /* change processor mode (and mask T bit) */
1523 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8)
1524 & 0xe0;
1525 tmp_cpsr |= armv4_5_number_to_mode(i);
1526 tmp_cpsr &= ~0x20;
1527 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1528
1529 for (j = 0; j < 15; j++)
1530 {
1531 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1532 {
1533 reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1534 mask |= 1 << j;
1535 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1536 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1537 }
1538 }
1539
1540 /* if only the PSR is invalid, mask is all zeroes */
1541 if (mask)
1542 arm7_9->read_core_regs(target, mask, reg_p);
1543
1544 /* check if the PSR has to be read */
1545 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1546 {
1547 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1548 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1549 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1550 }
1551 }
1552 }
1553
1554 /* restore processor mode (mask T bit) */
1555 arm7_9->write_xpsr_im8(target,
1556 buf_get_u32(armv4_5->cpsr->value, 0, 8) & ~0x20,
1557 0, 0);
1558
1559 if ((retval = jtag_execute_queue()) != ERROR_OK)
1560 {
1561 return retval;
1562 }
1563 return ERROR_OK;
1564 }
1565
1566 /**
1567 * Restore the processor context on an ARM7/9 target. The full processor
1568 * context is analyzed to see if any of the registers are dirty on this end, but
1569 * have a valid new value. If this is the case, the processor is changed to the
1570 * appropriate mode and the new register values are written out to the
1571 * processor. If there happens to be a dirty register with an invalid value, an
1572 * error will be logged.
1573 *
1574 * @param target Pointer to the ARM7/9 target to have its context restored
1575 * @return Error status if the target is not halted or the core mode in the
1576 * armv4_5 struct is invalid.
1577 */
1578 int arm7_9_restore_context(struct target *target)
1579 {
1580 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1581 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1582 struct reg *reg;
1583 struct arm_reg *reg_arch_info;
1584 enum armv4_5_mode current_mode = armv4_5->core_mode;
1585 int i, j;
1586 int dirty;
1587 int mode_change;
1588
1589 LOG_DEBUG("-");
1590
1591 if (target->state != TARGET_HALTED)
1592 {
1593 LOG_WARNING("target not halted");
1594 return ERROR_TARGET_NOT_HALTED;
1595 }
1596
1597 if (arm7_9->pre_restore_context)
1598 arm7_9->pre_restore_context(target);
1599
1600 if (!is_arm_mode(armv4_5->core_mode))
1601 return ERROR_FAIL;
1602
1603 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1604 * SYS shares registers with User, so we don't touch SYS
1605 */
1606 for (i = 0; i < 6; i++)
1607 {
1608 LOG_DEBUG("examining %s mode",
1609 arm_mode_name(armv4_5->core_mode));
1610 dirty = 0;
1611 mode_change = 0;
1612 /* check if there are dirty registers in the current mode
1613 */
1614 for (j = 0; j <= 16; j++)
1615 {
1616 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1617 reg_arch_info = reg->arch_info;
1618 if (reg->dirty == 1)
1619 {
1620 if (reg->valid == 1)
1621 {
1622 dirty = 1;
1623 LOG_DEBUG("examining dirty reg: %s", reg->name);
1624 if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
1625 && (reg_arch_info->mode != current_mode)
1626 && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
1627 && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
1628 {
1629 mode_change = 1;
1630 LOG_DEBUG("require mode change");
1631 }
1632 }
1633 else
1634 {
1635 LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1636 }
1637 }
1638 }
1639
1640 if (dirty)
1641 {
1642 uint32_t mask = 0x0;
1643 int num_regs = 0;
1644 uint32_t regs[16];
1645
1646 if (mode_change)
1647 {
1648 uint32_t tmp_cpsr;
1649
1650 /* change processor mode (mask T bit) */
1651 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value,
1652 0, 8) & 0xe0;
1653 tmp_cpsr |= armv4_5_number_to_mode(i);
1654 tmp_cpsr &= ~0x20;
1655 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1656 current_mode = armv4_5_number_to_mode(i);
1657 }
1658
1659 for (j = 0; j <= 14; j++)
1660 {
1661 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1662 reg_arch_info = reg->arch_info;
1663
1664
1665 if (reg->dirty == 1)
1666 {
1667 regs[j] = buf_get_u32(reg->value, 0, 32);
1668 mask |= 1 << j;
1669 num_regs++;
1670 reg->dirty = 0;
1671 reg->valid = 1;
1672 LOG_DEBUG("writing register %i mode %s "
1673 "with value 0x%8.8" PRIx32, j,
1674 arm_mode_name(armv4_5->core_mode),
1675 regs[j]);
1676 }
1677 }
1678
1679 if (mask)
1680 {
1681 arm7_9->write_core_regs(target, mask, regs);
1682 }
1683
1684 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1685 reg_arch_info = reg->arch_info;
1686 if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
1687 {
1688 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1689 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1690 }
1691 }
1692 }
1693
1694 if (!armv4_5->cpsr->dirty && (armv4_5->core_mode != current_mode))
1695 {
1696 /* restore processor mode (mask T bit) */
1697 uint32_t tmp_cpsr;
1698
1699 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
1700 tmp_cpsr |= armv4_5_number_to_mode(i);
1701 tmp_cpsr &= ~0x20;
1702 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1703 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1704 }
1705 else if (armv4_5->cpsr->dirty)
1706 {
1707 /* CPSR has been changed, full restore necessary (mask T bit) */
1708 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1709 buf_get_u32(armv4_5->cpsr->value, 0, 32));
1710 arm7_9->write_xpsr(target,
1711 buf_get_u32(armv4_5->cpsr->value, 0, 32)
1712 & ~0x20, 0);
1713 armv4_5->cpsr->dirty = 0;
1714 armv4_5->cpsr->valid = 1;
1715 }
1716
1717 /* restore PC */
1718 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1719 arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1720 armv4_5->core_cache->reg_list[15].dirty = 0;
1721
1722 if (arm7_9->post_restore_context)
1723 arm7_9->post_restore_context(target);
1724
1725 return ERROR_OK;
1726 }
1727
1728 /**
1729 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1730 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1731 * restart.
1732 *
1733 * @param target Pointer to the ARM7/9 target to be restarted
1734 * @return Result of executing the JTAG queue
1735 */
1736 int arm7_9_restart_core(struct target *target)
1737 {
1738 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1739 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1740
1741 /* set RESTART instruction */
1742 jtag_set_end_state(TAP_IDLE);
1743 if (arm7_9->need_bypass_before_restart) {
1744 arm7_9->need_bypass_before_restart = 0;
1745 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1746 }
1747 arm_jtag_set_instr(jtag_info, 0x4, NULL);
1748
1749 jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
1750 return jtag_execute_queue();
1751 }
1752
1753 /**
1754 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1755 * iterated through and are set on the target if they aren't already set.
1756 *
1757 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1758 */
1759 void arm7_9_enable_watchpoints(struct target *target)
1760 {
1761 struct watchpoint *watchpoint = target->watchpoints;
1762
1763 while (watchpoint)
1764 {
1765 if (watchpoint->set == 0)
1766 arm7_9_set_watchpoint(target, watchpoint);
1767 watchpoint = watchpoint->next;
1768 }
1769 }
1770
1771 /**
1772 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1773 * iterated through and are set on the target.
1774 *
1775 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1776 */
1777 void arm7_9_enable_breakpoints(struct target *target)
1778 {
1779 struct breakpoint *breakpoint = target->breakpoints;
1780
1781 /* set any pending breakpoints */
1782 while (breakpoint)
1783 {
1784 arm7_9_set_breakpoint(target, breakpoint);
1785 breakpoint = breakpoint->next;
1786 }
1787 }
1788
1789 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1790 {
1791 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1792 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1793 struct breakpoint *breakpoint = target->breakpoints;
1794 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1795 int err, retval = ERROR_OK;
1796
1797 LOG_DEBUG("-");
1798
1799 if (target->state != TARGET_HALTED)
1800 {
1801 LOG_WARNING("target not halted");
1802 return ERROR_TARGET_NOT_HALTED;
1803 }
1804
1805 if (!debug_execution)
1806 {
1807 target_free_all_working_areas(target);
1808 }
1809
1810 /* current = 1: continue on current pc, otherwise continue at <address> */
1811 if (!current)
1812 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1813
1814 uint32_t current_pc;
1815 current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1816
1817 /* the front-end may request us not to handle breakpoints */
1818 if (handle_breakpoints)
1819 {
1820 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1821 {
1822 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1823 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1824 {
1825 return retval;
1826 }
1827
1828 /* calculate PC of next instruction */
1829 uint32_t next_pc;
1830 if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1831 {
1832 uint32_t current_opcode;
1833 target_read_u32(target, current_pc, &current_opcode);
1834 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1835 return retval;
1836 }
1837
1838 LOG_DEBUG("enable single-step");
1839 arm7_9->enable_single_step(target, next_pc);
1840
1841 target->debug_reason = DBG_REASON_SINGLESTEP;
1842
1843 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1844 {
1845 return retval;
1846 }
1847
1848 if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1849 arm7_9->branch_resume(target);
1850 else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1851 {
1852 arm7_9->branch_resume_thumb(target);
1853 }
1854 else
1855 {
1856 LOG_ERROR("unhandled core state");
1857 return ERROR_FAIL;
1858 }
1859
1860 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1861 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1862 err = arm7_9_execute_sys_speed(target);
1863
1864 LOG_DEBUG("disable single-step");
1865 arm7_9->disable_single_step(target);
1866
1867 if (err != ERROR_OK)
1868 {
1869 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1870 {
1871 return retval;
1872 }
1873 target->state = TARGET_UNKNOWN;
1874 return err;
1875 }
1876
1877 arm7_9_debug_entry(target);
1878 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1879
1880 LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1881 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1882 {
1883 return retval;
1884 }
1885 }
1886 }
1887
1888 /* enable any pending breakpoints and watchpoints */
1889 arm7_9_enable_breakpoints(target);
1890 arm7_9_enable_watchpoints(target);
1891
1892 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1893 {
1894 return retval;
1895 }
1896
1897 if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1898 {
1899 arm7_9->branch_resume(target);
1900 }
1901 else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1902 {
1903 arm7_9->branch_resume_thumb(target);
1904 }
1905 else
1906 {
1907 LOG_ERROR("unhandled core state");
1908 return ERROR_FAIL;
1909 }
1910
1911 /* deassert DBGACK and INTDIS */
1912 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1913 /* INTDIS only when we really resume, not during debug execution */
1914 if (!debug_execution)
1915 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1916 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1917
1918 if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1919 {
1920 return retval;
1921 }
1922
1923 target->debug_reason = DBG_REASON_NOTHALTED;
1924
1925 if (!debug_execution)
1926 {
1927 /* registers are now invalid */
1928 register_cache_invalidate(armv4_5->core_cache);
1929 target->state = TARGET_RUNNING;
1930 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1931 {
1932 return retval;
1933 }
1934 }
1935 else
1936 {
1937 target->state = TARGET_DEBUG_RUNNING;
1938 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1939 {
1940 return retval;
1941 }
1942 }
1943
1944 LOG_DEBUG("target resumed");
1945
1946 return ERROR_OK;
1947 }
1948
1949 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1950 {
1951 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1952 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1953 uint32_t current_pc;
1954 current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1955
1956 if (next_pc != current_pc)
1957 {
1958 /* setup an inverse breakpoint on the current PC
1959 * - comparator 1 matches the current address
1960 * - rangeout from comparator 1 is connected to comparator 0 rangein
1961 * - comparator 0 matches any address, as long as rangein is low */
1962 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1963 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1964 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1965 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1966 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1967 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1968 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1969 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1970 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1971 }
1972 else
1973 {
1974 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1975 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1976 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1977 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1978 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1979 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1980 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1981 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1982 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1983 }
1984 }
1985
1986 void arm7_9_disable_eice_step(struct target *target)
1987 {
1988 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1989
1990 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1991 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1992 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1993 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1994 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1995 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
1996 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
1997 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
1998 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
1999 }
2000
2001 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
2002 {
2003 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2004 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2005 struct breakpoint *breakpoint = NULL;
2006 int err, retval;
2007
2008 if (target->state != TARGET_HALTED)
2009 {
2010 LOG_WARNING("target not halted");
2011 return ERROR_TARGET_NOT_HALTED;
2012 }
2013
2014 /* current = 1: continue on current pc, otherwise continue at <address> */
2015 if (!current)
2016 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
2017
2018 uint32_t current_pc;
2019 current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2020
2021 /* the front-end may request us not to handle breakpoints */
2022 if (handle_breakpoints)
2023 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2024 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2025 {
2026 return retval;
2027 }
2028
2029 target->debug_reason = DBG_REASON_SINGLESTEP;
2030
2031 /* calculate PC of next instruction */
2032 uint32_t next_pc;
2033 if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2034 {
2035 uint32_t current_opcode;
2036 target_read_u32(target, current_pc, &current_opcode);
2037 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2038 return retval;
2039 }
2040
2041 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2042 {
2043 return retval;
2044 }
2045
2046 arm7_9->enable_single_step(target, next_pc);
2047
2048 if (armv4_5->core_state == ARMV4_5_STATE_ARM)
2049 {
2050 arm7_9->branch_resume(target);
2051 }
2052 else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
2053 {
2054 arm7_9->branch_resume_thumb(target);
2055 }
2056 else
2057 {
2058 LOG_ERROR("unhandled core state");
2059 return ERROR_FAIL;
2060 }
2061
2062 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2063 {
2064 return retval;
2065 }
2066
2067 err = arm7_9_execute_sys_speed(target);
2068 arm7_9->disable_single_step(target);
2069
2070 /* registers are now invalid */
2071 register_cache_invalidate(armv4_5->core_cache);
2072
2073 if (err != ERROR_OK)
2074 {
2075 target->state = TARGET_UNKNOWN;
2076 } else {
2077 arm7_9_debug_entry(target);
2078 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2079 {
2080 return retval;
2081 }
2082 LOG_DEBUG("target stepped");
2083 }
2084
2085 if (breakpoint)
2086 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2087 {
2088 return retval;
2089 }
2090
2091 return err;
2092 }
2093
2094 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
2095 int num, enum armv4_5_mode mode)
2096 {
2097 uint32_t* reg_p[16];
2098 uint32_t value;
2099 int retval;
2100 struct arm_reg *areg = r->arch_info;
2101 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2102 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2103
2104 if (!is_arm_mode(armv4_5->core_mode))
2105 return ERROR_FAIL;
2106 if ((num < 0) || (num > 16))
2107 return ERROR_INVALID_ARGUMENTS;
2108
2109 if ((mode != ARMV4_5_MODE_ANY)
2110 && (mode != armv4_5->core_mode)
2111 && (areg->mode != ARMV4_5_MODE_ANY))
2112 {
2113 uint32_t tmp_cpsr;
2114
2115 /* change processor mode (mask T bit) */
2116 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2117 tmp_cpsr |= mode;
2118 tmp_cpsr &= ~0x20;
2119 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2120 }
2121
2122 if ((num >= 0) && (num <= 15))
2123 {
2124 /* read a normal core register */
2125 reg_p[num] = &value;
2126
2127 arm7_9->read_core_regs(target, 1 << num, reg_p);
2128 }
2129 else
2130 {
2131 /* read a program status register
2132 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2133 */
2134 arm7_9->read_xpsr(target, &value, areg->mode != ARMV4_5_MODE_ANY);
2135 }
2136
2137 if ((retval = jtag_execute_queue()) != ERROR_OK)
2138 {
2139 return retval;
2140 }
2141
2142 r->valid = 1;
2143 r->dirty = 0;
2144 buf_set_u32(r->value, 0, 32, value);
2145
2146 if ((mode != ARMV4_5_MODE_ANY)
2147 && (mode != armv4_5->core_mode)
2148 && (areg->mode != ARMV4_5_MODE_ANY)) {
2149 /* restore processor mode (mask T bit) */
2150 arm7_9->write_xpsr_im8(target,
2151 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2152 & ~0x20, 0, 0);
2153 }
2154
2155 return ERROR_OK;
2156 }
2157
2158 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2159 int num, enum armv4_5_mode mode, uint32_t value)
2160 {
2161 uint32_t reg[16];
2162 struct arm_reg *areg = r->arch_info;
2163 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2164 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2165
2166 if (!is_arm_mode(armv4_5->core_mode))
2167 return ERROR_FAIL;
2168 if ((num < 0) || (num > 16))
2169 return ERROR_INVALID_ARGUMENTS;
2170
2171 if ((mode != ARMV4_5_MODE_ANY)
2172 && (mode != armv4_5->core_mode)
2173 && (areg->mode != ARMV4_5_MODE_ANY)) {
2174 uint32_t tmp_cpsr;
2175
2176 /* change processor mode (mask T bit) */
2177 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2178 tmp_cpsr |= mode;
2179 tmp_cpsr &= ~0x20;
2180 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2181 }
2182
2183 if ((num >= 0) && (num <= 15))
2184 {
2185 /* write a normal core register */
2186 reg[num] = value;
2187
2188 arm7_9->write_core_regs(target, 1 << num, reg);
2189 }
2190 else
2191 {
2192 /* write a program status register
2193 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2194 */
2195 int spsr = (areg->mode != ARMV4_5_MODE_ANY);
2196
2197 /* if we're writing the CPSR, mask the T bit */
2198 if (!spsr)
2199 value &= ~0x20;
2200
2201 arm7_9->write_xpsr(target, value, spsr);
2202 }
2203
2204 r->valid = 1;
2205 r->dirty = 0;
2206
2207 if ((mode != ARMV4_5_MODE_ANY)
2208 && (mode != armv4_5->core_mode)
2209 && (areg->mode != ARMV4_5_MODE_ANY)) {
2210 /* restore processor mode (mask T bit) */
2211 arm7_9->write_xpsr_im8(target,
2212 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2213 & ~0x20, 0, 0);
2214 }
2215
2216 return jtag_execute_queue();
2217 }
2218
2219 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2220 {
2221 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2222 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2223 uint32_t reg[16];
2224 uint32_t num_accesses = 0;
2225 int thisrun_accesses;
2226 int i;
2227 uint32_t cpsr;
2228 int retval;
2229 int last_reg = 0;
2230
2231 LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2232
2233 if (target->state != TARGET_HALTED)
2234 {
2235 LOG_WARNING("target not halted");
2236 return ERROR_TARGET_NOT_HALTED;
2237 }
2238
2239 /* sanitize arguments */
2240 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2241 return ERROR_INVALID_ARGUMENTS;
2242
2243 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2244 return ERROR_TARGET_UNALIGNED_ACCESS;
2245
2246 /* load the base register with the address of the first word */
2247 reg[0] = address;
2248 arm7_9->write_core_regs(target, 0x1, reg);
2249
2250 int j = 0;
2251
2252 switch (size)
2253 {
2254 case 4:
2255 while (num_accesses < count)
2256 {
2257 uint32_t reg_list;
2258 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2259 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2260
2261 if (last_reg <= thisrun_accesses)
2262 last_reg = thisrun_accesses;
2263
2264 arm7_9->load_word_regs(target, reg_list);
2265
2266 /* fast memory reads are only safe when the target is running
2267 * from a sufficiently high clock (32 kHz is usually too slow)
2268 */
2269 if (arm7_9->fast_memory_access)
2270 retval = arm7_9_execute_fast_sys_speed(target);
2271 else
2272 retval = arm7_9_execute_sys_speed(target);
2273 if (retval != ERROR_OK)
2274 return retval;
2275
2276 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2277
2278 /* advance buffer, count number of accesses */
2279 buffer += thisrun_accesses * 4;
2280 num_accesses += thisrun_accesses;
2281
2282 if ((j++%1024) == 0)
2283 {
2284 keep_alive();
2285 }
2286 }
2287 break;
2288 case 2:
2289 while (num_accesses < count)
2290 {
2291 uint32_t reg_list;
2292 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2293 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2294
2295 for (i = 1; i <= thisrun_accesses; i++)
2296 {
2297 if (i > last_reg)
2298 last_reg = i;
2299 arm7_9->load_hword_reg(target, i);
2300 /* fast memory reads are only safe when the target is running
2301 * from a sufficiently high clock (32 kHz is usually too slow)
2302 */
2303 if (arm7_9->fast_memory_access)
2304 retval = arm7_9_execute_fast_sys_speed(target);
2305 else
2306 retval = arm7_9_execute_sys_speed(target);
2307 if (retval != ERROR_OK)
2308 {
2309 return retval;
2310 }
2311
2312 }
2313
2314 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2315
2316 /* advance buffer, count number of accesses */
2317 buffer += thisrun_accesses * 2;
2318 num_accesses += thisrun_accesses;
2319
2320 if ((j++%1024) == 0)
2321 {
2322 keep_alive();
2323 }
2324 }
2325 break;
2326 case 1:
2327 while (num_accesses < count)
2328 {
2329 uint32_t reg_list;
2330 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2331 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2332
2333 for (i = 1; i <= thisrun_accesses; i++)
2334 {
2335 if (i > last_reg)
2336 last_reg = i;
2337 arm7_9->load_byte_reg(target, i);
2338 /* fast memory reads are only safe when the target is running
2339 * from a sufficiently high clock (32 kHz is usually too slow)
2340 */
2341 if (arm7_9->fast_memory_access)
2342 retval = arm7_9_execute_fast_sys_speed(target);
2343 else
2344 retval = arm7_9_execute_sys_speed(target);
2345 if (retval != ERROR_OK)
2346 {
2347 return retval;
2348 }
2349 }
2350
2351 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2352
2353 /* advance buffer, count number of accesses */
2354 buffer += thisrun_accesses * 1;
2355 num_accesses += thisrun_accesses;
2356
2357 if ((j++%1024) == 0)
2358 {
2359 keep_alive();
2360 }
2361 }
2362 break;
2363 default:
2364 LOG_ERROR("BUG: we shouldn't get here");
2365 exit(-1);
2366 break;
2367 }
2368
2369 if (!is_arm_mode(armv4_5->core_mode))
2370 return ERROR_FAIL;
2371
2372 for (i = 0; i <= last_reg; i++)
2373 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2374
2375 arm7_9->read_xpsr(target, &cpsr, 0);
2376 if ((retval = jtag_execute_queue()) != ERROR_OK)
2377 {
2378 LOG_ERROR("JTAG error while reading cpsr");
2379 return ERROR_TARGET_DATA_ABORT;
2380 }
2381
2382 if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2383 {
2384 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2385
2386 arm7_9->write_xpsr_im8(target,
2387 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2388 & ~0x20, 0, 0);
2389
2390 return ERROR_TARGET_DATA_ABORT;
2391 }
2392
2393 return ERROR_OK;
2394 }
2395
2396 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2397 {
2398 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2399 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2400 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2401
2402 uint32_t reg[16];
2403 uint32_t num_accesses = 0;
2404 int thisrun_accesses;
2405 int i;
2406 uint32_t cpsr;
2407 int retval;
2408 int last_reg = 0;
2409
2410 #ifdef _DEBUG_ARM7_9_
2411 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2412 #endif
2413
2414 if (target->state != TARGET_HALTED)
2415 {
2416 LOG_WARNING("target not halted");
2417 return ERROR_TARGET_NOT_HALTED;
2418 }
2419
2420 /* sanitize arguments */
2421 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2422 return ERROR_INVALID_ARGUMENTS;
2423
2424 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2425 return ERROR_TARGET_UNALIGNED_ACCESS;
2426
2427 /* load the base register with the address of the first word */
2428 reg[0] = address;
2429 arm7_9->write_core_regs(target, 0x1, reg);
2430
2431 /* Clear DBGACK, to make sure memory fetches work as expected */
2432 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2433 embeddedice_store_reg(dbg_ctrl);
2434
2435 switch (size)
2436 {
2437 case 4:
2438 while (num_accesses < count)
2439 {
2440 uint32_t reg_list;
2441 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2442 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2443
2444 for (i = 1; i <= thisrun_accesses; i++)
2445 {
2446 if (i > last_reg)
2447 last_reg = i;
2448 reg[i] = target_buffer_get_u32(target, buffer);
2449 buffer += 4;
2450 }
2451
2452 arm7_9->write_core_regs(target, reg_list, reg);
2453
2454 arm7_9->store_word_regs(target, reg_list);
2455
2456 /* fast memory writes are only safe when the target is running
2457 * from a sufficiently high clock (32 kHz is usually too slow)
2458 */
2459 if (arm7_9->fast_memory_access)
2460 retval = arm7_9_execute_fast_sys_speed(target);
2461 else
2462 retval = arm7_9_execute_sys_speed(target);
2463 if (retval != ERROR_OK)
2464 {
2465 return retval;
2466 }
2467
2468 num_accesses += thisrun_accesses;
2469 }
2470 break;
2471 case 2:
2472 while (num_accesses < count)
2473 {
2474 uint32_t reg_list;
2475 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2476 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2477
2478 for (i = 1; i <= thisrun_accesses; i++)
2479 {
2480 if (i > last_reg)
2481 last_reg = i;
2482 reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2483 buffer += 2;
2484 }
2485
2486 arm7_9->write_core_regs(target, reg_list, reg);
2487
2488 for (i = 1; i <= thisrun_accesses; i++)
2489 {
2490 arm7_9->store_hword_reg(target, i);
2491
2492 /* fast memory writes are only safe when the target is running
2493 * from a sufficiently high clock (32 kHz is usually too slow)
2494 */
2495 if (arm7_9->fast_memory_access)
2496 retval = arm7_9_execute_fast_sys_speed(target);
2497 else
2498 retval = arm7_9_execute_sys_speed(target);
2499 if (retval != ERROR_OK)
2500 {
2501 return retval;
2502 }
2503 }
2504
2505 num_accesses += thisrun_accesses;
2506 }
2507 break;
2508 case 1:
2509 while (num_accesses < count)
2510 {
2511 uint32_t reg_list;
2512 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2513 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2514
2515 for (i = 1; i <= thisrun_accesses; i++)
2516 {
2517 if (i > last_reg)
2518 last_reg = i;
2519 reg[i] = *buffer++ & 0xff;
2520 }
2521
2522 arm7_9->write_core_regs(target, reg_list, reg);
2523
2524 for (i = 1; i <= thisrun_accesses; i++)
2525 {
2526 arm7_9->store_byte_reg(target, i);
2527 /* fast memory writes are only safe when the target is running
2528 * from a sufficiently high clock (32 kHz is usually too slow)
2529 */
2530 if (arm7_9->fast_memory_access)
2531 retval = arm7_9_execute_fast_sys_speed(target);
2532 else
2533 retval = arm7_9_execute_sys_speed(target);
2534 if (retval != ERROR_OK)
2535 {
2536 return retval;
2537 }
2538
2539 }
2540
2541 num_accesses += thisrun_accesses;
2542 }
2543 break;
2544 default:
2545 LOG_ERROR("BUG: we shouldn't get here");
2546 exit(-1);
2547 break;
2548 }
2549
2550 /* Re-Set DBGACK */
2551 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2552 embeddedice_store_reg(dbg_ctrl);
2553
2554 if (!is_arm_mode(armv4_5->core_mode))
2555 return ERROR_FAIL;
2556
2557 for (i = 0; i <= last_reg; i++)
2558 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2559
2560 arm7_9->read_xpsr(target, &cpsr, 0);
2561 if ((retval = jtag_execute_queue()) != ERROR_OK)
2562 {
2563 LOG_ERROR("JTAG error while reading cpsr");
2564 return ERROR_TARGET_DATA_ABORT;
2565 }
2566
2567 if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2568 {
2569 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2570
2571 arm7_9->write_xpsr_im8(target,
2572 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2573 & ~0x20, 0, 0);
2574
2575 return ERROR_TARGET_DATA_ABORT;
2576 }
2577
2578 return ERROR_OK;
2579 }
2580
2581 static int dcc_count;
2582 static uint8_t *dcc_buffer;
2583
2584 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2585 {
2586 int retval = ERROR_OK;
2587 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2588
2589 if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2590 return retval;
2591
2592 int little = target->endianness == TARGET_LITTLE_ENDIAN;
2593 int count = dcc_count;
2594 uint8_t *buffer = dcc_buffer;
2595 if (count > 2)
2596 {
2597 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2598 * core function repeated. */
2599 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2600 buffer += 4;
2601
2602 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2603 uint8_t reg_addr = ice_reg->addr & 0x1f;
2604 struct jtag_tap *tap;
2605 tap = ice_reg->jtag_info->tap;
2606
2607 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2608 buffer += (count-2)*4;
2609
2610 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2611 } else
2612 {
2613 int i;
2614 for (i = 0; i < count; i++)
2615 {
2616 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2617 buffer += 4;
2618 }
2619 }
2620
2621 if ((retval = target_halt(target))!= ERROR_OK)
2622 {
2623 return retval;
2624 }
2625 return target_wait_state(target, TARGET_HALTED, 500);
2626 }
2627
2628 static const uint32_t dcc_code[] =
2629 {
2630 /* r0 == input, points to memory buffer
2631 * r1 == scratch
2632 */
2633
2634 /* spin until DCC control (c0) reports data arrived */
2635 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
2636 0xe3110001, /* tst r1, #1 */
2637 0x0afffffc, /* bne w */
2638
2639 /* read word from DCC (c1), write to memory */
2640 0xee111e10, /* mrc p14, #0, r1, c1, c0 */
2641 0xe4801004, /* str r1, [r0], #4 */
2642
2643 /* repeat */
2644 0xeafffff9 /* b w */
2645 };
2646
2647 int armv4_5_run_algorithm_inner(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info));
2648
2649 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2650 {
2651 int retval;
2652 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2653 int i;
2654
2655 if (!arm7_9->dcc_downloads)
2656 return target_write_memory(target, address, 4, count, buffer);
2657
2658 /* regrab previously allocated working_area, or allocate a new one */
2659 if (!arm7_9->dcc_working_area)
2660 {
2661 uint8_t dcc_code_buf[6 * 4];
2662
2663 /* make sure we have a working area */
2664 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2665 {
2666 LOG_INFO("no working area available, falling back to memory writes");
2667 return target_write_memory(target, address, 4, count, buffer);
2668 }
2669
2670 /* copy target instructions to target endianness */
2671 for (i = 0; i < 6; i++)
2672 {
2673 target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2674 }
2675
2676 /* write DCC code to working area */
2677 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2678 {
2679 return retval;
2680 }
2681 }
2682
2683 struct armv4_5_algorithm armv4_5_info;
2684 struct reg_param reg_params[1];
2685
2686 armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2687 armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2688 armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2689
2690 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2691
2692 buf_set_u32(reg_params[0].value, 0, 32, address);
2693
2694 dcc_count = count;
2695 dcc_buffer = buffer;
2696 retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2697 arm7_9->dcc_working_area->address, arm7_9->dcc_working_area->address + 6*4, 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2698
2699 if (retval == ERROR_OK)
2700 {
2701 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2702 if (endaddress != (address + count*4))
2703 {
2704 LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2705 retval = ERROR_FAIL;
2706 }
2707 }
2708
2709 destroy_reg_param(&reg_params[0]);
2710
2711 return retval;
2712 }
2713
2714 /**
2715 * Perform per-target setup that requires JTAG access.
2716 */
2717 int arm7_9_examine(struct target *target)
2718 {
2719 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2720 int retval;
2721
2722 if (!target_was_examined(target)) {
2723 struct reg_cache *t, **cache_p;
2724
2725 t = embeddedice_build_reg_cache(target, arm7_9);
2726 if (t == NULL)
2727 return ERROR_FAIL;
2728
2729 cache_p = register_get_last_cache_p(&target->reg_cache);
2730 (*cache_p) = t;
2731 arm7_9->eice_cache = (*cache_p);
2732
2733 if (arm7_9->armv4_5_common.etm)
2734 (*cache_p)->next = etm_build_reg_cache(target,
2735 &arm7_9->jtag_info,
2736 arm7_9->armv4_5_common.etm);
2737
2738 target_set_examined(target);
2739 }
2740
2741 retval = embeddedice_setup(target);
2742 if (retval == ERROR_OK)
2743 retval = arm7_9_setup(target);
2744 if (retval == ERROR_OK && arm7_9->armv4_5_common.etm)
2745 retval = etm_setup(target);
2746 return retval;
2747 }
2748
2749 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2750 {
2751 struct target *target = get_current_target(CMD_CTX);
2752 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2753
2754 if (!is_arm7_9(arm7_9))
2755 {
2756 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2757 return ERROR_TARGET_INVALID;
2758 }
2759
2760 if (CMD_ARGC > 0)
2761 COMMAND_PARSE_ENABLE(CMD_ARGV[0],arm7_9->use_dbgrq);
2762
2763 command_print(CMD_CTX, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2764
2765 return ERROR_OK;
2766 }
2767
2768 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2769 {
2770 struct target *target = get_current_target(CMD_CTX);
2771 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2772
2773 if (!is_arm7_9(arm7_9))
2774 {
2775 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2776 return ERROR_TARGET_INVALID;
2777 }
2778
2779 if (CMD_ARGC > 0)
2780 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2781
2782 command_print(CMD_CTX, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2783
2784 return ERROR_OK;
2785 }
2786
2787 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2788 {
2789 struct target *target = get_current_target(CMD_CTX);
2790 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2791
2792 if (!is_arm7_9(arm7_9))
2793 {
2794 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2795 return ERROR_TARGET_INVALID;
2796 }
2797
2798 if (CMD_ARGC > 0)
2799 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2800
2801 command_print(CMD_CTX, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2802
2803 return ERROR_OK;
2804 }
2805
2806 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2807 {
2808 int retval = ERROR_OK;
2809 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2810
2811 arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2812
2813 if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
2814 return retval;
2815
2816 /* caller must have allocated via calloc(), so everything's zeroed */
2817
2818 arm7_9->wp_available_max = 2;
2819
2820 arm7_9->fast_memory_access = false;
2821 arm7_9->dcc_downloads = false;
2822
2823 armv4_5->arch_info = arm7_9;
2824 armv4_5->read_core_reg = arm7_9_read_core_reg;
2825 armv4_5->write_core_reg = arm7_9_write_core_reg;
2826 armv4_5->full_context = arm7_9_full_context;
2827
2828 if ((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK)
2829 return retval;
2830
2831 return target_register_timer_callback(arm7_9_handle_target_request,
2832 1, 1, target);
2833 }
2834
2835 int arm7_9_register_commands(struct command_context *cmd_ctx)
2836 {
2837 struct command *arm7_9_cmd;
2838
2839 arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9",
2840 NULL, COMMAND_ANY, "arm7/9 specific commands");
2841
2842 register_command(cmd_ctx, arm7_9_cmd, "dbgrq",
2843 handle_arm7_9_dbgrq_command, COMMAND_ANY,
2844 "use EmbeddedICE dbgrq instead of breakpoint "
2845 "for target halt requests <enable | disable>");
2846 register_command(cmd_ctx, arm7_9_cmd, "fast_memory_access",
2847 handle_arm7_9_fast_memory_access_command, COMMAND_ANY,
2848 "use fast memory accesses instead of slower "
2849 "but potentially safer accesses <enable | disable>");
2850 register_command(cmd_ctx, arm7_9_cmd, "dcc_downloads",
2851 handle_arm7_9_dcc_downloads_command, COMMAND_ANY,
2852 "use DCC downloads for larger memory writes <enable | disable>");
2853
2854 armv4_5_register_commands(cmd_ctx);
2855
2856 etm_register_commands(cmd_ctx);
2857
2858 return ERROR_OK;
2859 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)