target: don't implicitly include "breakpoint.h"
[openocd.git] / src / target / arm7_9_common.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2008 by Hongtao Zheng *
12 * hontor@126.com *
13 * *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
18 * *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
23 * *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program; if not, write to the *
26 * Free Software Foundation, Inc., *
27 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
28 ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include "breakpoints.h"
34 #include "embeddedice.h"
35 #include "target_request.h"
36 #include "arm7_9_common.h"
37 #include "time_support.h"
38 #include "arm_simulator.h"
39
40
41 /**
42 * @file
43 * Hold common code supporting the ARM7 and ARM9 core generations.
44 *
45 * While the ARM core implementations evolved substantially during these
46 * two generations, they look quite similar from the JTAG perspective.
47 * Both have similar debug facilities, based on the same two scan chains
48 * providing access to the core and to an EmbeddedICE module. Both can
49 * support similar ETM and ETB modules, for tracing. And both expose
50 * what could be viewed as "ARM Classic", with multiple processor modes,
51 * shadowed registers, and support for the Thumb instruction set.
52 *
53 * Processor differences include things like presence or absence of MMU
54 * and cache, pipeline sizes, use of a modified Harvard Architecure
55 * (with separate instruction and data busses from the CPU), support
56 * for cpu clock gating during idle, and more.
57 */
58
59 static int arm7_9_debug_entry(struct target *target);
60
61 /**
62 * Clear watchpoints for an ARM7/9 target.
63 *
64 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
65 * @return JTAG error status after executing queue
66 */
67 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
68 {
69 LOG_DEBUG("-");
70 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
71 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
72 arm7_9->sw_breakpoint_count = 0;
73 arm7_9->sw_breakpoints_added = 0;
74 arm7_9->wp0_used = 0;
75 arm7_9->wp1_used = arm7_9->wp1_used_default;
76 arm7_9->wp_available = arm7_9->wp_available_max;
77
78 return jtag_execute_queue();
79 }
80
81 /**
82 * Assign a watchpoint to one of the two available hardware comparators in an
83 * ARM7 or ARM9 target.
84 *
85 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
86 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
87 */
88 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
89 {
90 if (!arm7_9->wp0_used)
91 {
92 arm7_9->wp0_used = 1;
93 breakpoint->set = 1;
94 arm7_9->wp_available--;
95 }
96 else if (!arm7_9->wp1_used)
97 {
98 arm7_9->wp1_used = 1;
99 breakpoint->set = 2;
100 arm7_9->wp_available--;
101 }
102 else
103 {
104 LOG_ERROR("BUG: no hardware comparator available");
105 }
106 LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
107 breakpoint->unique_id,
108 breakpoint->address,
109 breakpoint->set );
110 }
111
112 /**
113 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
114 *
115 * @param arm7_9 Pointer to common struct for ARM7/9 targets
116 * @return Error codes if there is a problem finding a watchpoint or the result
117 * of executing the JTAG queue
118 */
119 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
120 {
121 if (arm7_9->sw_breakpoints_added)
122 {
123 return ERROR_OK;
124 }
125 if (arm7_9->wp_available < 1)
126 {
127 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
128 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
129 }
130 arm7_9->wp_available--;
131
132 /* pick a breakpoint unit */
133 if (!arm7_9->wp0_used)
134 {
135 arm7_9->sw_breakpoints_added = 1;
136 arm7_9->wp0_used = 3;
137 } else if (!arm7_9->wp1_used)
138 {
139 arm7_9->sw_breakpoints_added = 2;
140 arm7_9->wp1_used = 3;
141 }
142 else
143 {
144 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
145 return ERROR_FAIL;
146 }
147
148 if (arm7_9->sw_breakpoints_added == 1)
149 {
150 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
151 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
152 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
153 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
154 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
155 }
156 else if (arm7_9->sw_breakpoints_added == 2)
157 {
158 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
159 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
160 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
161 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
162 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
163 }
164 else
165 {
166 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
167 return ERROR_FAIL;
168 }
169 LOG_DEBUG("SW BP using hw wp: %d",
170 arm7_9->sw_breakpoints_added );
171
172 return jtag_execute_queue();
173 }
174
175 /**
176 * Setup the common pieces for an ARM7/9 target after reset or on startup.
177 *
178 * @param target Pointer to an ARM7/9 target to setup
179 * @return Result of clearing the watchpoints on the target
180 */
181 int arm7_9_setup(struct target *target)
182 {
183 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
184
185 return arm7_9_clear_watchpoints(arm7_9);
186 }
187
188 /**
189 * Set either a hardware or software breakpoint on an ARM7/9 target. The
190 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
191 * might have erased the values in Embedded ICE.
192 *
193 * @param target Pointer to the target device to set the breakpoints on
194 * @param breakpoint Pointer to the breakpoint to be set
195 * @return For hardware breakpoints, this is the result of executing the JTAG
196 * queue. For software breakpoints, this will be the status of the
197 * required memory reads and writes
198 */
199 int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
200 {
201 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
202 int retval = ERROR_OK;
203
204 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
205 breakpoint->unique_id,
206 breakpoint->address,
207 breakpoint->type);
208
209 if (target->state != TARGET_HALTED)
210 {
211 LOG_WARNING("target not halted");
212 return ERROR_TARGET_NOT_HALTED;
213 }
214
215 if (breakpoint->type == BKPT_HARD)
216 {
217 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
218 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
219
220 /* reassign a hw breakpoint */
221 if (breakpoint->set == 0)
222 {
223 arm7_9_assign_wp(arm7_9, breakpoint);
224 }
225
226 if (breakpoint->set == 1)
227 {
228 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
229 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
230 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
231 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
232 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
233 }
234 else if (breakpoint->set == 2)
235 {
236 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
237 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
238 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
239 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
240 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
241 }
242 else
243 {
244 LOG_ERROR("BUG: no hardware comparator available");
245 return ERROR_OK;
246 }
247
248 retval = jtag_execute_queue();
249 }
250 else if (breakpoint->type == BKPT_SOFT)
251 {
252 /* did we already set this breakpoint? */
253 if (breakpoint->set)
254 return ERROR_OK;
255
256 if (breakpoint->length == 4)
257 {
258 uint32_t verify = 0xffffffff;
259 /* keep the original instruction in target endianness */
260 if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
261 {
262 return retval;
263 }
264 /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
265 if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
266 {
267 return retval;
268 }
269
270 if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
271 {
272 return retval;
273 }
274 if (verify != arm7_9->arm_bkpt)
275 {
276 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
277 return ERROR_OK;
278 }
279 }
280 else
281 {
282 uint16_t verify = 0xffff;
283 /* keep the original instruction in target endianness */
284 if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
285 {
286 return retval;
287 }
288 /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
289 if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
290 {
291 return retval;
292 }
293
294 if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
295 {
296 return retval;
297 }
298 if (verify != arm7_9->thumb_bkpt)
299 {
300 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
301 return ERROR_OK;
302 }
303 }
304
305 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
306 return retval;
307
308 arm7_9->sw_breakpoint_count++;
309
310 breakpoint->set = 1;
311 }
312
313 return retval;
314 }
315
316 /**
317 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
318 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
319 * will be updated. Otherwise, the software breakpoint will be restored to its
320 * original instruction if it hasn't already been modified.
321 *
322 * @param target Pointer to ARM7/9 target to unset the breakpoint from
323 * @param breakpoint Pointer to breakpoint to be unset
324 * @return For hardware breakpoints, this is the result of executing the JTAG
325 * queue. For software breakpoints, this will be the status of the
326 * required memory reads and writes
327 */
328 int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
329 {
330 int retval = ERROR_OK;
331 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
332
333 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
334 breakpoint->unique_id,
335 breakpoint->address );
336
337 if (!breakpoint->set)
338 {
339 LOG_WARNING("breakpoint not set");
340 return ERROR_OK;
341 }
342
343 if (breakpoint->type == BKPT_HARD)
344 {
345 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
346 breakpoint->unique_id,
347 breakpoint->set );
348 if (breakpoint->set == 1)
349 {
350 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
351 arm7_9->wp0_used = 0;
352 arm7_9->wp_available++;
353 }
354 else if (breakpoint->set == 2)
355 {
356 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
357 arm7_9->wp1_used = 0;
358 arm7_9->wp_available++;
359 }
360 retval = jtag_execute_queue();
361 breakpoint->set = 0;
362 }
363 else
364 {
365 /* restore original instruction (kept in target endianness) */
366 if (breakpoint->length == 4)
367 {
368 uint32_t current_instr;
369 /* check that user program as not modified breakpoint instruction */
370 if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
371 {
372 return retval;
373 }
374 if (current_instr == arm7_9->arm_bkpt)
375 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
376 {
377 return retval;
378 }
379 }
380 else
381 {
382 uint16_t current_instr;
383 /* check that user program as not modified breakpoint instruction */
384 if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
385 {
386 return retval;
387 }
388 if (current_instr == arm7_9->thumb_bkpt)
389 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
390 {
391 return retval;
392 }
393 }
394
395 if (--arm7_9->sw_breakpoint_count==0)
396 {
397 /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
398 if (arm7_9->sw_breakpoints_added == 1)
399 {
400 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
401 }
402 else if (arm7_9->sw_breakpoints_added == 2)
403 {
404 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
405 }
406 }
407
408 breakpoint->set = 0;
409 }
410
411 return retval;
412 }
413
414 /**
415 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
416 * dangling breakpoints and that the desired breakpoint can be added.
417 *
418 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
419 * @param breakpoint Pointer to the breakpoint to be added
420 * @return An error status if there is a problem adding the breakpoint or the
421 * result of setting the breakpoint
422 */
423 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
424 {
425 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
426
427 if (target->state != TARGET_HALTED)
428 {
429 LOG_WARNING("target not halted");
430 return ERROR_TARGET_NOT_HALTED;
431 }
432
433 if (arm7_9->breakpoint_count == 0)
434 {
435 /* make sure we don't have any dangling breakpoints. This is vital upon
436 * GDB connect/disconnect
437 */
438 arm7_9_clear_watchpoints(arm7_9);
439 }
440
441 if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
442 {
443 LOG_INFO("no watchpoint unit available for hardware breakpoint");
444 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
445 }
446
447 if ((breakpoint->length != 2) && (breakpoint->length != 4))
448 {
449 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
450 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
451 }
452
453 if (breakpoint->type == BKPT_HARD)
454 {
455 arm7_9_assign_wp(arm7_9, breakpoint);
456 }
457
458 arm7_9->breakpoint_count++;
459
460 return arm7_9_set_breakpoint(target, breakpoint);
461 }
462
463 /**
464 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
465 * dangling breakpoints and updates available watchpoints if it is a hardware
466 * breakpoint.
467 *
468 * @param target Pointer to the target to have a breakpoint removed
469 * @param breakpoint Pointer to the breakpoint to be removed
470 * @return Error status if there was a problem unsetting the breakpoint or the
471 * watchpoints could not be cleared
472 */
473 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
474 {
475 int retval = ERROR_OK;
476 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
477
478 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
479 {
480 return retval;
481 }
482
483 if (breakpoint->type == BKPT_HARD)
484 arm7_9->wp_available++;
485
486 arm7_9->breakpoint_count--;
487 if (arm7_9->breakpoint_count == 0)
488 {
489 /* make sure we don't have any dangling breakpoints */
490 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
491 {
492 return retval;
493 }
494 }
495
496 return ERROR_OK;
497 }
498
499 /**
500 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
501 * considered a bug to call this function when there are no available watchpoint
502 * units.
503 *
504 * @param target Pointer to an ARM7/9 target to set a watchpoint on
505 * @param watchpoint Pointer to the watchpoint to be set
506 * @return Error status if watchpoint set fails or the result of executing the
507 * JTAG queue
508 */
509 int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
510 {
511 int retval = ERROR_OK;
512 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
513 int rw_mask = 1;
514 uint32_t mask;
515
516 mask = watchpoint->length - 1;
517
518 if (target->state != TARGET_HALTED)
519 {
520 LOG_WARNING("target not halted");
521 return ERROR_TARGET_NOT_HALTED;
522 }
523
524 if (watchpoint->rw == WPT_ACCESS)
525 rw_mask = 0;
526 else
527 rw_mask = 1;
528
529 if (!arm7_9->wp0_used)
530 {
531 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
532 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
533 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
534 if (watchpoint->mask != 0xffffffffu)
535 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
536 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
537 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
538
539 if ((retval = jtag_execute_queue()) != ERROR_OK)
540 {
541 return retval;
542 }
543 watchpoint->set = 1;
544 arm7_9->wp0_used = 2;
545 }
546 else if (!arm7_9->wp1_used)
547 {
548 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
549 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
550 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
551 if (watchpoint->mask != 0xffffffffu)
552 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
553 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
554 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
555
556 if ((retval = jtag_execute_queue()) != ERROR_OK)
557 {
558 return retval;
559 }
560 watchpoint->set = 2;
561 arm7_9->wp1_used = 2;
562 }
563 else
564 {
565 LOG_ERROR("BUG: no hardware comparator available");
566 return ERROR_OK;
567 }
568
569 return ERROR_OK;
570 }
571
572 /**
573 * Unset an existing watchpoint and clear the used watchpoint unit.
574 *
575 * @param target Pointer to the target to have the watchpoint removed
576 * @param watchpoint Pointer to the watchpoint to be removed
577 * @return Error status while trying to unset the watchpoint or the result of
578 * executing the JTAG queue
579 */
580 int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
581 {
582 int retval = ERROR_OK;
583 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
584
585 if (target->state != TARGET_HALTED)
586 {
587 LOG_WARNING("target not halted");
588 return ERROR_TARGET_NOT_HALTED;
589 }
590
591 if (!watchpoint->set)
592 {
593 LOG_WARNING("breakpoint not set");
594 return ERROR_OK;
595 }
596
597 if (watchpoint->set == 1)
598 {
599 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
600 if ((retval = jtag_execute_queue()) != ERROR_OK)
601 {
602 return retval;
603 }
604 arm7_9->wp0_used = 0;
605 }
606 else if (watchpoint->set == 2)
607 {
608 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
609 if ((retval = jtag_execute_queue()) != ERROR_OK)
610 {
611 return retval;
612 }
613 arm7_9->wp1_used = 0;
614 }
615 watchpoint->set = 0;
616
617 return ERROR_OK;
618 }
619
620 /**
621 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
622 * available, an error response is returned.
623 *
624 * @param target Pointer to the ARM7/9 target to add a watchpoint to
625 * @param watchpoint Pointer to the watchpoint to be added
626 * @return Error status while trying to add the watchpoint
627 */
628 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
629 {
630 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
631
632 if (target->state != TARGET_HALTED)
633 {
634 LOG_WARNING("target not halted");
635 return ERROR_TARGET_NOT_HALTED;
636 }
637
638 if (arm7_9->wp_available < 1)
639 {
640 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
641 }
642
643 if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
644 {
645 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
646 }
647
648 arm7_9->wp_available--;
649
650 return ERROR_OK;
651 }
652
653 /**
654 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
655 * the used watchpoint unit will be reopened.
656 *
657 * @param target Pointer to the target to remove a watchpoint from
658 * @param watchpoint Pointer to the watchpoint to be removed
659 * @return Result of trying to unset the watchpoint
660 */
661 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
662 {
663 int retval = ERROR_OK;
664 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
665
666 if (watchpoint->set)
667 {
668 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
669 {
670 return retval;
671 }
672 }
673
674 arm7_9->wp_available++;
675
676 return ERROR_OK;
677 }
678
679 /**
680 * Restarts the target by sending a RESTART instruction and moving the JTAG
681 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
682 * asserted by the processor.
683 *
684 * @param target Pointer to target to issue commands to
685 * @return Error status if there is a timeout or a problem while executing the
686 * JTAG queue
687 */
688 int arm7_9_execute_sys_speed(struct target *target)
689 {
690 int retval;
691 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
692 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
693 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
694
695 /* set RESTART instruction */
696 jtag_set_end_state(TAP_IDLE);
697 if (arm7_9->need_bypass_before_restart) {
698 arm7_9->need_bypass_before_restart = 0;
699 arm_jtag_set_instr(jtag_info, 0xf, NULL);
700 }
701 arm_jtag_set_instr(jtag_info, 0x4, NULL);
702
703 long long then = timeval_ms();
704 int timeout;
705 while (!(timeout = ((timeval_ms()-then) > 1000)))
706 {
707 /* read debug status register */
708 embeddedice_read_reg(dbg_stat);
709 if ((retval = jtag_execute_queue()) != ERROR_OK)
710 return retval;
711 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
712 && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
713 break;
714 if (debug_level >= 3)
715 {
716 alive_sleep(100);
717 } else
718 {
719 keep_alive();
720 }
721 }
722 if (timeout)
723 {
724 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
725 return ERROR_TARGET_TIMEOUT;
726 }
727
728 return ERROR_OK;
729 }
730
731 /**
732 * Restarts the target by sending a RESTART instruction and moving the JTAG
733 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
734 * waiting until they are.
735 *
736 * @param target Pointer to the target to issue commands to
737 * @return Always ERROR_OK
738 */
739 int arm7_9_execute_fast_sys_speed(struct target *target)
740 {
741 static int set = 0;
742 static uint8_t check_value[4], check_mask[4];
743
744 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
745 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
746 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
747
748 /* set RESTART instruction */
749 jtag_set_end_state(TAP_IDLE);
750 if (arm7_9->need_bypass_before_restart) {
751 arm7_9->need_bypass_before_restart = 0;
752 arm_jtag_set_instr(jtag_info, 0xf, NULL);
753 }
754 arm_jtag_set_instr(jtag_info, 0x4, NULL);
755
756 if (!set)
757 {
758 /* check for DBGACK and SYSCOMP set (others don't care) */
759
760 /* NB! These are constants that must be available until after next jtag_execute() and
761 * we evaluate the values upon first execution in lieu of setting up these constants
762 * during early setup.
763 * */
764 buf_set_u32(check_value, 0, 32, 0x9);
765 buf_set_u32(check_mask, 0, 32, 0x9);
766 set = 1;
767 }
768
769 /* read debug status register */
770 embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
771
772 return ERROR_OK;
773 }
774
775 /**
776 * Get some data from the ARM7/9 target.
777 *
778 * @param target Pointer to the ARM7/9 target to read data from
779 * @param size The number of 32bit words to be read
780 * @param buffer Pointer to the buffer that will hold the data
781 * @return The result of receiving data from the Embedded ICE unit
782 */
783 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
784 {
785 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
786 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
787 uint32_t *data;
788 int retval = ERROR_OK;
789 uint32_t i;
790
791 data = malloc(size * (sizeof(uint32_t)));
792
793 retval = embeddedice_receive(jtag_info, data, size);
794
795 /* return the 32-bit ints in the 8-bit array */
796 for (i = 0; i < size; i++)
797 {
798 h_u32_to_le(buffer + (i * 4), data[i]);
799 }
800
801 free(data);
802
803 return retval;
804 }
805
806 /**
807 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
808 * target is running and the DCC control register has the W bit high, this will
809 * execute the request on the target.
810 *
811 * @param priv Void pointer expected to be a struct target pointer
812 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
813 * from the Embedded ICE unit
814 */
815 int arm7_9_handle_target_request(void *priv)
816 {
817 int retval = ERROR_OK;
818 struct target *target = priv;
819 if (!target_was_examined(target))
820 return ERROR_OK;
821 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
822 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
823 struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
824
825 if (!target->dbg_msg_enabled)
826 return ERROR_OK;
827
828 if (target->state == TARGET_RUNNING)
829 {
830 /* read DCC control register */
831 embeddedice_read_reg(dcc_control);
832 if ((retval = jtag_execute_queue()) != ERROR_OK)
833 {
834 return retval;
835 }
836
837 /* check W bit */
838 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
839 {
840 uint32_t request;
841
842 if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
843 {
844 return retval;
845 }
846 if ((retval = target_request(target, request)) != ERROR_OK)
847 {
848 return retval;
849 }
850 }
851 }
852
853 return ERROR_OK;
854 }
855
856 /**
857 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
858 * is manipulated to the right halted state based on its current state. This is
859 * what happens:
860 *
861 * <table>
862 * <tr><th > State</th><th > Action</th></tr>
863 * <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
864 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
865 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
866 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
867 * </table>
868 *
869 * If the target does not end up in the halted state, a warning is produced. If
870 * DBGACK is cleared, then the target is expected to either be running or
871 * running in debug.
872 *
873 * @param target Pointer to the ARM7/9 target to poll
874 * @return ERROR_OK or an error status if a command fails
875 */
876 int arm7_9_poll(struct target *target)
877 {
878 int retval;
879 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
880 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
881
882 /* read debug status register */
883 embeddedice_read_reg(dbg_stat);
884 if ((retval = jtag_execute_queue()) != ERROR_OK)
885 {
886 return retval;
887 }
888
889 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
890 {
891 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
892 if (target->state == TARGET_UNKNOWN)
893 {
894 /* Starting OpenOCD with target in debug-halt */
895 target->state = TARGET_RUNNING;
896 LOG_DEBUG("DBGACK already set during server startup.");
897 }
898 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
899 {
900 int check_pc = 0;
901 if (target->state == TARGET_RESET)
902 {
903 if (target->reset_halt)
904 {
905 enum reset_types jtag_reset_config = jtag_get_reset_config();
906 if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
907 {
908 check_pc = 1;
909 }
910 }
911 }
912
913 target->state = TARGET_HALTED;
914
915 if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
916 return retval;
917
918 if (check_pc)
919 {
920 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
921 uint32_t t=*((uint32_t *)reg->value);
922 if (t != 0)
923 {
924 LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
925 }
926 }
927
928 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
929 {
930 return retval;
931 }
932 }
933 if (target->state == TARGET_DEBUG_RUNNING)
934 {
935 target->state = TARGET_HALTED;
936 if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
937 return retval;
938
939 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
940 {
941 return retval;
942 }
943 }
944 if (target->state != TARGET_HALTED)
945 {
946 LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
947 }
948 }
949 else
950 {
951 if (target->state != TARGET_DEBUG_RUNNING)
952 target->state = TARGET_RUNNING;
953 }
954
955 return ERROR_OK;
956 }
957
958 /**
959 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
960 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
961 * affected) completely stop the JTAG clock while the core is held in reset
962 * (SRST). It isn't possible to program the halt condition once reset is
963 * asserted, hence a hook that allows the target to set up its reset-halt
964 * condition is setup prior to asserting reset.
965 *
966 * @param target Pointer to an ARM7/9 target to assert reset on
967 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
968 */
969 int arm7_9_assert_reset(struct target *target)
970 {
971 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
972
973 LOG_DEBUG("target->state: %s",
974 target_state_name(target));
975
976 enum reset_types jtag_reset_config = jtag_get_reset_config();
977 if (!(jtag_reset_config & RESET_HAS_SRST))
978 {
979 LOG_ERROR("Can't assert SRST");
980 return ERROR_FAIL;
981 }
982
983 /* At this point trst has been asserted/deasserted once. We would
984 * like to program EmbeddedICE while SRST is asserted, instead of
985 * depending on SRST to leave that module alone. However, many CPUs
986 * gate the JTAG clock while SRST is asserted; or JTAG may need
987 * clock stability guarantees (adaptive clocking might help).
988 *
989 * So we assume JTAG access during SRST is off the menu unless it's
990 * been specifically enabled.
991 */
992 bool srst_asserted = false;
993
994 if (((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
995 && (jtag_reset_config & RESET_SRST_NO_GATING))
996 {
997 jtag_add_reset(0, 1);
998 srst_asserted = true;
999 }
1000
1001 if (target->reset_halt)
1002 {
1003 /*
1004 * Some targets do not support communication while SRST is asserted. We need to
1005 * set up the reset vector catch here.
1006 *
1007 * If TRST is asserted, then these settings will be reset anyway, so setting them
1008 * here is harmless.
1009 */
1010 if (arm7_9->has_vector_catch)
1011 {
1012 /* program vector catch register to catch reset vector */
1013 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
1014
1015 /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
1016 jtag_add_runtest(1, jtag_get_end_state());
1017 }
1018 else
1019 {
1020 /* program watchpoint unit to match on reset vector address */
1021 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1022 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
1023 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1024 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1025 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1026 }
1027 }
1028
1029 /* here we should issue an SRST only, but we may have to assert TRST as well */
1030 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1031 {
1032 jtag_add_reset(1, 1);
1033 } else if (!srst_asserted)
1034 {
1035 jtag_add_reset(0, 1);
1036 }
1037
1038 target->state = TARGET_RESET;
1039 jtag_add_sleep(50000);
1040
1041 armv4_5_invalidate_core_regs(target);
1042
1043 if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0))
1044 {
1045 /* debug entry was already prepared in arm7_9_assert_reset() */
1046 target->debug_reason = DBG_REASON_DBGRQ;
1047 }
1048
1049 return ERROR_OK;
1050 }
1051
1052 /**
1053 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
1054 * and the target is being reset into a halt, a warning will be triggered
1055 * because it is not possible to reset into a halted mode in this case. The
1056 * target is halted using the target's functions.
1057 *
1058 * @param target Pointer to the target to have the reset deasserted
1059 * @return ERROR_OK or an error from polling or halting the target
1060 */
1061 int arm7_9_deassert_reset(struct target *target)
1062 {
1063 int retval = ERROR_OK;
1064 LOG_DEBUG("target->state: %s",
1065 target_state_name(target));
1066
1067 /* deassert reset lines */
1068 jtag_add_reset(0, 0);
1069
1070 enum reset_types jtag_reset_config = jtag_get_reset_config();
1071 if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1072 {
1073 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1074 /* set up embedded ice registers again */
1075 if ((retval = target_examine_one(target)) != ERROR_OK)
1076 return retval;
1077
1078 if ((retval = target_poll(target)) != ERROR_OK)
1079 {
1080 return retval;
1081 }
1082
1083 if ((retval = target_halt(target)) != ERROR_OK)
1084 {
1085 return retval;
1086 }
1087
1088 }
1089 return retval;
1090 }
1091
1092 /**
1093 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1094 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1095 * vector catch was used, it is restored. Otherwise, the control value is
1096 * restored and the watchpoint unit is restored if it was in use.
1097 *
1098 * @param target Pointer to the ARM7/9 target to have halt cleared
1099 * @return Always ERROR_OK
1100 */
1101 int arm7_9_clear_halt(struct target *target)
1102 {
1103 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1104 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1105
1106 /* we used DBGRQ only if we didn't come out of reset */
1107 if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1108 {
1109 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1110 */
1111 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1112 embeddedice_store_reg(dbg_ctrl);
1113 }
1114 else
1115 {
1116 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1117 {
1118 /* if we came out of reset, and vector catch is supported, we used
1119 * vector catch to enter debug state
1120 * restore the register in that case
1121 */
1122 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1123 }
1124 else
1125 {
1126 /* restore registers if watchpoint unit 0 was in use
1127 */
1128 if (arm7_9->wp0_used)
1129 {
1130 if (arm7_9->debug_entry_from_reset)
1131 {
1132 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1133 }
1134 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1135 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1136 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1137 }
1138 /* control value always has to be restored, as it was either disabled,
1139 * or enabled with possibly different bits
1140 */
1141 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1142 }
1143 }
1144
1145 return ERROR_OK;
1146 }
1147
1148 /**
1149 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1150 * and then there is a wait until the processor shows the halt. This wait can
1151 * timeout and results in an error being returned. The software reset involves
1152 * clearing the halt, updating the debug control register, changing to ARM mode,
1153 * reset of the program counter, and reset of all of the registers.
1154 *
1155 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1156 * @return Error status if any of the commands fail, otherwise ERROR_OK
1157 */
1158 int arm7_9_soft_reset_halt(struct target *target)
1159 {
1160 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1161 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1162 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1163 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1164 int i;
1165 int retval;
1166
1167 /* FIX!!! replace some of this code with tcl commands
1168 *
1169 * halt # the halt command is synchronous
1170 * armv4_5 core_state arm
1171 *
1172 */
1173
1174 if ((retval = target_halt(target)) != ERROR_OK)
1175 return retval;
1176
1177 long long then = timeval_ms();
1178 int timeout;
1179 while (!(timeout = ((timeval_ms()-then) > 1000)))
1180 {
1181 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1182 break;
1183 embeddedice_read_reg(dbg_stat);
1184 if ((retval = jtag_execute_queue()) != ERROR_OK)
1185 return retval;
1186 if (debug_level >= 3)
1187 {
1188 alive_sleep(100);
1189 } else
1190 {
1191 keep_alive();
1192 }
1193 }
1194 if (timeout)
1195 {
1196 LOG_ERROR("Failed to halt CPU after 1 sec");
1197 return ERROR_TARGET_TIMEOUT;
1198 }
1199 target->state = TARGET_HALTED;
1200
1201 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1202 * ensure that DBGRQ is cleared
1203 */
1204 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1205 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1206 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1207 embeddedice_store_reg(dbg_ctrl);
1208
1209 if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1210 {
1211 return retval;
1212 }
1213
1214 /* if the target is in Thumb state, change to ARM state */
1215 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1216 {
1217 uint32_t r0_thumb, pc_thumb;
1218 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1219 /* Entered debug from Thumb mode */
1220 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1221 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1222 }
1223
1224 /* all register content is now invalid */
1225 if ((retval = armv4_5_invalidate_core_regs(target)) != ERROR_OK)
1226 {
1227 return retval;
1228 }
1229
1230 /* SVC, ARM state, IRQ and FIQ disabled */
1231 buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8, 0xd3);
1232 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1;
1233 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1234
1235 /* start fetching from 0x0 */
1236 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1237 armv4_5->core_cache->reg_list[15].dirty = 1;
1238 armv4_5->core_cache->reg_list[15].valid = 1;
1239
1240 armv4_5->core_mode = ARMV4_5_MODE_SVC;
1241 armv4_5->core_state = ARMV4_5_STATE_ARM;
1242
1243 if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1244 return ERROR_FAIL;
1245
1246 /* reset registers */
1247 for (i = 0; i <= 14; i++)
1248 {
1249 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, 0xffffffff);
1250 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
1251 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1252 }
1253
1254 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1255 {
1256 return retval;
1257 }
1258
1259 return ERROR_OK;
1260 }
1261
1262 /**
1263 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1264 * line or by programming a watchpoint to trigger on any address. It is
1265 * considered a bug to call this function while the target is in the
1266 * TARGET_RESET state.
1267 *
1268 * @param target Pointer to the ARM7/9 target to be halted
1269 * @return Always ERROR_OK
1270 */
1271 int arm7_9_halt(struct target *target)
1272 {
1273 if (target->state == TARGET_RESET)
1274 {
1275 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1276 return ERROR_OK;
1277 }
1278
1279 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1280 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1281
1282 LOG_DEBUG("target->state: %s",
1283 target_state_name(target));
1284
1285 if (target->state == TARGET_HALTED)
1286 {
1287 LOG_DEBUG("target was already halted");
1288 return ERROR_OK;
1289 }
1290
1291 if (target->state == TARGET_UNKNOWN)
1292 {
1293 LOG_WARNING("target was in unknown state when halt was requested");
1294 }
1295
1296 if (arm7_9->use_dbgrq)
1297 {
1298 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1299 */
1300 if (arm7_9->set_special_dbgrq) {
1301 arm7_9->set_special_dbgrq(target);
1302 } else {
1303 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1304 embeddedice_store_reg(dbg_ctrl);
1305 }
1306 }
1307 else
1308 {
1309 /* program watchpoint unit to match on any address
1310 */
1311 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1312 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1313 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1314 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1315 }
1316
1317 target->debug_reason = DBG_REASON_DBGRQ;
1318
1319 return ERROR_OK;
1320 }
1321
1322 /**
1323 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1324 * ARM. The JTAG queue is then executed and the reason for debug entry is
1325 * examined. Once done, the target is verified to be halted and the processor
1326 * is forced into ARM mode. The core registers are saved for the current core
1327 * mode and the program counter (register 15) is updated as needed. The core
1328 * registers and CPSR and SPSR are saved for restoration later.
1329 *
1330 * @param target Pointer to target that is entering debug mode
1331 * @return Error code if anything fails, otherwise ERROR_OK
1332 */
1333 static int arm7_9_debug_entry(struct target *target)
1334 {
1335 int i;
1336 uint32_t context[16];
1337 uint32_t* context_p[16];
1338 uint32_t r0_thumb, pc_thumb;
1339 uint32_t cpsr;
1340 int retval;
1341 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1342 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1343 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1344 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1345
1346 #ifdef _DEBUG_ARM7_9_
1347 LOG_DEBUG("-");
1348 #endif
1349
1350 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1351 * ensure that DBGRQ is cleared
1352 */
1353 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1354 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1355 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1356 embeddedice_store_reg(dbg_ctrl);
1357
1358 if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1359 {
1360 return retval;
1361 }
1362
1363 if ((retval = jtag_execute_queue()) != ERROR_OK)
1364 {
1365 return retval;
1366 }
1367
1368 if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1369 return retval;
1370
1371
1372 if (target->state != TARGET_HALTED)
1373 {
1374 LOG_WARNING("target not halted");
1375 return ERROR_TARGET_NOT_HALTED;
1376 }
1377
1378 /* if the target is in Thumb state, change to ARM state */
1379 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1380 {
1381 LOG_DEBUG("target entered debug from Thumb state");
1382 /* Entered debug from Thumb mode */
1383 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1384 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1385 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32 ", pc_thumb: 0x%8.8" PRIx32 "", r0_thumb, pc_thumb);
1386 }
1387 else
1388 {
1389 LOG_DEBUG("target entered debug from ARM state");
1390 /* Entered debug from ARM mode */
1391 armv4_5->core_state = ARMV4_5_STATE_ARM;
1392 }
1393
1394 for (i = 0; i < 16; i++)
1395 context_p[i] = &context[i];
1396 /* save core registers (r0 - r15 of current core mode) */
1397 arm7_9->read_core_regs(target, 0xffff, context_p);
1398
1399 arm7_9->read_xpsr(target, &cpsr, 0);
1400
1401 if ((retval = jtag_execute_queue()) != ERROR_OK)
1402 return retval;
1403
1404 /* if the core has been executing in Thumb state, set the T bit */
1405 if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1406 cpsr |= 0x20;
1407
1408 buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, cpsr);
1409 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1410 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1411
1412 armv4_5->core_mode = cpsr & 0x1f;
1413
1414 if (armv4_5_mode_to_number(armv4_5->core_mode) == -1)
1415 {
1416 target->state = TARGET_UNKNOWN;
1417 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1418 return ERROR_TARGET_FAILURE;
1419 }
1420
1421 LOG_DEBUG("target entered debug state in %s mode", armv4_5_mode_strings[armv4_5_mode_to_number(armv4_5->core_mode)]);
1422
1423 if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1424 {
1425 LOG_DEBUG("thumb state, applying fixups");
1426 context[0] = r0_thumb;
1427 context[15] = pc_thumb;
1428 } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1429 {
1430 /* adjust value stored by STM */
1431 context[15] -= 3 * 4;
1432 }
1433
1434 if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1435 context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1436 else
1437 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1438
1439 if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1440 return ERROR_FAIL;
1441
1442 for (i = 0; i <= 15; i++)
1443 {
1444 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1445 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, context[i]);
1446 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0;
1447 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1448 }
1449
1450 LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1451
1452 if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1453 return ERROR_FAIL;
1454
1455 /* exceptions other than USR & SYS have a saved program status register */
1456 if ((armv4_5->core_mode != ARMV4_5_MODE_USR) && (armv4_5->core_mode != ARMV4_5_MODE_SYS))
1457 {
1458 uint32_t spsr;
1459 arm7_9->read_xpsr(target, &spsr, 1);
1460 if ((retval = jtag_execute_queue()) != ERROR_OK)
1461 {
1462 return retval;
1463 }
1464 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, spsr);
1465 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
1466 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
1467 }
1468
1469 /* r0 and r15 (pc) have to be restored later */
1470 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid;
1471 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid;
1472
1473 if ((retval = jtag_execute_queue()) != ERROR_OK)
1474 return retval;
1475
1476 if (arm7_9->post_debug_entry)
1477 arm7_9->post_debug_entry(target);
1478
1479 return ERROR_OK;
1480 }
1481
1482 /**
1483 * Validate the full context for an ARM7/9 target in all processor modes. If
1484 * there are any invalid registers for the target, they will all be read. This
1485 * includes the PSR.
1486 *
1487 * @param target Pointer to the ARM7/9 target to capture the full context from
1488 * @return Error if the target is not halted, has an invalid core mode, or if
1489 * the JTAG queue fails to execute
1490 */
1491 int arm7_9_full_context(struct target *target)
1492 {
1493 int i;
1494 int retval;
1495 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1496 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1497
1498 LOG_DEBUG("-");
1499
1500 if (target->state != TARGET_HALTED)
1501 {
1502 LOG_WARNING("target not halted");
1503 return ERROR_TARGET_NOT_HALTED;
1504 }
1505
1506 if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1507 return ERROR_FAIL;
1508
1509 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1510 * SYS shares registers with User, so we don't touch SYS
1511 */
1512 for (i = 0; i < 6; i++)
1513 {
1514 uint32_t mask = 0;
1515 uint32_t* reg_p[16];
1516 int j;
1517 int valid = 1;
1518
1519 /* check if there are invalid registers in the current mode
1520 */
1521 for (j = 0; j <= 16; j++)
1522 {
1523 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1524 valid = 0;
1525 }
1526
1527 if (!valid)
1528 {
1529 uint32_t tmp_cpsr;
1530
1531 /* change processor mode (and mask T bit) */
1532 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1533 tmp_cpsr |= armv4_5_number_to_mode(i);
1534 tmp_cpsr &= ~0x20;
1535 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1536
1537 for (j = 0; j < 15; j++)
1538 {
1539 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1540 {
1541 reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1542 mask |= 1 << j;
1543 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1544 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1545 }
1546 }
1547
1548 /* if only the PSR is invalid, mask is all zeroes */
1549 if (mask)
1550 arm7_9->read_core_regs(target, mask, reg_p);
1551
1552 /* check if the PSR has to be read */
1553 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1554 {
1555 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1556 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1557 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1558 }
1559 }
1560 }
1561
1562 /* restore processor mode (mask T bit) */
1563 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
1564
1565 if ((retval = jtag_execute_queue()) != ERROR_OK)
1566 {
1567 return retval;
1568 }
1569 return ERROR_OK;
1570 }
1571
1572 /**
1573 * Restore the processor context on an ARM7/9 target. The full processor
1574 * context is analyzed to see if any of the registers are dirty on this end, but
1575 * have a valid new value. If this is the case, the processor is changed to the
1576 * appropriate mode and the new register values are written out to the
1577 * processor. If there happens to be a dirty register with an invalid value, an
1578 * error will be logged.
1579 *
1580 * @param target Pointer to the ARM7/9 target to have its context restored
1581 * @return Error status if the target is not halted or the core mode in the
1582 * armv4_5 struct is invalid.
1583 */
1584 int arm7_9_restore_context(struct target *target)
1585 {
1586 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1587 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1588 struct reg *reg;
1589 struct armv4_5_core_reg *reg_arch_info;
1590 enum armv4_5_mode current_mode = armv4_5->core_mode;
1591 int i, j;
1592 int dirty;
1593 int mode_change;
1594
1595 LOG_DEBUG("-");
1596
1597 if (target->state != TARGET_HALTED)
1598 {
1599 LOG_WARNING("target not halted");
1600 return ERROR_TARGET_NOT_HALTED;
1601 }
1602
1603 if (arm7_9->pre_restore_context)
1604 arm7_9->pre_restore_context(target);
1605
1606 if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1607 return ERROR_FAIL;
1608
1609 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1610 * SYS shares registers with User, so we don't touch SYS
1611 */
1612 for (i = 0; i < 6; i++)
1613 {
1614 LOG_DEBUG("examining %s mode", armv4_5_mode_strings[i]);
1615 dirty = 0;
1616 mode_change = 0;
1617 /* check if there are dirty registers in the current mode
1618 */
1619 for (j = 0; j <= 16; j++)
1620 {
1621 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1622 reg_arch_info = reg->arch_info;
1623 if (reg->dirty == 1)
1624 {
1625 if (reg->valid == 1)
1626 {
1627 dirty = 1;
1628 LOG_DEBUG("examining dirty reg: %s", reg->name);
1629 if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
1630 && (reg_arch_info->mode != current_mode)
1631 && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
1632 && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
1633 {
1634 mode_change = 1;
1635 LOG_DEBUG("require mode change");
1636 }
1637 }
1638 else
1639 {
1640 LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1641 }
1642 }
1643 }
1644
1645 if (dirty)
1646 {
1647 uint32_t mask = 0x0;
1648 int num_regs = 0;
1649 uint32_t regs[16];
1650
1651 if (mode_change)
1652 {
1653 uint32_t tmp_cpsr;
1654
1655 /* change processor mode (mask T bit) */
1656 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1657 tmp_cpsr |= armv4_5_number_to_mode(i);
1658 tmp_cpsr &= ~0x20;
1659 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1660 current_mode = armv4_5_number_to_mode(i);
1661 }
1662
1663 for (j = 0; j <= 14; j++)
1664 {
1665 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1666 reg_arch_info = reg->arch_info;
1667
1668
1669 if (reg->dirty == 1)
1670 {
1671 regs[j] = buf_get_u32(reg->value, 0, 32);
1672 mask |= 1 << j;
1673 num_regs++;
1674 reg->dirty = 0;
1675 reg->valid = 1;
1676 LOG_DEBUG("writing register %i of mode %s with value 0x%8.8" PRIx32 "", j, armv4_5_mode_strings[i], regs[j]);
1677 }
1678 }
1679
1680 if (mask)
1681 {
1682 arm7_9->write_core_regs(target, mask, regs);
1683 }
1684
1685 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1686 reg_arch_info = reg->arch_info;
1687 if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
1688 {
1689 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1690 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1691 }
1692 }
1693 }
1694
1695 if ((armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 0) && (armv4_5->core_mode != current_mode))
1696 {
1697 /* restore processor mode (mask T bit) */
1698 uint32_t tmp_cpsr;
1699
1700 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1701 tmp_cpsr |= armv4_5_number_to_mode(i);
1702 tmp_cpsr &= ~0x20;
1703 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1704 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1705 }
1706 else if (armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 1)
1707 {
1708 /* CPSR has been changed, full restore necessary (mask T bit) */
1709 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32));
1710 arm7_9->write_xpsr(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32) & ~0x20, 0);
1711 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1712 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1713 }
1714
1715 /* restore PC */
1716 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1717 arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1718 armv4_5->core_cache->reg_list[15].dirty = 0;
1719
1720 if (arm7_9->post_restore_context)
1721 arm7_9->post_restore_context(target);
1722
1723 return ERROR_OK;
1724 }
1725
1726 /**
1727 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1728 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1729 * restart.
1730 *
1731 * @param target Pointer to the ARM7/9 target to be restarted
1732 * @return Result of executing the JTAG queue
1733 */
1734 int arm7_9_restart_core(struct target *target)
1735 {
1736 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1737 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1738
1739 /* set RESTART instruction */
1740 jtag_set_end_state(TAP_IDLE);
1741 if (arm7_9->need_bypass_before_restart) {
1742 arm7_9->need_bypass_before_restart = 0;
1743 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1744 }
1745 arm_jtag_set_instr(jtag_info, 0x4, NULL);
1746
1747 jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
1748 return jtag_execute_queue();
1749 }
1750
1751 /**
1752 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1753 * iterated through and are set on the target if they aren't already set.
1754 *
1755 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1756 */
1757 void arm7_9_enable_watchpoints(struct target *target)
1758 {
1759 struct watchpoint *watchpoint = target->watchpoints;
1760
1761 while (watchpoint)
1762 {
1763 if (watchpoint->set == 0)
1764 arm7_9_set_watchpoint(target, watchpoint);
1765 watchpoint = watchpoint->next;
1766 }
1767 }
1768
1769 /**
1770 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1771 * iterated through and are set on the target.
1772 *
1773 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1774 */
1775 void arm7_9_enable_breakpoints(struct target *target)
1776 {
1777 struct breakpoint *breakpoint = target->breakpoints;
1778
1779 /* set any pending breakpoints */
1780 while (breakpoint)
1781 {
1782 arm7_9_set_breakpoint(target, breakpoint);
1783 breakpoint = breakpoint->next;
1784 }
1785 }
1786
1787 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1788 {
1789 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1790 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1791 struct breakpoint *breakpoint = target->breakpoints;
1792 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1793 int err, retval = ERROR_OK;
1794
1795 LOG_DEBUG("-");
1796
1797 if (target->state != TARGET_HALTED)
1798 {
1799 LOG_WARNING("target not halted");
1800 return ERROR_TARGET_NOT_HALTED;
1801 }
1802
1803 if (!debug_execution)
1804 {
1805 target_free_all_working_areas(target);
1806 }
1807
1808 /* current = 1: continue on current pc, otherwise continue at <address> */
1809 if (!current)
1810 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1811
1812 uint32_t current_pc;
1813 current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1814
1815 /* the front-end may request us not to handle breakpoints */
1816 if (handle_breakpoints)
1817 {
1818 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1819 {
1820 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1821 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1822 {
1823 return retval;
1824 }
1825
1826 /* calculate PC of next instruction */
1827 uint32_t next_pc;
1828 if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1829 {
1830 uint32_t current_opcode;
1831 target_read_u32(target, current_pc, &current_opcode);
1832 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1833 return retval;
1834 }
1835
1836 LOG_DEBUG("enable single-step");
1837 arm7_9->enable_single_step(target, next_pc);
1838
1839 target->debug_reason = DBG_REASON_SINGLESTEP;
1840
1841 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1842 {
1843 return retval;
1844 }
1845
1846 if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1847 arm7_9->branch_resume(target);
1848 else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1849 {
1850 arm7_9->branch_resume_thumb(target);
1851 }
1852 else
1853 {
1854 LOG_ERROR("unhandled core state");
1855 return ERROR_FAIL;
1856 }
1857
1858 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1859 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1860 err = arm7_9_execute_sys_speed(target);
1861
1862 LOG_DEBUG("disable single-step");
1863 arm7_9->disable_single_step(target);
1864
1865 if (err != ERROR_OK)
1866 {
1867 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1868 {
1869 return retval;
1870 }
1871 target->state = TARGET_UNKNOWN;
1872 return err;
1873 }
1874
1875 arm7_9_debug_entry(target);
1876 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1877
1878 LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1879 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1880 {
1881 return retval;
1882 }
1883 }
1884 }
1885
1886 /* enable any pending breakpoints and watchpoints */
1887 arm7_9_enable_breakpoints(target);
1888 arm7_9_enable_watchpoints(target);
1889
1890 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1891 {
1892 return retval;
1893 }
1894
1895 if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1896 {
1897 arm7_9->branch_resume(target);
1898 }
1899 else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1900 {
1901 arm7_9->branch_resume_thumb(target);
1902 }
1903 else
1904 {
1905 LOG_ERROR("unhandled core state");
1906 return ERROR_FAIL;
1907 }
1908
1909 /* deassert DBGACK and INTDIS */
1910 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1911 /* INTDIS only when we really resume, not during debug execution */
1912 if (!debug_execution)
1913 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1914 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1915
1916 if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1917 {
1918 return retval;
1919 }
1920
1921 target->debug_reason = DBG_REASON_NOTHALTED;
1922
1923 if (!debug_execution)
1924 {
1925 /* registers are now invalid */
1926 armv4_5_invalidate_core_regs(target);
1927 target->state = TARGET_RUNNING;
1928 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1929 {
1930 return retval;
1931 }
1932 }
1933 else
1934 {
1935 target->state = TARGET_DEBUG_RUNNING;
1936 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1937 {
1938 return retval;
1939 }
1940 }
1941
1942 LOG_DEBUG("target resumed");
1943
1944 return ERROR_OK;
1945 }
1946
1947 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1948 {
1949 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1950 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1951 uint32_t current_pc;
1952 current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1953
1954 if (next_pc != current_pc)
1955 {
1956 /* setup an inverse breakpoint on the current PC
1957 * - comparator 1 matches the current address
1958 * - rangeout from comparator 1 is connected to comparator 0 rangein
1959 * - comparator 0 matches any address, as long as rangein is low */
1960 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1961 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1962 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1963 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1964 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1965 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1966 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1967 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1968 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1969 }
1970 else
1971 {
1972 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1973 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1974 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1975 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1976 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1977 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1978 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1979 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1980 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1981 }
1982 }
1983
1984 void arm7_9_disable_eice_step(struct target *target)
1985 {
1986 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1987
1988 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1989 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1990 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1991 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1992 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1993 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
1994 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
1995 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
1996 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
1997 }
1998
1999 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
2000 {
2001 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2002 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2003 struct breakpoint *breakpoint = NULL;
2004 int err, retval;
2005
2006 if (target->state != TARGET_HALTED)
2007 {
2008 LOG_WARNING("target not halted");
2009 return ERROR_TARGET_NOT_HALTED;
2010 }
2011
2012 /* current = 1: continue on current pc, otherwise continue at <address> */
2013 if (!current)
2014 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
2015
2016 uint32_t current_pc;
2017 current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2018
2019 /* the front-end may request us not to handle breakpoints */
2020 if (handle_breakpoints)
2021 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2022 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2023 {
2024 return retval;
2025 }
2026
2027 target->debug_reason = DBG_REASON_SINGLESTEP;
2028
2029 /* calculate PC of next instruction */
2030 uint32_t next_pc;
2031 if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2032 {
2033 uint32_t current_opcode;
2034 target_read_u32(target, current_pc, &current_opcode);
2035 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2036 return retval;
2037 }
2038
2039 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2040 {
2041 return retval;
2042 }
2043
2044 arm7_9->enable_single_step(target, next_pc);
2045
2046 if (armv4_5->core_state == ARMV4_5_STATE_ARM)
2047 {
2048 arm7_9->branch_resume(target);
2049 }
2050 else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
2051 {
2052 arm7_9->branch_resume_thumb(target);
2053 }
2054 else
2055 {
2056 LOG_ERROR("unhandled core state");
2057 return ERROR_FAIL;
2058 }
2059
2060 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2061 {
2062 return retval;
2063 }
2064
2065 err = arm7_9_execute_sys_speed(target);
2066 arm7_9->disable_single_step(target);
2067
2068 /* registers are now invalid */
2069 armv4_5_invalidate_core_regs(target);
2070
2071 if (err != ERROR_OK)
2072 {
2073 target->state = TARGET_UNKNOWN;
2074 } else {
2075 arm7_9_debug_entry(target);
2076 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2077 {
2078 return retval;
2079 }
2080 LOG_DEBUG("target stepped");
2081 }
2082
2083 if (breakpoint)
2084 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2085 {
2086 return retval;
2087 }
2088
2089 return err;
2090 }
2091
2092 int arm7_9_read_core_reg(struct target *target, int num, enum armv4_5_mode mode)
2093 {
2094 uint32_t* reg_p[16];
2095 uint32_t value;
2096 int retval;
2097 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2098 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2099
2100 if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2101 return ERROR_FAIL;
2102
2103 enum armv4_5_mode reg_mode = ((struct armv4_5_core_reg*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2104
2105 if ((num < 0) || (num > 16))
2106 return ERROR_INVALID_ARGUMENTS;
2107
2108 if ((mode != ARMV4_5_MODE_ANY)
2109 && (mode != armv4_5->core_mode)
2110 && (reg_mode != ARMV4_5_MODE_ANY))
2111 {
2112 uint32_t tmp_cpsr;
2113
2114 /* change processor mode (mask T bit) */
2115 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2116 tmp_cpsr |= mode;
2117 tmp_cpsr &= ~0x20;
2118 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2119 }
2120
2121 if ((num >= 0) && (num <= 15))
2122 {
2123 /* read a normal core register */
2124 reg_p[num] = &value;
2125
2126 arm7_9->read_core_regs(target, 1 << num, reg_p);
2127 }
2128 else
2129 {
2130 /* read a program status register
2131 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2132 */
2133 struct armv4_5_core_reg *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2134 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2135
2136 arm7_9->read_xpsr(target, &value, spsr);
2137 }
2138
2139 if ((retval = jtag_execute_queue()) != ERROR_OK)
2140 {
2141 return retval;
2142 }
2143
2144 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2145 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2146 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).value, 0, 32, value);
2147
2148 if ((mode != ARMV4_5_MODE_ANY)
2149 && (mode != armv4_5->core_mode)
2150 && (reg_mode != ARMV4_5_MODE_ANY)) {
2151 /* restore processor mode (mask T bit) */
2152 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2153 }
2154
2155 return ERROR_OK;
2156 }
2157
2158 int arm7_9_write_core_reg(struct target *target, int num, enum armv4_5_mode mode, uint32_t value)
2159 {
2160 uint32_t reg[16];
2161 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2162 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2163
2164 if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2165 return ERROR_FAIL;
2166
2167 enum armv4_5_mode reg_mode = ((struct armv4_5_core_reg*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2168
2169 if ((num < 0) || (num > 16))
2170 return ERROR_INVALID_ARGUMENTS;
2171
2172 if ((mode != ARMV4_5_MODE_ANY)
2173 && (mode != armv4_5->core_mode)
2174 && (reg_mode != ARMV4_5_MODE_ANY)) {
2175 uint32_t tmp_cpsr;
2176
2177 /* change processor mode (mask T bit) */
2178 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2179 tmp_cpsr |= mode;
2180 tmp_cpsr &= ~0x20;
2181 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2182 }
2183
2184 if ((num >= 0) && (num <= 15))
2185 {
2186 /* write a normal core register */
2187 reg[num] = value;
2188
2189 arm7_9->write_core_regs(target, 1 << num, reg);
2190 }
2191 else
2192 {
2193 /* write a program status register
2194 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2195 */
2196 struct armv4_5_core_reg *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2197 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2198
2199 /* if we're writing the CPSR, mask the T bit */
2200 if (!spsr)
2201 value &= ~0x20;
2202
2203 arm7_9->write_xpsr(target, value, spsr);
2204 }
2205
2206 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2207 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2208
2209 if ((mode != ARMV4_5_MODE_ANY)
2210 && (mode != armv4_5->core_mode)
2211 && (reg_mode != ARMV4_5_MODE_ANY)) {
2212 /* restore processor mode (mask T bit) */
2213 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2214 }
2215
2216 return jtag_execute_queue();
2217 }
2218
2219 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2220 {
2221 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2222 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2223 uint32_t reg[16];
2224 uint32_t num_accesses = 0;
2225 int thisrun_accesses;
2226 int i;
2227 uint32_t cpsr;
2228 int retval;
2229 int last_reg = 0;
2230
2231 LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2232
2233 if (target->state != TARGET_HALTED)
2234 {
2235 LOG_WARNING("target not halted");
2236 return ERROR_TARGET_NOT_HALTED;
2237 }
2238
2239 /* sanitize arguments */
2240 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2241 return ERROR_INVALID_ARGUMENTS;
2242
2243 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2244 return ERROR_TARGET_UNALIGNED_ACCESS;
2245
2246 /* load the base register with the address of the first word */
2247 reg[0] = address;
2248 arm7_9->write_core_regs(target, 0x1, reg);
2249
2250 int j = 0;
2251
2252 switch (size)
2253 {
2254 case 4:
2255 while (num_accesses < count)
2256 {
2257 uint32_t reg_list;
2258 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2259 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2260
2261 if (last_reg <= thisrun_accesses)
2262 last_reg = thisrun_accesses;
2263
2264 arm7_9->load_word_regs(target, reg_list);
2265
2266 /* fast memory reads are only safe when the target is running
2267 * from a sufficiently high clock (32 kHz is usually too slow)
2268 */
2269 if (arm7_9->fast_memory_access)
2270 retval = arm7_9_execute_fast_sys_speed(target);
2271 else
2272 retval = arm7_9_execute_sys_speed(target);
2273 if (retval != ERROR_OK)
2274 return retval;
2275
2276 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2277
2278 /* advance buffer, count number of accesses */
2279 buffer += thisrun_accesses * 4;
2280 num_accesses += thisrun_accesses;
2281
2282 if ((j++%1024) == 0)
2283 {
2284 keep_alive();
2285 }
2286 }
2287 break;
2288 case 2:
2289 while (num_accesses < count)
2290 {
2291 uint32_t reg_list;
2292 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2293 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2294
2295 for (i = 1; i <= thisrun_accesses; i++)
2296 {
2297 if (i > last_reg)
2298 last_reg = i;
2299 arm7_9->load_hword_reg(target, i);
2300 /* fast memory reads are only safe when the target is running
2301 * from a sufficiently high clock (32 kHz is usually too slow)
2302 */
2303 if (arm7_9->fast_memory_access)
2304 retval = arm7_9_execute_fast_sys_speed(target);
2305 else
2306 retval = arm7_9_execute_sys_speed(target);
2307 if (retval != ERROR_OK)
2308 {
2309 return retval;
2310 }
2311
2312 }
2313
2314 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2315
2316 /* advance buffer, count number of accesses */
2317 buffer += thisrun_accesses * 2;
2318 num_accesses += thisrun_accesses;
2319
2320 if ((j++%1024) == 0)
2321 {
2322 keep_alive();
2323 }
2324 }
2325 break;
2326 case 1:
2327 while (num_accesses < count)
2328 {
2329 uint32_t reg_list;
2330 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2331 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2332
2333 for (i = 1; i <= thisrun_accesses; i++)
2334 {
2335 if (i > last_reg)
2336 last_reg = i;
2337 arm7_9->load_byte_reg(target, i);
2338 /* fast memory reads are only safe when the target is running
2339 * from a sufficiently high clock (32 kHz is usually too slow)
2340 */
2341 if (arm7_9->fast_memory_access)
2342 retval = arm7_9_execute_fast_sys_speed(target);
2343 else
2344 retval = arm7_9_execute_sys_speed(target);
2345 if (retval != ERROR_OK)
2346 {
2347 return retval;
2348 }
2349 }
2350
2351 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2352
2353 /* advance buffer, count number of accesses */
2354 buffer += thisrun_accesses * 1;
2355 num_accesses += thisrun_accesses;
2356
2357 if ((j++%1024) == 0)
2358 {
2359 keep_alive();
2360 }
2361 }
2362 break;
2363 default:
2364 LOG_ERROR("BUG: we shouldn't get here");
2365 exit(-1);
2366 break;
2367 }
2368
2369 if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2370 return ERROR_FAIL;
2371
2372 for (i = 0; i <= last_reg; i++)
2373 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2374
2375 arm7_9->read_xpsr(target, &cpsr, 0);
2376 if ((retval = jtag_execute_queue()) != ERROR_OK)
2377 {
2378 LOG_ERROR("JTAG error while reading cpsr");
2379 return ERROR_TARGET_DATA_ABORT;
2380 }
2381
2382 if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2383 {
2384 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2385
2386 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2387
2388 return ERROR_TARGET_DATA_ABORT;
2389 }
2390
2391 return ERROR_OK;
2392 }
2393
2394 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2395 {
2396 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2397 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2398 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2399
2400 uint32_t reg[16];
2401 uint32_t num_accesses = 0;
2402 int thisrun_accesses;
2403 int i;
2404 uint32_t cpsr;
2405 int retval;
2406 int last_reg = 0;
2407
2408 #ifdef _DEBUG_ARM7_9_
2409 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2410 #endif
2411
2412 if (target->state != TARGET_HALTED)
2413 {
2414 LOG_WARNING("target not halted");
2415 return ERROR_TARGET_NOT_HALTED;
2416 }
2417
2418 /* sanitize arguments */
2419 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2420 return ERROR_INVALID_ARGUMENTS;
2421
2422 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2423 return ERROR_TARGET_UNALIGNED_ACCESS;
2424
2425 /* load the base register with the address of the first word */
2426 reg[0] = address;
2427 arm7_9->write_core_regs(target, 0x1, reg);
2428
2429 /* Clear DBGACK, to make sure memory fetches work as expected */
2430 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2431 embeddedice_store_reg(dbg_ctrl);
2432
2433 switch (size)
2434 {
2435 case 4:
2436 while (num_accesses < count)
2437 {
2438 uint32_t reg_list;
2439 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2440 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2441
2442 for (i = 1; i <= thisrun_accesses; i++)
2443 {
2444 if (i > last_reg)
2445 last_reg = i;
2446 reg[i] = target_buffer_get_u32(target, buffer);
2447 buffer += 4;
2448 }
2449
2450 arm7_9->write_core_regs(target, reg_list, reg);
2451
2452 arm7_9->store_word_regs(target, reg_list);
2453
2454 /* fast memory writes are only safe when the target is running
2455 * from a sufficiently high clock (32 kHz is usually too slow)
2456 */
2457 if (arm7_9->fast_memory_access)
2458 retval = arm7_9_execute_fast_sys_speed(target);
2459 else
2460 retval = arm7_9_execute_sys_speed(target);
2461 if (retval != ERROR_OK)
2462 {
2463 return retval;
2464 }
2465
2466 num_accesses += thisrun_accesses;
2467 }
2468 break;
2469 case 2:
2470 while (num_accesses < count)
2471 {
2472 uint32_t reg_list;
2473 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2474 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2475
2476 for (i = 1; i <= thisrun_accesses; i++)
2477 {
2478 if (i > last_reg)
2479 last_reg = i;
2480 reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2481 buffer += 2;
2482 }
2483
2484 arm7_9->write_core_regs(target, reg_list, reg);
2485
2486 for (i = 1; i <= thisrun_accesses; i++)
2487 {
2488 arm7_9->store_hword_reg(target, i);
2489
2490 /* fast memory writes are only safe when the target is running
2491 * from a sufficiently high clock (32 kHz is usually too slow)
2492 */
2493 if (arm7_9->fast_memory_access)
2494 retval = arm7_9_execute_fast_sys_speed(target);
2495 else
2496 retval = arm7_9_execute_sys_speed(target);
2497 if (retval != ERROR_OK)
2498 {
2499 return retval;
2500 }
2501 }
2502
2503 num_accesses += thisrun_accesses;
2504 }
2505 break;
2506 case 1:
2507 while (num_accesses < count)
2508 {
2509 uint32_t reg_list;
2510 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2511 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2512
2513 for (i = 1; i <= thisrun_accesses; i++)
2514 {
2515 if (i > last_reg)
2516 last_reg = i;
2517 reg[i] = *buffer++ & 0xff;
2518 }
2519
2520 arm7_9->write_core_regs(target, reg_list, reg);
2521
2522 for (i = 1; i <= thisrun_accesses; i++)
2523 {
2524 arm7_9->store_byte_reg(target, i);
2525 /* fast memory writes are only safe when the target is running
2526 * from a sufficiently high clock (32 kHz is usually too slow)
2527 */
2528 if (arm7_9->fast_memory_access)
2529 retval = arm7_9_execute_fast_sys_speed(target);
2530 else
2531 retval = arm7_9_execute_sys_speed(target);
2532 if (retval != ERROR_OK)
2533 {
2534 return retval;
2535 }
2536
2537 }
2538
2539 num_accesses += thisrun_accesses;
2540 }
2541 break;
2542 default:
2543 LOG_ERROR("BUG: we shouldn't get here");
2544 exit(-1);
2545 break;
2546 }
2547
2548 /* Re-Set DBGACK */
2549 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2550 embeddedice_store_reg(dbg_ctrl);
2551
2552 if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2553 return ERROR_FAIL;
2554
2555 for (i = 0; i <= last_reg; i++)
2556 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2557
2558 arm7_9->read_xpsr(target, &cpsr, 0);
2559 if ((retval = jtag_execute_queue()) != ERROR_OK)
2560 {
2561 LOG_ERROR("JTAG error while reading cpsr");
2562 return ERROR_TARGET_DATA_ABORT;
2563 }
2564
2565 if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2566 {
2567 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2568
2569 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2570
2571 return ERROR_TARGET_DATA_ABORT;
2572 }
2573
2574 return ERROR_OK;
2575 }
2576
2577 static int dcc_count;
2578 static uint8_t *dcc_buffer;
2579
2580 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2581 {
2582 int retval = ERROR_OK;
2583 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2584
2585 if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2586 return retval;
2587
2588 int little = target->endianness == TARGET_LITTLE_ENDIAN;
2589 int count = dcc_count;
2590 uint8_t *buffer = dcc_buffer;
2591 if (count > 2)
2592 {
2593 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2594 * core function repeated. */
2595 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2596 buffer += 4;
2597
2598 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2599 uint8_t reg_addr = ice_reg->addr & 0x1f;
2600 struct jtag_tap *tap;
2601 tap = ice_reg->jtag_info->tap;
2602
2603 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2604 buffer += (count-2)*4;
2605
2606 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2607 } else
2608 {
2609 int i;
2610 for (i = 0; i < count; i++)
2611 {
2612 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2613 buffer += 4;
2614 }
2615 }
2616
2617 if ((retval = target_halt(target))!= ERROR_OK)
2618 {
2619 return retval;
2620 }
2621 return target_wait_state(target, TARGET_HALTED, 500);
2622 }
2623
2624 static const uint32_t dcc_code[] =
2625 {
2626 /* r0 == input, points to memory buffer
2627 * r1 == scratch
2628 */
2629
2630 /* spin until DCC control (c0) reports data arrived */
2631 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
2632 0xe3110001, /* tst r1, #1 */
2633 0x0afffffc, /* bne w */
2634
2635 /* read word from DCC (c1), write to memory */
2636 0xee111e10, /* mrc p14, #0, r1, c1, c0 */
2637 0xe4801004, /* str r1, [r0], #4 */
2638
2639 /* repeat */
2640 0xeafffff9 /* b w */
2641 };
2642
2643 int armv4_5_run_algorithm_inner(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info));
2644
2645 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2646 {
2647 int retval;
2648 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2649 int i;
2650
2651 if (!arm7_9->dcc_downloads)
2652 return target_write_memory(target, address, 4, count, buffer);
2653
2654 /* regrab previously allocated working_area, or allocate a new one */
2655 if (!arm7_9->dcc_working_area)
2656 {
2657 uint8_t dcc_code_buf[6 * 4];
2658
2659 /* make sure we have a working area */
2660 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2661 {
2662 LOG_INFO("no working area available, falling back to memory writes");
2663 return target_write_memory(target, address, 4, count, buffer);
2664 }
2665
2666 /* copy target instructions to target endianness */
2667 for (i = 0; i < 6; i++)
2668 {
2669 target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2670 }
2671
2672 /* write DCC code to working area */
2673 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2674 {
2675 return retval;
2676 }
2677 }
2678
2679 struct armv4_5_algorithm armv4_5_info;
2680 struct reg_param reg_params[1];
2681
2682 armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2683 armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2684 armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2685
2686 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2687
2688 buf_set_u32(reg_params[0].value, 0, 32, address);
2689
2690 dcc_count = count;
2691 dcc_buffer = buffer;
2692 retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2693 arm7_9->dcc_working_area->address, arm7_9->dcc_working_area->address + 6*4, 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2694
2695 if (retval == ERROR_OK)
2696 {
2697 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2698 if (endaddress != (address + count*4))
2699 {
2700 LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2701 retval = ERROR_FAIL;
2702 }
2703 }
2704
2705 destroy_reg_param(&reg_params[0]);
2706
2707 return retval;
2708 }
2709
2710 /**
2711 * Perform per-target setup that requires JTAG access.
2712 */
2713 int arm7_9_examine(struct target *target)
2714 {
2715 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2716 int retval;
2717
2718 if (!target_was_examined(target)) {
2719 struct reg_cache *t, **cache_p;
2720
2721 t = embeddedice_build_reg_cache(target, arm7_9);
2722 if (t == NULL)
2723 return ERROR_FAIL;
2724
2725 cache_p = register_get_last_cache_p(&target->reg_cache);
2726 (*cache_p) = t;
2727 arm7_9->eice_cache = (*cache_p);
2728
2729 if (arm7_9->armv4_5_common.etm)
2730 (*cache_p)->next = etm_build_reg_cache(target,
2731 &arm7_9->jtag_info,
2732 arm7_9->armv4_5_common.etm);
2733
2734 target_set_examined(target);
2735 }
2736
2737 retval = embeddedice_setup(target);
2738 if (retval == ERROR_OK)
2739 retval = arm7_9_setup(target);
2740 if (retval == ERROR_OK && arm7_9->armv4_5_common.etm)
2741 retval = etm_setup(target);
2742 return retval;
2743 }
2744
2745
2746 COMMAND_HANDLER(handle_arm7_9_write_xpsr_command)
2747 {
2748 uint32_t value;
2749 int spsr;
2750 int retval;
2751 struct target *target = get_current_target(cmd_ctx);
2752 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2753
2754 if (!is_arm7_9(arm7_9))
2755 {
2756 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2757 return ERROR_TARGET_INVALID;
2758 }
2759
2760 if (target->state != TARGET_HALTED)
2761 {
2762 command_print(cmd_ctx, "can't write registers while running");
2763 return ERROR_FAIL;
2764 }
2765
2766 if (argc < 2)
2767 {
2768 command_print(cmd_ctx, "usage: write_xpsr <value> <not cpsr | spsr>");
2769 return ERROR_FAIL;
2770 }
2771
2772 COMMAND_PARSE_NUMBER(u32, args[0], value);
2773 COMMAND_PARSE_NUMBER(int, args[1], spsr);
2774
2775 /* if we're writing the CPSR, mask the T bit */
2776 if (!spsr)
2777 value &= ~0x20;
2778
2779 arm7_9->write_xpsr(target, value, spsr);
2780 if ((retval = jtag_execute_queue()) != ERROR_OK)
2781 {
2782 LOG_ERROR("JTAG error while writing to xpsr");
2783 return retval;
2784 }
2785
2786 return ERROR_OK;
2787 }
2788
2789 COMMAND_HANDLER(handle_arm7_9_write_xpsr_im8_command)
2790 {
2791 uint32_t value;
2792 int rotate;
2793 int spsr;
2794 int retval;
2795 struct target *target = get_current_target(cmd_ctx);
2796 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2797
2798 if (!is_arm7_9(arm7_9))
2799 {
2800 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2801 return ERROR_TARGET_INVALID;
2802 }
2803
2804 if (target->state != TARGET_HALTED)
2805 {
2806 command_print(cmd_ctx, "can't write registers while running");
2807 return ERROR_FAIL;
2808 }
2809
2810 if (argc < 3)
2811 {
2812 command_print(cmd_ctx, "usage: write_xpsr_im8 <im8> <rotate> <not cpsr | spsr>");
2813 return ERROR_FAIL;
2814 }
2815
2816 COMMAND_PARSE_NUMBER(u32, args[0], value);
2817 COMMAND_PARSE_NUMBER(int, args[1], rotate);
2818 COMMAND_PARSE_NUMBER(int, args[2], spsr);
2819
2820 arm7_9->write_xpsr_im8(target, value, rotate, spsr);
2821 if ((retval = jtag_execute_queue()) != ERROR_OK)
2822 {
2823 LOG_ERROR("JTAG error while writing 8-bit immediate to xpsr");
2824 return retval;
2825 }
2826
2827 return ERROR_OK;
2828 }
2829
2830 COMMAND_HANDLER(handle_arm7_9_write_core_reg_command)
2831 {
2832 uint32_t value;
2833 uint32_t mode;
2834 int num;
2835 struct target *target = get_current_target(cmd_ctx);
2836 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2837
2838 if (!is_arm7_9(arm7_9))
2839 {
2840 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2841 return ERROR_TARGET_INVALID;
2842 }
2843
2844 if (target->state != TARGET_HALTED)
2845 {
2846 command_print(cmd_ctx, "can't write registers while running");
2847 return ERROR_FAIL;
2848 }
2849
2850 if (argc < 3)
2851 {
2852 command_print(cmd_ctx, "usage: write_core_reg <num> <mode> <value>");
2853 return ERROR_FAIL;
2854 }
2855
2856 COMMAND_PARSE_NUMBER(int, args[0], num);
2857 COMMAND_PARSE_NUMBER(u32, args[1], mode);
2858 COMMAND_PARSE_NUMBER(u32, args[2], value);
2859
2860 return arm7_9_write_core_reg(target, num, mode, value);
2861 }
2862
2863 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2864 {
2865 struct target *target = get_current_target(cmd_ctx);
2866 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2867
2868 if (!is_arm7_9(arm7_9))
2869 {
2870 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2871 return ERROR_TARGET_INVALID;
2872 }
2873
2874 if (argc > 0)
2875 {
2876 if (strcmp("enable", args[0]) == 0)
2877 {
2878 arm7_9->use_dbgrq = 1;
2879 }
2880 else if (strcmp("disable", args[0]) == 0)
2881 {
2882 arm7_9->use_dbgrq = 0;
2883 }
2884 else
2885 {
2886 command_print(cmd_ctx, "usage: arm7_9 dbgrq <enable | disable>");
2887 }
2888 }
2889
2890 command_print(cmd_ctx, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2891
2892 return ERROR_OK;
2893 }
2894
2895 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2896 {
2897 struct target *target = get_current_target(cmd_ctx);
2898 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2899
2900 if (!is_arm7_9(arm7_9))
2901 {
2902 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2903 return ERROR_TARGET_INVALID;
2904 }
2905
2906 if (argc > 0)
2907 {
2908 if (strcmp("enable", args[0]) == 0)
2909 {
2910 arm7_9->fast_memory_access = 1;
2911 }
2912 else if (strcmp("disable", args[0]) == 0)
2913 {
2914 arm7_9->fast_memory_access = 0;
2915 }
2916 else
2917 {
2918 command_print(cmd_ctx, "usage: arm7_9 fast_memory_access <enable | disable>");
2919 }
2920 }
2921
2922 command_print(cmd_ctx, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2923
2924 return ERROR_OK;
2925 }
2926
2927 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2928 {
2929 struct target *target = get_current_target(cmd_ctx);
2930 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2931
2932 if (!is_arm7_9(arm7_9))
2933 {
2934 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2935 return ERROR_TARGET_INVALID;
2936 }
2937
2938 if (argc > 0)
2939 {
2940 if (strcmp("enable", args[0]) == 0)
2941 {
2942 arm7_9->dcc_downloads = 1;
2943 }
2944 else if (strcmp("disable", args[0]) == 0)
2945 {
2946 arm7_9->dcc_downloads = 0;
2947 }
2948 else
2949 {
2950 command_print(cmd_ctx, "usage: arm7_9 dcc_downloads <enable | disable>");
2951 }
2952 }
2953
2954 command_print(cmd_ctx, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2955
2956 return ERROR_OK;
2957 }
2958
2959 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2960 {
2961 int retval = ERROR_OK;
2962 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2963
2964 arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2965
2966 if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
2967 return retval;
2968
2969 /* caller must have allocated via calloc(), so everything's zeroed */
2970
2971 arm7_9->wp_available_max = 2;
2972
2973 arm7_9->fast_memory_access = fast_and_dangerous;
2974 arm7_9->dcc_downloads = fast_and_dangerous;
2975
2976 armv4_5->arch_info = arm7_9;
2977 armv4_5->read_core_reg = arm7_9_read_core_reg;
2978 armv4_5->write_core_reg = arm7_9_write_core_reg;
2979 armv4_5->full_context = arm7_9_full_context;
2980
2981 if ((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK)
2982 return retval;
2983
2984 return target_register_timer_callback(arm7_9_handle_target_request,
2985 1, 1, target);
2986 }
2987
2988 int arm7_9_register_commands(struct command_context *cmd_ctx)
2989 {
2990 struct command *arm7_9_cmd;
2991
2992 arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9",
2993 NULL, COMMAND_ANY, "arm7/9 specific commands");
2994
2995 register_command(cmd_ctx, arm7_9_cmd, "write_xpsr",
2996 handle_arm7_9_write_xpsr_command, COMMAND_EXEC,
2997 "write program status register <value> <not cpsr | spsr>");
2998 register_command(cmd_ctx, arm7_9_cmd, "write_xpsr_im8",
2999 handle_arm7_9_write_xpsr_im8_command, COMMAND_EXEC,
3000 "write program status register "
3001 "<8bit immediate> <rotate> <not cpsr | spsr>");
3002
3003 register_command(cmd_ctx, arm7_9_cmd, "write_core_reg",
3004 handle_arm7_9_write_core_reg_command, COMMAND_EXEC,
3005 "write core register <num> <mode> <value>");
3006
3007 register_command(cmd_ctx, arm7_9_cmd, "dbgrq",
3008 handle_arm7_9_dbgrq_command, COMMAND_ANY,
3009 "use EmbeddedICE dbgrq instead of breakpoint "
3010 "for target halt requests <enable | disable>");
3011 register_command(cmd_ctx, arm7_9_cmd, "fast_memory_access",
3012 handle_arm7_9_fast_memory_access_command, COMMAND_ANY,
3013 "use fast memory accesses instead of slower "
3014 "but potentially safer accesses <enable | disable>");
3015 register_command(cmd_ctx, arm7_9_cmd, "dcc_downloads",
3016 handle_arm7_9_dcc_downloads_command, COMMAND_ANY,
3017 "use DCC downloads for larger memory writes <enable | disable>");
3018
3019 armv4_5_register_commands(cmd_ctx);
3020
3021 etm_register_commands(cmd_ctx);
3022
3023 return ERROR_OK;
3024 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)