a77004e707a5789a6cf35b1e64c9f87a9292a98e
[openocd.git] / src / target / arm7_9_common.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2008 by Hongtao Zheng *
12 * hontor@126.com *
13 * *
14 * Copyright (C) 2009 by David Brownell *
15 * *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
20 * *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
25 * *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program; if not, write to the *
28 * Free Software Foundation, Inc., *
29 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
30 ***************************************************************************/
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
34
35 #include "breakpoints.h"
36 #include "embeddedice.h"
37 #include "target_request.h"
38 #include "etm.h"
39 #include <helper/time_support.h>
40 #include "arm_simulator.h"
41 #include "arm_semihosting.h"
42 #include "algorithm.h"
43 #include "register.h"
44 #include "armv4_5.h"
45
46
47 /**
48 * @file
49 * Hold common code supporting the ARM7 and ARM9 core generations.
50 *
51 * While the ARM core implementations evolved substantially during these
52 * two generations, they look quite similar from the JTAG perspective.
53 * Both have similar debug facilities, based on the same two scan chains
54 * providing access to the core and to an EmbeddedICE module. Both can
55 * support similar ETM and ETB modules, for tracing. And both expose
56 * what could be viewed as "ARM Classic", with multiple processor modes,
57 * shadowed registers, and support for the Thumb instruction set.
58 *
59 * Processor differences include things like presence or absence of MMU
60 * and cache, pipeline sizes, use of a modified Harvard Architecure
61 * (with separate instruction and data busses from the CPU), support
62 * for cpu clock gating during idle, and more.
63 */
64
65 static int arm7_9_debug_entry(struct target *target);
66
67 /**
68 * Clear watchpoints for an ARM7/9 target.
69 *
70 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
71 * @return JTAG error status after executing queue
72 */
73 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
74 {
75 LOG_DEBUG("-");
76 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
77 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
78 arm7_9->sw_breakpoint_count = 0;
79 arm7_9->sw_breakpoints_added = 0;
80 arm7_9->wp0_used = 0;
81 arm7_9->wp1_used = arm7_9->wp1_used_default;
82 arm7_9->wp_available = arm7_9->wp_available_max;
83
84 return jtag_execute_queue();
85 }
86
87 /**
88 * Assign a watchpoint to one of the two available hardware comparators in an
89 * ARM7 or ARM9 target.
90 *
91 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
92 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
93 */
94 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
95 {
96 if (!arm7_9->wp0_used)
97 {
98 arm7_9->wp0_used = 1;
99 breakpoint->set = 1;
100 arm7_9->wp_available--;
101 }
102 else if (!arm7_9->wp1_used)
103 {
104 arm7_9->wp1_used = 1;
105 breakpoint->set = 2;
106 arm7_9->wp_available--;
107 }
108 else
109 {
110 LOG_ERROR("BUG: no hardware comparator available");
111 }
112 LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
113 breakpoint->unique_id,
114 breakpoint->address,
115 breakpoint->set );
116 }
117
118 /**
119 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
120 *
121 * @param arm7_9 Pointer to common struct for ARM7/9 targets
122 * @return Error codes if there is a problem finding a watchpoint or the result
123 * of executing the JTAG queue
124 */
125 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
126 {
127 if (arm7_9->sw_breakpoints_added)
128 {
129 return ERROR_OK;
130 }
131 if (arm7_9->wp_available < 1)
132 {
133 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
134 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
135 }
136 arm7_9->wp_available--;
137
138 /* pick a breakpoint unit */
139 if (!arm7_9->wp0_used)
140 {
141 arm7_9->sw_breakpoints_added = 1;
142 arm7_9->wp0_used = 3;
143 } else if (!arm7_9->wp1_used)
144 {
145 arm7_9->sw_breakpoints_added = 2;
146 arm7_9->wp1_used = 3;
147 }
148 else
149 {
150 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
151 return ERROR_FAIL;
152 }
153
154 if (arm7_9->sw_breakpoints_added == 1)
155 {
156 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
157 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
158 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
159 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
160 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
161 }
162 else if (arm7_9->sw_breakpoints_added == 2)
163 {
164 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
165 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
166 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
167 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
168 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
169 }
170 else
171 {
172 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
173 return ERROR_FAIL;
174 }
175 LOG_DEBUG("SW BP using hw wp: %d",
176 arm7_9->sw_breakpoints_added );
177
178 return jtag_execute_queue();
179 }
180
181 /**
182 * Setup the common pieces for an ARM7/9 target after reset or on startup.
183 *
184 * @param target Pointer to an ARM7/9 target to setup
185 * @return Result of clearing the watchpoints on the target
186 */
187 static int arm7_9_setup(struct target *target)
188 {
189 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
190
191 return arm7_9_clear_watchpoints(arm7_9);
192 }
193
194 /**
195 * Set either a hardware or software breakpoint on an ARM7/9 target. The
196 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
197 * might have erased the values in Embedded ICE.
198 *
199 * @param target Pointer to the target device to set the breakpoints on
200 * @param breakpoint Pointer to the breakpoint to be set
201 * @return For hardware breakpoints, this is the result of executing the JTAG
202 * queue. For software breakpoints, this will be the status of the
203 * required memory reads and writes
204 */
205 static int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
206 {
207 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
208 int retval = ERROR_OK;
209
210 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
211 breakpoint->unique_id,
212 breakpoint->address,
213 breakpoint->type);
214
215 if (target->state != TARGET_HALTED)
216 {
217 LOG_WARNING("target not halted");
218 return ERROR_TARGET_NOT_HALTED;
219 }
220
221 if (breakpoint->type == BKPT_HARD)
222 {
223 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
224 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
225
226 /* reassign a hw breakpoint */
227 if (breakpoint->set == 0)
228 {
229 arm7_9_assign_wp(arm7_9, breakpoint);
230 }
231
232 if (breakpoint->set == 1)
233 {
234 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
235 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
236 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
237 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
238 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
239 }
240 else if (breakpoint->set == 2)
241 {
242 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
243 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
244 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
245 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
246 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
247 }
248 else
249 {
250 LOG_ERROR("BUG: no hardware comparator available");
251 return ERROR_OK;
252 }
253
254 retval = jtag_execute_queue();
255 }
256 else if (breakpoint->type == BKPT_SOFT)
257 {
258 /* did we already set this breakpoint? */
259 if (breakpoint->set)
260 return ERROR_OK;
261
262 if (breakpoint->length == 4)
263 {
264 uint32_t verify = 0xffffffff;
265 /* keep the original instruction in target endianness */
266 if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
267 {
268 return retval;
269 }
270 /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
271 if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
272 {
273 return retval;
274 }
275
276 if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
277 {
278 return retval;
279 }
280 if (verify != arm7_9->arm_bkpt)
281 {
282 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
283 return ERROR_OK;
284 }
285 }
286 else
287 {
288 uint16_t verify = 0xffff;
289 /* keep the original instruction in target endianness */
290 if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
291 {
292 return retval;
293 }
294 /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
295 if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
296 {
297 return retval;
298 }
299
300 if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
301 {
302 return retval;
303 }
304 if (verify != arm7_9->thumb_bkpt)
305 {
306 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
307 return ERROR_OK;
308 }
309 }
310
311 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
312 return retval;
313
314 arm7_9->sw_breakpoint_count++;
315
316 breakpoint->set = 1;
317 }
318
319 return retval;
320 }
321
322 /**
323 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
324 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
325 * will be updated. Otherwise, the software breakpoint will be restored to its
326 * original instruction if it hasn't already been modified.
327 *
328 * @param target Pointer to ARM7/9 target to unset the breakpoint from
329 * @param breakpoint Pointer to breakpoint to be unset
330 * @return For hardware breakpoints, this is the result of executing the JTAG
331 * queue. For software breakpoints, this will be the status of the
332 * required memory reads and writes
333 */
334 static int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
335 {
336 int retval = ERROR_OK;
337 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
338
339 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
340 breakpoint->unique_id,
341 breakpoint->address );
342
343 if (!breakpoint->set)
344 {
345 LOG_WARNING("breakpoint not set");
346 return ERROR_OK;
347 }
348
349 if (breakpoint->type == BKPT_HARD)
350 {
351 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
352 breakpoint->unique_id,
353 breakpoint->set );
354 if (breakpoint->set == 1)
355 {
356 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
357 arm7_9->wp0_used = 0;
358 arm7_9->wp_available++;
359 }
360 else if (breakpoint->set == 2)
361 {
362 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
363 arm7_9->wp1_used = 0;
364 arm7_9->wp_available++;
365 }
366 retval = jtag_execute_queue();
367 breakpoint->set = 0;
368 }
369 else
370 {
371 /* restore original instruction (kept in target endianness) */
372 if (breakpoint->length == 4)
373 {
374 uint32_t current_instr;
375 /* check that user program as not modified breakpoint instruction */
376 if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
377 {
378 return retval;
379 }
380 current_instr = target_buffer_get_u32(target, (uint8_t *)&current_instr);
381 if (current_instr == arm7_9->arm_bkpt)
382 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
383 {
384 return retval;
385 }
386 }
387 else
388 {
389 uint16_t current_instr;
390 /* check that user program as not modified breakpoint instruction */
391 if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
392 {
393 return retval;
394 }
395 current_instr = target_buffer_get_u16(target, (uint8_t *)&current_instr);
396 if (current_instr == arm7_9->thumb_bkpt)
397 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
398 {
399 return retval;
400 }
401 }
402
403 if (--arm7_9->sw_breakpoint_count==0)
404 {
405 /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
406 if (arm7_9->sw_breakpoints_added == 1)
407 {
408 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
409 }
410 else if (arm7_9->sw_breakpoints_added == 2)
411 {
412 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
413 }
414 }
415
416 breakpoint->set = 0;
417 }
418
419 return retval;
420 }
421
422 /**
423 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
424 * dangling breakpoints and that the desired breakpoint can be added.
425 *
426 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
427 * @param breakpoint Pointer to the breakpoint to be added
428 * @return An error status if there is a problem adding the breakpoint or the
429 * result of setting the breakpoint
430 */
431 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
432 {
433 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
434
435 if (arm7_9->breakpoint_count == 0)
436 {
437 /* make sure we don't have any dangling breakpoints. This is vital upon
438 * GDB connect/disconnect
439 */
440 arm7_9_clear_watchpoints(arm7_9);
441 }
442
443 if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
444 {
445 LOG_INFO("no watchpoint unit available for hardware breakpoint");
446 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
447 }
448
449 if ((breakpoint->length != 2) && (breakpoint->length != 4))
450 {
451 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
452 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
453 }
454
455 if (breakpoint->type == BKPT_HARD)
456 {
457 arm7_9_assign_wp(arm7_9, breakpoint);
458 }
459
460 arm7_9->breakpoint_count++;
461
462 return arm7_9_set_breakpoint(target, breakpoint);
463 }
464
465 /**
466 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
467 * dangling breakpoints and updates available watchpoints if it is a hardware
468 * breakpoint.
469 *
470 * @param target Pointer to the target to have a breakpoint removed
471 * @param breakpoint Pointer to the breakpoint to be removed
472 * @return Error status if there was a problem unsetting the breakpoint or the
473 * watchpoints could not be cleared
474 */
475 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
476 {
477 int retval = ERROR_OK;
478 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
479
480 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
481 {
482 return retval;
483 }
484
485 if (breakpoint->type == BKPT_HARD)
486 arm7_9->wp_available++;
487
488 arm7_9->breakpoint_count--;
489 if (arm7_9->breakpoint_count == 0)
490 {
491 /* make sure we don't have any dangling breakpoints */
492 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
493 {
494 return retval;
495 }
496 }
497
498 return ERROR_OK;
499 }
500
501 /**
502 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
503 * considered a bug to call this function when there are no available watchpoint
504 * units.
505 *
506 * @param target Pointer to an ARM7/9 target to set a watchpoint on
507 * @param watchpoint Pointer to the watchpoint to be set
508 * @return Error status if watchpoint set fails or the result of executing the
509 * JTAG queue
510 */
511 static int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
512 {
513 int retval = ERROR_OK;
514 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
515 int rw_mask = 1;
516 uint32_t mask;
517
518 mask = watchpoint->length - 1;
519
520 if (target->state != TARGET_HALTED)
521 {
522 LOG_WARNING("target not halted");
523 return ERROR_TARGET_NOT_HALTED;
524 }
525
526 if (watchpoint->rw == WPT_ACCESS)
527 rw_mask = 0;
528 else
529 rw_mask = 1;
530
531 if (!arm7_9->wp0_used)
532 {
533 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
534 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
535 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
536 if (watchpoint->mask != 0xffffffffu)
537 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
538 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
539 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
540
541 if ((retval = jtag_execute_queue()) != ERROR_OK)
542 {
543 return retval;
544 }
545 watchpoint->set = 1;
546 arm7_9->wp0_used = 2;
547 }
548 else if (!arm7_9->wp1_used)
549 {
550 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
551 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
552 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
553 if (watchpoint->mask != 0xffffffffu)
554 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
555 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
556 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
557
558 if ((retval = jtag_execute_queue()) != ERROR_OK)
559 {
560 return retval;
561 }
562 watchpoint->set = 2;
563 arm7_9->wp1_used = 2;
564 }
565 else
566 {
567 LOG_ERROR("BUG: no hardware comparator available");
568 return ERROR_OK;
569 }
570
571 return ERROR_OK;
572 }
573
574 /**
575 * Unset an existing watchpoint and clear the used watchpoint unit.
576 *
577 * @param target Pointer to the target to have the watchpoint removed
578 * @param watchpoint Pointer to the watchpoint to be removed
579 * @return Error status while trying to unset the watchpoint or the result of
580 * executing the JTAG queue
581 */
582 static int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
583 {
584 int retval = ERROR_OK;
585 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
586
587 if (target->state != TARGET_HALTED)
588 {
589 LOG_WARNING("target not halted");
590 return ERROR_TARGET_NOT_HALTED;
591 }
592
593 if (!watchpoint->set)
594 {
595 LOG_WARNING("breakpoint not set");
596 return ERROR_OK;
597 }
598
599 if (watchpoint->set == 1)
600 {
601 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
602 if ((retval = jtag_execute_queue()) != ERROR_OK)
603 {
604 return retval;
605 }
606 arm7_9->wp0_used = 0;
607 }
608 else if (watchpoint->set == 2)
609 {
610 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
611 if ((retval = jtag_execute_queue()) != ERROR_OK)
612 {
613 return retval;
614 }
615 arm7_9->wp1_used = 0;
616 }
617 watchpoint->set = 0;
618
619 return ERROR_OK;
620 }
621
622 /**
623 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
624 * available, an error response is returned.
625 *
626 * @param target Pointer to the ARM7/9 target to add a watchpoint to
627 * @param watchpoint Pointer to the watchpoint to be added
628 * @return Error status while trying to add the watchpoint
629 */
630 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
631 {
632 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
633
634 if (arm7_9->wp_available < 1)
635 {
636 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
637 }
638
639 if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
640 {
641 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
642 }
643
644 arm7_9->wp_available--;
645
646 return ERROR_OK;
647 }
648
649 /**
650 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
651 * the used watchpoint unit will be reopened.
652 *
653 * @param target Pointer to the target to remove a watchpoint from
654 * @param watchpoint Pointer to the watchpoint to be removed
655 * @return Result of trying to unset the watchpoint
656 */
657 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
658 {
659 int retval = ERROR_OK;
660 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
661
662 if (watchpoint->set)
663 {
664 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
665 {
666 return retval;
667 }
668 }
669
670 arm7_9->wp_available++;
671
672 return ERROR_OK;
673 }
674
675 /**
676 * Restarts the target by sending a RESTART instruction and moving the JTAG
677 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
678 * asserted by the processor.
679 *
680 * @param target Pointer to target to issue commands to
681 * @return Error status if there is a timeout or a problem while executing the
682 * JTAG queue
683 */
684 int arm7_9_execute_sys_speed(struct target *target)
685 {
686 int retval;
687 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
688 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
689 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
690
691 /* set RESTART instruction */
692 if (arm7_9->need_bypass_before_restart) {
693 arm7_9->need_bypass_before_restart = 0;
694 retval = arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
695 if (retval != ERROR_OK)
696 return retval;
697 }
698 retval = arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
699 if (retval != ERROR_OK)
700 return retval;
701
702 long long then = timeval_ms();
703 int timeout;
704 while (!(timeout = ((timeval_ms()-then) > 1000)))
705 {
706 /* read debug status register */
707 embeddedice_read_reg(dbg_stat);
708 if ((retval = jtag_execute_queue()) != ERROR_OK)
709 return retval;
710 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
711 && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
712 break;
713 if (debug_level >= 3)
714 {
715 alive_sleep(100);
716 } else
717 {
718 keep_alive();
719 }
720 }
721 if (timeout)
722 {
723 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
724 return ERROR_TARGET_TIMEOUT;
725 }
726
727 return ERROR_OK;
728 }
729
730 /**
731 * Restarts the target by sending a RESTART instruction and moving the JTAG
732 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
733 * waiting until they are.
734 *
735 * @param target Pointer to the target to issue commands to
736 * @return Always ERROR_OK
737 */
738 static int arm7_9_execute_fast_sys_speed(struct target *target)
739 {
740 static int set = 0;
741 static uint8_t check_value[4], check_mask[4];
742
743 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
744 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
745 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
746 int retval;
747
748 /* set RESTART instruction */
749 if (arm7_9->need_bypass_before_restart) {
750 arm7_9->need_bypass_before_restart = 0;
751 retval = arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
752 if (retval != ERROR_OK)
753 return retval;
754 }
755 retval = arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
756 if (retval != ERROR_OK)
757 return retval;
758
759 if (!set)
760 {
761 /* check for DBGACK and SYSCOMP set (others don't care) */
762
763 /* NB! These are constants that must be available until after next jtag_execute() and
764 * we evaluate the values upon first execution in lieu of setting up these constants
765 * during early setup.
766 * */
767 buf_set_u32(check_value, 0, 32, 0x9);
768 buf_set_u32(check_mask, 0, 32, 0x9);
769 set = 1;
770 }
771
772 /* read debug status register */
773 embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
774
775 return ERROR_OK;
776 }
777
778 /**
779 * Get some data from the ARM7/9 target.
780 *
781 * @param target Pointer to the ARM7/9 target to read data from
782 * @param size The number of 32bit words to be read
783 * @param buffer Pointer to the buffer that will hold the data
784 * @return The result of receiving data from the Embedded ICE unit
785 */
786 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
787 {
788 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
789 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
790 uint32_t *data;
791 int retval = ERROR_OK;
792 uint32_t i;
793
794 data = malloc(size * (sizeof(uint32_t)));
795
796 retval = embeddedice_receive(jtag_info, data, size);
797
798 /* return the 32-bit ints in the 8-bit array */
799 for (i = 0; i < size; i++)
800 {
801 h_u32_to_le(buffer + (i * 4), data[i]);
802 }
803
804 free(data);
805
806 return retval;
807 }
808
809 /**
810 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
811 * target is running and the DCC control register has the W bit high, this will
812 * execute the request on the target.
813 *
814 * @param priv Void pointer expected to be a struct target pointer
815 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
816 * from the Embedded ICE unit
817 */
818 static int arm7_9_handle_target_request(void *priv)
819 {
820 int retval = ERROR_OK;
821 struct target *target = priv;
822 if (!target_was_examined(target))
823 return ERROR_OK;
824 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
825 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
826 struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
827
828 if (!target->dbg_msg_enabled)
829 return ERROR_OK;
830
831 if (target->state == TARGET_RUNNING)
832 {
833 /* read DCC control register */
834 embeddedice_read_reg(dcc_control);
835 if ((retval = jtag_execute_queue()) != ERROR_OK)
836 {
837 return retval;
838 }
839
840 /* check W bit */
841 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
842 {
843 uint32_t request;
844
845 if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
846 {
847 return retval;
848 }
849 if ((retval = target_request(target, request)) != ERROR_OK)
850 {
851 return retval;
852 }
853 }
854 }
855
856 return ERROR_OK;
857 }
858
859 /**
860 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
861 * is manipulated to the right halted state based on its current state. This is
862 * what happens:
863 *
864 * <table>
865 * <tr><th > State</th><th > Action</th></tr>
866 * <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
867 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
868 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
869 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
870 * </table>
871 *
872 * If the target does not end up in the halted state, a warning is produced. If
873 * DBGACK is cleared, then the target is expected to either be running or
874 * running in debug.
875 *
876 * @param target Pointer to the ARM7/9 target to poll
877 * @return ERROR_OK or an error status if a command fails
878 */
879 int arm7_9_poll(struct target *target)
880 {
881 int retval;
882 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
883 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
884
885 /* read debug status register */
886 embeddedice_read_reg(dbg_stat);
887 if ((retval = jtag_execute_queue()) != ERROR_OK)
888 {
889 return retval;
890 }
891
892 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
893 {
894 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
895 if (target->state == TARGET_UNKNOWN)
896 {
897 /* Starting OpenOCD with target in debug-halt */
898 target->state = TARGET_RUNNING;
899 LOG_DEBUG("DBGACK already set during server startup.");
900 }
901 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
902 {
903 target->state = TARGET_HALTED;
904
905 if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
906 return retval;
907
908 if (arm_semihosting(target, &retval) != 0)
909 return retval;
910
911 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
912 {
913 return retval;
914 }
915 }
916 if (target->state == TARGET_DEBUG_RUNNING)
917 {
918 target->state = TARGET_HALTED;
919 if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
920 return retval;
921
922 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
923 {
924 return retval;
925 }
926 }
927 if (target->state != TARGET_HALTED)
928 {
929 LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
930 }
931 }
932 else
933 {
934 if (target->state != TARGET_DEBUG_RUNNING)
935 target->state = TARGET_RUNNING;
936 }
937
938 return ERROR_OK;
939 }
940
941 /**
942 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
943 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
944 * affected) completely stop the JTAG clock while the core is held in reset
945 * (SRST). It isn't possible to program the halt condition once reset is
946 * asserted, hence a hook that allows the target to set up its reset-halt
947 * condition is setup prior to asserting reset.
948 *
949 * @param target Pointer to an ARM7/9 target to assert reset on
950 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
951 */
952 int arm7_9_assert_reset(struct target *target)
953 {
954 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
955 enum reset_types jtag_reset_config = jtag_get_reset_config();
956 bool use_event = false;
957
958 LOG_DEBUG("target->state: %s",
959 target_state_name(target));
960
961 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
962 use_event = true;
963 else if (!(jtag_reset_config & RESET_HAS_SRST)) {
964 LOG_ERROR("%s: how to reset?", target_name(target));
965 return ERROR_FAIL;
966 }
967
968 /* At this point trst has been asserted/deasserted once. We would
969 * like to program EmbeddedICE while SRST is asserted, instead of
970 * depending on SRST to leave that module alone. However, many CPUs
971 * gate the JTAG clock while SRST is asserted; or JTAG may need
972 * clock stability guarantees (adaptive clocking might help).
973 *
974 * So we assume JTAG access during SRST is off the menu unless it's
975 * been specifically enabled.
976 */
977 bool srst_asserted = false;
978
979 if (!use_event
980 && !(jtag_reset_config & RESET_SRST_PULLS_TRST)
981 && (jtag_reset_config & RESET_SRST_NO_GATING))
982 {
983 jtag_add_reset(0, 1);
984 srst_asserted = true;
985 }
986
987 if (target->reset_halt)
988 {
989 /*
990 * For targets that don't support communication while SRST is
991 * asserted, we need to set up the reset vector catch first.
992 *
993 * When we use TRST+SRST and that's equivalent to a power-up
994 * reset, these settings may well be reset anyway; so setting
995 * them here won't matter.
996 */
997 if (arm7_9->has_vector_catch)
998 {
999 /* program vector catch register to catch reset */
1000 embeddedice_write_reg(&arm7_9->eice_cache
1001 ->reg_list[EICE_VEC_CATCH], 0x1);
1002
1003 /* extra runtest added as issues were found with
1004 * certain ARM9 cores (maybe more) - AT91SAM9260
1005 * and STR9
1006 */
1007 jtag_add_runtest(1, TAP_IDLE);
1008 }
1009 else
1010 {
1011 /* program watchpoint unit to match on reset vector
1012 * address
1013 */
1014 embeddedice_write_reg(&arm7_9->eice_cache
1015 ->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1016 embeddedice_write_reg(&arm7_9->eice_cache
1017 ->reg_list[EICE_W0_ADDR_MASK], 0x3);
1018 embeddedice_write_reg(&arm7_9->eice_cache
1019 ->reg_list[EICE_W0_DATA_MASK],
1020 0xffffffff);
1021 embeddedice_write_reg(&arm7_9->eice_cache
1022 ->reg_list[EICE_W0_CONTROL_VALUE],
1023 EICE_W_CTRL_ENABLE);
1024 embeddedice_write_reg(&arm7_9->eice_cache
1025 ->reg_list[EICE_W0_CONTROL_MASK],
1026 ~EICE_W_CTRL_nOPC & 0xff);
1027 }
1028 }
1029
1030 if (use_event) {
1031 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1032 } else {
1033 /* If we use SRST ... we'd like to issue just SRST, but the
1034 * board or chip may be set up so we have to assert TRST as
1035 * well. On some chips that combination is equivalent to a
1036 * power-up reset, and generally clobbers EICE state.
1037 */
1038 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1039 jtag_add_reset(1, 1);
1040 else if (!srst_asserted)
1041 jtag_add_reset(0, 1);
1042 jtag_add_sleep(50000);
1043 }
1044
1045 target->state = TARGET_RESET;
1046 register_cache_invalidate(arm7_9->arm.core_cache);
1047
1048 /* REVISIT why isn't standard debug entry logic sufficient?? */
1049 if (target->reset_halt
1050 && (!(jtag_reset_config & RESET_SRST_PULLS_TRST)
1051 || use_event))
1052 {
1053 /* debug entry was prepared above */
1054 target->debug_reason = DBG_REASON_DBGRQ;
1055 }
1056
1057 return ERROR_OK;
1058 }
1059
1060 /**
1061 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
1062 * and the target is being reset into a halt, a warning will be triggered
1063 * because it is not possible to reset into a halted mode in this case. The
1064 * target is halted using the target's functions.
1065 *
1066 * @param target Pointer to the target to have the reset deasserted
1067 * @return ERROR_OK or an error from polling or halting the target
1068 */
1069 int arm7_9_deassert_reset(struct target *target)
1070 {
1071 int retval = ERROR_OK;
1072 LOG_DEBUG("target->state: %s",
1073 target_state_name(target));
1074
1075 /* deassert reset lines */
1076 jtag_add_reset(0, 0);
1077
1078 /* In case polling is disabled, we need to examine the
1079 * target and poll here for this target to work correctly.
1080 *
1081 * Otherwise, e.g. halt will fail afterwards with bogus
1082 * error messages as halt will believe that reset is
1083 * still in effect.
1084 */
1085 if ((retval = target_examine_one(target)) != ERROR_OK)
1086 return retval;
1087
1088 if ((retval = target_poll(target)) != ERROR_OK)
1089 {
1090 return retval;
1091 }
1092
1093 enum reset_types jtag_reset_config = jtag_get_reset_config();
1094 if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1095 {
1096 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1097 if ((retval = target_halt(target)) != ERROR_OK)
1098 {
1099 return retval;
1100 }
1101 }
1102 return retval;
1103 }
1104
1105 /**
1106 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1107 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1108 * vector catch was used, it is restored. Otherwise, the control value is
1109 * restored and the watchpoint unit is restored if it was in use.
1110 *
1111 * @param target Pointer to the ARM7/9 target to have halt cleared
1112 * @return Always ERROR_OK
1113 */
1114 static int arm7_9_clear_halt(struct target *target)
1115 {
1116 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1117 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1118
1119 /* we used DBGRQ only if we didn't come out of reset */
1120 if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1121 {
1122 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1123 */
1124 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1125 embeddedice_store_reg(dbg_ctrl);
1126 }
1127 else
1128 {
1129 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1130 {
1131 /* if we came out of reset, and vector catch is supported, we used
1132 * vector catch to enter debug state
1133 * restore the register in that case
1134 */
1135 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1136 }
1137 else
1138 {
1139 /* restore registers if watchpoint unit 0 was in use
1140 */
1141 if (arm7_9->wp0_used)
1142 {
1143 if (arm7_9->debug_entry_from_reset)
1144 {
1145 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1146 }
1147 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1148 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1149 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1150 }
1151 /* control value always has to be restored, as it was either disabled,
1152 * or enabled with possibly different bits
1153 */
1154 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1155 }
1156 }
1157
1158 return ERROR_OK;
1159 }
1160
1161 /**
1162 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1163 * and then there is a wait until the processor shows the halt. This wait can
1164 * timeout and results in an error being returned. The software reset involves
1165 * clearing the halt, updating the debug control register, changing to ARM mode,
1166 * reset of the program counter, and reset of all of the registers.
1167 *
1168 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1169 * @return Error status if any of the commands fail, otherwise ERROR_OK
1170 */
1171 int arm7_9_soft_reset_halt(struct target *target)
1172 {
1173 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1174 struct arm *arm = &arm7_9->arm;
1175 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1176 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1177 int i;
1178 int retval;
1179
1180 /* FIX!!! replace some of this code with tcl commands
1181 *
1182 * halt # the halt command is synchronous
1183 * armv4_5 core_state arm
1184 *
1185 */
1186
1187 if ((retval = target_halt(target)) != ERROR_OK)
1188 return retval;
1189
1190 long long then = timeval_ms();
1191 int timeout;
1192 while (!(timeout = ((timeval_ms()-then) > 1000)))
1193 {
1194 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1195 break;
1196 embeddedice_read_reg(dbg_stat);
1197 if ((retval = jtag_execute_queue()) != ERROR_OK)
1198 return retval;
1199 if (debug_level >= 3)
1200 {
1201 alive_sleep(100);
1202 } else
1203 {
1204 keep_alive();
1205 }
1206 }
1207 if (timeout)
1208 {
1209 LOG_ERROR("Failed to halt CPU after 1 sec");
1210 return ERROR_TARGET_TIMEOUT;
1211 }
1212 target->state = TARGET_HALTED;
1213
1214 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1215 * ensure that DBGRQ is cleared
1216 */
1217 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1218 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1219 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1220 embeddedice_store_reg(dbg_ctrl);
1221
1222 if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1223 {
1224 return retval;
1225 }
1226
1227 /* if the target is in Thumb state, change to ARM state */
1228 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1229 {
1230 uint32_t r0_thumb, pc_thumb;
1231 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1232 /* Entered debug from Thumb mode */
1233 arm->core_state = ARM_STATE_THUMB;
1234 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1235 }
1236
1237 /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1238
1239 /* all register content is now invalid */
1240 register_cache_invalidate(arm->core_cache);
1241
1242 /* SVC, ARM state, IRQ and FIQ disabled */
1243 uint32_t cpsr;
1244
1245 cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1246 cpsr &= ~0xff;
1247 cpsr |= 0xd3;
1248 arm_set_cpsr(arm, cpsr);
1249 arm->cpsr->dirty = 1;
1250
1251 /* start fetching from 0x0 */
1252 buf_set_u32(arm->pc->value, 0, 32, 0x0);
1253 arm->pc->dirty = 1;
1254 arm->pc->valid = 1;
1255
1256 /* reset registers */
1257 for (i = 0; i <= 14; i++)
1258 {
1259 struct reg *r = arm_reg_current(arm, i);
1260
1261 buf_set_u32(r->value, 0, 32, 0xffffffff);
1262 r->dirty = 1;
1263 r->valid = 1;
1264 }
1265
1266 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1267 {
1268 return retval;
1269 }
1270
1271 return ERROR_OK;
1272 }
1273
1274 /**
1275 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1276 * line or by programming a watchpoint to trigger on any address. It is
1277 * considered a bug to call this function while the target is in the
1278 * TARGET_RESET state.
1279 *
1280 * @param target Pointer to the ARM7/9 target to be halted
1281 * @return Always ERROR_OK
1282 */
1283 int arm7_9_halt(struct target *target)
1284 {
1285 if (target->state == TARGET_RESET)
1286 {
1287 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1288 return ERROR_OK;
1289 }
1290
1291 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1292 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1293
1294 LOG_DEBUG("target->state: %s",
1295 target_state_name(target));
1296
1297 if (target->state == TARGET_HALTED)
1298 {
1299 LOG_DEBUG("target was already halted");
1300 return ERROR_OK;
1301 }
1302
1303 if (target->state == TARGET_UNKNOWN)
1304 {
1305 LOG_WARNING("target was in unknown state when halt was requested");
1306 }
1307
1308 if (arm7_9->use_dbgrq)
1309 {
1310 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1311 */
1312 if (arm7_9->set_special_dbgrq) {
1313 arm7_9->set_special_dbgrq(target);
1314 } else {
1315 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1316 embeddedice_store_reg(dbg_ctrl);
1317 }
1318 }
1319 else
1320 {
1321 /* program watchpoint unit to match on any address
1322 */
1323 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1324 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1325 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1326 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1327 }
1328
1329 target->debug_reason = DBG_REASON_DBGRQ;
1330
1331 return ERROR_OK;
1332 }
1333
1334 /**
1335 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1336 * ARM. The JTAG queue is then executed and the reason for debug entry is
1337 * examined. Once done, the target is verified to be halted and the processor
1338 * is forced into ARM mode. The core registers are saved for the current core
1339 * mode and the program counter (register 15) is updated as needed. The core
1340 * registers and CPSR and SPSR are saved for restoration later.
1341 *
1342 * @param target Pointer to target that is entering debug mode
1343 * @return Error code if anything fails, otherwise ERROR_OK
1344 */
1345 static int arm7_9_debug_entry(struct target *target)
1346 {
1347 int i;
1348 uint32_t context[16];
1349 uint32_t* context_p[16];
1350 uint32_t r0_thumb, pc_thumb;
1351 uint32_t cpsr, cpsr_mask = 0;
1352 int retval;
1353 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1354 struct arm *arm = &arm7_9->arm;
1355 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1356 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1357
1358 #ifdef _DEBUG_ARM7_9_
1359 LOG_DEBUG("-");
1360 #endif
1361
1362 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1363 * ensure that DBGRQ is cleared
1364 */
1365 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1366 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1367 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1368 embeddedice_store_reg(dbg_ctrl);
1369
1370 if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1371 {
1372 return retval;
1373 }
1374
1375 if ((retval = jtag_execute_queue()) != ERROR_OK)
1376 {
1377 return retval;
1378 }
1379
1380 if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1381 return retval;
1382
1383
1384 if (target->state != TARGET_HALTED)
1385 {
1386 LOG_WARNING("target not halted");
1387 return ERROR_TARGET_NOT_HALTED;
1388 }
1389
1390 /* if the target is in Thumb state, change to ARM state */
1391 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1392 {
1393 LOG_DEBUG("target entered debug from Thumb state");
1394 /* Entered debug from Thumb mode */
1395 arm->core_state = ARM_STATE_THUMB;
1396 cpsr_mask = 1 << 5;
1397 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1398 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1399 ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1400 } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1401 /* \todo Get some vaguely correct handling of Jazelle, if
1402 * anyone ever uses it and full info becomes available.
1403 * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1404 * B.7.3 for the reverse. That'd be the bare minimum...
1405 */
1406 LOG_DEBUG("target entered debug from Jazelle state");
1407 arm->core_state = ARM_STATE_JAZELLE;
1408 cpsr_mask = 1 << 24;
1409 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1410 } else {
1411 LOG_DEBUG("target entered debug from ARM state");
1412 /* Entered debug from ARM mode */
1413 arm->core_state = ARM_STATE_ARM;
1414 }
1415
1416 for (i = 0; i < 16; i++)
1417 context_p[i] = &context[i];
1418 /* save core registers (r0 - r15 of current core mode) */
1419 arm7_9->read_core_regs(target, 0xffff, context_p);
1420
1421 arm7_9->read_xpsr(target, &cpsr, 0);
1422
1423 if ((retval = jtag_execute_queue()) != ERROR_OK)
1424 return retval;
1425
1426 /* Sync our CPSR copy with J or T bits EICE reported, but
1427 * which we then erased by putting the core into ARM mode.
1428 */
1429 arm_set_cpsr(arm, cpsr | cpsr_mask);
1430
1431 if (!is_arm_mode(arm->core_mode))
1432 {
1433 target->state = TARGET_UNKNOWN;
1434 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1435 return ERROR_TARGET_FAILURE;
1436 }
1437
1438 LOG_DEBUG("target entered debug state in %s mode",
1439 arm_mode_name(arm->core_mode));
1440
1441 if (arm->core_state == ARM_STATE_THUMB)
1442 {
1443 LOG_DEBUG("thumb state, applying fixups");
1444 context[0] = r0_thumb;
1445 context[15] = pc_thumb;
1446 } else if (arm->core_state == ARM_STATE_ARM)
1447 {
1448 /* adjust value stored by STM */
1449 context[15] -= 3 * 4;
1450 }
1451
1452 if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1453 context[15] -= 3 * ((arm->core_state == ARM_STATE_ARM) ? 4 : 2);
1454 else
1455 context[15] -= arm7_9->dbgreq_adjust_pc * ((arm->core_state == ARM_STATE_ARM) ? 4 : 2);
1456
1457 for (i = 0; i <= 15; i++)
1458 {
1459 struct reg *r = arm_reg_current(arm, i);
1460
1461 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1462
1463 buf_set_u32(r->value, 0, 32, context[i]);
1464 /* r0 and r15 (pc) have to be restored later */
1465 r->dirty = (i == 0) || (i == 15);
1466 r->valid = 1;
1467 }
1468
1469 LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1470
1471 /* exceptions other than USR & SYS have a saved program status register */
1472 if (arm->spsr) {
1473 uint32_t spsr;
1474 arm7_9->read_xpsr(target, &spsr, 1);
1475 if ((retval = jtag_execute_queue()) != ERROR_OK)
1476 {
1477 return retval;
1478 }
1479 buf_set_u32(arm->spsr->value, 0, 32, spsr);
1480 arm->spsr->dirty = 0;
1481 arm->spsr->valid = 1;
1482 }
1483
1484 if ((retval = jtag_execute_queue()) != ERROR_OK)
1485 return retval;
1486
1487 if (arm7_9->post_debug_entry)
1488 {
1489 retval = arm7_9->post_debug_entry(target);
1490 if (retval != ERROR_OK)
1491 return retval;
1492 }
1493
1494 return ERROR_OK;
1495 }
1496
1497 /**
1498 * Validate the full context for an ARM7/9 target in all processor modes. If
1499 * there are any invalid registers for the target, they will all be read. This
1500 * includes the PSR.
1501 *
1502 * @param target Pointer to the ARM7/9 target to capture the full context from
1503 * @return Error if the target is not halted, has an invalid core mode, or if
1504 * the JTAG queue fails to execute
1505 */
1506 static int arm7_9_full_context(struct target *target)
1507 {
1508 int i;
1509 int retval;
1510 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1511 struct arm *arm = &arm7_9->arm;
1512
1513 LOG_DEBUG("-");
1514
1515 if (target->state != TARGET_HALTED)
1516 {
1517 LOG_WARNING("target not halted");
1518 return ERROR_TARGET_NOT_HALTED;
1519 }
1520
1521 if (!is_arm_mode(arm->core_mode))
1522 {
1523 LOG_ERROR("not a valid arm core mode - communication failure?");
1524 return ERROR_FAIL;
1525 }
1526
1527 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1528 * SYS shares registers with User, so we don't touch SYS
1529 */
1530 for (i = 0; i < 6; i++)
1531 {
1532 uint32_t mask = 0;
1533 uint32_t* reg_p[16];
1534 int j;
1535 int valid = 1;
1536
1537 /* check if there are invalid registers in the current mode
1538 */
1539 for (j = 0; j <= 16; j++)
1540 {
1541 if (ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1542 valid = 0;
1543 }
1544
1545 if (!valid)
1546 {
1547 uint32_t tmp_cpsr;
1548
1549 /* change processor mode (and mask T bit) */
1550 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8)
1551 & 0xe0;
1552 tmp_cpsr |= armv4_5_number_to_mode(i);
1553 tmp_cpsr &= ~0x20;
1554 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1555
1556 for (j = 0; j < 15; j++)
1557 {
1558 if (ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1559 {
1560 reg_p[j] = (uint32_t *)ARMV4_5_CORE_REG_MODE(arm->core_cache,
1561 armv4_5_number_to_mode(i), j).value;
1562 mask |= 1 << j;
1563 ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1564 ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1565 }
1566 }
1567
1568 /* if only the PSR is invalid, mask is all zeroes */
1569 if (mask)
1570 arm7_9->read_core_regs(target, mask, reg_p);
1571
1572 /* check if the PSR has to be read */
1573 if (ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1574 {
1575 arm7_9->read_xpsr(target, (uint32_t *)ARMV4_5_CORE_REG_MODE(arm->core_cache,
1576 armv4_5_number_to_mode(i), 16).value, 1);
1577 ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1578 ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1579 }
1580 }
1581 }
1582
1583 /* restore processor mode (mask T bit) */
1584 arm7_9->write_xpsr_im8(target,
1585 buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20,
1586 0, 0);
1587
1588 if ((retval = jtag_execute_queue()) != ERROR_OK)
1589 {
1590 return retval;
1591 }
1592 return ERROR_OK;
1593 }
1594
1595 /**
1596 * Restore the processor context on an ARM7/9 target. The full processor
1597 * context is analyzed to see if any of the registers are dirty on this end, but
1598 * have a valid new value. If this is the case, the processor is changed to the
1599 * appropriate mode and the new register values are written out to the
1600 * processor. If there happens to be a dirty register with an invalid value, an
1601 * error will be logged.
1602 *
1603 * @param target Pointer to the ARM7/9 target to have its context restored
1604 * @return Error status if the target is not halted or the core mode in the
1605 * armv4_5 struct is invalid.
1606 */
1607 static int arm7_9_restore_context(struct target *target)
1608 {
1609 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1610 struct arm *arm = &arm7_9->arm;
1611 struct reg *reg;
1612 enum arm_mode current_mode = arm->core_mode;
1613 int i, j;
1614 int dirty;
1615 int mode_change;
1616
1617 LOG_DEBUG("-");
1618
1619 if (target->state != TARGET_HALTED)
1620 {
1621 LOG_WARNING("target not halted");
1622 return ERROR_TARGET_NOT_HALTED;
1623 }
1624
1625 if (arm7_9->pre_restore_context)
1626 arm7_9->pre_restore_context(target);
1627
1628 if (!is_arm_mode(arm->core_mode))
1629 {
1630 LOG_ERROR("not a valid arm core mode - communication failure?");
1631 return ERROR_FAIL;
1632 }
1633
1634 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1635 * SYS shares registers with User, so we don't touch SYS
1636 */
1637 for (i = 0; i < 6; i++)
1638 {
1639 LOG_DEBUG("examining %s mode",
1640 arm_mode_name(arm->core_mode));
1641 dirty = 0;
1642 mode_change = 0;
1643 /* check if there are dirty registers in the current mode
1644 */
1645 for (j = 0; j <= 16; j++)
1646 {
1647 reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j);
1648 if (reg->dirty == 1)
1649 {
1650 if (reg->valid == 1)
1651 {
1652 dirty = 1;
1653 LOG_DEBUG("examining dirty reg: %s", reg->name);
1654 struct arm_reg *reg_arch_info;
1655 reg_arch_info = reg->arch_info;
1656 if ((reg_arch_info->mode != ARM_MODE_ANY)
1657 && (reg_arch_info->mode != current_mode)
1658 && !((reg_arch_info->mode == ARM_MODE_USR)
1659 && (arm->core_mode == ARM_MODE_SYS))
1660 && !((reg_arch_info->mode == ARM_MODE_SYS)
1661 && (arm->core_mode == ARM_MODE_USR)))
1662 {
1663 mode_change = 1;
1664 LOG_DEBUG("require mode change");
1665 }
1666 }
1667 else
1668 {
1669 LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1670 }
1671 }
1672 }
1673
1674 if (dirty)
1675 {
1676 uint32_t mask = 0x0;
1677 int num_regs = 0;
1678 uint32_t regs[16];
1679
1680 if (mode_change)
1681 {
1682 uint32_t tmp_cpsr;
1683
1684 /* change processor mode (mask T bit) */
1685 tmp_cpsr = buf_get_u32(arm->cpsr->value,
1686 0, 8) & 0xe0;
1687 tmp_cpsr |= armv4_5_number_to_mode(i);
1688 tmp_cpsr &= ~0x20;
1689 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1690 current_mode = armv4_5_number_to_mode(i);
1691 }
1692
1693 for (j = 0; j <= 14; j++)
1694 {
1695 reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j);
1696
1697 if (reg->dirty == 1)
1698 {
1699 regs[j] = buf_get_u32(reg->value, 0, 32);
1700 mask |= 1 << j;
1701 num_regs++;
1702 reg->dirty = 0;
1703 reg->valid = 1;
1704 LOG_DEBUG("writing register %i mode %s "
1705 "with value 0x%8.8" PRIx32, j,
1706 arm_mode_name(arm->core_mode),
1707 regs[j]);
1708 }
1709 }
1710
1711 if (mask)
1712 {
1713 arm7_9->write_core_regs(target, mask, regs);
1714 }
1715
1716 reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), 16);
1717 struct arm_reg *reg_arch_info;
1718 reg_arch_info = reg->arch_info;
1719 if ((reg->dirty) && (reg_arch_info->mode != ARM_MODE_ANY))
1720 {
1721 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1722 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1723 }
1724 }
1725 }
1726
1727 if (!arm->cpsr->dirty && (arm->core_mode != current_mode)) {
1728 /* restore processor mode (mask T bit) */
1729 uint32_t tmp_cpsr;
1730
1731 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
1732 tmp_cpsr |= armv4_5_number_to_mode(i);
1733 tmp_cpsr &= ~0x20;
1734 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1735 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1736
1737 } else if (arm->cpsr->dirty) {
1738 /* CPSR has been changed, full restore necessary (mask T bit) */
1739 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1740 buf_get_u32(arm->cpsr->value, 0, 32));
1741 arm7_9->write_xpsr(target,
1742 buf_get_u32(arm->cpsr->value, 0, 32)
1743 & ~0x20, 0);
1744 arm->cpsr->dirty = 0;
1745 arm->cpsr->valid = 1;
1746 }
1747
1748 /* restore PC */
1749 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32,
1750 buf_get_u32(arm->pc->value, 0, 32));
1751 arm7_9->write_pc(target, buf_get_u32(arm->pc->value, 0, 32));
1752 arm->pc->dirty = 0;
1753
1754 return ERROR_OK;
1755 }
1756
1757 /**
1758 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1759 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1760 * restart.
1761 *
1762 * @param target Pointer to the ARM7/9 target to be restarted
1763 * @return Result of executing the JTAG queue
1764 */
1765 static int arm7_9_restart_core(struct target *target)
1766 {
1767 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1768 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1769 int retval;
1770
1771 /* set RESTART instruction */
1772 if (arm7_9->need_bypass_before_restart) {
1773 arm7_9->need_bypass_before_restart = 0;
1774
1775 retval = arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
1776 if (retval != ERROR_OK)
1777 return retval;
1778 }
1779 retval = arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
1780 if (retval != ERROR_OK)
1781 return retval;
1782
1783 jtag_add_runtest(1, TAP_IDLE);
1784 return jtag_execute_queue();
1785 }
1786
1787 /**
1788 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1789 * iterated through and are set on the target if they aren't already set.
1790 *
1791 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1792 */
1793 static void arm7_9_enable_watchpoints(struct target *target)
1794 {
1795 struct watchpoint *watchpoint = target->watchpoints;
1796
1797 while (watchpoint)
1798 {
1799 if (watchpoint->set == 0)
1800 arm7_9_set_watchpoint(target, watchpoint);
1801 watchpoint = watchpoint->next;
1802 }
1803 }
1804
1805 /**
1806 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1807 * iterated through and are set on the target.
1808 *
1809 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1810 */
1811 static void arm7_9_enable_breakpoints(struct target *target)
1812 {
1813 struct breakpoint *breakpoint = target->breakpoints;
1814
1815 /* set any pending breakpoints */
1816 while (breakpoint)
1817 {
1818 arm7_9_set_breakpoint(target, breakpoint);
1819 breakpoint = breakpoint->next;
1820 }
1821 }
1822
1823 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1824 {
1825 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1826 struct arm *arm = &arm7_9->arm;
1827 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1828 int err, retval = ERROR_OK;
1829
1830 LOG_DEBUG("-");
1831
1832 if (target->state != TARGET_HALTED)
1833 {
1834 LOG_WARNING("target not halted");
1835 return ERROR_TARGET_NOT_HALTED;
1836 }
1837
1838 if (!debug_execution)
1839 {
1840 target_free_all_working_areas(target);
1841 }
1842
1843 /* current = 1: continue on current pc, otherwise continue at <address> */
1844 if (!current)
1845 buf_set_u32(arm->pc->value, 0, 32, address);
1846
1847 uint32_t current_pc;
1848 current_pc = buf_get_u32(arm->pc->value, 0, 32);
1849
1850 /* the front-end may request us not to handle breakpoints */
1851 if (handle_breakpoints)
1852 {
1853 struct breakpoint *breakpoint;
1854 breakpoint = breakpoint_find(target,
1855 buf_get_u32(arm->pc->value, 0, 32));
1856 if (breakpoint != NULL)
1857 {
1858 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1859 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1860 {
1861 return retval;
1862 }
1863
1864 /* calculate PC of next instruction */
1865 uint32_t next_pc;
1866 if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1867 {
1868 uint32_t current_opcode;
1869 target_read_u32(target, current_pc, &current_opcode);
1870 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1871 return retval;
1872 }
1873
1874 LOG_DEBUG("enable single-step");
1875 arm7_9->enable_single_step(target, next_pc);
1876
1877 target->debug_reason = DBG_REASON_SINGLESTEP;
1878
1879 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1880 return retval;
1881
1882 if (arm->core_state == ARM_STATE_ARM)
1883 arm7_9->branch_resume(target);
1884 else if (arm->core_state == ARM_STATE_THUMB)
1885 arm7_9->branch_resume_thumb(target);
1886 else {
1887 LOG_ERROR("unhandled core state");
1888 return ERROR_FAIL;
1889 }
1890
1891 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1892 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1893 err = arm7_9_execute_sys_speed(target);
1894
1895 LOG_DEBUG("disable single-step");
1896 arm7_9->disable_single_step(target);
1897
1898 if (err != ERROR_OK)
1899 {
1900 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1901 {
1902 return retval;
1903 }
1904 target->state = TARGET_UNKNOWN;
1905 return err;
1906 }
1907
1908 retval = arm7_9_debug_entry(target);
1909 if (retval != ERROR_OK)
1910 return retval;
1911 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32,
1912 buf_get_u32(arm->pc->value, 0, 32));
1913
1914 LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1915 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1916 {
1917 return retval;
1918 }
1919 }
1920 }
1921
1922 /* enable any pending breakpoints and watchpoints */
1923 arm7_9_enable_breakpoints(target);
1924 arm7_9_enable_watchpoints(target);
1925
1926 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1927 return retval;
1928
1929 if (arm->core_state == ARM_STATE_ARM)
1930 arm7_9->branch_resume(target);
1931 else if (arm->core_state == ARM_STATE_THUMB)
1932 arm7_9->branch_resume_thumb(target);
1933 else {
1934 LOG_ERROR("unhandled core state");
1935 return ERROR_FAIL;
1936 }
1937
1938 /* deassert DBGACK and INTDIS */
1939 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1940 /* INTDIS only when we really resume, not during debug execution */
1941 if (!debug_execution)
1942 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1943 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1944
1945 if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1946 {
1947 return retval;
1948 }
1949
1950 target->debug_reason = DBG_REASON_NOTHALTED;
1951
1952 if (!debug_execution)
1953 {
1954 /* registers are now invalid */
1955 register_cache_invalidate(arm->core_cache);
1956 target->state = TARGET_RUNNING;
1957 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1958 {
1959 return retval;
1960 }
1961 }
1962 else
1963 {
1964 target->state = TARGET_DEBUG_RUNNING;
1965 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1966 {
1967 return retval;
1968 }
1969 }
1970
1971 LOG_DEBUG("target resumed");
1972
1973 return ERROR_OK;
1974 }
1975
1976 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1977 {
1978 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1979 struct arm *arm = &arm7_9->arm;
1980 uint32_t current_pc;
1981 current_pc = buf_get_u32(arm->pc->value, 0, 32);
1982
1983 if (next_pc != current_pc)
1984 {
1985 /* setup an inverse breakpoint on the current PC
1986 * - comparator 1 matches the current address
1987 * - rangeout from comparator 1 is connected to comparator 0 rangein
1988 * - comparator 0 matches any address, as long as rangein is low */
1989 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1990 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1991 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1992 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1993 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1994 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1995 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1996 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1997 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1998 }
1999 else
2000 {
2001 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
2002 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
2003 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
2004 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
2005 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
2006 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
2007 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
2008 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
2009 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
2010 }
2011 }
2012
2013 void arm7_9_disable_eice_step(struct target *target)
2014 {
2015 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2016
2017 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
2018 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
2019 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
2020 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
2021 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
2022 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
2023 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
2024 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
2025 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
2026 }
2027
2028 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
2029 {
2030 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2031 struct arm *arm = &arm7_9->arm;
2032 struct breakpoint *breakpoint = NULL;
2033 int err, retval;
2034
2035 if (target->state != TARGET_HALTED)
2036 {
2037 LOG_WARNING("target not halted");
2038 return ERROR_TARGET_NOT_HALTED;
2039 }
2040
2041 /* current = 1: continue on current pc, otherwise continue at <address> */
2042 if (!current)
2043 buf_set_u32(arm->pc->value, 0, 32, address);
2044
2045 uint32_t current_pc = buf_get_u32(arm->pc->value, 0, 32);
2046
2047 /* the front-end may request us not to handle breakpoints */
2048 if (handle_breakpoints)
2049 breakpoint = breakpoint_find(target, current_pc);
2050 if (breakpoint != NULL) {
2051 retval = arm7_9_unset_breakpoint(target, breakpoint);
2052 if (retval != ERROR_OK)
2053 return retval;
2054 }
2055
2056 target->debug_reason = DBG_REASON_SINGLESTEP;
2057
2058 /* calculate PC of next instruction */
2059 uint32_t next_pc;
2060 if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2061 {
2062 uint32_t current_opcode;
2063 target_read_u32(target, current_pc, &current_opcode);
2064 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2065 return retval;
2066 }
2067
2068 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2069 return retval;
2070
2071 arm7_9->enable_single_step(target, next_pc);
2072
2073 if (arm->core_state == ARM_STATE_ARM)
2074 arm7_9->branch_resume(target);
2075 else if (arm->core_state == ARM_STATE_THUMB)
2076 arm7_9->branch_resume_thumb(target);
2077 else {
2078 LOG_ERROR("unhandled core state");
2079 return ERROR_FAIL;
2080 }
2081
2082 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2083 {
2084 return retval;
2085 }
2086
2087 err = arm7_9_execute_sys_speed(target);
2088 arm7_9->disable_single_step(target);
2089
2090 /* registers are now invalid */
2091 register_cache_invalidate(arm->core_cache);
2092
2093 if (err != ERROR_OK)
2094 {
2095 target->state = TARGET_UNKNOWN;
2096 } else {
2097 retval = arm7_9_debug_entry(target);
2098 if (retval != ERROR_OK)
2099 return retval;
2100 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2101 {
2102 return retval;
2103 }
2104 LOG_DEBUG("target stepped");
2105 }
2106
2107 if (breakpoint)
2108 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2109 {
2110 return retval;
2111 }
2112
2113 return err;
2114 }
2115
2116 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
2117 int num, enum arm_mode mode)
2118 {
2119 uint32_t* reg_p[16];
2120 int retval;
2121 struct arm_reg *areg = r->arch_info;
2122 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2123 struct arm *arm = &arm7_9->arm;
2124
2125 if (!is_arm_mode(arm->core_mode))
2126 return ERROR_FAIL;
2127 if ((num < 0) || (num > 16))
2128 return ERROR_COMMAND_SYNTAX_ERROR;
2129
2130 if ((mode != ARM_MODE_ANY)
2131 && (mode != arm->core_mode)
2132 && (areg->mode != ARM_MODE_ANY))
2133 {
2134 uint32_t tmp_cpsr;
2135
2136 /* change processor mode (mask T bit) */
2137 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
2138 tmp_cpsr |= mode;
2139 tmp_cpsr &= ~0x20;
2140 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2141 }
2142
2143 uint32_t value = 0;
2144 if ((num >= 0) && (num <= 15))
2145 {
2146 /* read a normal core register */
2147 reg_p[num] = &value;
2148
2149 arm7_9->read_core_regs(target, 1 << num, reg_p);
2150 }
2151 else
2152 {
2153 /* read a program status register
2154 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2155 */
2156 arm7_9->read_xpsr(target, &value, areg->mode != ARM_MODE_ANY);
2157 }
2158
2159 if ((retval = jtag_execute_queue()) != ERROR_OK)
2160 {
2161 return retval;
2162 }
2163
2164 r->valid = 1;
2165 r->dirty = 0;
2166 buf_set_u32(r->value, 0, 32, value);
2167
2168 if ((mode != ARM_MODE_ANY)
2169 && (mode != arm->core_mode)
2170 && (areg->mode != ARM_MODE_ANY)) {
2171 /* restore processor mode (mask T bit) */
2172 arm7_9->write_xpsr_im8(target,
2173 buf_get_u32(arm->cpsr->value, 0, 8)
2174 & ~0x20, 0, 0);
2175 }
2176
2177 return ERROR_OK;
2178 }
2179
2180 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2181 int num, enum arm_mode mode, uint32_t value)
2182 {
2183 uint32_t reg[16];
2184 struct arm_reg *areg = r->arch_info;
2185 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2186 struct arm *arm = &arm7_9->arm;
2187
2188 if (!is_arm_mode(arm->core_mode))
2189 return ERROR_FAIL;
2190 if ((num < 0) || (num > 16))
2191 return ERROR_COMMAND_SYNTAX_ERROR;
2192
2193 if ((mode != ARM_MODE_ANY)
2194 && (mode != arm->core_mode)
2195 && (areg->mode != ARM_MODE_ANY)) {
2196 uint32_t tmp_cpsr;
2197
2198 /* change processor mode (mask T bit) */
2199 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
2200 tmp_cpsr |= mode;
2201 tmp_cpsr &= ~0x20;
2202 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2203 }
2204
2205 if ((num >= 0) && (num <= 15))
2206 {
2207 /* write a normal core register */
2208 reg[num] = value;
2209
2210 arm7_9->write_core_regs(target, 1 << num, reg);
2211 }
2212 else
2213 {
2214 /* write a program status register
2215 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2216 */
2217 int spsr = (areg->mode != ARM_MODE_ANY);
2218
2219 /* if we're writing the CPSR, mask the T bit */
2220 if (!spsr)
2221 value &= ~0x20;
2222
2223 arm7_9->write_xpsr(target, value, spsr);
2224 }
2225
2226 r->valid = 1;
2227 r->dirty = 0;
2228
2229 if ((mode != ARM_MODE_ANY)
2230 && (mode != arm->core_mode)
2231 && (areg->mode != ARM_MODE_ANY)) {
2232 /* restore processor mode (mask T bit) */
2233 arm7_9->write_xpsr_im8(target,
2234 buf_get_u32(arm->cpsr->value, 0, 8)
2235 & ~0x20, 0, 0);
2236 }
2237
2238 return jtag_execute_queue();
2239 }
2240
2241 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2242 {
2243 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2244 struct arm *arm = &arm7_9->arm;
2245 uint32_t reg[16];
2246 uint32_t num_accesses = 0;
2247 int thisrun_accesses;
2248 int i;
2249 uint32_t cpsr;
2250 int retval;
2251 int last_reg = 0;
2252
2253 LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2254
2255 if (target->state != TARGET_HALTED)
2256 {
2257 LOG_WARNING("target not halted");
2258 return ERROR_TARGET_NOT_HALTED;
2259 }
2260
2261 /* sanitize arguments */
2262 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2263 return ERROR_COMMAND_SYNTAX_ERROR;
2264
2265 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2266 return ERROR_TARGET_UNALIGNED_ACCESS;
2267
2268 /* load the base register with the address of the first word */
2269 reg[0] = address;
2270 arm7_9->write_core_regs(target, 0x1, reg);
2271
2272 int j = 0;
2273
2274 switch (size)
2275 {
2276 case 4:
2277 while (num_accesses < count)
2278 {
2279 uint32_t reg_list;
2280 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2281 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2282
2283 if (last_reg <= thisrun_accesses)
2284 last_reg = thisrun_accesses;
2285
2286 arm7_9->load_word_regs(target, reg_list);
2287
2288 /* fast memory reads are only safe when the target is running
2289 * from a sufficiently high clock (32 kHz is usually too slow)
2290 */
2291 if (arm7_9->fast_memory_access)
2292 retval = arm7_9_execute_fast_sys_speed(target);
2293 else
2294 retval = arm7_9_execute_sys_speed(target);
2295 if (retval != ERROR_OK)
2296 return retval;
2297
2298 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2299
2300 /* advance buffer, count number of accesses */
2301 buffer += thisrun_accesses * 4;
2302 num_accesses += thisrun_accesses;
2303
2304 if ((j++%1024) == 0)
2305 {
2306 keep_alive();
2307 }
2308 }
2309 break;
2310 case 2:
2311 while (num_accesses < count)
2312 {
2313 uint32_t reg_list;
2314 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2315 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2316
2317 for (i = 1; i <= thisrun_accesses; i++)
2318 {
2319 if (i > last_reg)
2320 last_reg = i;
2321 arm7_9->load_hword_reg(target, i);
2322 /* fast memory reads are only safe when the target is running
2323 * from a sufficiently high clock (32 kHz is usually too slow)
2324 */
2325 if (arm7_9->fast_memory_access)
2326 retval = arm7_9_execute_fast_sys_speed(target);
2327 else
2328 retval = arm7_9_execute_sys_speed(target);
2329 if (retval != ERROR_OK)
2330 {
2331 return retval;
2332 }
2333
2334 }
2335
2336 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2337
2338 /* advance buffer, count number of accesses */
2339 buffer += thisrun_accesses * 2;
2340 num_accesses += thisrun_accesses;
2341
2342 if ((j++%1024) == 0)
2343 {
2344 keep_alive();
2345 }
2346 }
2347 break;
2348 case 1:
2349 while (num_accesses < count)
2350 {
2351 uint32_t reg_list;
2352 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2353 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2354
2355 for (i = 1; i <= thisrun_accesses; i++)
2356 {
2357 if (i > last_reg)
2358 last_reg = i;
2359 arm7_9->load_byte_reg(target, i);
2360 /* fast memory reads are only safe when the target is running
2361 * from a sufficiently high clock (32 kHz is usually too slow)
2362 */
2363 if (arm7_9->fast_memory_access)
2364 retval = arm7_9_execute_fast_sys_speed(target);
2365 else
2366 retval = arm7_9_execute_sys_speed(target);
2367 if (retval != ERROR_OK)
2368 {
2369 return retval;
2370 }
2371 }
2372
2373 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2374
2375 /* advance buffer, count number of accesses */
2376 buffer += thisrun_accesses * 1;
2377 num_accesses += thisrun_accesses;
2378
2379 if ((j++%1024) == 0)
2380 {
2381 keep_alive();
2382 }
2383 }
2384 break;
2385 }
2386
2387 if (!is_arm_mode(arm->core_mode))
2388 return ERROR_FAIL;
2389
2390 for (i = 0; i <= last_reg; i++) {
2391 struct reg *r = arm_reg_current(arm, i);
2392
2393 r->dirty = r->valid;
2394 }
2395
2396 arm7_9->read_xpsr(target, &cpsr, 0);
2397 if ((retval = jtag_execute_queue()) != ERROR_OK)
2398 {
2399 LOG_ERROR("JTAG error while reading cpsr");
2400 return ERROR_TARGET_DATA_ABORT;
2401 }
2402
2403 if (((cpsr & 0x1f) == ARM_MODE_ABT) && (arm->core_mode != ARM_MODE_ABT))
2404 {
2405 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2406
2407 arm7_9->write_xpsr_im8(target,
2408 buf_get_u32(arm->cpsr->value, 0, 8)
2409 & ~0x20, 0, 0);
2410
2411 return ERROR_TARGET_DATA_ABORT;
2412 }
2413
2414 return ERROR_OK;
2415 }
2416
2417 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2418 {
2419 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2420 struct arm *arm = &arm7_9->arm;
2421 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2422
2423 uint32_t reg[16];
2424 uint32_t num_accesses = 0;
2425 int thisrun_accesses;
2426 int i;
2427 uint32_t cpsr;
2428 int retval;
2429 int last_reg = 0;
2430
2431 #ifdef _DEBUG_ARM7_9_
2432 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2433 #endif
2434
2435 if (target->state != TARGET_HALTED)
2436 {
2437 LOG_WARNING("target not halted");
2438 return ERROR_TARGET_NOT_HALTED;
2439 }
2440
2441 /* sanitize arguments */
2442 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2443 return ERROR_COMMAND_SYNTAX_ERROR;
2444
2445 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2446 return ERROR_TARGET_UNALIGNED_ACCESS;
2447
2448 /* load the base register with the address of the first word */
2449 reg[0] = address;
2450 arm7_9->write_core_regs(target, 0x1, reg);
2451
2452 /* Clear DBGACK, to make sure memory fetches work as expected */
2453 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2454 embeddedice_store_reg(dbg_ctrl);
2455
2456 switch (size)
2457 {
2458 case 4:
2459 while (num_accesses < count)
2460 {
2461 uint32_t reg_list;
2462 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2463 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2464
2465 for (i = 1; i <= thisrun_accesses; i++)
2466 {
2467 if (i > last_reg)
2468 last_reg = i;
2469 reg[i] = target_buffer_get_u32(target, buffer);
2470 buffer += 4;
2471 }
2472
2473 arm7_9->write_core_regs(target, reg_list, reg);
2474
2475 arm7_9->store_word_regs(target, reg_list);
2476
2477 /* fast memory writes are only safe when the target is running
2478 * from a sufficiently high clock (32 kHz is usually too slow)
2479 */
2480 if (arm7_9->fast_memory_access)
2481 retval = arm7_9_execute_fast_sys_speed(target);
2482 else
2483 {
2484 retval = arm7_9_execute_sys_speed(target);
2485
2486 /*
2487 * if memory writes are made when the clock is running slow
2488 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2489 * processor operations after a "reset halt" or "reset init",
2490 * need to immediately stroke the keep alive or will end up with
2491 * gdb "keep alive not sent error message" problem.
2492 */
2493
2494 keep_alive();
2495 }
2496
2497 if (retval != ERROR_OK)
2498 {
2499 return retval;
2500 }
2501
2502 num_accesses += thisrun_accesses;
2503 }
2504 break;
2505 case 2:
2506 while (num_accesses < count)
2507 {
2508 uint32_t reg_list;
2509 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2510 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2511
2512 for (i = 1; i <= thisrun_accesses; i++)
2513 {
2514 if (i > last_reg)
2515 last_reg = i;
2516 reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2517 buffer += 2;
2518 }
2519
2520 arm7_9->write_core_regs(target, reg_list, reg);
2521
2522 for (i = 1; i <= thisrun_accesses; i++)
2523 {
2524 arm7_9->store_hword_reg(target, i);
2525
2526 /* fast memory writes are only safe when the target is running
2527 * from a sufficiently high clock (32 kHz is usually too slow)
2528 */
2529 if (arm7_9->fast_memory_access)
2530 retval = arm7_9_execute_fast_sys_speed(target);
2531 else
2532 {
2533 retval = arm7_9_execute_sys_speed(target);
2534
2535 /*
2536 * if memory writes are made when the clock is running slow
2537 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2538 * processor operations after a "reset halt" or "reset init",
2539 * need to immediately stroke the keep alive or will end up with
2540 * gdb "keep alive not sent error message" problem.
2541 */
2542
2543 keep_alive();
2544 }
2545
2546 if (retval != ERROR_OK)
2547 {
2548 return retval;
2549 }
2550 }
2551
2552 num_accesses += thisrun_accesses;
2553 }
2554 break;
2555 case 1:
2556 while (num_accesses < count)
2557 {
2558 uint32_t reg_list;
2559 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2560 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2561
2562 for (i = 1; i <= thisrun_accesses; i++)
2563 {
2564 if (i > last_reg)
2565 last_reg = i;
2566 reg[i] = *buffer++ & 0xff;
2567 }
2568
2569 arm7_9->write_core_regs(target, reg_list, reg);
2570
2571 for (i = 1; i <= thisrun_accesses; i++)
2572 {
2573 arm7_9->store_byte_reg(target, i);
2574 /* fast memory writes are only safe when the target is running
2575 * from a sufficiently high clock (32 kHz is usually too slow)
2576 */
2577 if (arm7_9->fast_memory_access)
2578 retval = arm7_9_execute_fast_sys_speed(target);
2579 else
2580 {
2581 retval = arm7_9_execute_sys_speed(target);
2582
2583 /*
2584 * if memory writes are made when the clock is running slow
2585 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2586 * processor operations after a "reset halt" or "reset init",
2587 * need to immediately stroke the keep alive or will end up with
2588 * gdb "keep alive not sent error message" problem.
2589 */
2590
2591 keep_alive();
2592 }
2593
2594 if (retval != ERROR_OK)
2595 {
2596 return retval;
2597 }
2598
2599 }
2600
2601 num_accesses += thisrun_accesses;
2602 }
2603 break;
2604 }
2605
2606 /* Re-Set DBGACK */
2607 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2608 embeddedice_store_reg(dbg_ctrl);
2609
2610 if (!is_arm_mode(arm->core_mode))
2611 return ERROR_FAIL;
2612
2613 for (i = 0; i <= last_reg; i++) {
2614 struct reg *r = arm_reg_current(arm, i);
2615
2616 r->dirty = r->valid;
2617 }
2618
2619 arm7_9->read_xpsr(target, &cpsr, 0);
2620 if ((retval = jtag_execute_queue()) != ERROR_OK)
2621 {
2622 LOG_ERROR("JTAG error while reading cpsr");
2623 return ERROR_TARGET_DATA_ABORT;
2624 }
2625
2626 if (((cpsr & 0x1f) == ARM_MODE_ABT) && (arm->core_mode != ARM_MODE_ABT))
2627 {
2628 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2629
2630 arm7_9->write_xpsr_im8(target,
2631 buf_get_u32(arm->cpsr->value, 0, 8)
2632 & ~0x20, 0, 0);
2633
2634 return ERROR_TARGET_DATA_ABORT;
2635 }
2636
2637 return ERROR_OK;
2638 }
2639
2640 static int dcc_count;
2641 static const uint8_t *dcc_buffer;
2642
2643 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2644 {
2645 int retval = ERROR_OK;
2646 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2647
2648 if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2649 return retval;
2650
2651 int little = target->endianness == TARGET_LITTLE_ENDIAN;
2652 int count = dcc_count;
2653 const uint8_t *buffer = dcc_buffer;
2654 if (count > 2)
2655 {
2656 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2657 * core function repeated. */
2658 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2659 buffer += 4;
2660
2661 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2662 uint8_t reg_addr = ice_reg->addr & 0x1f;
2663 struct jtag_tap *tap;
2664 tap = ice_reg->jtag_info->tap;
2665
2666 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2667 buffer += (count-2)*4;
2668
2669 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2670 } else
2671 {
2672 int i;
2673 for (i = 0; i < count; i++)
2674 {
2675 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2676 buffer += 4;
2677 }
2678 }
2679
2680 if ((retval = target_halt(target))!= ERROR_OK)
2681 {
2682 return retval;
2683 }
2684 return target_wait_state(target, TARGET_HALTED, 500);
2685 }
2686
2687 static const uint32_t dcc_code[] =
2688 {
2689 /* r0 == input, points to memory buffer
2690 * r1 == scratch
2691 */
2692
2693 /* spin until DCC control (c0) reports data arrived */
2694 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
2695 0xe3110001, /* tst r1, #1 */
2696 0x0afffffc, /* bne w */
2697
2698 /* read word from DCC (c1), write to memory */
2699 0xee111e10, /* mrc p14, #0, r1, c1, c0 */
2700 0xe4801004, /* str r1, [r0], #4 */
2701
2702 /* repeat */
2703 0xeafffff9 /* b w */
2704 };
2705
2706 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
2707 {
2708 int retval;
2709 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2710 int i;
2711
2712 if (!arm7_9->dcc_downloads)
2713 return target_write_memory(target, address, 4, count, buffer);
2714
2715 /* regrab previously allocated working_area, or allocate a new one */
2716 if (!arm7_9->dcc_working_area)
2717 {
2718 uint8_t dcc_code_buf[6 * 4];
2719
2720 /* make sure we have a working area */
2721 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2722 {
2723 LOG_INFO("no working area available, falling back to memory writes");
2724 return target_write_memory(target, address, 4, count, buffer);
2725 }
2726
2727 /* copy target instructions to target endianness */
2728 for (i = 0; i < 6; i++)
2729 {
2730 target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2731 }
2732
2733 /* write DCC code to working area */
2734 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2735 {
2736 return retval;
2737 }
2738 }
2739
2740 struct arm_algorithm armv4_5_info;
2741 struct reg_param reg_params[1];
2742
2743 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
2744 armv4_5_info.core_mode = ARM_MODE_SVC;
2745 armv4_5_info.core_state = ARM_STATE_ARM;
2746
2747 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2748
2749 buf_set_u32(reg_params[0].value, 0, 32, address);
2750
2751 dcc_count = count;
2752 dcc_buffer = buffer;
2753 retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2754 arm7_9->dcc_working_area->address,
2755 arm7_9->dcc_working_area->address + 6*4,
2756 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2757
2758 if (retval == ERROR_OK)
2759 {
2760 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2761 if (endaddress != (address + count*4))
2762 {
2763 LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2764 retval = ERROR_FAIL;
2765 }
2766 }
2767
2768 destroy_reg_param(&reg_params[0]);
2769
2770 return retval;
2771 }
2772
2773 /**
2774 * Perform per-target setup that requires JTAG access.
2775 */
2776 int arm7_9_examine(struct target *target)
2777 {
2778 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2779 int retval;
2780
2781 if (!target_was_examined(target)) {
2782 struct reg_cache *t, **cache_p;
2783
2784 t = embeddedice_build_reg_cache(target, arm7_9);
2785 if (t == NULL)
2786 return ERROR_FAIL;
2787
2788 cache_p = register_get_last_cache_p(&target->reg_cache);
2789 (*cache_p) = t;
2790 arm7_9->eice_cache = (*cache_p);
2791
2792 if (arm7_9->arm.etm)
2793 (*cache_p)->next = etm_build_reg_cache(target,
2794 &arm7_9->jtag_info,
2795 arm7_9->arm.etm);
2796
2797 target_set_examined(target);
2798 }
2799
2800 retval = embeddedice_setup(target);
2801 if (retval == ERROR_OK)
2802 retval = arm7_9_setup(target);
2803 if (retval == ERROR_OK && arm7_9->arm.etm)
2804 retval = etm_setup(target);
2805 return retval;
2806 }
2807
2808
2809 int arm7_9_check_reset(struct target *target)
2810 {
2811 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2812
2813 if (get_target_reset_nag() && !arm7_9->dcc_downloads)
2814 {
2815 LOG_WARNING("NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2816 }
2817
2818 if (get_target_reset_nag() && (target->working_area_size == 0))
2819 {
2820 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2821 }
2822
2823 if (get_target_reset_nag() && !arm7_9->fast_memory_access)
2824 {
2825 LOG_WARNING("NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2826 }
2827
2828 return ERROR_OK;
2829 }
2830
2831 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2832 {
2833 struct target *target = get_current_target(CMD_CTX);
2834 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2835
2836 if (!is_arm7_9(arm7_9))
2837 {
2838 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2839 return ERROR_TARGET_INVALID;
2840 }
2841
2842 if (CMD_ARGC > 0)
2843 COMMAND_PARSE_ENABLE(CMD_ARGV[0],arm7_9->use_dbgrq);
2844
2845 command_print(CMD_CTX, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2846
2847 return ERROR_OK;
2848 }
2849
2850 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2851 {
2852 struct target *target = get_current_target(CMD_CTX);
2853 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2854
2855 if (!is_arm7_9(arm7_9))
2856 {
2857 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2858 return ERROR_TARGET_INVALID;
2859 }
2860
2861 if (CMD_ARGC > 0)
2862 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2863
2864 command_print(CMD_CTX, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2865
2866 return ERROR_OK;
2867 }
2868
2869 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2870 {
2871 struct target *target = get_current_target(CMD_CTX);
2872 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2873
2874 if (!is_arm7_9(arm7_9))
2875 {
2876 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2877 return ERROR_TARGET_INVALID;
2878 }
2879
2880 if (CMD_ARGC > 0)
2881 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2882
2883 command_print(CMD_CTX, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2884
2885 return ERROR_OK;
2886 }
2887
2888 static int arm7_9_setup_semihosting(struct target *target, int enable)
2889 {
2890 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2891
2892 if (!is_arm7_9(arm7_9))
2893 {
2894 LOG_USER("current target isn't an ARM7/ARM9 target");
2895 return ERROR_TARGET_INVALID;
2896 }
2897
2898 if (arm7_9->has_vector_catch) {
2899 struct reg *vector_catch = &arm7_9->eice_cache
2900 ->reg_list[EICE_VEC_CATCH];
2901
2902 if (!vector_catch->valid)
2903 embeddedice_read_reg(vector_catch);
2904 buf_set_u32(vector_catch->value, 2, 1, enable);
2905 embeddedice_store_reg(vector_catch);
2906 } else {
2907 /* TODO: allow optional high vectors and/or BKPT_HARD */
2908 if (enable)
2909 breakpoint_add(target, 8, 4, BKPT_SOFT);
2910 else
2911 breakpoint_remove(target, 8);
2912 }
2913
2914 return ERROR_OK;
2915 }
2916
2917 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2918 {
2919 int retval = ERROR_OK;
2920 struct arm *arm = &arm7_9->arm;
2921
2922 arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2923
2924 if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
2925 return retval;
2926
2927 /* caller must have allocated via calloc(), so everything's zeroed */
2928
2929 arm7_9->wp_available_max = 2;
2930
2931 arm7_9->fast_memory_access = false;
2932 arm7_9->dcc_downloads = false;
2933
2934 arm->arch_info = arm7_9;
2935 arm->read_core_reg = arm7_9_read_core_reg;
2936 arm->write_core_reg = arm7_9_write_core_reg;
2937 arm->full_context = arm7_9_full_context;
2938 arm->setup_semihosting = arm7_9_setup_semihosting;
2939
2940 retval = arm_init_arch_info(target, arm);
2941 if (retval != ERROR_OK)
2942 return retval;
2943
2944 return target_register_timer_callback(arm7_9_handle_target_request,
2945 1, 1, target);
2946 }
2947
2948 static const struct command_registration arm7_9_any_command_handlers[] = {
2949 {
2950 "dbgrq",
2951 .handler = handle_arm7_9_dbgrq_command,
2952 .mode = COMMAND_ANY,
2953 .usage = "['enable'|'disable']",
2954 .help = "use EmbeddedICE dbgrq instead of breakpoint "
2955 "for target halt requests",
2956 },
2957 {
2958 "fast_memory_access",
2959 .handler = handle_arm7_9_fast_memory_access_command,
2960 .mode = COMMAND_ANY,
2961 .usage = "['enable'|'disable']",
2962 .help = "use fast memory accesses instead of slower "
2963 "but potentially safer accesses",
2964 },
2965 {
2966 "dcc_downloads",
2967 .handler = handle_arm7_9_dcc_downloads_command,
2968 .mode = COMMAND_ANY,
2969 .usage = "['enable'|'disable']",
2970 .help = "use DCC downloads for larger memory writes",
2971 },
2972 COMMAND_REGISTRATION_DONE
2973 };
2974 const struct command_registration arm7_9_command_handlers[] = {
2975 {
2976 .chain = arm_command_handlers,
2977 },
2978 {
2979 .chain = etm_command_handlers,
2980 },
2981 {
2982 .name = "arm7_9",
2983 .mode = COMMAND_ANY,
2984 .help = "arm7/9 specific commands",
2985 .usage = "",
2986 .chain = arm7_9_any_command_handlers,
2987 },
2988 COMMAND_REGISTRATION_DONE
2989 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)