ARM11: avoid pointless status returns
[openocd.git] / src / target / arm11_dbgtap.c
1 /***************************************************************************
2 * Copyright (C) 2008 digenius technology GmbH. *
3 * Michael Bruck *
4 * *
5 * Copyright (C) 2008,2009 Oyvind Harboe oyvind.harboe@zylin.com *
6 * *
7 * This program is free software; you can redistribute it and/or modify *
8 * it under the terms of the GNU General Public License as published by *
9 * the Free Software Foundation; either version 2 of the License, or *
10 * (at your option) any later version. *
11 * *
12 * This program is distributed in the hope that it will be useful, *
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
15 * GNU General Public License for more details. *
16 * *
17 * You should have received a copy of the GNU General Public License *
18 * along with this program; if not, write to the *
19 * Free Software Foundation, Inc., *
20 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
21 ***************************************************************************/
22
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "arm_jtag.h"
28 #include "arm11_dbgtap.h"
29
30 #include <helper/time_support.h>
31
32 #if 0
33 #define JTAG_DEBUG(expr ...) do { if (1) LOG_DEBUG(expr); } while (0)
34 #else
35 #define JTAG_DEBUG(expr ...) do { if (0) LOG_DEBUG(expr); } while (0)
36 #endif
37
38 /*
39 This pathmove goes from Pause-IR to Shift-IR while avoiding RTI. The
40 behavior of the FTDI driver IIRC was to go via RTI.
41
42 Conversely there may be other places in this code where the ARM11 code relies
43 on the driver to hit through RTI when coming from Update-?R.
44 */
45 static const tap_state_t arm11_move_pi_to_si_via_ci[] =
46 {
47 TAP_IREXIT2, TAP_IRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IRSHIFT
48 };
49
50
51 /* REVISIT no error handling here! */
52 static void arm11_add_ir_scan_vc(int num_fields, struct scan_field *fields,
53 tap_state_t state)
54 {
55 if (cmd_queue_cur_state == TAP_IRPAUSE)
56 jtag_add_pathmove(ARRAY_SIZE(arm11_move_pi_to_si_via_ci), arm11_move_pi_to_si_via_ci);
57
58 jtag_add_ir_scan(num_fields, fields, state);
59 }
60
61 static const tap_state_t arm11_move_pd_to_sd_via_cd[] =
62 {
63 TAP_DREXIT2, TAP_DRUPDATE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
64 };
65
66 /* REVISIT no error handling here! */
67 void arm11_add_dr_scan_vc(int num_fields, struct scan_field *fields,
68 tap_state_t state)
69 {
70 if (cmd_queue_cur_state == TAP_DRPAUSE)
71 jtag_add_pathmove(ARRAY_SIZE(arm11_move_pd_to_sd_via_cd), arm11_move_pd_to_sd_via_cd);
72
73 jtag_add_dr_scan(num_fields, fields, state);
74 }
75
76
77 /** Code de-clutter: Construct struct scan_field to write out a value
78 *
79 * \param arm11 Target state variable.
80 * \param num_bits Length of the data field
81 * \param out_data pointer to the data that will be sent out
82 * <em > (data is read when it is added to the JTAG queue)</em>
83 * \param in_data pointer to the memory that will receive data that was clocked in
84 * <em > (data is written when the JTAG queue is executed)</em>
85 * \param field target data structure that will be initialized
86 */
87 void arm11_setup_field(struct arm11_common *arm11, int num_bits,
88 void *out_data, void *in_data, struct scan_field *field)
89 {
90 field->tap = arm11->arm.target->tap;
91 field->num_bits = num_bits;
92 field->out_value = out_data;
93 field->in_value = in_data;
94 }
95
96 static const char *arm11_ir_to_string(uint8_t ir)
97 {
98 const char *s = "unknown";
99
100 switch (ir) {
101 case ARM11_EXTEST:
102 s = "EXTEST";
103 break;
104 case ARM11_SCAN_N:
105 s = "SCAN_N";
106 break;
107 case ARM11_RESTART:
108 s = "RESTART";
109 break;
110 case ARM11_HALT:
111 s = "HALT";
112 break;
113 case ARM11_INTEST:
114 s = "INTEST";
115 break;
116 case ARM11_ITRSEL:
117 s = "ITRSEL";
118 break;
119 case ARM11_IDCODE:
120 s = "IDCODE";
121 break;
122 case ARM11_BYPASS:
123 s = "BYPASS";
124 break;
125 }
126 return s;
127 }
128
129 /** Write JTAG instruction register
130 *
131 * \param arm11 Target state variable.
132 * \param instr An ARM11 DBGTAP instruction. Use enum #arm11_instructions.
133 * \param state Pass the final TAP state or ARM11_TAP_DEFAULT for the default value (Pause-IR).
134 *
135 * \remarks This adds to the JTAG command queue but does \em not execute it.
136 */
137 void arm11_add_IR(struct arm11_common * arm11, uint8_t instr, tap_state_t state)
138 {
139 struct jtag_tap *tap = arm11->arm.target->tap;
140
141 if (buf_get_u32(tap->cur_instr, 0, 5) == instr)
142 {
143 JTAG_DEBUG("IR <= 0x%02x SKIPPED", instr);
144 return;
145 }
146
147 JTAG_DEBUG("IR <= %s (0x%02x)", arm11_ir_to_string(instr), instr);
148
149 struct scan_field field;
150
151 arm11_setup_field(arm11, 5, &instr, NULL, &field);
152
153 arm11_add_ir_scan_vc(1, &field, state == ARM11_TAP_DEFAULT ? TAP_IRPAUSE : state);
154 }
155
156 /** Verify data shifted out from Scan Chain Register (SCREG). */
157 static void arm11_in_handler_SCAN_N(uint8_t *in_value)
158 {
159 /* Don't expect JTAG layer to modify bits we didn't ask it to read */
160 uint8_t v = *in_value & 0x1F;
161
162 if (v != 0x10)
163 {
164 LOG_ERROR("'arm11 target' JTAG error SCREG OUT 0x%02x", v);
165 jtag_set_error(ERROR_FAIL);
166 }
167 }
168
169 /** Select and write to Scan Chain Register (SCREG)
170 *
171 * This function sets the instruction register to SCAN_N and writes
172 * the data register with the selected chain number.
173 *
174 * http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301f/Cacbjhfg.html
175 *
176 * \param arm11 Target state variable.
177 * \param chain Scan chain that will be selected.
178 * \param state Pass the final TAP state or ARM11_TAP_DEFAULT for the default
179 * value (Pause-DR).
180 *
181 * Changes the current scan chain if needed, transitions to the specified
182 * TAP state, and leaves the IR undefined.
183 *
184 * The chain takes effect when Update-DR is passed (usually when subsequently
185 * the INTEXT/EXTEST instructions are written).
186 *
187 * \warning (Obsolete) Using this twice in a row will \em fail. The first
188 * call will end in Pause-DR. The second call, due to the IR
189 * caching, will not go through Capture-DR when shifting in the
190 * new scan chain number. As a result the verification in
191 * arm11_in_handler_SCAN_N() must fail.
192 *
193 * \remarks This adds to the JTAG command queue but does \em not execute it.
194 */
195
196 int arm11_add_debug_SCAN_N(struct arm11_common *arm11,
197 uint8_t chain, tap_state_t state)
198 {
199 /* Don't needlessly switch the scan chain.
200 * NOTE: the ITRSEL instruction fakes SCREG changing;
201 * but leaves its actual value unchanged.
202 */
203 if (arm11->jtag_info.cur_scan_chain == chain) {
204 JTAG_DEBUG("SCREG <= %d SKIPPED", chain);
205 return jtag_add_statemove((state == ARM11_TAP_DEFAULT)
206 ? TAP_DRPAUSE : state);
207 }
208 JTAG_DEBUG("SCREG <= %d", chain);
209
210 arm11_add_IR(arm11, ARM11_SCAN_N, ARM11_TAP_DEFAULT);
211
212 struct scan_field field;
213
214 uint8_t tmp[1];
215 arm11_setup_field(arm11, 5, &chain, &tmp, &field);
216
217 arm11_add_dr_scan_vc(1, &field, state == ARM11_TAP_DEFAULT ? TAP_DRPAUSE : state);
218
219 jtag_execute_queue_noclear();
220
221 arm11_in_handler_SCAN_N(tmp);
222
223 arm11->jtag_info.cur_scan_chain = chain;
224
225 return jtag_execute_queue();
226 }
227
228 /**
229 * Queue a DR scan of the ITR register. Caller must have selected
230 * scan chain 4 (ITR), possibly using ITRSEL.
231 *
232 * \param arm11 Target state variable.
233 * \param inst An ARM11 processor instruction/opcode.
234 * \param flag Optional parameter to retrieve the Ready flag;
235 * this address will be written when the JTAG chain is scanned.
236 * \param state The TAP state to enter after the DR scan.
237 *
238 * Going through the TAP_DRUPDATE state writes ITR only if Ready was
239 * previously set. Only the Ready flag is readable by the scan.
240 *
241 * An instruction loaded into ITR is executed when going through the
242 * TAP_IDLE state only if Ready was previously set and the debug state
243 * is properly set up. Depending on the instruction, you may also need
244 * to ensure that the rDTR is ready before that Run-Test/Idle state.
245 */
246 static void arm11_add_debug_INST(struct arm11_common * arm11,
247 uint32_t inst, uint8_t * flag, tap_state_t state)
248 {
249 JTAG_DEBUG("INST <= 0x%08x", (unsigned) inst);
250
251 struct scan_field itr[2];
252
253 arm11_setup_field(arm11, 32, &inst, NULL, itr + 0);
254 arm11_setup_field(arm11, 1, NULL, flag, itr + 1);
255
256 arm11_add_dr_scan_vc(ARRAY_SIZE(itr), itr, state);
257 }
258
259 /**
260 * Read and save the Debug Status and Control Register (DSCR).
261 *
262 * \param arm11 Target state variable.
263 * \return Error status; arm11->dscr is updated on success.
264 *
265 * \remarks This is a stand-alone function that executes the JTAG
266 * command queue. It does not require the ARM11 debug TAP to be
267 * in any particular state.
268 */
269 int arm11_read_DSCR(struct arm11_common *arm11)
270 {
271 int retval;
272
273 retval = arm11_add_debug_SCAN_N(arm11, 0x01, ARM11_TAP_DEFAULT);
274 if (retval != ERROR_OK)
275 return retval;
276
277 arm11_add_IR(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
278
279 uint32_t dscr;
280 struct scan_field chain1_field;
281
282 arm11_setup_field(arm11, 32, NULL, &dscr, &chain1_field);
283
284 arm11_add_dr_scan_vc(1, &chain1_field, TAP_DRPAUSE);
285
286 CHECK_RETVAL(jtag_execute_queue());
287
288 if (arm11->dscr != dscr)
289 JTAG_DEBUG("DSCR = %08x (OLD %08x)",
290 (unsigned) dscr,
291 (unsigned) arm11->dscr);
292
293 arm11->dscr = dscr;
294
295 return ERROR_OK;
296 }
297
298 /** Write the Debug Status and Control Register (DSCR)
299 *
300 * same as CP14 c1
301 *
302 * \param arm11 Target state variable.
303 * \param dscr DSCR content
304 *
305 * \remarks This is a stand-alone function that executes the JTAG command queue.
306 */
307 int arm11_write_DSCR(struct arm11_common * arm11, uint32_t dscr)
308 {
309 int retval;
310 retval = arm11_add_debug_SCAN_N(arm11, 0x01, ARM11_TAP_DEFAULT);
311 if (retval != ERROR_OK)
312 return retval;
313
314 arm11_add_IR(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
315
316 struct scan_field chain1_field;
317
318 arm11_setup_field(arm11, 32, &dscr, NULL, &chain1_field);
319
320 arm11_add_dr_scan_vc(1, &chain1_field, TAP_DRPAUSE);
321
322 CHECK_RETVAL(jtag_execute_queue());
323
324 JTAG_DEBUG("DSCR <= %08x (OLD %08x)",
325 (unsigned) dscr,
326 (unsigned) arm11->dscr);
327
328 arm11->dscr = dscr;
329
330 return ERROR_OK;
331 }
332
333 /** Prepare the stage for ITR/DTR operations
334 * from the arm11_run_instr... group of functions.
335 *
336 * Put arm11_run_instr_data_prepare() and arm11_run_instr_data_finish()
337 * around a block of arm11_run_instr_... calls.
338 *
339 * Select scan chain 5 to allow quick access to DTR. When scan
340 * chain 4 is needed to put in a register the ITRSel instruction
341 * shortcut is used instead of actually changing the Scan_N
342 * register.
343 *
344 * \param arm11 Target state variable.
345 *
346 */
347 int arm11_run_instr_data_prepare(struct arm11_common * arm11)
348 {
349 return arm11_add_debug_SCAN_N(arm11, 0x05, ARM11_TAP_DEFAULT);
350 }
351
352 /** Cleanup after ITR/DTR operations
353 * from the arm11_run_instr... group of functions
354 *
355 * Put arm11_run_instr_data_prepare() and arm11_run_instr_data_finish()
356 * around a block of arm11_run_instr_... calls.
357 *
358 * Any IDLE can lead to an instruction execution when
359 * scan chains 4 or 5 are selected and the IR holds
360 * INTEST or EXTEST. So we must disable that before
361 * any following activities lead to an IDLE.
362 *
363 * \param arm11 Target state variable.
364 *
365 */
366 int arm11_run_instr_data_finish(struct arm11_common * arm11)
367 {
368 return arm11_add_debug_SCAN_N(arm11, 0x00, ARM11_TAP_DEFAULT);
369 }
370
371
372
373 /**
374 * Execute one or more instructions via ITR.
375 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
376 * is set, the ITR Ready flag is set (as seen on the previous entry to
377 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
378 *
379 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
380 *
381 * \param arm11 Target state variable.
382 * \param opcode Pointer to sequence of ARM opcodes
383 * \param count Number of opcodes to execute
384 *
385 */
386 static
387 int arm11_run_instr_no_data(struct arm11_common * arm11,
388 uint32_t * opcode, size_t count)
389 {
390 arm11_add_IR(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
391
392 while (count--)
393 {
394 arm11_add_debug_INST(arm11, *opcode++, NULL, TAP_IDLE);
395
396 int i = 0;
397 while (1)
398 {
399 uint8_t flag;
400
401 arm11_add_debug_INST(arm11, 0, &flag, count ? TAP_IDLE : TAP_DRPAUSE);
402
403 CHECK_RETVAL(jtag_execute_queue());
404
405 if (flag)
406 break;
407
408 long long then = 0;
409
410 if (i == 1000)
411 {
412 then = timeval_ms();
413 }
414 if (i >= 1000)
415 {
416 if ((timeval_ms()-then) > 1000)
417 {
418 LOG_WARNING("Timeout (1000ms) waiting for instructions to complete");
419 return ERROR_FAIL;
420 }
421 }
422
423 i++;
424 }
425 }
426
427 return ERROR_OK;
428 }
429
430 /** Execute one instruction via ITR
431 *
432 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
433 *
434 * \param arm11 Target state variable.
435 * \param opcode ARM opcode
436 *
437 */
438 int arm11_run_instr_no_data1(struct arm11_common * arm11, uint32_t opcode)
439 {
440 return arm11_run_instr_no_data(arm11, &opcode, 1);
441 }
442
443
444 /** Execute one instruction via ITR repeatedly while
445 * passing data to the core via DTR on each execution.
446 *
447 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
448 * is set, the ITR Ready flag is set (as seen on the previous entry to
449 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
450 *
451 * The executed instruction \em must read data from DTR.
452 *
453 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
454 *
455 * \param arm11 Target state variable.
456 * \param opcode ARM opcode
457 * \param data Pointer to the data words to be passed to the core
458 * \param count Number of data words and instruction repetitions
459 *
460 */
461 int arm11_run_instr_data_to_core(struct arm11_common * arm11, uint32_t opcode, uint32_t * data, size_t count)
462 {
463 arm11_add_IR(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
464
465 arm11_add_debug_INST(arm11, opcode, NULL, TAP_DRPAUSE);
466
467 arm11_add_IR(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
468
469 struct scan_field chain5_fields[3];
470
471 uint32_t Data;
472 uint8_t Ready;
473 uint8_t nRetry;
474
475 arm11_setup_field(arm11, 32, &Data, NULL, chain5_fields + 0);
476 arm11_setup_field(arm11, 1, NULL, &Ready, chain5_fields + 1);
477 arm11_setup_field(arm11, 1, NULL, &nRetry, chain5_fields + 2);
478
479 while (count--)
480 {
481 int i = 0;
482 do
483 {
484 Data = *data;
485
486 arm11_add_dr_scan_vc(ARRAY_SIZE(chain5_fields), chain5_fields, jtag_set_end_state(TAP_IDLE));
487
488 CHECK_RETVAL(jtag_execute_queue());
489
490 JTAG_DEBUG("DTR Ready %d nRetry %d", Ready, nRetry);
491
492 long long then = 0;
493
494 if (i == 1000)
495 {
496 then = timeval_ms();
497 }
498 if (i >= 1000)
499 {
500 if ((timeval_ms()-then) > 1000)
501 {
502 LOG_WARNING("Timeout (1000ms) waiting for instructions to complete");
503 return ERROR_FAIL;
504 }
505 }
506
507 i++;
508 }
509 while (!Ready);
510
511 data++;
512 }
513
514 arm11_add_IR(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
515
516 int i = 0;
517 do
518 {
519 Data = 0;
520
521 arm11_add_dr_scan_vc(ARRAY_SIZE(chain5_fields), chain5_fields, TAP_DRPAUSE);
522
523 CHECK_RETVAL(jtag_execute_queue());
524
525 JTAG_DEBUG("DTR Data %08x Ready %d nRetry %d",
526 (unsigned) Data, Ready, nRetry);
527
528 long long then = 0;
529
530 if (i == 1000)
531 {
532 then = timeval_ms();
533 }
534 if (i >= 1000)
535 {
536 if ((timeval_ms()-then) > 1000)
537 {
538 LOG_WARNING("Timeout (1000ms) waiting for instructions to complete");
539 return ERROR_FAIL;
540 }
541 }
542
543 i++;
544 }
545 while (!Ready);
546
547 return ERROR_OK;
548 }
549
550 /** JTAG path for arm11_run_instr_data_to_core_noack
551 *
552 * The repeated TAP_IDLE's do not cause a repeated execution
553 * if passed without leaving the state.
554 *
555 * Since this is more than 7 bits (adjustable via adding more
556 * TAP_IDLE's) it produces an artificial delay in the lower
557 * layer (FT2232) that is long enough to finish execution on
558 * the core but still shorter than any manually inducible delays.
559 *
560 * To disable this code, try "memwrite burst false"
561 *
562 * FIX!!! should we use multiple TAP_IDLE here or not???
563 *
564 * https://lists.berlios.de/pipermail/openocd-development/2009-July/009698.html
565 * https://lists.berlios.de/pipermail/openocd-development/2009-August/009865.html
566 */
567 static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
568 {
569 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
570 };
571
572
573
574 /** Execute one instruction via ITR repeatedly while
575 * passing data to the core via DTR on each execution.
576 *
577 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
578 * is set, the ITR Ready flag is set (as seen on the previous entry to
579 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
580 *
581 * No Ready check during transmission.
582 *
583 * The executed instruction \em must read data from DTR.
584 *
585 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
586 *
587 * \param arm11 Target state variable.
588 * \param opcode ARM opcode
589 * \param data Pointer to the data words to be passed to the core
590 * \param count Number of data words and instruction repetitions
591 *
592 */
593 int arm11_run_instr_data_to_core_noack(struct arm11_common * arm11, uint32_t opcode, uint32_t * data, size_t count)
594 {
595 arm11_add_IR(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
596
597 arm11_add_debug_INST(arm11, opcode, NULL, TAP_DRPAUSE);
598
599 arm11_add_IR(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
600
601 struct scan_field chain5_fields[3];
602
603 arm11_setup_field(arm11, 32, NULL/*&Data*/, NULL, chain5_fields + 0);
604 arm11_setup_field(arm11, 1, NULL, NULL /*&Ready*/, chain5_fields + 1);
605 arm11_setup_field(arm11, 1, NULL, NULL, chain5_fields + 2);
606
607 uint8_t *Readies;
608 unsigned readiesNum = count + 1;
609 unsigned bytes = sizeof(*Readies)*readiesNum;
610
611 Readies = (uint8_t *) malloc(bytes);
612 if (Readies == NULL)
613 {
614 LOG_ERROR("Out of memory allocating %u bytes", bytes);
615 return ERROR_FAIL;
616 }
617
618 uint8_t * ReadyPos = Readies;
619
620 while (count--)
621 {
622 chain5_fields[0].out_value = (void *)(data++);
623 chain5_fields[1].in_value = ReadyPos++;
624
625 if (count)
626 {
627 jtag_add_dr_scan(ARRAY_SIZE(chain5_fields), chain5_fields, jtag_set_end_state(TAP_DRPAUSE));
628 jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
629 arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
630 }
631 else
632 {
633 jtag_add_dr_scan(ARRAY_SIZE(chain5_fields), chain5_fields, jtag_set_end_state(TAP_IDLE));
634 }
635 }
636
637 arm11_add_IR(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
638
639 chain5_fields[0].out_value = 0;
640 chain5_fields[1].in_value = ReadyPos++;
641
642 arm11_add_dr_scan_vc(ARRAY_SIZE(chain5_fields), chain5_fields, TAP_DRPAUSE);
643
644 int retval = jtag_execute_queue();
645 if (retval == ERROR_OK)
646 {
647 unsigned error_count = 0;
648
649 for (size_t i = 0; i < readiesNum; i++)
650 {
651 if (Readies[i] != 1)
652 {
653 error_count++;
654 }
655 }
656
657 if (error_count > 0 )
658 LOG_ERROR("%u words out of %u not transferred",
659 error_count, readiesNum);
660
661 }
662
663 free(Readies);
664
665 return retval;
666 }
667
668
669 /** Execute an instruction via ITR while handing data into the core via DTR.
670 *
671 * The executed instruction \em must read data from DTR.
672 *
673 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
674 *
675 * \param arm11 Target state variable.
676 * \param opcode ARM opcode
677 * \param data Data word to be passed to the core via DTR
678 *
679 */
680 int arm11_run_instr_data_to_core1(struct arm11_common * arm11, uint32_t opcode, uint32_t data)
681 {
682 return arm11_run_instr_data_to_core(arm11, opcode, &data, 1);
683 }
684
685
686 /** Execute one instruction via ITR repeatedly while
687 * reading data from the core via DTR on each execution.
688 *
689 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
690 * is set, the ITR Ready flag is set (as seen on the previous entry to
691 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
692 *
693 * The executed instruction \em must write data to DTR.
694 *
695 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
696 *
697 * \param arm11 Target state variable.
698 * \param opcode ARM opcode
699 * \param data Pointer to an array that receives the data words from the core
700 * \param count Number of data words and instruction repetitions
701 *
702 */
703 int arm11_run_instr_data_from_core(struct arm11_common * arm11, uint32_t opcode, uint32_t * data, size_t count)
704 {
705 arm11_add_IR(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
706
707 arm11_add_debug_INST(arm11, opcode, NULL, TAP_IDLE);
708
709 arm11_add_IR(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
710
711 struct scan_field chain5_fields[3];
712
713 uint32_t Data;
714 uint8_t Ready;
715 uint8_t nRetry;
716
717 arm11_setup_field(arm11, 32, NULL, &Data, chain5_fields + 0);
718 arm11_setup_field(arm11, 1, NULL, &Ready, chain5_fields + 1);
719 arm11_setup_field(arm11, 1, NULL, &nRetry, chain5_fields + 2);
720
721 while (count--)
722 {
723 int i = 0;
724 do
725 {
726 arm11_add_dr_scan_vc(ARRAY_SIZE(chain5_fields), chain5_fields, count ? TAP_IDLE : TAP_DRPAUSE);
727
728 CHECK_RETVAL(jtag_execute_queue());
729
730 JTAG_DEBUG("DTR Data %08x Ready %d nRetry %d",
731 (unsigned) Data, Ready, nRetry);
732
733 long long then = 0;
734
735 if (i == 1000)
736 {
737 then = timeval_ms();
738 }
739 if (i >= 1000)
740 {
741 if ((timeval_ms()-then) > 1000)
742 {
743 LOG_WARNING("Timeout (1000ms) waiting for instructions to complete");
744 return ERROR_FAIL;
745 }
746 }
747
748 i++;
749 }
750 while (!Ready);
751
752 *data++ = Data;
753 }
754
755 return ERROR_OK;
756 }
757
758 /** Execute one instruction via ITR
759 * then load r0 into DTR and read DTR from core.
760 *
761 * The first executed instruction (\p opcode) should write data to r0.
762 *
763 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
764 *
765 * \param arm11 Target state variable.
766 * \param opcode ARM opcode to write r0 with the value of interest
767 * \param data Pointer to a data word that receives the value from r0 after \p opcode was executed.
768 *
769 */
770 int arm11_run_instr_data_from_core_via_r0(struct arm11_common * arm11, uint32_t opcode, uint32_t * data)
771 {
772 int retval;
773 retval = arm11_run_instr_no_data1(arm11, opcode);
774 if (retval != ERROR_OK)
775 return retval;
776
777 /* MCR p14,0,R0,c0,c5,0 (move r0 -> wDTR -> local var) */
778 arm11_run_instr_data_from_core(arm11, 0xEE000E15, data, 1);
779
780 return ERROR_OK;
781 }
782
783 /** Load data into core via DTR then move it to r0 then
784 * execute one instruction via ITR
785 *
786 * The final executed instruction (\p opcode) should read data from r0.
787 *
788 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
789 *
790 * \param arm11 Target state variable.
791 * \param opcode ARM opcode to read r0 act upon it
792 * \param data Data word that will be written to r0 before \p opcode is executed
793 *
794 */
795 int arm11_run_instr_data_to_core_via_r0(struct arm11_common * arm11, uint32_t opcode, uint32_t data)
796 {
797 int retval;
798 /* MRC p14,0,r0,c0,c5,0 */
799 retval = arm11_run_instr_data_to_core1(arm11, 0xEE100E15, data);
800 if (retval != ERROR_OK)
801 return retval;
802
803 retval = arm11_run_instr_no_data1(arm11, opcode);
804 if (retval != ERROR_OK)
805 return retval;
806
807 return ERROR_OK;
808 }
809
810 /** Apply reads and writes to scan chain 7
811 *
812 * \see struct arm11_sc7_action
813 *
814 * \param arm11 Target state variable.
815 * \param actions A list of read and/or write instructions
816 * \param count Number of instructions in the list.
817 *
818 */
819 int arm11_sc7_run(struct arm11_common * arm11, struct arm11_sc7_action * actions, size_t count)
820 {
821 int retval;
822
823 retval = arm11_add_debug_SCAN_N(arm11, 0x07, ARM11_TAP_DEFAULT);
824 if (retval != ERROR_OK)
825 return retval;
826
827 arm11_add_IR(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
828
829 struct scan_field chain7_fields[3];
830
831 uint8_t nRW;
832 uint32_t DataOut;
833 uint8_t AddressOut;
834 uint8_t Ready;
835 uint32_t DataIn;
836 uint8_t AddressIn;
837
838 arm11_setup_field(arm11, 1, &nRW, &Ready, chain7_fields + 0);
839 arm11_setup_field(arm11, 32, &DataOut, &DataIn, chain7_fields + 1);
840 arm11_setup_field(arm11, 7, &AddressOut, &AddressIn, chain7_fields + 2);
841
842 for (size_t i = 0; i < count + 1; i++)
843 {
844 if (i < count)
845 {
846 nRW = actions[i].write ? 1 : 0;
847 DataOut = actions[i].value;
848 AddressOut = actions[i].address;
849 }
850 else
851 {
852 nRW = 1;
853 DataOut = 0;
854 AddressOut = 0;
855 }
856
857 do
858 {
859 JTAG_DEBUG("SC7 <= c%-3d Data %08x %s",
860 (unsigned) AddressOut,
861 (unsigned) DataOut,
862 nRW ? "write" : "read");
863
864 arm11_add_dr_scan_vc(ARRAY_SIZE(chain7_fields),
865 chain7_fields, TAP_DRPAUSE);
866
867 CHECK_RETVAL(jtag_execute_queue());
868
869 if (!Ready)
870 JTAG_DEBUG("SC7 => !ready");
871 }
872 while (!Ready); /* 'nRW' is 'Ready' on read out */
873
874 if (!nRW)
875 JTAG_DEBUG("SC7 => Data %08x", (unsigned) DataIn);
876
877 if (i > 0)
878 {
879 if (actions[i - 1].address != AddressIn)
880 {
881 LOG_WARNING("Scan chain 7 shifted out unexpected address");
882 }
883
884 if (!actions[i - 1].write)
885 {
886 actions[i - 1].value = DataIn;
887 }
888 else
889 {
890 if (actions[i - 1].value != DataIn)
891 {
892 LOG_WARNING("Scan chain 7 shifted out unexpected data");
893 }
894 }
895 }
896 }
897 return ERROR_OK;
898 }
899
900 /** Clear VCR and all breakpoints and watchpoints via scan chain 7
901 *
902 * \param arm11 Target state variable.
903 *
904 */
905 void arm11_sc7_clear_vbw(struct arm11_common * arm11)
906 {
907 size_t clear_bw_size = arm11->brp + 1;
908 struct arm11_sc7_action *clear_bw = malloc(sizeof(struct arm11_sc7_action) * clear_bw_size);
909 struct arm11_sc7_action * pos = clear_bw;
910
911 for (size_t i = 0; i < clear_bw_size; i++)
912 {
913 clear_bw[i].write = true;
914 clear_bw[i].value = 0;
915 }
916
917 for (size_t i = 0; i < arm11->brp; i++)
918 (pos++)->address = ARM11_SC7_BCR0 + i;
919
920 (pos++)->address = ARM11_SC7_VCR;
921
922 arm11_sc7_run(arm11, clear_bw, clear_bw_size);
923
924 free (clear_bw);
925 }
926
927 /** Write VCR register
928 *
929 * \param arm11 Target state variable.
930 * \param value Value to be written
931 */
932 void arm11_sc7_set_vcr(struct arm11_common * arm11, uint32_t value)
933 {
934 struct arm11_sc7_action set_vcr;
935
936 set_vcr.write = true;
937 set_vcr.address = ARM11_SC7_VCR;
938 set_vcr.value = value;
939
940 arm11_sc7_run(arm11, &set_vcr, 1);
941 }
942
943
944
945 /** Read word from address
946 *
947 * \param arm11 Target state variable.
948 * \param address Memory address to be read
949 * \param result Pointer where to store result
950 *
951 */
952 int arm11_read_memory_word(struct arm11_common * arm11, uint32_t address, uint32_t * result)
953 {
954 int retval;
955 retval = arm11_run_instr_data_prepare(arm11);
956 if (retval != ERROR_OK)
957 return retval;
958
959 /* MRC p14,0,r0,c0,c5,0 (r0 = address) */
960 CHECK_RETVAL(arm11_run_instr_data_to_core1(arm11, 0xee100e15, address));
961
962 /* LDC p14,c5,[R0],#4 (DTR = [r0]) */
963 CHECK_RETVAL(arm11_run_instr_data_from_core(arm11, 0xecb05e01, result, 1));
964
965 return arm11_run_instr_data_finish(arm11);
966 }
967
968
969 /************************************************************************/
970
971 /*
972 * ARM11 provider for the OpenOCD implementation of the standard
973 * architectural ARM v6/v7 "Debug Programmer's Model" (DPM).
974 */
975
976 static inline struct arm11_common *dpm_to_arm11(struct arm_dpm *dpm)
977 {
978 return container_of(dpm, struct arm11_common, dpm);
979 }
980
981 static int arm11_dpm_prepare(struct arm_dpm *dpm)
982 {
983 struct arm11_common *arm11 = dpm_to_arm11(dpm);
984
985 arm11 = container_of(dpm->arm, struct arm11_common, arm);
986
987 return arm11_run_instr_data_prepare(dpm_to_arm11(dpm));
988 }
989
990 static int arm11_dpm_finish(struct arm_dpm *dpm)
991 {
992 return arm11_run_instr_data_finish(dpm_to_arm11(dpm));
993 }
994
995 static int arm11_dpm_instr_write_data_dcc(struct arm_dpm *dpm,
996 uint32_t opcode, uint32_t data)
997 {
998 return arm11_run_instr_data_to_core(dpm_to_arm11(dpm),
999 opcode, &data, 1);
1000 }
1001
1002 static int arm11_dpm_instr_write_data_r0(struct arm_dpm *dpm,
1003 uint32_t opcode, uint32_t data)
1004 {
1005 return arm11_run_instr_data_to_core_via_r0(dpm_to_arm11(dpm),
1006 opcode, data);
1007 }
1008
1009 static int arm11_dpm_instr_read_data_dcc(struct arm_dpm *dpm,
1010 uint32_t opcode, uint32_t *data)
1011 {
1012 return arm11_run_instr_data_from_core(dpm_to_arm11(dpm),
1013 opcode, data, 1);
1014 }
1015
1016 static int arm11_dpm_instr_read_data_r0(struct arm_dpm *dpm,
1017 uint32_t opcode, uint32_t *data)
1018 {
1019 return arm11_run_instr_data_from_core_via_r0(dpm_to_arm11(dpm),
1020 opcode, data);
1021 }
1022
1023 /* Because arm11_sc7_run() takes a vector of actions, we batch breakpoint
1024 * and watchpoint operations instead of running them right away. Since we
1025 * pre-allocated our vector, we don't need to worry about space.
1026 */
1027 static int arm11_bpwp_enable(struct arm_dpm *dpm, unsigned index,
1028 uint32_t addr, uint32_t control)
1029 {
1030 struct arm11_common *arm11 = dpm_to_arm11(dpm);
1031 struct arm11_sc7_action *action;
1032
1033 action = arm11->bpwp_actions + arm11->bpwp_n;
1034
1035 /* Invariant: this bp/wp is disabled.
1036 * It also happens that the core is halted here, but for
1037 * DPM-based cores we don't actually care about that.
1038 */
1039
1040 action[0].write = action[1].write = true;
1041
1042 action[0].value = addr;
1043 action[1].value = control;
1044
1045 switch (index) {
1046 case 0 ... 15:
1047 action[0].address = ARM11_SC7_BVR0 + index;
1048 action[1].address = ARM11_SC7_BCR0 + index;
1049 break;
1050 case 16 ... 32:
1051 index -= 16;
1052 action[0].address = ARM11_SC7_WVR0 + index;
1053 action[1].address = ARM11_SC7_WCR0 + index;
1054 break;
1055 default:
1056 return ERROR_FAIL;
1057 }
1058
1059 arm11->bpwp_n += 2;
1060
1061 return ERROR_OK;
1062 }
1063
1064 static int arm11_bpwp_disable(struct arm_dpm *dpm, unsigned index)
1065 {
1066 struct arm11_common *arm11 = dpm_to_arm11(dpm);
1067 struct arm11_sc7_action *action;
1068
1069 action = arm11->bpwp_actions + arm11->bpwp_n;
1070
1071 action[0].write = true;
1072 action[0].value = 0;
1073
1074 switch (index) {
1075 case 0 ... 15:
1076 action[0].address = ARM11_SC7_BCR0 + index;
1077 break;
1078 case 16 ... 32:
1079 index -= 16;
1080 action[0].address = ARM11_SC7_WCR0 + index;
1081 break;
1082 default:
1083 return ERROR_FAIL;
1084 }
1085
1086 arm11->bpwp_n += 1;
1087
1088 return ERROR_OK;
1089 }
1090
1091 /** Flush any pending breakpoint and watchpoint updates. */
1092 int arm11_bpwp_flush(struct arm11_common *arm11)
1093 {
1094 int retval;
1095
1096 if (!arm11->bpwp_n)
1097 return ERROR_OK;
1098
1099 retval = arm11_sc7_run(arm11, arm11->bpwp_actions, arm11->bpwp_n);
1100 arm11->bpwp_n = 0;
1101
1102 return retval;
1103 }
1104
1105 /** Set up high-level debug module utilities */
1106 int arm11_dpm_init(struct arm11_common *arm11, uint32_t didr)
1107 {
1108 struct arm_dpm *dpm = &arm11->dpm;
1109 int retval;
1110
1111 dpm->arm = &arm11->arm;
1112
1113 dpm->didr = didr;
1114
1115 dpm->prepare = arm11_dpm_prepare;
1116 dpm->finish = arm11_dpm_finish;
1117
1118 dpm->instr_write_data_dcc = arm11_dpm_instr_write_data_dcc;
1119 dpm->instr_write_data_r0 = arm11_dpm_instr_write_data_r0;
1120
1121 dpm->instr_read_data_dcc = arm11_dpm_instr_read_data_dcc;
1122 dpm->instr_read_data_r0 = arm11_dpm_instr_read_data_r0;
1123
1124 dpm->bpwp_enable = arm11_bpwp_enable;
1125 dpm->bpwp_disable = arm11_bpwp_disable;
1126
1127 retval = arm_dpm_setup(dpm);
1128 if (retval != ERROR_OK)
1129 return retval;
1130
1131 /* alloc enough to enable all breakpoints and watchpoints at once */
1132 arm11->bpwp_actions = calloc(2 * (dpm->nbp + dpm->nwp),
1133 sizeof *arm11->bpwp_actions);
1134 if (!arm11->bpwp_actions)
1135 return ERROR_FAIL;
1136
1137 retval = arm_dpm_initialize(dpm);
1138 if (retval != ERROR_OK)
1139 return retval;
1140
1141 return arm11_bpwp_flush(arm11);
1142 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)