arm11: allow minidrivers to implement inner loop of memory writes
[openocd.git] / src / target / arm11_dbgtap.c
1 /***************************************************************************
2 * Copyright (C) 2008 digenius technology GmbH. *
3 * Michael Bruck *
4 * *
5 * Copyright (C) 2008,2009 Oyvind Harboe oyvind.harboe@zylin.com *
6 * *
7 * This program is free software; you can redistribute it and/or modify *
8 * it under the terms of the GNU General Public License as published by *
9 * the Free Software Foundation; either version 2 of the License, or *
10 * (at your option) any later version. *
11 * *
12 * This program is distributed in the hope that it will be useful, *
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
15 * GNU General Public License for more details. *
16 * *
17 * You should have received a copy of the GNU General Public License *
18 * along with this program; if not, write to the *
19 * Free Software Foundation, Inc., *
20 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
21 ***************************************************************************/
22
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "arm_jtag.h"
28 #include "arm11_dbgtap.h"
29
30 #include <helper/time_support.h>
31
32 #if 0
33 #define JTAG_DEBUG(expr ...) do { if (1) LOG_DEBUG(expr); } while (0)
34 #else
35 #define JTAG_DEBUG(expr ...) do { if (0) LOG_DEBUG(expr); } while (0)
36 #endif
37
38 /*
39 This pathmove goes from Pause-IR to Shift-IR while avoiding RTI. The
40 behavior of the FTDI driver IIRC was to go via RTI.
41
42 Conversely there may be other places in this code where the ARM11 code relies
43 on the driver to hit through RTI when coming from Update-?R.
44 */
45 static const tap_state_t arm11_move_pi_to_si_via_ci[] =
46 {
47 TAP_IREXIT2, TAP_IRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IRSHIFT
48 };
49
50
51 /* REVISIT no error handling here! */
52 static void arm11_add_ir_scan_vc(int num_fields, struct scan_field *fields,
53 tap_state_t state)
54 {
55 if (cmd_queue_cur_state == TAP_IRPAUSE)
56 jtag_add_pathmove(ARRAY_SIZE(arm11_move_pi_to_si_via_ci), arm11_move_pi_to_si_via_ci);
57
58 jtag_add_ir_scan(num_fields, fields, state);
59 }
60
61 static const tap_state_t arm11_move_pd_to_sd_via_cd[] =
62 {
63 TAP_DREXIT2, TAP_DRUPDATE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
64 };
65
66 /* REVISIT no error handling here! */
67 void arm11_add_dr_scan_vc(int num_fields, struct scan_field *fields,
68 tap_state_t state)
69 {
70 if (cmd_queue_cur_state == TAP_DRPAUSE)
71 jtag_add_pathmove(ARRAY_SIZE(arm11_move_pd_to_sd_via_cd), arm11_move_pd_to_sd_via_cd);
72
73 jtag_add_dr_scan(num_fields, fields, state);
74 }
75
76
77 /** Code de-clutter: Construct struct scan_field to write out a value
78 *
79 * \param arm11 Target state variable.
80 * \param num_bits Length of the data field
81 * \param out_data pointer to the data that will be sent out
82 * <em > (data is read when it is added to the JTAG queue)</em>
83 * \param in_data pointer to the memory that will receive data that was clocked in
84 * <em > (data is written when the JTAG queue is executed)</em>
85 * \param field target data structure that will be initialized
86 */
87 void arm11_setup_field(struct arm11_common *arm11, int num_bits,
88 void *out_data, void *in_data, struct scan_field *field)
89 {
90 field->tap = arm11->arm.target->tap;
91 field->num_bits = num_bits;
92 field->out_value = out_data;
93 field->in_value = in_data;
94 }
95
96 static const char *arm11_ir_to_string(uint8_t ir)
97 {
98 const char *s = "unknown";
99
100 switch (ir) {
101 case ARM11_EXTEST:
102 s = "EXTEST";
103 break;
104 case ARM11_SCAN_N:
105 s = "SCAN_N";
106 break;
107 case ARM11_RESTART:
108 s = "RESTART";
109 break;
110 case ARM11_HALT:
111 s = "HALT";
112 break;
113 case ARM11_INTEST:
114 s = "INTEST";
115 break;
116 case ARM11_ITRSEL:
117 s = "ITRSEL";
118 break;
119 case ARM11_IDCODE:
120 s = "IDCODE";
121 break;
122 case ARM11_BYPASS:
123 s = "BYPASS";
124 break;
125 }
126 return s;
127 }
128
129 /** Write JTAG instruction register
130 *
131 * \param arm11 Target state variable.
132 * \param instr An ARM11 DBGTAP instruction. Use enum #arm11_instructions.
133 * \param state Pass the final TAP state or ARM11_TAP_DEFAULT for the default value (Pause-IR).
134 *
135 * \remarks This adds to the JTAG command queue but does \em not execute it.
136 */
137 void arm11_add_IR(struct arm11_common * arm11, uint8_t instr, tap_state_t state)
138 {
139 struct jtag_tap *tap = arm11->arm.target->tap;
140
141 if (buf_get_u32(tap->cur_instr, 0, 5) == instr)
142 {
143 JTAG_DEBUG("IR <= 0x%02x SKIPPED", instr);
144 return;
145 }
146
147 JTAG_DEBUG("IR <= %s (0x%02x)", arm11_ir_to_string(instr), instr);
148
149 struct scan_field field;
150
151 arm11_setup_field(arm11, 5, &instr, NULL, &field);
152
153 arm11_add_ir_scan_vc(1, &field, state == ARM11_TAP_DEFAULT ? TAP_IRPAUSE : state);
154 }
155
156 /** Verify data shifted out from Scan Chain Register (SCREG). */
157 static void arm11_in_handler_SCAN_N(uint8_t *in_value)
158 {
159 /* Don't expect JTAG layer to modify bits we didn't ask it to read */
160 uint8_t v = *in_value & 0x1F;
161
162 if (v != 0x10)
163 {
164 LOG_ERROR("'arm11 target' JTAG error SCREG OUT 0x%02x", v);
165 jtag_set_error(ERROR_FAIL);
166 }
167 }
168
169 /** Select and write to Scan Chain Register (SCREG)
170 *
171 * This function sets the instruction register to SCAN_N and writes
172 * the data register with the selected chain number.
173 *
174 * http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301f/Cacbjhfg.html
175 *
176 * \param arm11 Target state variable.
177 * \param chain Scan chain that will be selected.
178 * \param state Pass the final TAP state or ARM11_TAP_DEFAULT for the default
179 * value (Pause-DR).
180 *
181 * Changes the current scan chain if needed, transitions to the specified
182 * TAP state, and leaves the IR undefined.
183 *
184 * The chain takes effect when Update-DR is passed (usually when subsequently
185 * the INTEXT/EXTEST instructions are written).
186 *
187 * \warning (Obsolete) Using this twice in a row will \em fail. The first
188 * call will end in Pause-DR. The second call, due to the IR
189 * caching, will not go through Capture-DR when shifting in the
190 * new scan chain number. As a result the verification in
191 * arm11_in_handler_SCAN_N() must fail.
192 *
193 * \remarks This adds to the JTAG command queue but does \em not execute it.
194 */
195
196 int arm11_add_debug_SCAN_N(struct arm11_common *arm11,
197 uint8_t chain, tap_state_t state)
198 {
199 /* Don't needlessly switch the scan chain.
200 * NOTE: the ITRSEL instruction fakes SCREG changing;
201 * but leaves its actual value unchanged.
202 */
203 if (arm11->jtag_info.cur_scan_chain == chain) {
204 JTAG_DEBUG("SCREG <= %d SKIPPED", chain);
205 return jtag_add_statemove((state == ARM11_TAP_DEFAULT)
206 ? TAP_DRPAUSE : state);
207 }
208 JTAG_DEBUG("SCREG <= %d", chain);
209
210 arm11_add_IR(arm11, ARM11_SCAN_N, ARM11_TAP_DEFAULT);
211
212 struct scan_field field;
213
214 uint8_t tmp[1];
215 arm11_setup_field(arm11, 5, &chain, &tmp, &field);
216
217 arm11_add_dr_scan_vc(1, &field, state == ARM11_TAP_DEFAULT ? TAP_DRPAUSE : state);
218
219 jtag_execute_queue_noclear();
220
221 arm11_in_handler_SCAN_N(tmp);
222
223 arm11->jtag_info.cur_scan_chain = chain;
224
225 return jtag_execute_queue();
226 }
227
228 /**
229 * Queue a DR scan of the ITR register. Caller must have selected
230 * scan chain 4 (ITR), possibly using ITRSEL.
231 *
232 * \param arm11 Target state variable.
233 * \param inst An ARM11 processor instruction/opcode.
234 * \param flag Optional parameter to retrieve the Ready flag;
235 * this address will be written when the JTAG chain is scanned.
236 * \param state The TAP state to enter after the DR scan.
237 *
238 * Going through the TAP_DRUPDATE state writes ITR only if Ready was
239 * previously set. Only the Ready flag is readable by the scan.
240 *
241 * An instruction loaded into ITR is executed when going through the
242 * TAP_IDLE state only if Ready was previously set and the debug state
243 * is properly set up. Depending on the instruction, you may also need
244 * to ensure that the rDTR is ready before that Run-Test/Idle state.
245 */
246 static void arm11_add_debug_INST(struct arm11_common * arm11,
247 uint32_t inst, uint8_t * flag, tap_state_t state)
248 {
249 JTAG_DEBUG("INST <= 0x%08x", (unsigned) inst);
250
251 struct scan_field itr[2];
252
253 arm11_setup_field(arm11, 32, &inst, NULL, itr + 0);
254 arm11_setup_field(arm11, 1, NULL, flag, itr + 1);
255
256 arm11_add_dr_scan_vc(ARRAY_SIZE(itr), itr, state);
257 }
258
259 /**
260 * Read and save the Debug Status and Control Register (DSCR).
261 *
262 * \param arm11 Target state variable.
263 * \return Error status; arm11->dscr is updated on success.
264 *
265 * \remarks This is a stand-alone function that executes the JTAG
266 * command queue. It does not require the ARM11 debug TAP to be
267 * in any particular state.
268 */
269 int arm11_read_DSCR(struct arm11_common *arm11)
270 {
271 int retval;
272
273 retval = arm11_add_debug_SCAN_N(arm11, 0x01, ARM11_TAP_DEFAULT);
274 if (retval != ERROR_OK)
275 return retval;
276
277 arm11_add_IR(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
278
279 uint32_t dscr;
280 struct scan_field chain1_field;
281
282 arm11_setup_field(arm11, 32, NULL, &dscr, &chain1_field);
283
284 arm11_add_dr_scan_vc(1, &chain1_field, TAP_DRPAUSE);
285
286 CHECK_RETVAL(jtag_execute_queue());
287
288 if (arm11->dscr != dscr)
289 JTAG_DEBUG("DSCR = %08x (OLD %08x)",
290 (unsigned) dscr,
291 (unsigned) arm11->dscr);
292
293 arm11->dscr = dscr;
294
295 return ERROR_OK;
296 }
297
298 /** Write the Debug Status and Control Register (DSCR)
299 *
300 * same as CP14 c1
301 *
302 * \param arm11 Target state variable.
303 * \param dscr DSCR content
304 *
305 * \remarks This is a stand-alone function that executes the JTAG command queue.
306 */
307 int arm11_write_DSCR(struct arm11_common * arm11, uint32_t dscr)
308 {
309 int retval;
310 retval = arm11_add_debug_SCAN_N(arm11, 0x01, ARM11_TAP_DEFAULT);
311 if (retval != ERROR_OK)
312 return retval;
313
314 arm11_add_IR(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
315
316 struct scan_field chain1_field;
317
318 arm11_setup_field(arm11, 32, &dscr, NULL, &chain1_field);
319
320 arm11_add_dr_scan_vc(1, &chain1_field, TAP_DRPAUSE);
321
322 CHECK_RETVAL(jtag_execute_queue());
323
324 JTAG_DEBUG("DSCR <= %08x (OLD %08x)",
325 (unsigned) dscr,
326 (unsigned) arm11->dscr);
327
328 arm11->dscr = dscr;
329
330 return ERROR_OK;
331 }
332
333 /** Prepare the stage for ITR/DTR operations
334 * from the arm11_run_instr... group of functions.
335 *
336 * Put arm11_run_instr_data_prepare() and arm11_run_instr_data_finish()
337 * around a block of arm11_run_instr_... calls.
338 *
339 * Select scan chain 5 to allow quick access to DTR. When scan
340 * chain 4 is needed to put in a register the ITRSel instruction
341 * shortcut is used instead of actually changing the Scan_N
342 * register.
343 *
344 * \param arm11 Target state variable.
345 *
346 */
347 int arm11_run_instr_data_prepare(struct arm11_common * arm11)
348 {
349 return arm11_add_debug_SCAN_N(arm11, 0x05, ARM11_TAP_DEFAULT);
350 }
351
352 /** Cleanup after ITR/DTR operations
353 * from the arm11_run_instr... group of functions
354 *
355 * Put arm11_run_instr_data_prepare() and arm11_run_instr_data_finish()
356 * around a block of arm11_run_instr_... calls.
357 *
358 * Any IDLE can lead to an instruction execution when
359 * scan chains 4 or 5 are selected and the IR holds
360 * INTEST or EXTEST. So we must disable that before
361 * any following activities lead to an IDLE.
362 *
363 * \param arm11 Target state variable.
364 *
365 */
366 int arm11_run_instr_data_finish(struct arm11_common * arm11)
367 {
368 return arm11_add_debug_SCAN_N(arm11, 0x00, ARM11_TAP_DEFAULT);
369 }
370
371
372
373 /**
374 * Execute one or more instructions via ITR.
375 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
376 * is set, the ITR Ready flag is set (as seen on the previous entry to
377 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
378 *
379 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
380 *
381 * \param arm11 Target state variable.
382 * \param opcode Pointer to sequence of ARM opcodes
383 * \param count Number of opcodes to execute
384 *
385 */
386 static
387 int arm11_run_instr_no_data(struct arm11_common * arm11,
388 uint32_t * opcode, size_t count)
389 {
390 arm11_add_IR(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
391
392 while (count--)
393 {
394 arm11_add_debug_INST(arm11, *opcode++, NULL, TAP_IDLE);
395
396 int i = 0;
397 while (1)
398 {
399 uint8_t flag;
400
401 arm11_add_debug_INST(arm11, 0, &flag, count ? TAP_IDLE : TAP_DRPAUSE);
402
403 CHECK_RETVAL(jtag_execute_queue());
404
405 if (flag)
406 break;
407
408 long long then = 0;
409
410 if (i == 1000)
411 {
412 then = timeval_ms();
413 }
414 if (i >= 1000)
415 {
416 if ((timeval_ms()-then) > 1000)
417 {
418 LOG_WARNING("Timeout (1000ms) waiting for instructions to complete");
419 return ERROR_FAIL;
420 }
421 }
422
423 i++;
424 }
425 }
426
427 return ERROR_OK;
428 }
429
430 /** Execute one instruction via ITR
431 *
432 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
433 *
434 * \param arm11 Target state variable.
435 * \param opcode ARM opcode
436 *
437 */
438 int arm11_run_instr_no_data1(struct arm11_common * arm11, uint32_t opcode)
439 {
440 return arm11_run_instr_no_data(arm11, &opcode, 1);
441 }
442
443
444 /** Execute one instruction via ITR repeatedly while
445 * passing data to the core via DTR on each execution.
446 *
447 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
448 * is set, the ITR Ready flag is set (as seen on the previous entry to
449 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
450 *
451 * The executed instruction \em must read data from DTR.
452 *
453 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
454 *
455 * \param arm11 Target state variable.
456 * \param opcode ARM opcode
457 * \param data Pointer to the data words to be passed to the core
458 * \param count Number of data words and instruction repetitions
459 *
460 */
461 int arm11_run_instr_data_to_core(struct arm11_common * arm11, uint32_t opcode, uint32_t * data, size_t count)
462 {
463 arm11_add_IR(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
464
465 arm11_add_debug_INST(arm11, opcode, NULL, TAP_DRPAUSE);
466
467 arm11_add_IR(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
468
469 struct scan_field chain5_fields[3];
470
471 uint32_t Data;
472 uint8_t Ready;
473 uint8_t nRetry;
474
475 arm11_setup_field(arm11, 32, &Data, NULL, chain5_fields + 0);
476 arm11_setup_field(arm11, 1, NULL, &Ready, chain5_fields + 1);
477 arm11_setup_field(arm11, 1, NULL, &nRetry, chain5_fields + 2);
478
479 while (count--)
480 {
481 int i = 0;
482 do
483 {
484 Data = *data;
485
486 arm11_add_dr_scan_vc(ARRAY_SIZE(chain5_fields), chain5_fields, jtag_set_end_state(TAP_IDLE));
487
488 CHECK_RETVAL(jtag_execute_queue());
489
490 JTAG_DEBUG("DTR Ready %d nRetry %d", Ready, nRetry);
491
492 long long then = 0;
493
494 if (i == 1000)
495 {
496 then = timeval_ms();
497 }
498 if (i >= 1000)
499 {
500 if ((timeval_ms()-then) > 1000)
501 {
502 LOG_WARNING("Timeout (1000ms) waiting for instructions to complete");
503 return ERROR_FAIL;
504 }
505 }
506
507 i++;
508 }
509 while (!Ready);
510
511 data++;
512 }
513
514 arm11_add_IR(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
515
516 int i = 0;
517 do
518 {
519 Data = 0;
520
521 arm11_add_dr_scan_vc(ARRAY_SIZE(chain5_fields), chain5_fields, TAP_DRPAUSE);
522
523 CHECK_RETVAL(jtag_execute_queue());
524
525 JTAG_DEBUG("DTR Data %08x Ready %d nRetry %d",
526 (unsigned) Data, Ready, nRetry);
527
528 long long then = 0;
529
530 if (i == 1000)
531 {
532 then = timeval_ms();
533 }
534 if (i >= 1000)
535 {
536 if ((timeval_ms()-then) > 1000)
537 {
538 LOG_WARNING("Timeout (1000ms) waiting for instructions to complete");
539 return ERROR_FAIL;
540 }
541 }
542
543 i++;
544 }
545 while (!Ready);
546
547 return ERROR_OK;
548 }
549
550 /** JTAG path for arm11_run_instr_data_to_core_noack
551 *
552 * The repeated TAP_IDLE's do not cause a repeated execution
553 * if passed without leaving the state.
554 *
555 * Since this is more than 7 bits (adjustable via adding more
556 * TAP_IDLE's) it produces an artificial delay in the lower
557 * layer (FT2232) that is long enough to finish execution on
558 * the core but still shorter than any manually inducible delays.
559 *
560 * To disable this code, try "memwrite burst false"
561 *
562 * FIX!!! should we use multiple TAP_IDLE here or not???
563 *
564 * https://lists.berlios.de/pipermail/openocd-development/2009-July/009698.html
565 * https://lists.berlios.de/pipermail/openocd-development/2009-August/009865.html
566 */
567 static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
568 {
569 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
570 };
571
572 /* This inner loop can be implemented by the minidriver, oftentimes in hardware... The
573 * minidriver can call the default implementation as a fallback or implement it
574 * from scratch.
575 */
576 int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
577 {
578 struct scan_field chain5_fields[3];
579
580 chain5_fields[0].tap = tap;
581 chain5_fields[0].num_bits = 32;
582 chain5_fields[0].out_value = NULL; /*&Data*/
583 chain5_fields[0].in_value = NULL;
584
585 chain5_fields[1].tap = tap;
586 chain5_fields[1].num_bits = 1;
587 chain5_fields[1].out_value = NULL;
588 chain5_fields[1].in_value = NULL; /*&Ready*/
589
590 chain5_fields[2].tap = tap;
591 chain5_fields[2].num_bits = 1;
592 chain5_fields[2].out_value = NULL;
593 chain5_fields[2].in_value = NULL;
594
595 uint8_t *Readies;
596 unsigned readiesNum = count;
597 unsigned bytes = sizeof(*Readies)*readiesNum;
598
599 Readies = (uint8_t *) malloc(bytes);
600 if (Readies == NULL)
601 {
602 LOG_ERROR("Out of memory allocating %u bytes", bytes);
603 return ERROR_FAIL;
604 }
605
606 uint8_t * ReadyPos = Readies;
607 while (count--)
608 {
609 chain5_fields[0].out_value = (void *)(data++);
610 chain5_fields[1].in_value = ReadyPos++;
611
612 if (count > 0)
613 {
614 jtag_add_dr_scan(ARRAY_SIZE(chain5_fields), chain5_fields, TAP_DRPAUSE);
615 jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
616 arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
617 } else
618 {
619 jtag_add_dr_scan(ARRAY_SIZE(chain5_fields), chain5_fields, TAP_IDLE);
620 }
621 }
622
623 int retval = jtag_execute_queue();
624 if (retval == ERROR_OK)
625 {
626 unsigned error_count = 0;
627
628 for (size_t i = 0; i < readiesNum; i++)
629 {
630 if (Readies[i] != 1)
631 {
632 error_count++;
633 }
634 }
635
636 if (error_count > 0 )
637 {
638 LOG_ERROR("%u words out of %u not transferred",
639 error_count, readiesNum);
640 retval = ERROR_FAIL;
641 }
642 }
643 free(Readies);
644
645 return retval;
646 }
647
648 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count);
649
650 #ifndef HAVE_JTAG_MINIDRIVER_H
651 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
652 {
653 return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
654 }
655 #endif
656
657 /** Execute one instruction via ITR repeatedly while
658 * passing data to the core via DTR on each execution.
659 *
660 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
661 * is set, the ITR Ready flag is set (as seen on the previous entry to
662 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
663 *
664 * No Ready check during transmission.
665 *
666 * The executed instruction \em must read data from DTR.
667 *
668 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
669 *
670 * \param arm11 Target state variable.
671 * \param opcode ARM opcode
672 * \param data Pointer to the data words to be passed to the core
673 * \param count Number of data words and instruction repetitions
674 *
675 */
676 int arm11_run_instr_data_to_core_noack(struct arm11_common * arm11, uint32_t opcode, uint32_t * data, size_t count)
677 {
678 arm11_add_IR(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
679
680 arm11_add_debug_INST(arm11, opcode, NULL, TAP_DRPAUSE);
681
682 arm11_add_IR(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
683
684 int retval = arm11_run_instr_data_to_core_noack_inner(arm11->arm.target->tap, opcode, data, count);
685
686 if (retval != ERROR_FAIL)
687 return retval;
688
689 arm11_add_IR(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
690
691 struct scan_field chain5_fields[3];
692
693 arm11_setup_field(arm11, 32, NULL/*&Data*/, NULL, chain5_fields + 0);
694 arm11_setup_field(arm11, 1, NULL, NULL /*&Ready*/, chain5_fields + 1);
695 arm11_setup_field(arm11, 1, NULL, NULL, chain5_fields + 2);
696
697 uint8_t ready_flag;
698 chain5_fields[1].in_value = &ready_flag;
699
700 arm11_add_dr_scan_vc(ARRAY_SIZE(chain5_fields), chain5_fields, TAP_DRPAUSE);
701
702 retval = jtag_execute_queue();
703 if (retval == ERROR_OK)
704 {
705 if (ready_flag != 1)
706 {
707 LOG_ERROR("last word not transferred");
708 retval = ERROR_FAIL;
709 }
710 }
711
712 return retval;
713 }
714
715
716 /** Execute an instruction via ITR while handing data into the core via DTR.
717 *
718 * The executed instruction \em must read data from DTR.
719 *
720 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
721 *
722 * \param arm11 Target state variable.
723 * \param opcode ARM opcode
724 * \param data Data word to be passed to the core via DTR
725 *
726 */
727 int arm11_run_instr_data_to_core1(struct arm11_common * arm11, uint32_t opcode, uint32_t data)
728 {
729 return arm11_run_instr_data_to_core(arm11, opcode, &data, 1);
730 }
731
732
733 /** Execute one instruction via ITR repeatedly while
734 * reading data from the core via DTR on each execution.
735 *
736 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
737 * is set, the ITR Ready flag is set (as seen on the previous entry to
738 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
739 *
740 * The executed instruction \em must write data to DTR.
741 *
742 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
743 *
744 * \param arm11 Target state variable.
745 * \param opcode ARM opcode
746 * \param data Pointer to an array that receives the data words from the core
747 * \param count Number of data words and instruction repetitions
748 *
749 */
750 int arm11_run_instr_data_from_core(struct arm11_common * arm11, uint32_t opcode, uint32_t * data, size_t count)
751 {
752 arm11_add_IR(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
753
754 arm11_add_debug_INST(arm11, opcode, NULL, TAP_IDLE);
755
756 arm11_add_IR(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
757
758 struct scan_field chain5_fields[3];
759
760 uint32_t Data;
761 uint8_t Ready;
762 uint8_t nRetry;
763
764 arm11_setup_field(arm11, 32, NULL, &Data, chain5_fields + 0);
765 arm11_setup_field(arm11, 1, NULL, &Ready, chain5_fields + 1);
766 arm11_setup_field(arm11, 1, NULL, &nRetry, chain5_fields + 2);
767
768 while (count--)
769 {
770 int i = 0;
771 do
772 {
773 arm11_add_dr_scan_vc(ARRAY_SIZE(chain5_fields), chain5_fields, count ? TAP_IDLE : TAP_DRPAUSE);
774
775 CHECK_RETVAL(jtag_execute_queue());
776
777 JTAG_DEBUG("DTR Data %08x Ready %d nRetry %d",
778 (unsigned) Data, Ready, nRetry);
779
780 long long then = 0;
781
782 if (i == 1000)
783 {
784 then = timeval_ms();
785 }
786 if (i >= 1000)
787 {
788 if ((timeval_ms()-then) > 1000)
789 {
790 LOG_WARNING("Timeout (1000ms) waiting for instructions to complete");
791 return ERROR_FAIL;
792 }
793 }
794
795 i++;
796 }
797 while (!Ready);
798
799 *data++ = Data;
800 }
801
802 return ERROR_OK;
803 }
804
805 /** Execute one instruction via ITR
806 * then load r0 into DTR and read DTR from core.
807 *
808 * The first executed instruction (\p opcode) should write data to r0.
809 *
810 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
811 *
812 * \param arm11 Target state variable.
813 * \param opcode ARM opcode to write r0 with the value of interest
814 * \param data Pointer to a data word that receives the value from r0 after \p opcode was executed.
815 *
816 */
817 int arm11_run_instr_data_from_core_via_r0(struct arm11_common * arm11, uint32_t opcode, uint32_t * data)
818 {
819 int retval;
820 retval = arm11_run_instr_no_data1(arm11, opcode);
821 if (retval != ERROR_OK)
822 return retval;
823
824 /* MCR p14,0,R0,c0,c5,0 (move r0 -> wDTR -> local var) */
825 arm11_run_instr_data_from_core(arm11, 0xEE000E15, data, 1);
826
827 return ERROR_OK;
828 }
829
830 /** Load data into core via DTR then move it to r0 then
831 * execute one instruction via ITR
832 *
833 * The final executed instruction (\p opcode) should read data from r0.
834 *
835 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
836 *
837 * \param arm11 Target state variable.
838 * \param opcode ARM opcode to read r0 act upon it
839 * \param data Data word that will be written to r0 before \p opcode is executed
840 *
841 */
842 int arm11_run_instr_data_to_core_via_r0(struct arm11_common * arm11, uint32_t opcode, uint32_t data)
843 {
844 int retval;
845 /* MRC p14,0,r0,c0,c5,0 */
846 retval = arm11_run_instr_data_to_core1(arm11, 0xEE100E15, data);
847 if (retval != ERROR_OK)
848 return retval;
849
850 retval = arm11_run_instr_no_data1(arm11, opcode);
851 if (retval != ERROR_OK)
852 return retval;
853
854 return ERROR_OK;
855 }
856
857 /** Apply reads and writes to scan chain 7
858 *
859 * \see struct arm11_sc7_action
860 *
861 * \param arm11 Target state variable.
862 * \param actions A list of read and/or write instructions
863 * \param count Number of instructions in the list.
864 *
865 */
866 int arm11_sc7_run(struct arm11_common * arm11, struct arm11_sc7_action * actions, size_t count)
867 {
868 int retval;
869
870 retval = arm11_add_debug_SCAN_N(arm11, 0x07, ARM11_TAP_DEFAULT);
871 if (retval != ERROR_OK)
872 return retval;
873
874 arm11_add_IR(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
875
876 struct scan_field chain7_fields[3];
877
878 uint8_t nRW;
879 uint32_t DataOut;
880 uint8_t AddressOut;
881 uint8_t Ready;
882 uint32_t DataIn;
883 uint8_t AddressIn;
884
885 arm11_setup_field(arm11, 1, &nRW, &Ready, chain7_fields + 0);
886 arm11_setup_field(arm11, 32, &DataOut, &DataIn, chain7_fields + 1);
887 arm11_setup_field(arm11, 7, &AddressOut, &AddressIn, chain7_fields + 2);
888
889 for (size_t i = 0; i < count + 1; i++)
890 {
891 if (i < count)
892 {
893 nRW = actions[i].write ? 1 : 0;
894 DataOut = actions[i].value;
895 AddressOut = actions[i].address;
896 }
897 else
898 {
899 nRW = 1;
900 DataOut = 0;
901 AddressOut = 0;
902 }
903
904 /* Timeout here so we don't get stuck. */
905 int i = 0;
906 while (1)
907 {
908 JTAG_DEBUG("SC7 <= c%-3d Data %08x %s",
909 (unsigned) AddressOut,
910 (unsigned) DataOut,
911 nRW ? "write" : "read");
912
913 arm11_add_dr_scan_vc(ARRAY_SIZE(chain7_fields),
914 chain7_fields, TAP_DRPAUSE);
915
916 CHECK_RETVAL(jtag_execute_queue());
917
918 /* 'nRW' is 'Ready' on read out */
919 if (Ready)
920 break;
921
922 long long then = 0;
923
924 if (i == 1000)
925 {
926 then = timeval_ms();
927 }
928 if (i >= 1000)
929 {
930 if ((timeval_ms()-then) > 1000)
931 {
932 LOG_WARNING("Timeout (1000ms) waiting for instructions to complete");
933 return ERROR_FAIL;
934 }
935 }
936
937 i++;
938 }
939
940 if (!nRW)
941 JTAG_DEBUG("SC7 => Data %08x", (unsigned) DataIn);
942
943 if (i > 0)
944 {
945 if (actions[i - 1].address != AddressIn)
946 {
947 LOG_WARNING("Scan chain 7 shifted out unexpected address");
948 }
949
950 if (!actions[i - 1].write)
951 {
952 actions[i - 1].value = DataIn;
953 }
954 else
955 {
956 if (actions[i - 1].value != DataIn)
957 {
958 LOG_WARNING("Scan chain 7 shifted out unexpected data");
959 }
960 }
961 }
962 }
963 return ERROR_OK;
964 }
965
966 /** Clear VCR and all breakpoints and watchpoints via scan chain 7
967 *
968 * \param arm11 Target state variable.
969 *
970 */
971 void arm11_sc7_clear_vbw(struct arm11_common * arm11)
972 {
973 size_t clear_bw_size = arm11->brp + 1;
974 struct arm11_sc7_action *clear_bw = malloc(sizeof(struct arm11_sc7_action) * clear_bw_size);
975 struct arm11_sc7_action * pos = clear_bw;
976
977 for (size_t i = 0; i < clear_bw_size; i++)
978 {
979 clear_bw[i].write = true;
980 clear_bw[i].value = 0;
981 }
982
983 for (size_t i = 0; i < arm11->brp; i++)
984 (pos++)->address = ARM11_SC7_BCR0 + i;
985
986 (pos++)->address = ARM11_SC7_VCR;
987
988 arm11_sc7_run(arm11, clear_bw, clear_bw_size);
989
990 free (clear_bw);
991 }
992
993 /** Write VCR register
994 *
995 * \param arm11 Target state variable.
996 * \param value Value to be written
997 */
998 void arm11_sc7_set_vcr(struct arm11_common * arm11, uint32_t value)
999 {
1000 struct arm11_sc7_action set_vcr;
1001
1002 set_vcr.write = true;
1003 set_vcr.address = ARM11_SC7_VCR;
1004 set_vcr.value = value;
1005
1006 arm11_sc7_run(arm11, &set_vcr, 1);
1007 }
1008
1009
1010
1011 /** Read word from address
1012 *
1013 * \param arm11 Target state variable.
1014 * \param address Memory address to be read
1015 * \param result Pointer where to store result
1016 *
1017 */
1018 int arm11_read_memory_word(struct arm11_common * arm11, uint32_t address, uint32_t * result)
1019 {
1020 int retval;
1021 retval = arm11_run_instr_data_prepare(arm11);
1022 if (retval != ERROR_OK)
1023 return retval;
1024
1025 /* MRC p14,0,r0,c0,c5,0 (r0 = address) */
1026 CHECK_RETVAL(arm11_run_instr_data_to_core1(arm11, 0xee100e15, address));
1027
1028 /* LDC p14,c5,[R0],#4 (DTR = [r0]) */
1029 CHECK_RETVAL(arm11_run_instr_data_from_core(arm11, 0xecb05e01, result, 1));
1030
1031 return arm11_run_instr_data_finish(arm11);
1032 }
1033
1034
1035 /************************************************************************/
1036
1037 /*
1038 * ARM11 provider for the OpenOCD implementation of the standard
1039 * architectural ARM v6/v7 "Debug Programmer's Model" (DPM).
1040 */
1041
1042 static inline struct arm11_common *dpm_to_arm11(struct arm_dpm *dpm)
1043 {
1044 return container_of(dpm, struct arm11_common, dpm);
1045 }
1046
1047 static int arm11_dpm_prepare(struct arm_dpm *dpm)
1048 {
1049 struct arm11_common *arm11 = dpm_to_arm11(dpm);
1050
1051 arm11 = container_of(dpm->arm, struct arm11_common, arm);
1052
1053 return arm11_run_instr_data_prepare(dpm_to_arm11(dpm));
1054 }
1055
1056 static int arm11_dpm_finish(struct arm_dpm *dpm)
1057 {
1058 return arm11_run_instr_data_finish(dpm_to_arm11(dpm));
1059 }
1060
1061 static int arm11_dpm_instr_write_data_dcc(struct arm_dpm *dpm,
1062 uint32_t opcode, uint32_t data)
1063 {
1064 return arm11_run_instr_data_to_core(dpm_to_arm11(dpm),
1065 opcode, &data, 1);
1066 }
1067
1068 static int arm11_dpm_instr_write_data_r0(struct arm_dpm *dpm,
1069 uint32_t opcode, uint32_t data)
1070 {
1071 return arm11_run_instr_data_to_core_via_r0(dpm_to_arm11(dpm),
1072 opcode, data);
1073 }
1074
1075 static int arm11_dpm_instr_read_data_dcc(struct arm_dpm *dpm,
1076 uint32_t opcode, uint32_t *data)
1077 {
1078 return arm11_run_instr_data_from_core(dpm_to_arm11(dpm),
1079 opcode, data, 1);
1080 }
1081
1082 static int arm11_dpm_instr_read_data_r0(struct arm_dpm *dpm,
1083 uint32_t opcode, uint32_t *data)
1084 {
1085 return arm11_run_instr_data_from_core_via_r0(dpm_to_arm11(dpm),
1086 opcode, data);
1087 }
1088
1089 /* Because arm11_sc7_run() takes a vector of actions, we batch breakpoint
1090 * and watchpoint operations instead of running them right away. Since we
1091 * pre-allocated our vector, we don't need to worry about space.
1092 */
1093 static int arm11_bpwp_enable(struct arm_dpm *dpm, unsigned index,
1094 uint32_t addr, uint32_t control)
1095 {
1096 struct arm11_common *arm11 = dpm_to_arm11(dpm);
1097 struct arm11_sc7_action *action;
1098
1099 action = arm11->bpwp_actions + arm11->bpwp_n;
1100
1101 /* Invariant: this bp/wp is disabled.
1102 * It also happens that the core is halted here, but for
1103 * DPM-based cores we don't actually care about that.
1104 */
1105
1106 action[0].write = action[1].write = true;
1107
1108 action[0].value = addr;
1109 action[1].value = control;
1110
1111 switch (index) {
1112 case 0 ... 15:
1113 action[0].address = ARM11_SC7_BVR0 + index;
1114 action[1].address = ARM11_SC7_BCR0 + index;
1115 break;
1116 case 16 ... 32:
1117 index -= 16;
1118 action[0].address = ARM11_SC7_WVR0 + index;
1119 action[1].address = ARM11_SC7_WCR0 + index;
1120 break;
1121 default:
1122 return ERROR_FAIL;
1123 }
1124
1125 arm11->bpwp_n += 2;
1126
1127 return ERROR_OK;
1128 }
1129
1130 static int arm11_bpwp_disable(struct arm_dpm *dpm, unsigned index)
1131 {
1132 struct arm11_common *arm11 = dpm_to_arm11(dpm);
1133 struct arm11_sc7_action *action;
1134
1135 action = arm11->bpwp_actions + arm11->bpwp_n;
1136
1137 action[0].write = true;
1138 action[0].value = 0;
1139
1140 switch (index) {
1141 case 0 ... 15:
1142 action[0].address = ARM11_SC7_BCR0 + index;
1143 break;
1144 case 16 ... 32:
1145 index -= 16;
1146 action[0].address = ARM11_SC7_WCR0 + index;
1147 break;
1148 default:
1149 return ERROR_FAIL;
1150 }
1151
1152 arm11->bpwp_n += 1;
1153
1154 return ERROR_OK;
1155 }
1156
1157 /** Flush any pending breakpoint and watchpoint updates. */
1158 int arm11_bpwp_flush(struct arm11_common *arm11)
1159 {
1160 int retval;
1161
1162 if (!arm11->bpwp_n)
1163 return ERROR_OK;
1164
1165 retval = arm11_sc7_run(arm11, arm11->bpwp_actions, arm11->bpwp_n);
1166 arm11->bpwp_n = 0;
1167
1168 return retval;
1169 }
1170
1171 /** Set up high-level debug module utilities */
1172 int arm11_dpm_init(struct arm11_common *arm11, uint32_t didr)
1173 {
1174 struct arm_dpm *dpm = &arm11->dpm;
1175 int retval;
1176
1177 dpm->arm = &arm11->arm;
1178
1179 dpm->didr = didr;
1180
1181 dpm->prepare = arm11_dpm_prepare;
1182 dpm->finish = arm11_dpm_finish;
1183
1184 dpm->instr_write_data_dcc = arm11_dpm_instr_write_data_dcc;
1185 dpm->instr_write_data_r0 = arm11_dpm_instr_write_data_r0;
1186
1187 dpm->instr_read_data_dcc = arm11_dpm_instr_read_data_dcc;
1188 dpm->instr_read_data_r0 = arm11_dpm_instr_read_data_r0;
1189
1190 dpm->bpwp_enable = arm11_bpwp_enable;
1191 dpm->bpwp_disable = arm11_bpwp_disable;
1192
1193 retval = arm_dpm_setup(dpm);
1194 if (retval != ERROR_OK)
1195 return retval;
1196
1197 /* alloc enough to enable all breakpoints and watchpoints at once */
1198 arm11->bpwp_actions = calloc(2 * (dpm->nbp + dpm->nwp),
1199 sizeof *arm11->bpwp_actions);
1200 if (!arm11->bpwp_actions)
1201 return ERROR_FAIL;
1202
1203 retval = arm_dpm_initialize(dpm);
1204 if (retval != ERROR_OK)
1205 return retval;
1206
1207 return arm11_bpwp_flush(arm11);
1208 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)