d7cd020f58808f281c84aa0d7ef2ef3393ea25ad
[openocd.git] / src / target / arm11_dbgtap.c
1 /***************************************************************************
2 * Copyright (C) 2008 digenius technology GmbH. *
3 * Michael Bruck *
4 * *
5 * Copyright (C) 2008,2009 Oyvind Harboe oyvind.harboe@zylin.com *
6 * *
7 * This program is free software; you can redistribute it and/or modify *
8 * it under the terms of the GNU General Public License as published by *
9 * the Free Software Foundation; either version 2 of the License, or *
10 * (at your option) any later version. *
11 * *
12 * This program is distributed in the hope that it will be useful, *
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
15 * GNU General Public License for more details. *
16 * *
17 * You should have received a copy of the GNU General Public License *
18 * along with this program; if not, write to the *
19 * Free Software Foundation, Inc., *
20 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
21 ***************************************************************************/
22
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "arm_jtag.h"
28 #include "arm11_dbgtap.h"
29
30 #include <helper/time_support.h>
31
32 #if 0
33 #define JTAG_DEBUG(expr ...) do { if (1) \
34 LOG_DEBUG(expr); } while (0)
35 #else
36 #define JTAG_DEBUG(expr ...) do { if (0) \
37 LOG_DEBUG(expr); } while (0)
38 #endif
39
40 /*
41 This pathmove goes from Pause-IR to Shift-IR while avoiding RTI. The
42 behavior of the FTDI driver IIRC was to go via RTI.
43
44 Conversely there may be other places in this code where the ARM11 code relies
45 on the driver to hit through RTI when coming from Update-?R.
46 */
47 static const tap_state_t arm11_move_pi_to_si_via_ci[] = {
48 TAP_IREXIT2, TAP_IRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IRSHIFT
49 };
50
51 /* REVISIT no error handling here! */
52 static void arm11_add_ir_scan_vc(struct jtag_tap *tap, struct scan_field *fields,
53 tap_state_t state)
54 {
55 if (cmd_queue_cur_state == TAP_IRPAUSE)
56 jtag_add_pathmove(ARRAY_SIZE(arm11_move_pi_to_si_via_ci),
57 arm11_move_pi_to_si_via_ci);
58
59 jtag_add_ir_scan(tap, fields, state);
60 }
61
62 static const tap_state_t arm11_move_pd_to_sd_via_cd[] = {
63 TAP_DREXIT2, TAP_DRUPDATE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
64 };
65
66 /* REVISIT no error handling here! */
67 void arm11_add_dr_scan_vc(struct jtag_tap *tap, int num_fields, struct scan_field *fields,
68 tap_state_t state)
69 {
70 if (cmd_queue_cur_state == TAP_DRPAUSE)
71 jtag_add_pathmove(ARRAY_SIZE(arm11_move_pd_to_sd_via_cd),
72 arm11_move_pd_to_sd_via_cd);
73
74 jtag_add_dr_scan(tap, num_fields, fields, state);
75 }
76
77
78 /** Code de-clutter: Construct struct scan_field to write out a value
79 *
80 * \param arm11 Target state variable.
81 * \param num_bits Length of the data field
82 * \param out_data pointer to the data that will be sent out
83 * <em > (data is read when it is added to the JTAG queue)</em>
84 * \param in_data pointer to the memory that will receive data that was clocked in
85 * <em > (data is written when the JTAG queue is executed)</em>
86 * \param field target data structure that will be initialized
87 */
88 void arm11_setup_field(struct arm11_common *arm11, int num_bits,
89 void *out_data, void *in_data, struct scan_field *field)
90 {
91 field->num_bits = num_bits;
92 field->out_value = out_data;
93 field->in_value = in_data;
94 }
95
96 static const char *arm11_ir_to_string(uint8_t ir)
97 {
98 const char *s = "unknown";
99
100 switch (ir) {
101 case ARM11_EXTEST:
102 s = "EXTEST";
103 break;
104 case ARM11_SCAN_N:
105 s = "SCAN_N";
106 break;
107 case ARM11_RESTART:
108 s = "RESTART";
109 break;
110 case ARM11_HALT:
111 s = "HALT";
112 break;
113 case ARM11_INTEST:
114 s = "INTEST";
115 break;
116 case ARM11_ITRSEL:
117 s = "ITRSEL";
118 break;
119 case ARM11_IDCODE:
120 s = "IDCODE";
121 break;
122 case ARM11_BYPASS:
123 s = "BYPASS";
124 break;
125 }
126 return s;
127 }
128
129 /** Write JTAG instruction register
130 *
131 * \param arm11 Target state variable.
132 * \param instr An ARM11 DBGTAP instruction. Use enum #arm11_instructions.
133 * \param state Pass the final TAP state or ARM11_TAP_DEFAULT for the default value (Pause-IR).
134 *
135 * \remarks This adds to the JTAG command queue but does \em not execute it.
136 */
137 void arm11_add_IR(struct arm11_common *arm11, uint8_t instr, tap_state_t state)
138 {
139 struct jtag_tap *tap = arm11->arm.target->tap;
140
141 if (buf_get_u32(tap->cur_instr, 0, 5) == instr) {
142 JTAG_DEBUG("IR <= 0x%02x SKIPPED", instr);
143 return;
144 }
145
146 JTAG_DEBUG("IR <= %s (0x%02x)", arm11_ir_to_string(instr), instr);
147
148 struct scan_field field;
149
150 arm11_setup_field(arm11, 5, &instr, NULL, &field);
151
152 arm11_add_ir_scan_vc(arm11->arm.target->tap,
153 &field,
154 state == ARM11_TAP_DEFAULT ? TAP_IRPAUSE : state);
155 }
156
157 /** Verify data shifted out from Scan Chain Register (SCREG). */
158 static void arm11_in_handler_SCAN_N(uint8_t *in_value)
159 {
160 /* Don't expect JTAG layer to modify bits we didn't ask it to read */
161 uint8_t v = *in_value & 0x1F;
162
163 if (v != 0x10) {
164 LOG_ERROR("'arm11 target' JTAG error SCREG OUT 0x%02x", v);
165 jtag_set_error(ERROR_FAIL);
166 }
167 }
168
169 /** Select and write to Scan Chain Register (SCREG)
170 *
171 * This function sets the instruction register to SCAN_N and writes
172 * the data register with the selected chain number.
173 *
174 * http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301f/Cacbjhfg.html
175 *
176 * \param arm11 Target state variable.
177 * \param chain Scan chain that will be selected.
178 * \param state Pass the final TAP state or ARM11_TAP_DEFAULT for the default
179 * value (Pause-DR).
180 *
181 * Changes the current scan chain if needed, transitions to the specified
182 * TAP state, and leaves the IR undefined.
183 *
184 * The chain takes effect when Update-DR is passed (usually when subsequently
185 * the INTEXT/EXTEST instructions are written).
186 *
187 * \warning (Obsolete) Using this twice in a row will \em fail. The first
188 * call will end in Pause-DR. The second call, due to the IR
189 * caching, will not go through Capture-DR when shifting in the
190 * new scan chain number. As a result the verification in
191 * arm11_in_handler_SCAN_N() must fail.
192 *
193 * \remarks This adds to the JTAG command queue but does \em not execute it.
194 */
195
196 int arm11_add_debug_SCAN_N(struct arm11_common *arm11,
197 uint8_t chain, tap_state_t state)
198 {
199 /* Don't needlessly switch the scan chain.
200 * NOTE: the ITRSEL instruction fakes SCREG changing;
201 * but leaves its actual value unchanged.
202 */
203 #if 0
204 /* FIX!!! the optimization below is broken because we do not */
205 /* invalidate the cur_scan_chain upon a TRST/TMS. See arm_jtag.c */
206 /* for example on how to invalidate cur_scan_chain. Tested patches gladly */
207 /* accepted! */
208 if (arm11->jtag_info.cur_scan_chain == chain) {
209 JTAG_DEBUG("SCREG <= %d SKIPPED", chain);
210 return jtag_add_statemove((state == ARM11_TAP_DEFAULT)
211 ? TAP_DRPAUSE : state);
212 }
213 #endif
214 JTAG_DEBUG("SCREG <= %d", chain);
215
216 arm11_add_IR(arm11, ARM11_SCAN_N, ARM11_TAP_DEFAULT);
217
218 struct scan_field field;
219
220 uint8_t tmp[1];
221 arm11_setup_field(arm11, 5, &chain, &tmp, &field);
222
223 arm11_add_dr_scan_vc(arm11->arm.target->tap,
224 1,
225 &field,
226 state == ARM11_TAP_DEFAULT ? TAP_DRPAUSE : state);
227
228 jtag_execute_queue_noclear();
229
230 arm11_in_handler_SCAN_N(tmp);
231
232 arm11->jtag_info.cur_scan_chain = chain;
233
234 return jtag_execute_queue();
235 }
236
237 /**
238 * Queue a DR scan of the ITR register. Caller must have selected
239 * scan chain 4 (ITR), possibly using ITRSEL.
240 *
241 * \param arm11 Target state variable.
242 * \param inst An ARM11 processor instruction/opcode.
243 * \param flag Optional parameter to retrieve the Ready flag;
244 * this address will be written when the JTAG chain is scanned.
245 * \param state The TAP state to enter after the DR scan.
246 *
247 * Going through the TAP_DRUPDATE state writes ITR only if Ready was
248 * previously set. Only the Ready flag is readable by the scan.
249 *
250 * An instruction loaded into ITR is executed when going through the
251 * TAP_IDLE state only if Ready was previously set and the debug state
252 * is properly set up. Depending on the instruction, you may also need
253 * to ensure that the rDTR is ready before that Run-Test/Idle state.
254 */
255 static void arm11_add_debug_INST(struct arm11_common *arm11,
256 uint32_t inst, uint8_t *flag, tap_state_t state)
257 {
258 JTAG_DEBUG("INST <= 0x%08x", (unsigned) inst);
259
260 struct scan_field itr[2];
261
262 arm11_setup_field(arm11, 32, &inst, NULL, itr + 0);
263 arm11_setup_field(arm11, 1, NULL, flag, itr + 1);
264
265 arm11_add_dr_scan_vc(arm11->arm.target->tap, ARRAY_SIZE(itr), itr, state);
266 }
267
268 /**
269 * Read and save the Debug Status and Control Register (DSCR).
270 *
271 * \param arm11 Target state variable.
272 * \return Error status; arm11->dscr is updated on success.
273 *
274 * \remarks This is a stand-alone function that executes the JTAG
275 * command queue. It does not require the ARM11 debug TAP to be
276 * in any particular state.
277 */
278 int arm11_read_DSCR(struct arm11_common *arm11)
279 {
280 int retval;
281
282 retval = arm11_add_debug_SCAN_N(arm11, 0x01, ARM11_TAP_DEFAULT);
283 if (retval != ERROR_OK)
284 return retval;
285
286 arm11_add_IR(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
287
288 uint32_t dscr;
289 struct scan_field chain1_field;
290
291 arm11_setup_field(arm11, 32, NULL, &dscr, &chain1_field);
292
293 arm11_add_dr_scan_vc(arm11->arm.target->tap, 1, &chain1_field, TAP_DRPAUSE);
294
295 CHECK_RETVAL(jtag_execute_queue());
296
297 if (arm11->dscr != dscr)
298 JTAG_DEBUG("DSCR = %08x (OLD %08x)",
299 (unsigned) dscr,
300 (unsigned) arm11->dscr);
301
302 arm11->dscr = dscr;
303
304 return ERROR_OK;
305 }
306
307 /** Write the Debug Status and Control Register (DSCR)
308 *
309 * same as CP14 c1
310 *
311 * \param arm11 Target state variable.
312 * \param dscr DSCR content
313 *
314 * \remarks This is a stand-alone function that executes the JTAG command queue.
315 */
316 int arm11_write_DSCR(struct arm11_common *arm11, uint32_t dscr)
317 {
318 int retval;
319 retval = arm11_add_debug_SCAN_N(arm11, 0x01, ARM11_TAP_DEFAULT);
320 if (retval != ERROR_OK)
321 return retval;
322
323 arm11_add_IR(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
324
325 struct scan_field chain1_field;
326
327 arm11_setup_field(arm11, 32, &dscr, NULL, &chain1_field);
328
329 arm11_add_dr_scan_vc(arm11->arm.target->tap, 1, &chain1_field, TAP_DRPAUSE);
330
331 CHECK_RETVAL(jtag_execute_queue());
332
333 JTAG_DEBUG("DSCR <= %08x (OLD %08x)",
334 (unsigned) dscr,
335 (unsigned) arm11->dscr);
336
337 arm11->dscr = dscr;
338
339 return ERROR_OK;
340 }
341
342 /** Prepare the stage for ITR/DTR operations
343 * from the arm11_run_instr... group of functions.
344 *
345 * Put arm11_run_instr_data_prepare() and arm11_run_instr_data_finish()
346 * around a block of arm11_run_instr_... calls.
347 *
348 * Select scan chain 5 to allow quick access to DTR. When scan
349 * chain 4 is needed to put in a register the ITRSel instruction
350 * shortcut is used instead of actually changing the Scan_N
351 * register.
352 *
353 * \param arm11 Target state variable.
354 *
355 */
356 int arm11_run_instr_data_prepare(struct arm11_common *arm11)
357 {
358 return arm11_add_debug_SCAN_N(arm11, 0x05, ARM11_TAP_DEFAULT);
359 }
360
361 /** Cleanup after ITR/DTR operations
362 * from the arm11_run_instr... group of functions
363 *
364 * Put arm11_run_instr_data_prepare() and arm11_run_instr_data_finish()
365 * around a block of arm11_run_instr_... calls.
366 *
367 * Any IDLE can lead to an instruction execution when
368 * scan chains 4 or 5 are selected and the IR holds
369 * INTEST or EXTEST. So we must disable that before
370 * any following activities lead to an IDLE.
371 *
372 * \param arm11 Target state variable.
373 *
374 */
375 int arm11_run_instr_data_finish(struct arm11_common *arm11)
376 {
377 return arm11_add_debug_SCAN_N(arm11, 0x00, ARM11_TAP_DEFAULT);
378 }
379
380 /**
381 * Execute one or more instructions via ITR.
382 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
383 * is set, the ITR Ready flag is set (as seen on the previous entry to
384 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
385 *
386 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
387 *
388 * \param arm11 Target state variable.
389 * \param opcode Pointer to sequence of ARM opcodes
390 * \param count Number of opcodes to execute
391 *
392 */
393 static
394 int arm11_run_instr_no_data(struct arm11_common *arm11,
395 uint32_t *opcode, size_t count)
396 {
397 arm11_add_IR(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
398
399 while (count--) {
400 arm11_add_debug_INST(arm11, *opcode++, NULL, TAP_IDLE);
401
402 int i = 0;
403 while (1) {
404 uint8_t flag;
405
406 arm11_add_debug_INST(arm11, 0, &flag, count ? TAP_IDLE : TAP_DRPAUSE);
407
408 CHECK_RETVAL(jtag_execute_queue());
409
410 if (flag)
411 break;
412
413 long long then = 0;
414
415 if (i == 1000)
416 then = timeval_ms();
417 if (i >= 1000) {
418 if ((timeval_ms()-then) > 1000) {
419 LOG_WARNING(
420 "Timeout (1000ms) waiting for instructions to complete");
421 return ERROR_FAIL;
422 }
423 }
424
425 i++;
426 }
427 }
428
429 return ERROR_OK;
430 }
431
432 /** Execute one instruction via ITR
433 *
434 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
435 *
436 * \param arm11 Target state variable.
437 * \param opcode ARM opcode
438 *
439 */
440 int arm11_run_instr_no_data1(struct arm11_common *arm11, uint32_t opcode)
441 {
442 return arm11_run_instr_no_data(arm11, &opcode, 1);
443 }
444
445
446 /** Execute one instruction via ITR repeatedly while
447 * passing data to the core via DTR on each execution.
448 *
449 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
450 * is set, the ITR Ready flag is set (as seen on the previous entry to
451 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
452 *
453 * The executed instruction \em must read data from DTR.
454 *
455 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
456 *
457 * \param arm11 Target state variable.
458 * \param opcode ARM opcode
459 * \param data Pointer to the data words to be passed to the core
460 * \param count Number of data words and instruction repetitions
461 *
462 */
463 int arm11_run_instr_data_to_core(struct arm11_common *arm11,
464 uint32_t opcode,
465 uint32_t *data,
466 size_t count)
467 {
468 arm11_add_IR(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
469
470 arm11_add_debug_INST(arm11, opcode, NULL, TAP_DRPAUSE);
471
472 arm11_add_IR(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
473
474 struct scan_field chain5_fields[3];
475
476 uint32_t Data;
477 uint8_t Ready;
478 uint8_t nRetry;
479
480 arm11_setup_field(arm11, 32, &Data, NULL, chain5_fields + 0);
481 arm11_setup_field(arm11, 1, NULL, &Ready, chain5_fields + 1);
482 arm11_setup_field(arm11, 1, NULL, &nRetry, chain5_fields + 2);
483
484 while (count--) {
485 int i = 0;
486 do {
487 Data = *data;
488
489 arm11_add_dr_scan_vc(arm11->arm.target->tap, ARRAY_SIZE(
490 chain5_fields), chain5_fields, TAP_IDLE);
491
492 CHECK_RETVAL(jtag_execute_queue());
493
494 JTAG_DEBUG("DTR Ready %d nRetry %d", Ready, nRetry);
495
496 long long then = 0;
497
498 if (i == 1000)
499 then = timeval_ms();
500 if (i >= 1000) {
501 if ((timeval_ms()-then) > 1000) {
502 LOG_WARNING(
503 "Timeout (1000ms) waiting for instructions to complete");
504 return ERROR_FAIL;
505 }
506 }
507
508 i++;
509 } while (!Ready);
510
511 data++;
512 }
513
514 arm11_add_IR(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
515
516 int i = 0;
517 do {
518 Data = 0;
519
520 arm11_add_dr_scan_vc(arm11->arm.target->tap, ARRAY_SIZE(
521 chain5_fields), chain5_fields, TAP_DRPAUSE);
522
523 CHECK_RETVAL(jtag_execute_queue());
524
525 JTAG_DEBUG("DTR Data %08x Ready %d nRetry %d",
526 (unsigned) Data, Ready, nRetry);
527
528 long long then = 0;
529
530 if (i == 1000)
531 then = timeval_ms();
532 if (i >= 1000) {
533 if ((timeval_ms()-then) > 1000) {
534 LOG_WARNING("Timeout (1000ms) waiting for instructions to complete");
535 return ERROR_FAIL;
536 }
537 }
538
539 i++;
540 } while (!Ready);
541
542 return ERROR_OK;
543 }
544
545 /** JTAG path for arm11_run_instr_data_to_core_noack
546 *
547 * The repeated TAP_IDLE's do not cause a repeated execution
548 * if passed without leaving the state.
549 *
550 * Since this is more than 7 bits (adjustable via adding more
551 * TAP_IDLE's) it produces an artificial delay in the lower
552 * layer (FT2232) that is long enough to finish execution on
553 * the core but still shorter than any manually inducible delays.
554 *
555 * To disable this code, try "memwrite burst false"
556 *
557 * FIX!!! should we use multiple TAP_IDLE here or not???
558 *
559 * https://lists.berlios.de/pipermail/openocd-development/2009-July/009698.html
560 * https://lists.berlios.de/pipermail/openocd-development/2009-August/009865.html
561 */
562 static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] = {
563 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE,
564 TAP_DRSHIFT
565 };
566
567 /* This inner loop can be implemented by the minidriver, oftentimes in hardware... The
568 * minidriver can call the default implementation as a fallback or implement it
569 * from scratch.
570 */
571 int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap *tap,
572 uint32_t opcode,
573 uint32_t *data,
574 size_t count)
575 {
576 struct scan_field chain5_fields[3];
577
578 chain5_fields[0].num_bits = 32;
579 chain5_fields[0].out_value = NULL; /*&Data*/
580 chain5_fields[0].in_value = NULL;
581
582 chain5_fields[1].num_bits = 1;
583 chain5_fields[1].out_value = NULL;
584 chain5_fields[1].in_value = NULL; /*&Ready*/
585
586 chain5_fields[2].num_bits = 1;
587 chain5_fields[2].out_value = NULL;
588 chain5_fields[2].in_value = NULL;
589
590 uint8_t *Readies;
591 unsigned readiesNum = count;
592 unsigned bytes = sizeof(*Readies)*readiesNum;
593
594 Readies = (uint8_t *) malloc(bytes);
595 if (Readies == NULL) {
596 LOG_ERROR("Out of memory allocating %u bytes", bytes);
597 return ERROR_FAIL;
598 }
599
600 uint8_t *ReadyPos = Readies;
601 while (count--) {
602 chain5_fields[0].out_value = (void *)(data++);
603 chain5_fields[1].in_value = ReadyPos++;
604
605 if (count > 0) {
606 jtag_add_dr_scan(tap, ARRAY_SIZE(chain5_fields), chain5_fields,
607 TAP_DRPAUSE);
608 jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
609 arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
610 } else
611 jtag_add_dr_scan(tap, ARRAY_SIZE(chain5_fields), chain5_fields, TAP_IDLE);
612 }
613
614 int retval = jtag_execute_queue();
615 if (retval == ERROR_OK) {
616 unsigned error_count = 0;
617
618 for (size_t i = 0; i < readiesNum; i++) {
619 if (Readies[i] != 1)
620 error_count++;
621 }
622
623 if (error_count > 0) {
624 LOG_ERROR("%u words out of %u not transferred",
625 error_count, readiesNum);
626 retval = ERROR_FAIL;
627 }
628 }
629 free(Readies);
630
631 return retval;
632 }
633
634 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap *tap,
635 uint32_t opcode,
636 uint32_t *data,
637 size_t count);
638
639 #ifndef HAVE_JTAG_MINIDRIVER_H
640 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap *tap,
641 uint32_t opcode,
642 uint32_t *data,
643 size_t count)
644 {
645 return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
646 }
647 #endif
648
649 /** Execute one instruction via ITR repeatedly while
650 * passing data to the core via DTR on each execution.
651 *
652 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
653 * is set, the ITR Ready flag is set (as seen on the previous entry to
654 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
655 *
656 * No Ready check during transmission.
657 *
658 * The executed instruction \em must read data from DTR.
659 *
660 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
661 *
662 * \param arm11 Target state variable.
663 * \param opcode ARM opcode
664 * \param data Pointer to the data words to be passed to the core
665 * \param count Number of data words and instruction repetitions
666 *
667 */
668 int arm11_run_instr_data_to_core_noack(struct arm11_common *arm11,
669 uint32_t opcode,
670 uint32_t *data,
671 size_t count)
672 {
673 arm11_add_IR(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
674
675 arm11_add_debug_INST(arm11, opcode, NULL, TAP_DRPAUSE);
676
677 arm11_add_IR(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
678
679 int retval = arm11_run_instr_data_to_core_noack_inner(arm11->arm.target->tap,
680 opcode,
681 data,
682 count);
683
684 if (retval != ERROR_OK)
685 return retval;
686
687 arm11_add_IR(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
688
689 struct scan_field chain5_fields[3];
690
691 arm11_setup_field(arm11,
692 32,
693 NULL /*&Data*/,
694 NULL,
695 chain5_fields + 0);
696 arm11_setup_field(arm11,
697 1,
698 NULL,
699 NULL /*&Ready*/,
700 chain5_fields + 1);
701 arm11_setup_field(arm11,
702 1,
703 NULL,
704 NULL,
705 chain5_fields + 2);
706
707 uint8_t ready_flag;
708 chain5_fields[1].in_value = &ready_flag;
709
710 arm11_add_dr_scan_vc(arm11->arm.target->tap, ARRAY_SIZE(
711 chain5_fields), chain5_fields, TAP_DRPAUSE);
712
713 retval = jtag_execute_queue();
714 if (retval == ERROR_OK) {
715 if (ready_flag != 1) {
716 LOG_ERROR("last word not transferred");
717 retval = ERROR_FAIL;
718 }
719 }
720
721 return retval;
722 }
723
724
725 /** Execute an instruction via ITR while handing data into the core via DTR.
726 *
727 * The executed instruction \em must read data from DTR.
728 *
729 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
730 *
731 * \param arm11 Target state variable.
732 * \param opcode ARM opcode
733 * \param data Data word to be passed to the core via DTR
734 *
735 */
736 int arm11_run_instr_data_to_core1(struct arm11_common *arm11, uint32_t opcode, uint32_t data)
737 {
738 return arm11_run_instr_data_to_core(arm11, opcode, &data, 1);
739 }
740
741
742 /** Execute one instruction via ITR repeatedly while
743 * reading data from the core via DTR on each execution.
744 *
745 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
746 * is set, the ITR Ready flag is set (as seen on the previous entry to
747 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
748 *
749 * The executed instruction \em must write data to DTR.
750 *
751 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
752 *
753 * \param arm11 Target state variable.
754 * \param opcode ARM opcode
755 * \param data Pointer to an array that receives the data words from the core
756 * \param count Number of data words and instruction repetitions
757 *
758 */
759 int arm11_run_instr_data_from_core(struct arm11_common *arm11,
760 uint32_t opcode,
761 uint32_t *data,
762 size_t count)
763 {
764 arm11_add_IR(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
765
766 arm11_add_debug_INST(arm11, opcode, NULL, TAP_IDLE);
767
768 arm11_add_IR(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
769
770 struct scan_field chain5_fields[3];
771
772 uint32_t Data;
773 uint8_t Ready;
774 uint8_t nRetry;
775
776 arm11_setup_field(arm11, 32, NULL, &Data, chain5_fields + 0);
777 arm11_setup_field(arm11, 1, NULL, &Ready, chain5_fields + 1);
778 arm11_setup_field(arm11, 1, NULL, &nRetry, chain5_fields + 2);
779
780 while (count--) {
781 int i = 0;
782 do {
783 arm11_add_dr_scan_vc(arm11->arm.target->tap, ARRAY_SIZE(
784 chain5_fields), chain5_fields,
785 count ? TAP_IDLE : TAP_DRPAUSE);
786
787 CHECK_RETVAL(jtag_execute_queue());
788
789 JTAG_DEBUG("DTR Data %08x Ready %d nRetry %d",
790 (unsigned) Data, Ready, nRetry);
791
792 long long then = 0;
793
794 if (i == 1000)
795 then = timeval_ms();
796 if (i >= 1000) {
797 if ((timeval_ms()-then) > 1000) {
798 LOG_WARNING(
799 "Timeout (1000ms) waiting for instructions to complete");
800 return ERROR_FAIL;
801 }
802 }
803
804 i++;
805 } while (!Ready);
806
807 *data++ = Data;
808 }
809
810 return ERROR_OK;
811 }
812
813 /** Execute one instruction via ITR
814 * then load r0 into DTR and read DTR from core.
815 *
816 * The first executed instruction (\p opcode) should write data to r0.
817 *
818 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
819 *
820 * \param arm11 Target state variable.
821 * \param opcode ARM opcode to write r0 with the value of interest
822 * \param data Pointer to a data word that receives the value from r0 after \p opcode was executed.
823 *
824 */
825 int arm11_run_instr_data_from_core_via_r0(struct arm11_common *arm11,
826 uint32_t opcode,
827 uint32_t *data)
828 {
829 int retval;
830 retval = arm11_run_instr_no_data1(arm11, opcode);
831 if (retval != ERROR_OK)
832 return retval;
833
834 /* MCR p14,0,R0,c0,c5,0 (move r0 -> wDTR -> local var) */
835 arm11_run_instr_data_from_core(arm11, 0xEE000E15, data, 1);
836
837 return ERROR_OK;
838 }
839
840 /** Load data into core via DTR then move it to r0 then
841 * execute one instruction via ITR
842 *
843 * The final executed instruction (\p opcode) should read data from r0.
844 *
845 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
846 *
847 * \param arm11 Target state variable.
848 * \param opcode ARM opcode to read r0 act upon it
849 * \param data Data word that will be written to r0 before \p opcode is executed
850 *
851 */
852 int arm11_run_instr_data_to_core_via_r0(struct arm11_common *arm11, uint32_t opcode, uint32_t data)
853 {
854 int retval;
855 /* MRC p14,0,r0,c0,c5,0 */
856 retval = arm11_run_instr_data_to_core1(arm11, 0xEE100E15, data);
857 if (retval != ERROR_OK)
858 return retval;
859
860 retval = arm11_run_instr_no_data1(arm11, opcode);
861 if (retval != ERROR_OK)
862 return retval;
863
864 return ERROR_OK;
865 }
866
867 /** Apply reads and writes to scan chain 7
868 *
869 * \see struct arm11_sc7_action
870 *
871 * \param arm11 Target state variable.
872 * \param actions A list of read and/or write instructions
873 * \param count Number of instructions in the list.
874 *
875 */
876 int arm11_sc7_run(struct arm11_common *arm11, struct arm11_sc7_action *actions, size_t count)
877 {
878 int retval;
879
880 retval = arm11_add_debug_SCAN_N(arm11, 0x07, ARM11_TAP_DEFAULT);
881 if (retval != ERROR_OK)
882 return retval;
883
884 arm11_add_IR(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
885
886 struct scan_field chain7_fields[3];
887
888 uint8_t nRW;
889 uint32_t DataOut;
890 uint8_t AddressOut;
891 uint8_t Ready;
892 uint32_t DataIn;
893 uint8_t AddressIn;
894
895 arm11_setup_field(arm11, 1, &nRW, &Ready, chain7_fields + 0);
896 arm11_setup_field(arm11, 32, &DataOut, &DataIn, chain7_fields + 1);
897 arm11_setup_field(arm11, 7, &AddressOut, &AddressIn, chain7_fields + 2);
898
899 for (size_t i = 0; i < count + 1; i++) {
900 if (i < count) {
901 nRW = actions[i].write ? 1 : 0;
902 DataOut = actions[i].value;
903 AddressOut = actions[i].address;
904 } else {
905 nRW = 1;
906 DataOut = 0;
907 AddressOut = 0;
908 }
909
910 /* Timeout here so we don't get stuck. */
911 int i_n = 0;
912 while (1) {
913 JTAG_DEBUG("SC7 <= c%-3d Data %08x %s",
914 (unsigned) AddressOut,
915 (unsigned) DataOut,
916 nRW ? "write" : "read");
917
918 arm11_add_dr_scan_vc(arm11->arm.target->tap, ARRAY_SIZE(chain7_fields),
919 chain7_fields, TAP_DRPAUSE);
920
921 CHECK_RETVAL(jtag_execute_queue());
922
923 /* 'nRW' is 'Ready' on read out */
924 if (Ready)
925 break;
926
927 long long then = 0;
928
929 if (i_n == 1000)
930 then = timeval_ms();
931 if (i_n >= 1000) {
932 if ((timeval_ms()-then) > 1000) {
933 LOG_WARNING(
934 "Timeout (1000ms) waiting for instructions to complete");
935 return ERROR_FAIL;
936 }
937 }
938
939 i_n++;
940 }
941
942 if (!nRW)
943 JTAG_DEBUG("SC7 => Data %08x", (unsigned) DataIn);
944
945 if (i > 0) {
946 if (actions[i - 1].address != AddressIn)
947 LOG_WARNING("Scan chain 7 shifted out unexpected address");
948
949 if (!actions[i - 1].write)
950 actions[i - 1].value = DataIn;
951 else {
952 if (actions[i - 1].value != DataIn)
953 LOG_WARNING("Scan chain 7 shifted out unexpected data");
954 }
955 }
956 }
957 return ERROR_OK;
958 }
959
960 /** Clear VCR and all breakpoints and watchpoints via scan chain 7
961 *
962 * \param arm11 Target state variable.
963 *
964 */
965 int arm11_sc7_clear_vbw(struct arm11_common *arm11)
966 {
967 size_t clear_bw_size = arm11->brp + 1;
968 struct arm11_sc7_action *clear_bw = malloc(sizeof(struct arm11_sc7_action) * clear_bw_size);
969 struct arm11_sc7_action *pos = clear_bw;
970
971 for (size_t i = 0; i < clear_bw_size; i++) {
972 clear_bw[i].write = true;
973 clear_bw[i].value = 0;
974 }
975
976 for (size_t i = 0; i < arm11->brp; i++)
977 (pos++)->address = ARM11_SC7_BCR0 + i;
978
979 (pos++)->address = ARM11_SC7_VCR;
980
981 int retval;
982 retval = arm11_sc7_run(arm11, clear_bw, clear_bw_size);
983
984 free(clear_bw);
985
986 return retval;
987 }
988
989 /** Write VCR register
990 *
991 * \param arm11 Target state variable.
992 * \param value Value to be written
993 */
994 int arm11_sc7_set_vcr(struct arm11_common *arm11, uint32_t value)
995 {
996 struct arm11_sc7_action set_vcr;
997
998 set_vcr.write = true;
999 set_vcr.address = ARM11_SC7_VCR;
1000 set_vcr.value = value;
1001
1002 return arm11_sc7_run(arm11, &set_vcr, 1);
1003 }
1004
1005 /** Read word from address
1006 *
1007 * \param arm11 Target state variable.
1008 * \param address Memory address to be read
1009 * \param result Pointer where to store result
1010 *
1011 */
1012 int arm11_read_memory_word(struct arm11_common *arm11, uint32_t address, uint32_t *result)
1013 {
1014 int retval;
1015 retval = arm11_run_instr_data_prepare(arm11);
1016 if (retval != ERROR_OK)
1017 return retval;
1018
1019 /* MRC p14,0,r0,c0,c5,0 (r0 = address) */
1020 CHECK_RETVAL(arm11_run_instr_data_to_core1(arm11, 0xee100e15, address));
1021
1022 /* LDC p14,c5,[R0],#4 (DTR = [r0]) */
1023 CHECK_RETVAL(arm11_run_instr_data_from_core(arm11, 0xecb05e01, result, 1));
1024
1025 return arm11_run_instr_data_finish(arm11);
1026 }
1027
1028 /************************************************************************/
1029
1030 /*
1031 * ARM11 provider for the OpenOCD implementation of the standard
1032 * architectural ARM v6/v7 "Debug Programmer's Model" (DPM).
1033 */
1034
1035 static inline struct arm11_common *dpm_to_arm11(struct arm_dpm *dpm)
1036 {
1037 return container_of(dpm, struct arm11_common, dpm);
1038 }
1039
1040 static int arm11_dpm_prepare(struct arm_dpm *dpm)
1041 {
1042 return arm11_run_instr_data_prepare(dpm_to_arm11(dpm));
1043 }
1044
1045 static int arm11_dpm_finish(struct arm_dpm *dpm)
1046 {
1047 return arm11_run_instr_data_finish(dpm_to_arm11(dpm));
1048 }
1049
1050 static int arm11_dpm_instr_write_data_dcc(struct arm_dpm *dpm,
1051 uint32_t opcode, uint32_t data)
1052 {
1053 return arm11_run_instr_data_to_core(dpm_to_arm11(dpm),
1054 opcode, &data, 1);
1055 }
1056
1057 static int arm11_dpm_instr_write_data_r0(struct arm_dpm *dpm,
1058 uint32_t opcode, uint32_t data)
1059 {
1060 return arm11_run_instr_data_to_core_via_r0(dpm_to_arm11(dpm),
1061 opcode, data);
1062 }
1063
1064 static int arm11_dpm_instr_read_data_dcc(struct arm_dpm *dpm,
1065 uint32_t opcode, uint32_t *data)
1066 {
1067 return arm11_run_instr_data_from_core(dpm_to_arm11(dpm),
1068 opcode, data, 1);
1069 }
1070
1071 static int arm11_dpm_instr_read_data_r0(struct arm_dpm *dpm,
1072 uint32_t opcode, uint32_t *data)
1073 {
1074 return arm11_run_instr_data_from_core_via_r0(dpm_to_arm11(dpm),
1075 opcode, data);
1076 }
1077
1078 /* Because arm11_sc7_run() takes a vector of actions, we batch breakpoint
1079 * and watchpoint operations instead of running them right away. Since we
1080 * pre-allocated our vector, we don't need to worry about space.
1081 */
1082 static int arm11_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
1083 uint32_t addr, uint32_t control)
1084 {
1085 struct arm11_common *arm11 = dpm_to_arm11(dpm);
1086 struct arm11_sc7_action *action;
1087
1088 action = arm11->bpwp_actions + arm11->bpwp_n;
1089
1090 /* Invariant: this bp/wp is disabled.
1091 * It also happens that the core is halted here, but for
1092 * DPM-based cores we don't actually care about that.
1093 */
1094
1095 action[0].write = action[1].write = true;
1096
1097 action[0].value = addr;
1098 action[1].value = control;
1099
1100 switch (index_t) {
1101 case 0 ... 15:
1102 action[0].address = ARM11_SC7_BVR0 + index_t;
1103 action[1].address = ARM11_SC7_BCR0 + index_t;
1104 break;
1105 case 16 ... 32:
1106 index_t -= 16;
1107 action[0].address = ARM11_SC7_WVR0 + index_t;
1108 action[1].address = ARM11_SC7_WCR0 + index_t;
1109 break;
1110 default:
1111 return ERROR_FAIL;
1112 }
1113
1114 arm11->bpwp_n += 2;
1115
1116 return ERROR_OK;
1117 }
1118
1119 static int arm11_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
1120 {
1121 struct arm11_common *arm11 = dpm_to_arm11(dpm);
1122 struct arm11_sc7_action *action;
1123
1124 action = arm11->bpwp_actions + arm11->bpwp_n;
1125
1126 action[0].write = true;
1127 action[0].value = 0;
1128
1129 switch (index_t) {
1130 case 0 ... 15:
1131 action[0].address = ARM11_SC7_BCR0 + index_t;
1132 break;
1133 case 16 ... 32:
1134 index_t -= 16;
1135 action[0].address = ARM11_SC7_WCR0 + index_t;
1136 break;
1137 default:
1138 return ERROR_FAIL;
1139 }
1140
1141 arm11->bpwp_n += 1;
1142
1143 return ERROR_OK;
1144 }
1145
1146 /** Flush any pending breakpoint and watchpoint updates. */
1147 int arm11_bpwp_flush(struct arm11_common *arm11)
1148 {
1149 int retval;
1150
1151 if (!arm11->bpwp_n)
1152 return ERROR_OK;
1153
1154 retval = arm11_sc7_run(arm11, arm11->bpwp_actions, arm11->bpwp_n);
1155 arm11->bpwp_n = 0;
1156
1157 return retval;
1158 }
1159
1160 /** Set up high-level debug module utilities */
1161 int arm11_dpm_init(struct arm11_common *arm11, uint32_t didr)
1162 {
1163 struct arm_dpm *dpm = &arm11->dpm;
1164 int retval;
1165
1166 dpm->arm = &arm11->arm;
1167
1168 dpm->didr = didr;
1169
1170 dpm->prepare = arm11_dpm_prepare;
1171 dpm->finish = arm11_dpm_finish;
1172
1173 dpm->instr_write_data_dcc = arm11_dpm_instr_write_data_dcc;
1174 dpm->instr_write_data_r0 = arm11_dpm_instr_write_data_r0;
1175
1176 dpm->instr_read_data_dcc = arm11_dpm_instr_read_data_dcc;
1177 dpm->instr_read_data_r0 = arm11_dpm_instr_read_data_r0;
1178
1179 dpm->bpwp_enable = arm11_bpwp_enable;
1180 dpm->bpwp_disable = arm11_bpwp_disable;
1181
1182 retval = arm_dpm_setup(dpm);
1183 if (retval != ERROR_OK)
1184 return retval;
1185
1186 /* alloc enough to enable all breakpoints and watchpoints at once */
1187 arm11->bpwp_actions = calloc(2 * (dpm->nbp + dpm->nwp),
1188 sizeof *arm11->bpwp_actions);
1189 if (!arm11->bpwp_actions)
1190 return ERROR_FAIL;
1191
1192 retval = arm_dpm_initialize(dpm);
1193 if (retval != ERROR_OK)
1194 return retval;
1195
1196 return arm11_bpwp_flush(arm11);
1197 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)