retire jtag_add_dr_scan_now
[openocd.git] / src / jtag / jtag.h
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifndef JTAG_H
24 #define JTAG_H
25
26 #include "binarybuffer.h"
27 #include "log.h"
28
29
30 #ifdef _DEBUG_JTAG_IO_
31 #define DEBUG_JTAG_IO(expr ...) LOG_DEBUG(expr)
32 #else
33 #define DEBUG_JTAG_IO(expr ...)
34 #endif
35
36 #ifndef DEBUG_JTAG_IOZ
37 #define DEBUG_JTAG_IOZ 64
38 #endif
39
40 /*-----<Macros>--------------------------------------------------*/
41
42 /** When given an array, compute its DIMension, i.e. number of elements in the array */
43 #define DIM(x) (sizeof(x)/sizeof((x)[0]))
44
45 /** Calculate the number of bytes required to hold @a n TAP scan bits */
46 #define TAP_SCAN_BYTES(n) CEIL(n, 8)
47
48 /*-----</Macros>-------------------------------------------------*/
49
50
51
52 /*
53 * Tap states from ARM7TDMI-S Technical reference manual.
54 * Also, validated against several other ARM core technical manuals.
55 *
56 * N.B. tap_get_tms_path() was changed to reflect this corrected
57 * numbering and ordering of the TAP states.
58 *
59 * DANGER!!!! some interfaces care about the actual numbers used
60 * as they are handed off directly to hardware implementations.
61 */
62
63 typedef enum tap_state
64 {
65 #if BUILD_ECOSBOARD
66 /* These are the old numbers. Leave as-is for now... */
67 TAP_RESET = 0, TAP_IDLE = 8,
68 TAP_DRSELECT = 1, TAP_DRCAPTURE = 2, TAP_DRSHIFT = 3, TAP_DREXIT1 = 4,
69 TAP_DRPAUSE = 5, TAP_DREXIT2 = 6, TAP_DRUPDATE = 7,
70 TAP_IRSELECT = 9, TAP_IRCAPTURE = 10, TAP_IRSHIFT = 11, TAP_IREXIT1 = 12,
71 TAP_IRPAUSE = 13, TAP_IREXIT2 = 14, TAP_IRUPDATE = 15,
72
73 TAP_NUM_STATES = 16, TAP_INVALID = -1,
74 #else
75 /* Proper ARM recommended numbers */
76 TAP_DREXIT2 = 0x0,
77 TAP_DREXIT1 = 0x1,
78 TAP_DRSHIFT = 0x2,
79 TAP_DRPAUSE = 0x3,
80 TAP_IRSELECT = 0x4,
81 TAP_DRUPDATE = 0x5,
82 TAP_DRCAPTURE = 0x6,
83 TAP_DRSELECT = 0x7,
84 TAP_IREXIT2 = 0x8,
85 TAP_IREXIT1 = 0x9,
86 TAP_IRSHIFT = 0xa,
87 TAP_IRPAUSE = 0xb,
88 TAP_IDLE = 0xc,
89 TAP_IRUPDATE = 0xd,
90 TAP_IRCAPTURE = 0xe,
91 TAP_RESET = 0x0f,
92
93 TAP_NUM_STATES = 0x10,
94
95 TAP_INVALID = -1,
96 #endif
97 } tap_state_t;
98
99 typedef struct tap_transition_s
100 {
101 tap_state_t high;
102 tap_state_t low;
103 } tap_transition_t;
104
105 //extern tap_transition_t tap_transitions[16]; /* describe the TAP state diagram */
106
107
108 /*-----<Cable Helper API>-------------------------------------------*/
109
110 /* The "Cable Helper API" is what the cable drivers can use to help implement
111 * their "Cable API". So a Cable Helper API is a set of helper functions used by
112 * cable drivers, and this is different from a Cable API. A "Cable API" is what
113 * higher level code used to talk to a cable.
114 */
115
116
117 /** implementation of wrapper function tap_set_state() */
118 void tap_set_state_impl(tap_state_t new_state);
119
120 /**
121 * Function tap_set_state
122 * sets the state of a "state follower" which tracks the state of the TAPs connected to the
123 * cable. The state follower is hopefully always in the same state as the actual
124 * TAPs in the jtag chain, and will be so if there are no bugs in the tracking logic within that
125 * cable driver. All the cable drivers call this function to indicate the state they think
126 * the TAPs attached to their cables are in. Because this function can also log transitions,
127 * it will be helpful to call this function with every transition that the TAPs being manipulated
128 * are expected to traverse, not just end points of a multi-step state path.
129 * @param new_state is the state we think the TAPs are currently in or are about to enter.
130 */
131 #if defined(_DEBUG_JTAG_IO_)
132 #define tap_set_state(new_state) \
133 do { \
134 LOG_DEBUG( "tap_set_state(%s)", tap_state_name(new_state) ); \
135 tap_set_state_impl(new_state); \
136 } while (0)
137 #else
138 static inline void tap_set_state(tap_state_t new_state)
139 {
140 tap_set_state_impl(new_state);
141 }
142
143 #endif
144
145 /**
146 * Function tap_get_state
147 * gets the state of the "state follower" which tracks the state of the TAPs connected to
148 * the cable.
149 * @see tap_set_state
150 * @return tap_state_t - The state the TAPs are in now.
151 */
152 tap_state_t tap_get_state(void);
153
154 /**
155 * Function tap_set_end_state
156 * sets the state of an "end state follower" which tracks the state that any cable driver
157 * thinks will be the end (resultant) state of the current TAP SIR or SDR operation. At completion
158 * of that TAP operation this value is copied into the state follower via tap_set_state().
159 * @param new_end_state is that state the TAPs should enter at completion of a pending TAP operation.
160 */
161 void tap_set_end_state(tap_state_t new_end_state);
162
163 /**
164 * Function tap_get_end_state
165 * @see tap_set_end_state
166 * @return tap_state_t - The state the TAPs should be in at completion of the current TAP operation.
167 */
168 tap_state_t tap_get_end_state(void);
169
170 /**
171 * Function tap_get_tms_path
172 * returns a 7 bit long "bit sequence" indicating what has to be done with TMS
173 * during a sequence of seven TAP clock cycles in order to get from
174 * state \a "from" to state \a "to".
175 * @param from is the starting state
176 * @param to is the resultant or final state
177 * @return int - a 7 bit sequence, with the first bit in the sequence at bit 0.
178 */
179 int tap_get_tms_path(tap_state_t from, tap_state_t to);
180
181
182 /**
183 * Function int tap_get_tms_path_len
184 * returns the total number of bits that represents a TMS path
185 * transition as given by the function tap_get_tms_path().
186 *
187 * For at least one interface (JLink) it's not OK to simply "pad" TMS sequences
188 * to fit a whole byte. (I suspect this is a general TAP problem within OOCD.)
189 * Padding TMS causes all manner of instability that's not easily
190 * discovered. Using this routine we can apply EXACTLY the state transitions
191 * required to make something work - no more - no less.
192 *
193 * @param from is the starting state
194 * @param to is the resultant or final state
195 * @return int - the total number of bits in a transition.
196 */
197 int tap_get_tms_path_len(tap_state_t from, tap_state_t to);
198
199
200 /**
201 * Function tap_move_ndx
202 * when given a stable state, returns an index from 0-5. The index corresponds to a
203 * sequence of stable states which are given in this order: <p>
204 * { TAP_RESET, TAP_IDLE, TAP_DRSHIFT, TAP_DRPAUSE, TAP_IRSHIFT, TAP_IRPAUSE }
205 * <p>
206 * This sequence corresponds to look up tables which are used in some of the
207 * cable drivers.
208 * @param astate is the stable state to find in the sequence. If a non stable
209 * state is passed, this may cause the program to output an error message
210 * and terminate.
211 * @return int - the array (or sequence) index as described above
212 */
213 int tap_move_ndx(tap_state_t astate);
214
215 /**
216 * Function tap_is_state_stable
217 * returns true if the \a astate is stable.
218 */
219 bool tap_is_state_stable(tap_state_t astate);
220
221 /**
222 * Function tap_state_transition
223 * takes a current TAP state and returns the next state according to the tms value.
224 * @param current_state is the state of a TAP currently.
225 * @param tms is either zero or non-zero, just like a real TMS line in a jtag interface.
226 * @return tap_state_t - the next state a TAP would enter.
227 */
228 tap_state_t tap_state_transition(tap_state_t current_state, bool tms);
229
230 /**
231 * Function tap_state_name
232 * Returns a string suitable for display representing the JTAG tap_state
233 */
234 const char* tap_state_name(tap_state_t state);
235
236 #ifdef _DEBUG_JTAG_IO_
237 /**
238 * @brief Prints verbose TAP state transitions for the given TMS/TDI buffers.
239 * @param tms_buf must points to a buffer containing the TMS bitstream.
240 * @param tdi_buf must points to a buffer containing the TDI bitstream.
241 * @param tap_len must specify the length of the TMS/TDI bitstreams.
242 * @param start_tap_state must specify the current TAP state.
243 * @returns the final TAP state; pass as @a start_tap_state in following call.
244 */
245 tap_state_t jtag_debug_state_machine(const void *tms_buf, const void *tdi_buf,
246 unsigned tap_len, tap_state_t start_tap_state);
247 #else
248 static inline tap_state_t jtag_debug_state_machine(const void *tms_buf,
249 const void *tdi_buf, unsigned tap_len, tap_state_t start_tap_state)
250 {
251 return start_tap_state;
252 }
253 #endif // _DEBUG_JTAG_IO_
254
255 /*-----</Cable Helper API>------------------------------------------*/
256
257
258 extern tap_state_t cmd_queue_end_state; /* finish DR scans in dr_end_state */
259 extern tap_state_t cmd_queue_cur_state; /* current TAP state */
260
261 typedef void* error_handler_t; /* Later on we can delete error_handler_t, but keep it for now to make patches more readable */
262
263 struct scan_field_s;
264 typedef int (*in_handler_t)(u8* in_value, void* priv, struct scan_field_s* field);
265
266 typedef struct scan_field_s
267 {
268 jtag_tap_t* tap; /* tap pointer this instruction refers to */
269 int num_bits; /* number of bits this field specifies (up to 32) */
270 u8* out_value; /* value to be scanned into the device */
271 u8* in_value; /* pointer to a 32-bit memory location to take data scanned out */
272
273 u8* check_value; /* Used together with jtag_add_dr_scan_check() to check data clocked
274 in */
275 u8* check_mask; /* mask to go with check_value */
276
277 /* internal work space */
278 int allocated; /* in_value has been allocated for the queue */
279 int modified; /* did we modify the in_value? */
280 u32 intmp; /* temporary storage for checking synchronously */
281 } scan_field_t;
282
283 enum scan_type {
284 /* IN: from device to host, OUT: from host to device */
285 SCAN_IN = 1, SCAN_OUT = 2, SCAN_IO = 3
286 };
287
288 typedef struct scan_command_s
289 {
290 int ir_scan; /* instruction/not data scan */
291 int num_fields; /* number of fields in *fields array */
292 scan_field_t* fields; /* pointer to an array of data scan fields */
293 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
294 } scan_command_t;
295
296 typedef struct statemove_command_s
297 {
298 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
299 } statemove_command_t;
300
301 typedef struct pathmove_command_s
302 {
303 int num_states; /* number of states in *path */
304 tap_state_t* path; /* states that have to be passed */
305 } pathmove_command_t;
306
307 typedef struct runtest_command_s
308 {
309 int num_cycles; /* number of cycles that should be spent in Run-Test/Idle */
310 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
311 } runtest_command_t;
312
313
314 typedef struct stableclocks_command_s
315 {
316 int num_cycles; /* number of clock cycles that should be sent */
317 } stableclocks_command_t;
318
319
320 typedef struct reset_command_s
321 {
322 int trst; /* trst/srst 0: deassert, 1: assert, -1: don't change */
323 int srst;
324 } reset_command_t;
325
326 typedef struct end_state_command_s
327 {
328 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
329 } end_state_command_t;
330
331 typedef struct sleep_command_s
332 {
333 u32 us; /* number of microseconds to sleep */
334 } sleep_command_t;
335
336 typedef union jtag_command_container_u
337 {
338 scan_command_t* scan;
339 statemove_command_t* statemove;
340 pathmove_command_t* pathmove;
341 runtest_command_t* runtest;
342 stableclocks_command_t* stableclocks;
343 reset_command_t* reset;
344 end_state_command_t* end_state;
345 sleep_command_t* sleep;
346 } jtag_command_container_t;
347
348 enum jtag_command_type {
349 JTAG_SCAN = 1,
350 JTAG_STATEMOVE = 2,
351 JTAG_RUNTEST = 3,
352 JTAG_RESET = 4,
353 JTAG_END_STATE = 5,
354 JTAG_PATHMOVE = 6,
355 JTAG_SLEEP = 7,
356 JTAG_STABLECLOCKS = 8
357 };
358
359 typedef struct jtag_command_s
360 {
361 jtag_command_container_t cmd;
362 enum jtag_command_type type;
363 struct jtag_command_s* next;
364 } jtag_command_t;
365
366 extern jtag_command_t* jtag_command_queue;
367
368 /* forward declaration */
369 typedef struct jtag_tap_event_action_s jtag_tap_event_action_t;
370
371 /* this is really: typedef jtag_tap_t */
372 /* But - the typedef is done in "types.h" */
373 /* due to "forward decloration reasons" */
374 struct jtag_tap_s
375 {
376 const char* chip;
377 const char* tapname;
378 const char* dotted_name;
379 int abs_chain_position;
380 int enabled;
381 int ir_length; /* size of instruction register */
382 u32 ir_capture_value;
383 u8* expected; /* Capture-IR expected value */
384 u32 ir_capture_mask;
385 u8* expected_mask; /* Capture-IR expected mask */
386 u32 idcode; /* device identification code */
387 u32* expected_ids; /* Array of expected identification codes */
388 u8 expected_ids_cnt; /* Number of expected identification codes */
389 u8* cur_instr; /* current instruction */
390 int bypass; /* bypass register selected */
391
392 jtag_tap_event_action_t* event_action;
393
394 jtag_tap_t* next_tap;
395 };
396 extern jtag_tap_t* jtag_AllTaps(void);
397 extern jtag_tap_t* jtag_TapByPosition(int n);
398 extern jtag_tap_t* jtag_TapByString(const char* dotted_name);
399 extern jtag_tap_t* jtag_TapByJimObj(Jim_Interp* interp, Jim_Obj* obj);
400 extern jtag_tap_t* jtag_TapByAbsPosition(int abs_position);
401 extern int jtag_NumEnabledTaps(void);
402 extern int jtag_NumTotalTaps(void);
403
404 static __inline__ jtag_tap_t* jtag_NextEnabledTap(jtag_tap_t* p)
405 {
406 if (p == NULL)
407 {
408 /* start at the head of list */
409 p = jtag_AllTaps();
410 }
411 else
412 {
413 /* start *after* this one */
414 p = p->next_tap;
415 }
416 while (p)
417 {
418 if (p->enabled)
419 {
420 break;
421 }
422 else
423 {
424 p = p->next_tap;
425 }
426 }
427
428 return p;
429 }
430
431
432 enum reset_line_mode {
433 LINE_OPEN_DRAIN = 0x0,
434 LINE_PUSH_PULL = 0x1,
435 };
436
437 typedef struct jtag_interface_s
438 {
439 char* name;
440
441 /* queued command execution
442 */
443 int (*execute_queue)(void);
444
445 /* interface initalization
446 */
447 int (*speed)(int speed);
448 int (*register_commands)(struct command_context_s* cmd_ctx);
449 int (*init)(void);
450 int (*quit)(void);
451
452 /* returns JTAG maxium speed for KHz. 0=RTCK. The function returns
453 * a failure if it can't support the KHz/RTCK.
454 *
455 * WARNING!!!! if RTCK is *slow* then think carefully about
456 * whether you actually want to support this in the driver.
457 * Many target scripts are written to handle the absence of RTCK
458 * and use a fallback kHz TCK.
459 */
460 int (*khz)(int khz, int* jtag_speed);
461
462 /* returns the KHz for the provided JTAG speed. 0=RTCK. The function returns
463 * a failure if it can't support the KHz/RTCK. */
464 int (*speed_div)(int speed, int* khz);
465
466 /* Read and clear the power dropout flag. Note that a power dropout
467 * can be transitionary, easily much less than a ms.
468 *
469 * So to find out if the power is *currently* on, you must invoke
470 * this method twice. Once to clear the power dropout flag and a
471 * second time to read the current state.
472 *
473 * Currently the default implementation is never to detect power dropout.
474 */
475 int (*power_dropout)(int* power_dropout);
476
477 /* Read and clear the srst asserted detection flag.
478 *
479 * NB!!!! like power_dropout this does *not* read the current
480 * state. srst assertion is transitionary and *can* be much
481 * less than 1ms.
482 */
483 int (*srst_asserted)(int* srst_asserted);
484 } jtag_interface_t;
485
486 enum jtag_event {
487 JTAG_TRST_ASSERTED
488 };
489
490 extern char* jtag_event_strings[];
491
492 enum jtag_tap_event {
493 JTAG_TAP_EVENT_ENABLE,
494 JTAG_TAP_EVENT_DISABLE
495 };
496
497 extern const Jim_Nvp nvp_jtag_tap_event[];
498
499 struct jtag_tap_event_action_s
500 {
501 enum jtag_tap_event event;
502 Jim_Obj* body;
503 jtag_tap_event_action_t* next;
504 };
505
506 extern int jtag_trst;
507 extern int jtag_srst;
508
509 typedef struct jtag_event_callback_s
510 {
511 int (*callback)(enum jtag_event event, void* priv);
512 void* priv;
513 struct jtag_event_callback_s* next;
514 } jtag_event_callback_t;
515
516 extern jtag_event_callback_t* jtag_event_callbacks;
517
518 extern jtag_interface_t* jtag; /* global pointer to configured JTAG interface */
519
520 extern int jtag_speed;
521 extern int jtag_speed_post_reset;
522
523 enum reset_types {
524 RESET_NONE = 0x0,
525 RESET_HAS_TRST = 0x1,
526 RESET_HAS_SRST = 0x2,
527 RESET_TRST_AND_SRST = 0x3,
528 RESET_SRST_PULLS_TRST = 0x4,
529 RESET_TRST_PULLS_SRST = 0x8,
530 RESET_TRST_OPEN_DRAIN = 0x10,
531 RESET_SRST_PUSH_PULL = 0x20,
532 };
533
534 extern enum reset_types jtag_reset_config;
535
536 /* initialize interface upon startup. A successful no-op
537 * upon subsequent invocations
538 */
539 extern int jtag_interface_init(struct command_context_s* cmd_ctx);
540
541 /* initialize JTAG chain using only a RESET reset. If init fails,
542 * try reset + init.
543 */
544 extern int jtag_init(struct command_context_s* cmd_ctx);
545
546 /* reset, then initialize JTAG chain */
547 extern int jtag_init_reset(struct command_context_s* cmd_ctx);
548 extern int jtag_register_commands(struct command_context_s* cmd_ctx);
549
550 /* JTAG interface, can be implemented with a software or hardware fifo
551 *
552 * TAP_DRSHIFT and TAP_IRSHIFT are illegal end states. TAP_DRSHIFT/IRSHIFT as end states
553 * can be emulated by using a larger scan.
554 *
555 * Code that is relatively insensitive to the path(as long
556 * as it is JTAG compliant) taken through state machine can use
557 * endstate for jtag_add_xxx_scan(). Otherwise the pause state must be
558 * specified as end state and a subsequent jtag_add_pathmove() must
559 * be issued.
560 *
561 */
562 extern void jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
563 /* same as jtag_add_ir_scan except no verify is performed */
564 extern void jtag_add_ir_scan_noverify(int num_fields, scan_field_t *fields, tap_state_t state);
565 extern int interface_jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
566 extern void jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
567
568 /* This version of jtag_add_dr_scan() uses the check_value/mask fields */
569 extern void jtag_add_dr_scan_check(int num_fields, scan_field_t* fields, tap_state_t endstate);
570 extern int interface_jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
571 extern void jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
572 extern int interface_jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
573 extern void jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
574 extern int interface_jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
575
576
577 /* Simplest/typical callback - do some conversion on the data clocked in.
578 * This callback is for such conversion that can not fail.
579 * For conversion types or checks that can
580 * fail, use the jtag_callback_t variant */
581 typedef void (*jtag_callback1_t)(u8 *in);
582
583 #ifndef HAVE_JTAG_MINIDRIVER_H
584 /* A simpler version of jtag_add_callback4 */
585 extern void jtag_add_callback(jtag_callback1_t, u8 *in);
586 #else
587 /* implemented by minidriver */
588 #endif
589
590 /* This type can store an integer safely by a normal cast on 64 and
591 * 32 bit systems. */
592 typedef void *jtag_callback_data_t;
593
594 /* The generic callback mechanism.
595 *
596 * The callback is invoked with three arguments. The first argument is
597 * the pointer to the data clocked in.
598 */
599 typedef int (*jtag_callback_t)(u8 *in, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3);
600
601
602 /* This callback can be executed immediately the queue has been flushed. Note that
603 * the JTAG queue can either be executed synchronously or asynchronously. Typically
604 * for USB the queue is executed asynchronously. For low latency interfaces, the
605 * queue may be executed synchronously.
606 *
607 * These callbacks are typically executed *after* the *entire* JTAG queue has been
608 * executed for e.g. USB interfaces.
609 *
610 * The callbacks are guaranteeed to be invoked in the order that they were queued.
611 *
612 * The strange name is due to C's lack of overloading using function arguments
613 *
614 * The callback mechansim is very general and does not really make any assumptions
615 * about what the callback does and what the arguments are.
616 *
617 * in - typically used to point to the data to operate on. More often than not
618 * this will be the data clocked in during a shift operation
619 *
620 * data1 - an integer that is big enough to be used either as an 'int' or
621 * cast to/from a pointer
622 *
623 * data2 - an integer that is big enough to be used either as an 'int' or
624 * cast to/from a pointer
625 *
626 * Why stop at 'data2' for arguments? Somewhat historical reasons. This is
627 * sufficient to implement the jtag_check_value_mask(), besides the
628 * line is best drawn somewhere...
629 *
630 * If the execution of the queue fails before the callbacks, then the
631 * callbacks may or may not be invoked depending on driver implementation.
632 */
633 #ifndef HAVE_JTAG_MINIDRIVER_H
634 extern void jtag_add_callback4(jtag_callback_t, u8 *in, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3);
635 #else
636 /* implemented by minidriver */
637 #endif
638
639
640 /* run a TAP_RESET reset. End state is TAP_RESET, regardless
641 * of start state.
642 */
643 extern void jtag_add_tlr(void);
644 extern int interface_jtag_add_tlr(void);
645
646 /* Application code *must* assume that interfaces will
647 * implement transitions between states with different
648 * paths and path lengths through the state diagram. The
649 * path will vary across interface and also across versions
650 * of the same interface over time. Even if the OpenOCD code
651 * is unchanged, the actual path taken may vary over time
652 * and versions of interface firmware or PCB revisions.
653 *
654 * Use jtag_add_pathmove() when specific transition sequences
655 * are required.
656 *
657 * Do not use jtag_add_pathmove() unless you need to, but do use it
658 * if you have to.
659 *
660 * DANGER! If the target is dependent upon a particular sequence
661 * of transitions for things to work correctly(e.g. as a workaround
662 * for an errata that contradicts the JTAG standard), then pathmove
663 * must be used, even if some jtag interfaces happen to use the
664 * desired path. Worse, the jtag interface used for testing a
665 * particular implementation, could happen to use the "desired"
666 * path when transitioning to/from end
667 * state.
668 *
669 * A list of unambigious single clock state transitions, not
670 * all drivers can support this, but it is required for e.g.
671 * XScale and Xilinx support
672 *
673 * Note! TAP_RESET must not be used in the path!
674 *
675 * Note that the first on the list must be reachable
676 * via a single transition from the current state.
677 *
678 * All drivers are required to implement jtag_add_pathmove().
679 * However, if the pathmove sequence can not be precisely
680 * executed, an interface_jtag_add_pathmove() or jtag_execute_queue()
681 * must return an error. It is legal, but not recommended, that
682 * a driver returns an error in all cases for a pathmove if it
683 * can only implement a few transitions and therefore
684 * a partial implementation of pathmove would have little practical
685 * application.
686 */
687 extern void jtag_add_pathmove(int num_states, tap_state_t* path);
688 extern int interface_jtag_add_pathmove(int num_states, tap_state_t* path);
689
690 /* go to TAP_IDLE, if we're not already there and cycle
691 * precisely num_cycles in the TAP_IDLE after which move
692 * to the end state, if it is != TAP_IDLE
693 *
694 * nb! num_cycles can be 0, in which case the fn will navigate
695 * to endstate via TAP_IDLE
696 */
697 extern void jtag_add_runtest(int num_cycles, tap_state_t endstate);
698 extern int interface_jtag_add_runtest(int num_cycles, tap_state_t endstate);
699
700 /* A reset of the TAP state machine can be requested.
701 *
702 * Whether tms or trst reset is used depends on the capabilities of
703 * the target and jtag interface(reset_config command configures this).
704 *
705 * srst can driver a reset of the TAP state machine and vice
706 * versa
707 *
708 * Application code may need to examine value of jtag_reset_config
709 * to determine the proper codepath
710 *
711 * DANGER! Even though srst drives trst, trst might not be connected to
712 * the interface, and it might actually be *harmful* to assert trst in this case.
713 *
714 * This is why combinations such as "reset_config srst_only srst_pulls_trst"
715 * are supported.
716 *
717 * only req_tlr_or_trst and srst can have a transition for a
718 * call as the effects of transitioning both at the "same time"
719 * are undefined, but when srst_pulls_trst or vice versa,
720 * then trst & srst *must* be asserted together.
721 */
722 extern void jtag_add_reset(int req_tlr_or_trst, int srst);
723
724 /* this drives the actual srst and trst pins. srst will always be 0
725 * if jtag_reset_config & RESET_SRST_PULLS_TRST != 0 and ditto for
726 * trst.
727 *
728 * the higher level jtag_add_reset will invoke jtag_add_tlr() if
729 * approperiate
730 */
731 extern int interface_jtag_add_reset(int trst, int srst);
732 extern void jtag_add_end_state(tap_state_t endstate);
733 extern int interface_jtag_add_end_state(tap_state_t endstate);
734 extern void jtag_add_sleep(u32 us);
735 extern int interface_jtag_add_sleep(u32 us);
736
737
738 /**
739 * Function jtag_add_stable_clocks
740 * first checks that the state in which the clocks are to be issued is
741 * stable, then queues up clock_count clocks for transmission.
742 */
743 void jtag_add_clocks(int num_cycles);
744 int interface_jtag_add_clocks(int num_cycles);
745
746
747 /*
748 * For software FIFO implementations, the queued commands can be executed
749 * during this call or earlier. A sw queue might decide to push out
750 * some of the jtag_add_xxx() operations once the queue is "big enough".
751 *
752 * This fn will return an error code if any of the prior jtag_add_xxx()
753 * calls caused a failure, e.g. check failure. Note that it does not
754 * matter if the operation was executed *before* jtag_execute_queue(),
755 * jtag_execute_queue() will still return an error code.
756 *
757 * All jtag_add_xxx() calls that have in_handler!=NULL will have been
758 * executed when this fn returns, but if what has been queued only
759 * clocks data out, without reading anything back, then JTAG could
760 * be running *after* jtag_execute_queue() returns. The API does
761 * not define a way to flush a hw FIFO that runs *after*
762 * jtag_execute_queue() returns.
763 *
764 * jtag_add_xxx() commands can either be executed immediately or
765 * at some time between the jtag_add_xxx() fn call and jtag_execute_queue().
766 */
767 extern int jtag_execute_queue(void);
768
769 /* same as jtag_execute_queue() but does not clear the error flag */
770 extern void jtag_execute_queue_noclear(void);
771
772 /* this flag is set when an error occurs while executing the queue. cleared
773 * by jtag_execute_queue()
774 *
775 * this flag can also be set from application code if some error happens
776 * during processing that should be reported during jtag_execute_queue().
777 */
778 extern int jtag_error;
779
780 static __inline__ void jtag_set_error(int error)
781 {
782 if ((error==ERROR_OK)||(jtag_error!=ERROR_OK))
783 {
784 /* keep first error */
785 return;
786 }
787 jtag_error=error;
788 }
789
790
791
792 /* can be implemented by hw+sw */
793 extern int interface_jtag_execute_queue(void);
794 extern int jtag_power_dropout(int* dropout);
795 extern int jtag_srst_asserted(int* srst_asserted);
796
797 /* JTAG support functions */
798 struct invalidstruct
799 {
800
801 };
802
803 /* execute jtag queue and check value and use mask if mask is != NULL. invokes
804 * jtag_set_error() with any error. */
805 extern void jtag_check_value_mask(scan_field_t *field, u8 *value, u8 *mask);
806 extern enum scan_type jtag_scan_type(scan_command_t* cmd);
807 extern int jtag_scan_size(scan_command_t* cmd);
808 extern int jtag_read_buffer(u8* buffer, scan_command_t* cmd);
809 extern int jtag_build_buffer(scan_command_t* cmd, u8** buffer);
810
811 extern void jtag_sleep(u32 us);
812 extern int jtag_call_event_callbacks(enum jtag_event event);
813 extern int jtag_register_event_callback(int (* callback)(enum jtag_event event, void* priv), void* priv);
814
815 extern int jtag_verify_capture_ir;
816
817 void jtag_tap_handle_event(jtag_tap_t* tap, enum jtag_tap_event e);
818
819 /* error codes
820 * JTAG subsystem uses codes between -100 and -199 */
821
822 #define ERROR_JTAG_INIT_FAILED (-100)
823 #define ERROR_JTAG_INVALID_INTERFACE (-101)
824 #define ERROR_JTAG_NOT_IMPLEMENTED (-102)
825 #define ERROR_JTAG_TRST_ASSERTED (-103)
826 #define ERROR_JTAG_QUEUE_FAILED (-104)
827 #define ERROR_JTAG_NOT_STABLE_STATE (-105)
828 #define ERROR_JTAG_DEVICE_ERROR (-107)
829
830
831 /* this allows JTAG devices to implement the entire jtag_xxx() layer in hw/sw */
832 #ifdef HAVE_JTAG_MINIDRIVER_H
833 /* Here a #define MINIDRIVER() and an inline version of hw fifo interface_jtag_add_dr_out can be defined */
834 #include "jtag_minidriver.h"
835 #define MINIDRIVER(a) notused ## a
836 #else
837 #define MINIDRIVER(a) a
838
839 /* jtag_add_dr_out() is a faster version of jtag_add_dr_scan()
840 *
841 * Current or end_state can not be TAP_RESET. end_state can be TAP_INVALID
842 *
843 * num_bits[i] is the number of bits to clock out from value[i] LSB first.
844 *
845 * If the device is in bypass, then that is an error condition in
846 * the caller code that is not detected by this fn, whereas jtag_add_dr_scan()
847 * does detect it. Similarly if the device is not in bypass, data must
848 * be passed to it.
849 *
850 * If anything fails, then jtag_error will be set and jtag_execute() will
851 * return an error. There is no way to determine if there was a failure
852 * during this function call.
853 *
854 * Note that this jtag_add_dr_out can be defined as an inline function.
855 */
856 extern void interface_jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
857 tap_state_t end_state);
858
859 #endif
860
861 static __inline__ void jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
862 tap_state_t end_state)
863 {
864 if (end_state != TAP_INVALID)
865 cmd_queue_end_state = end_state;
866 cmd_queue_cur_state = cmd_queue_end_state;
867 interface_jtag_add_dr_out(tap, num_fields, num_bits, value, cmd_queue_end_state);
868 }
869
870
871 #endif /* JTAG_H */

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)