Remove the useless invalidstruct from jtag.h.
[openocd.git] / src / jtag / jtag.h
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifndef JTAG_H
24 #define JTAG_H
25
26 #include "binarybuffer.h"
27 #include "log.h"
28
29
30 #ifdef _DEBUG_JTAG_IO_
31 #define DEBUG_JTAG_IO(expr ...) LOG_DEBUG(expr)
32 #else
33 #define DEBUG_JTAG_IO(expr ...)
34 #endif
35
36 #ifndef DEBUG_JTAG_IOZ
37 #define DEBUG_JTAG_IOZ 64
38 #endif
39
40 /*-----<Macros>--------------------------------------------------*/
41
42 /** When given an array, compute its DIMension, i.e. number of elements in the array */
43 #define DIM(x) (sizeof(x)/sizeof((x)[0]))
44
45 /** Calculate the number of bytes required to hold @a n TAP scan bits */
46 #define TAP_SCAN_BYTES(n) CEIL(n, 8)
47
48 /*-----</Macros>-------------------------------------------------*/
49
50
51
52 /*
53 * Tap states from ARM7TDMI-S Technical reference manual.
54 * Also, validated against several other ARM core technical manuals.
55 *
56 * N.B. tap_get_tms_path() was changed to reflect this corrected
57 * numbering and ordering of the TAP states.
58 *
59 * DANGER!!!! some interfaces care about the actual numbers used
60 * as they are handed off directly to hardware implementations.
61 */
62
63 typedef enum tap_state
64 {
65 #if BUILD_ECOSBOARD
66 /* These are the old numbers. Leave as-is for now... */
67 TAP_RESET = 0, TAP_IDLE = 8,
68 TAP_DRSELECT = 1, TAP_DRCAPTURE = 2, TAP_DRSHIFT = 3, TAP_DREXIT1 = 4,
69 TAP_DRPAUSE = 5, TAP_DREXIT2 = 6, TAP_DRUPDATE = 7,
70 TAP_IRSELECT = 9, TAP_IRCAPTURE = 10, TAP_IRSHIFT = 11, TAP_IREXIT1 = 12,
71 TAP_IRPAUSE = 13, TAP_IREXIT2 = 14, TAP_IRUPDATE = 15,
72
73 TAP_NUM_STATES = 16, TAP_INVALID = -1,
74 #else
75 /* Proper ARM recommended numbers */
76 TAP_DREXIT2 = 0x0,
77 TAP_DREXIT1 = 0x1,
78 TAP_DRSHIFT = 0x2,
79 TAP_DRPAUSE = 0x3,
80 TAP_IRSELECT = 0x4,
81 TAP_DRUPDATE = 0x5,
82 TAP_DRCAPTURE = 0x6,
83 TAP_DRSELECT = 0x7,
84 TAP_IREXIT2 = 0x8,
85 TAP_IREXIT1 = 0x9,
86 TAP_IRSHIFT = 0xa,
87 TAP_IRPAUSE = 0xb,
88 TAP_IDLE = 0xc,
89 TAP_IRUPDATE = 0xd,
90 TAP_IRCAPTURE = 0xe,
91 TAP_RESET = 0x0f,
92
93 TAP_NUM_STATES = 0x10,
94
95 TAP_INVALID = -1,
96 #endif
97 } tap_state_t;
98
99 typedef struct tap_transition_s
100 {
101 tap_state_t high;
102 tap_state_t low;
103 } tap_transition_t;
104
105 //extern tap_transition_t tap_transitions[16]; /* describe the TAP state diagram */
106
107
108 #ifdef INCLUDE_JTAG_INTERFACE_H
109
110 /*-----<Cable Helper API>-------------------------------------------*/
111
112 /* The "Cable Helper API" is what the cable drivers can use to help implement
113 * their "Cable API". So a Cable Helper API is a set of helper functions used by
114 * cable drivers, and this is different from a Cable API. A "Cable API" is what
115 * higher level code used to talk to a cable.
116 */
117
118
119 /** implementation of wrapper function tap_set_state() */
120 void tap_set_state_impl(tap_state_t new_state);
121
122 /**
123 * Function tap_set_state
124 * sets the state of a "state follower" which tracks the state of the TAPs connected to the
125 * cable. The state follower is hopefully always in the same state as the actual
126 * TAPs in the jtag chain, and will be so if there are no bugs in the tracking logic within that
127 * cable driver. All the cable drivers call this function to indicate the state they think
128 * the TAPs attached to their cables are in. Because this function can also log transitions,
129 * it will be helpful to call this function with every transition that the TAPs being manipulated
130 * are expected to traverse, not just end points of a multi-step state path.
131 * @param new_state is the state we think the TAPs are currently in or are about to enter.
132 */
133 #if defined(_DEBUG_JTAG_IO_)
134 #define tap_set_state(new_state) \
135 do { \
136 LOG_DEBUG( "tap_set_state(%s)", tap_state_name(new_state) ); \
137 tap_set_state_impl(new_state); \
138 } while (0)
139 #else
140 static inline void tap_set_state(tap_state_t new_state)
141 {
142 tap_set_state_impl(new_state);
143 }
144
145 #endif
146
147 /**
148 * Function tap_get_state
149 * gets the state of the "state follower" which tracks the state of the TAPs connected to
150 * the cable.
151 * @see tap_set_state
152 * @return tap_state_t - The state the TAPs are in now.
153 */
154 tap_state_t tap_get_state(void);
155
156 /**
157 * Function tap_set_end_state
158 * sets the state of an "end state follower" which tracks the state that any cable driver
159 * thinks will be the end (resultant) state of the current TAP SIR or SDR operation. At completion
160 * of that TAP operation this value is copied into the state follower via tap_set_state().
161 * @param new_end_state is that state the TAPs should enter at completion of a pending TAP operation.
162 */
163 void tap_set_end_state(tap_state_t new_end_state);
164
165 /**
166 * Function tap_get_end_state
167 * @see tap_set_end_state
168 * @return tap_state_t - The state the TAPs should be in at completion of the current TAP operation.
169 */
170 tap_state_t tap_get_end_state(void);
171
172 /**
173 * Function tap_get_tms_path
174 * returns a 7 bit long "bit sequence" indicating what has to be done with TMS
175 * during a sequence of seven TAP clock cycles in order to get from
176 * state \a "from" to state \a "to".
177 * @param from is the starting state
178 * @param to is the resultant or final state
179 * @return int - a 7 bit sequence, with the first bit in the sequence at bit 0.
180 */
181 int tap_get_tms_path(tap_state_t from, tap_state_t to);
182
183
184 /**
185 * Function int tap_get_tms_path_len
186 * returns the total number of bits that represents a TMS path
187 * transition as given by the function tap_get_tms_path().
188 *
189 * For at least one interface (JLink) it's not OK to simply "pad" TMS sequences
190 * to fit a whole byte. (I suspect this is a general TAP problem within OOCD.)
191 * Padding TMS causes all manner of instability that's not easily
192 * discovered. Using this routine we can apply EXACTLY the state transitions
193 * required to make something work - no more - no less.
194 *
195 * @param from is the starting state
196 * @param to is the resultant or final state
197 * @return int - the total number of bits in a transition.
198 */
199 int tap_get_tms_path_len(tap_state_t from, tap_state_t to);
200
201
202 /**
203 * Function tap_move_ndx
204 * when given a stable state, returns an index from 0-5. The index corresponds to a
205 * sequence of stable states which are given in this order: <p>
206 * { TAP_RESET, TAP_IDLE, TAP_DRSHIFT, TAP_DRPAUSE, TAP_IRSHIFT, TAP_IRPAUSE }
207 * <p>
208 * This sequence corresponds to look up tables which are used in some of the
209 * cable drivers.
210 * @param astate is the stable state to find in the sequence. If a non stable
211 * state is passed, this may cause the program to output an error message
212 * and terminate.
213 * @return int - the array (or sequence) index as described above
214 */
215 int tap_move_ndx(tap_state_t astate);
216
217 /**
218 * Function tap_is_state_stable
219 * returns true if the \a astate is stable.
220 */
221 bool tap_is_state_stable(tap_state_t astate);
222
223 /**
224 * Function tap_state_transition
225 * takes a current TAP state and returns the next state according to the tms value.
226 * @param current_state is the state of a TAP currently.
227 * @param tms is either zero or non-zero, just like a real TMS line in a jtag interface.
228 * @return tap_state_t - the next state a TAP would enter.
229 */
230 tap_state_t tap_state_transition(tap_state_t current_state, bool tms);
231
232 /**
233 * Function tap_state_name
234 * Returns a string suitable for display representing the JTAG tap_state
235 */
236 const char* tap_state_name(tap_state_t state);
237
238 #ifdef _DEBUG_JTAG_IO_
239 /**
240 * @brief Prints verbose TAP state transitions for the given TMS/TDI buffers.
241 * @param tms_buf must points to a buffer containing the TMS bitstream.
242 * @param tdi_buf must points to a buffer containing the TDI bitstream.
243 * @param tap_len must specify the length of the TMS/TDI bitstreams.
244 * @param start_tap_state must specify the current TAP state.
245 * @returns the final TAP state; pass as @a start_tap_state in following call.
246 */
247 tap_state_t jtag_debug_state_machine(const void *tms_buf, const void *tdi_buf,
248 unsigned tap_len, tap_state_t start_tap_state);
249 #else
250 static inline tap_state_t jtag_debug_state_machine(const void *tms_buf,
251 const void *tdi_buf, unsigned tap_len, tap_state_t start_tap_state)
252 {
253 return start_tap_state;
254 }
255 #endif // _DEBUG_JTAG_IO_
256
257 /*-----</Cable Helper API>------------------------------------------*/
258
259 #endif // INCLUDE_JTAG_INTERFACE_H
260
261
262 extern tap_state_t cmd_queue_end_state; /* finish DR scans in dr_end_state */
263 extern tap_state_t cmd_queue_cur_state; /* current TAP state */
264
265 typedef struct scan_field_s
266 {
267 jtag_tap_t* tap; /* tap pointer this instruction refers to */
268 int num_bits; /* number of bits this field specifies (up to 32) */
269 u8* out_value; /* value to be scanned into the device */
270 u8* in_value; /* pointer to a 32-bit memory location to take data scanned out */
271
272 u8* check_value; /* Used together with jtag_add_dr_scan_check() to check data clocked
273 in */
274 u8* check_mask; /* mask to go with check_value */
275
276 /* internal work space */
277 int allocated; /* in_value has been allocated for the queue */
278 int modified; /* did we modify the in_value? */
279 u8 intmp[4]; /* temporary storage for checking synchronously */
280 } scan_field_t;
281
282 enum scan_type {
283 /* IN: from device to host, OUT: from host to device */
284 SCAN_IN = 1, SCAN_OUT = 2, SCAN_IO = 3
285 };
286
287 typedef struct scan_command_s
288 {
289 bool ir_scan; /* instruction/not data scan */
290 int num_fields; /* number of fields in *fields array */
291 scan_field_t* fields; /* pointer to an array of data scan fields */
292 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
293 } scan_command_t;
294
295 typedef struct statemove_command_s
296 {
297 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
298 } statemove_command_t;
299
300 typedef struct pathmove_command_s
301 {
302 int num_states; /* number of states in *path */
303 tap_state_t* path; /* states that have to be passed */
304 } pathmove_command_t;
305
306 typedef struct runtest_command_s
307 {
308 int num_cycles; /* number of cycles that should be spent in Run-Test/Idle */
309 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
310 } runtest_command_t;
311
312
313 typedef struct stableclocks_command_s
314 {
315 int num_cycles; /* number of clock cycles that should be sent */
316 } stableclocks_command_t;
317
318
319 typedef struct reset_command_s
320 {
321 int trst; /* trst/srst 0: deassert, 1: assert, -1: don't change */
322 int srst;
323 } reset_command_t;
324
325 typedef struct end_state_command_s
326 {
327 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
328 } end_state_command_t;
329
330 typedef struct sleep_command_s
331 {
332 u32 us; /* number of microseconds to sleep */
333 } sleep_command_t;
334
335 typedef union jtag_command_container_u
336 {
337 scan_command_t* scan;
338 statemove_command_t* statemove;
339 pathmove_command_t* pathmove;
340 runtest_command_t* runtest;
341 stableclocks_command_t* stableclocks;
342 reset_command_t* reset;
343 end_state_command_t* end_state;
344 sleep_command_t* sleep;
345 } jtag_command_container_t;
346
347 enum jtag_command_type {
348 JTAG_SCAN = 1,
349 JTAG_STATEMOVE = 2,
350 JTAG_RUNTEST = 3,
351 JTAG_RESET = 4,
352 JTAG_PATHMOVE = 6,
353 JTAG_SLEEP = 7,
354 JTAG_STABLECLOCKS = 8
355 };
356
357 typedef struct jtag_command_s
358 {
359 jtag_command_container_t cmd;
360 enum jtag_command_type type;
361 struct jtag_command_s* next;
362 } jtag_command_t;
363
364 extern jtag_command_t* jtag_command_queue;
365
366 /* forward declaration */
367 typedef struct jtag_tap_event_action_s jtag_tap_event_action_t;
368
369 /* this is really: typedef jtag_tap_t */
370 /* But - the typedef is done in "types.h" */
371 /* due to "forward decloration reasons" */
372 struct jtag_tap_s
373 {
374 const char* chip;
375 const char* tapname;
376 const char* dotted_name;
377 int abs_chain_position;
378 int enabled;
379 int ir_length; /* size of instruction register */
380 u32 ir_capture_value;
381 u8* expected; /* Capture-IR expected value */
382 u32 ir_capture_mask;
383 u8* expected_mask; /* Capture-IR expected mask */
384 u32 idcode; /* device identification code */
385 u32* expected_ids; /* Array of expected identification codes */
386 u8 expected_ids_cnt; /* Number of expected identification codes */
387 u8* cur_instr; /* current instruction */
388 int bypass; /* bypass register selected */
389
390 jtag_tap_event_action_t* event_action;
391
392 jtag_tap_t* next_tap;
393 };
394 extern jtag_tap_t* jtag_AllTaps(void);
395 extern jtag_tap_t* jtag_TapByPosition(int n);
396 extern jtag_tap_t* jtag_TapByString(const char* dotted_name);
397 extern jtag_tap_t* jtag_TapByJimObj(Jim_Interp* interp, Jim_Obj* obj);
398 extern jtag_tap_t* jtag_TapByAbsPosition(int abs_position);
399 extern int jtag_NumEnabledTaps(void);
400 extern int jtag_NumTotalTaps(void);
401
402 static __inline__ jtag_tap_t* jtag_NextEnabledTap(jtag_tap_t* p)
403 {
404 if (p == NULL)
405 {
406 /* start at the head of list */
407 p = jtag_AllTaps();
408 }
409 else
410 {
411 /* start *after* this one */
412 p = p->next_tap;
413 }
414 while (p)
415 {
416 if (p->enabled)
417 {
418 break;
419 }
420 else
421 {
422 p = p->next_tap;
423 }
424 }
425
426 return p;
427 }
428
429
430 enum reset_line_mode {
431 LINE_OPEN_DRAIN = 0x0,
432 LINE_PUSH_PULL = 0x1,
433 };
434
435 #ifdef INCLUDE_JTAG_INTERFACE_H
436
437 typedef struct jtag_interface_s
438 {
439 char* name;
440
441 /* queued command execution
442 */
443 int (*execute_queue)(void);
444
445 /* interface initalization
446 */
447 int (*speed)(int speed);
448 int (*register_commands)(struct command_context_s* cmd_ctx);
449 int (*init)(void);
450 int (*quit)(void);
451
452 /* returns JTAG maxium speed for KHz. 0=RTCK. The function returns
453 * a failure if it can't support the KHz/RTCK.
454 *
455 * WARNING!!!! if RTCK is *slow* then think carefully about
456 * whether you actually want to support this in the driver.
457 * Many target scripts are written to handle the absence of RTCK
458 * and use a fallback kHz TCK.
459 */
460 int (*khz)(int khz, int* jtag_speed);
461
462 /* returns the KHz for the provided JTAG speed. 0=RTCK. The function returns
463 * a failure if it can't support the KHz/RTCK. */
464 int (*speed_div)(int speed, int* khz);
465
466 /* Read and clear the power dropout flag. Note that a power dropout
467 * can be transitionary, easily much less than a ms.
468 *
469 * So to find out if the power is *currently* on, you must invoke
470 * this method twice. Once to clear the power dropout flag and a
471 * second time to read the current state.
472 *
473 * Currently the default implementation is never to detect power dropout.
474 */
475 int (*power_dropout)(int* power_dropout);
476
477 /* Read and clear the srst asserted detection flag.
478 *
479 * NB!!!! like power_dropout this does *not* read the current
480 * state. srst assertion is transitionary and *can* be much
481 * less than 1ms.
482 */
483 int (*srst_asserted)(int* srst_asserted);
484 } jtag_interface_t;
485
486 #endif // INCLUDE_JTAG_INTERFACE_H
487
488 enum jtag_event {
489 JTAG_TRST_ASSERTED
490 };
491
492 extern char* jtag_event_strings[];
493
494 enum jtag_tap_event {
495 JTAG_TAP_EVENT_ENABLE,
496 JTAG_TAP_EVENT_DISABLE
497 };
498
499 extern const Jim_Nvp nvp_jtag_tap_event[];
500
501 struct jtag_tap_event_action_s
502 {
503 enum jtag_tap_event event;
504 Jim_Obj* body;
505 jtag_tap_event_action_t* next;
506 };
507
508 extern int jtag_trst;
509 extern int jtag_srst;
510
511 typedef struct jtag_event_callback_s
512 {
513 int (*callback)(enum jtag_event event, void* priv);
514 void* priv;
515 struct jtag_event_callback_s* next;
516 } jtag_event_callback_t;
517
518 extern jtag_event_callback_t* jtag_event_callbacks;
519
520 extern int jtag_speed;
521 extern int jtag_speed_post_reset;
522
523 enum reset_types {
524 RESET_NONE = 0x0,
525 RESET_HAS_TRST = 0x1,
526 RESET_HAS_SRST = 0x2,
527 RESET_TRST_AND_SRST = 0x3,
528 RESET_SRST_PULLS_TRST = 0x4,
529 RESET_TRST_PULLS_SRST = 0x8,
530 RESET_TRST_OPEN_DRAIN = 0x10,
531 RESET_SRST_PUSH_PULL = 0x20,
532 };
533
534 extern enum reset_types jtag_reset_config;
535
536 /* initialize interface upon startup. A successful no-op
537 * upon subsequent invocations
538 */
539 extern int jtag_interface_init(struct command_context_s* cmd_ctx);
540
541 /// Shutdown the JTAG interface upon program exit.
542 extern int jtag_interface_quit(void);
543
544 /* initialize JTAG chain using only a RESET reset. If init fails,
545 * try reset + init.
546 */
547 extern int jtag_init(struct command_context_s* cmd_ctx);
548
549 /* reset, then initialize JTAG chain */
550 extern int jtag_init_reset(struct command_context_s* cmd_ctx);
551 extern int jtag_register_commands(struct command_context_s* cmd_ctx);
552
553 /* JTAG interface, can be implemented with a software or hardware fifo
554 *
555 * TAP_DRSHIFT and TAP_IRSHIFT are illegal end states. TAP_DRSHIFT/IRSHIFT as end states
556 * can be emulated by using a larger scan.
557 *
558 * Code that is relatively insensitive to the path(as long
559 * as it is JTAG compliant) taken through state machine can use
560 * endstate for jtag_add_xxx_scan(). Otherwise the pause state must be
561 * specified as end state and a subsequent jtag_add_pathmove() must
562 * be issued.
563 *
564 */
565 extern void jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
566 /* same as jtag_add_ir_scan except no verify is performed */
567 extern void jtag_add_ir_scan_noverify(int num_fields, const scan_field_t *fields, tap_state_t state);
568 extern void jtag_add_dr_scan(int num_fields, const scan_field_t* fields, tap_state_t endstate);
569
570 /* set in_value to point to 32 bits of memory to scan into. This function
571 * is a way to handle the case of synchronous and asynchronous
572 * JTAG queues.
573 *
574 * In the event of an asynchronous queue execution the queue buffer
575 * allocation method is used, for the synchronous case the temporary 32 bits come
576 * from the input field itself.
577 */
578
579 #ifndef HAVE_JTAG_MINIDRIVER_H
580 extern void jtag_alloc_in_value32(scan_field_t *field);
581 #else
582 static __inline__ void jtag_alloc_in_value32(scan_field_t *field)
583 {
584 field->in_value=field->intmp;
585 }
586 #endif
587
588
589
590 /* This version of jtag_add_dr_scan() uses the check_value/mask fields */
591 extern void jtag_add_dr_scan_check(int num_fields, scan_field_t* fields, tap_state_t endstate);
592 extern void jtag_add_plain_ir_scan(int num_fields, const scan_field_t* fields, tap_state_t endstate);
593 extern void jtag_add_plain_dr_scan(int num_fields, const scan_field_t* fields, tap_state_t endstate);
594
595
596 /* Simplest/typical callback - do some conversion on the data clocked in.
597 * This callback is for such conversion that can not fail.
598 * For conversion types or checks that can
599 * fail, use the jtag_callback_t variant */
600 typedef void (*jtag_callback1_t)(u8 *in);
601
602 #ifndef HAVE_JTAG_MINIDRIVER_H
603 /* A simpler version of jtag_add_callback4 */
604 extern void jtag_add_callback(jtag_callback1_t, u8 *in);
605 #else
606 /* implemented by minidriver */
607 #endif
608
609
610 /* This type can store an integer safely by a normal cast on 64 and
611 * 32 bit systems. */
612 typedef intptr_t jtag_callback_data_t;
613
614 /* The generic callback mechanism.
615 *
616 * The callback is invoked with three arguments. The first argument is
617 * the pointer to the data clocked in.
618 */
619 typedef int (*jtag_callback_t)(u8 *in, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3);
620
621
622 /* This callback can be executed immediately the queue has been flushed. Note that
623 * the JTAG queue can either be executed synchronously or asynchronously. Typically
624 * for USB the queue is executed asynchronously. For low latency interfaces, the
625 * queue may be executed synchronously.
626 *
627 * These callbacks are typically executed *after* the *entire* JTAG queue has been
628 * executed for e.g. USB interfaces.
629 *
630 * The callbacks are guaranteeed to be invoked in the order that they were queued.
631 *
632 * The strange name is due to C's lack of overloading using function arguments
633 *
634 * The callback mechansim is very general and does not really make any assumptions
635 * about what the callback does and what the arguments are.
636 *
637 * in - typically used to point to the data to operate on. More often than not
638 * this will be the data clocked in during a shift operation
639 *
640 * data1 - an integer that is big enough to be used either as an 'int' or
641 * cast to/from a pointer
642 *
643 * data2 - an integer that is big enough to be used either as an 'int' or
644 * cast to/from a pointer
645 *
646 * Why stop at 'data2' for arguments? Somewhat historical reasons. This is
647 * sufficient to implement the jtag_check_value_mask(), besides the
648 * line is best drawn somewhere...
649 *
650 * If the execution of the queue fails before the callbacks, then the
651 * callbacks may or may not be invoked depending on driver implementation.
652 */
653 #ifndef HAVE_JTAG_MINIDRIVER_H
654 extern void jtag_add_callback4(jtag_callback_t, u8 *in, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3);
655 #else
656 /* implemented by minidriver */
657 #endif
658
659
660 /* run a TAP_RESET reset. End state is TAP_RESET, regardless
661 * of start state.
662 */
663 extern void jtag_add_tlr(void);
664
665 /* Application code *must* assume that interfaces will
666 * implement transitions between states with different
667 * paths and path lengths through the state diagram. The
668 * path will vary across interface and also across versions
669 * of the same interface over time. Even if the OpenOCD code
670 * is unchanged, the actual path taken may vary over time
671 * and versions of interface firmware or PCB revisions.
672 *
673 * Use jtag_add_pathmove() when specific transition sequences
674 * are required.
675 *
676 * Do not use jtag_add_pathmove() unless you need to, but do use it
677 * if you have to.
678 *
679 * DANGER! If the target is dependent upon a particular sequence
680 * of transitions for things to work correctly(e.g. as a workaround
681 * for an errata that contradicts the JTAG standard), then pathmove
682 * must be used, even if some jtag interfaces happen to use the
683 * desired path. Worse, the jtag interface used for testing a
684 * particular implementation, could happen to use the "desired"
685 * path when transitioning to/from end
686 * state.
687 *
688 * A list of unambigious single clock state transitions, not
689 * all drivers can support this, but it is required for e.g.
690 * XScale and Xilinx support
691 *
692 * Note! TAP_RESET must not be used in the path!
693 *
694 * Note that the first on the list must be reachable
695 * via a single transition from the current state.
696 *
697 * All drivers are required to implement jtag_add_pathmove().
698 * However, if the pathmove sequence can not be precisely
699 * executed, an interface_jtag_add_pathmove() or jtag_execute_queue()
700 * must return an error. It is legal, but not recommended, that
701 * a driver returns an error in all cases for a pathmove if it
702 * can only implement a few transitions and therefore
703 * a partial implementation of pathmove would have little practical
704 * application.
705 */
706 extern void jtag_add_pathmove(int num_states, const tap_state_t* path);
707
708 /* go to TAP_IDLE, if we're not already there and cycle
709 * precisely num_cycles in the TAP_IDLE after which move
710 * to the end state, if it is != TAP_IDLE
711 *
712 * nb! num_cycles can be 0, in which case the fn will navigate
713 * to endstate via TAP_IDLE
714 */
715 extern void jtag_add_runtest(int num_cycles, tap_state_t endstate);
716
717 /* A reset of the TAP state machine can be requested.
718 *
719 * Whether tms or trst reset is used depends on the capabilities of
720 * the target and jtag interface(reset_config command configures this).
721 *
722 * srst can driver a reset of the TAP state machine and vice
723 * versa
724 *
725 * Application code may need to examine value of jtag_reset_config
726 * to determine the proper codepath
727 *
728 * DANGER! Even though srst drives trst, trst might not be connected to
729 * the interface, and it might actually be *harmful* to assert trst in this case.
730 *
731 * This is why combinations such as "reset_config srst_only srst_pulls_trst"
732 * are supported.
733 *
734 * only req_tlr_or_trst and srst can have a transition for a
735 * call as the effects of transitioning both at the "same time"
736 * are undefined, but when srst_pulls_trst or vice versa,
737 * then trst & srst *must* be asserted together.
738 */
739 extern void jtag_add_reset(int req_tlr_or_trst, int srst);
740
741 extern void jtag_add_end_state(tap_state_t endstate);
742 extern void jtag_add_sleep(u32 us);
743
744
745 /**
746 * Function jtag_add_stable_clocks
747 * first checks that the state in which the clocks are to be issued is
748 * stable, then queues up clock_count clocks for transmission.
749 */
750 void jtag_add_clocks(int num_cycles);
751
752
753 /*
754 * For software FIFO implementations, the queued commands can be executed
755 * during this call or earlier. A sw queue might decide to push out
756 * some of the jtag_add_xxx() operations once the queue is "big enough".
757 *
758 * This fn will return an error code if any of the prior jtag_add_xxx()
759 * calls caused a failure, e.g. check failure. Note that it does not
760 * matter if the operation was executed *before* jtag_execute_queue(),
761 * jtag_execute_queue() will still return an error code.
762 *
763 * All jtag_add_xxx() calls that have in_handler!=NULL will have been
764 * executed when this fn returns, but if what has been queued only
765 * clocks data out, without reading anything back, then JTAG could
766 * be running *after* jtag_execute_queue() returns. The API does
767 * not define a way to flush a hw FIFO that runs *after*
768 * jtag_execute_queue() returns.
769 *
770 * jtag_add_xxx() commands can either be executed immediately or
771 * at some time between the jtag_add_xxx() fn call and jtag_execute_queue().
772 */
773 extern int jtag_execute_queue(void);
774
775 /* same as jtag_execute_queue() but does not clear the error flag */
776 extern void jtag_execute_queue_noclear(void);
777
778 /* this flag is set when an error occurs while executing the queue. cleared
779 * by jtag_execute_queue()
780 *
781 * this flag can also be set from application code if some error happens
782 * during processing that should be reported during jtag_execute_queue().
783 */
784 extern int jtag_error;
785
786 static __inline__ void jtag_set_error(int error)
787 {
788 if ((error==ERROR_OK)||(jtag_error!=ERROR_OK))
789 {
790 /* keep first error */
791 return;
792 }
793 jtag_error=error;
794 }
795
796
797
798 /* can be implemented by hw+sw */
799 extern int jtag_power_dropout(int* dropout);
800 extern int jtag_srst_asserted(int* srst_asserted);
801
802 /* JTAG support functions */
803
804 /* execute jtag queue and check value and use mask if mask is != NULL. invokes
805 * jtag_set_error() with any error. */
806 extern void jtag_check_value_mask(scan_field_t *field, u8 *value, u8 *mask);
807 extern enum scan_type jtag_scan_type(const scan_command_t* cmd);
808 extern int jtag_scan_size(const scan_command_t* cmd);
809 extern int jtag_read_buffer(u8* buffer, const scan_command_t* cmd);
810 extern int jtag_build_buffer(const scan_command_t* cmd, u8** buffer);
811
812 extern void jtag_sleep(u32 us);
813 extern int jtag_call_event_callbacks(enum jtag_event event);
814 extern int jtag_register_event_callback(int (* callback)(enum jtag_event event, void* priv), void* priv);
815
816 extern int jtag_verify_capture_ir;
817
818 void jtag_tap_handle_event(jtag_tap_t* tap, enum jtag_tap_event e);
819
820 /* error codes
821 * JTAG subsystem uses codes between -100 and -199 */
822
823 #define ERROR_JTAG_INIT_FAILED (-100)
824 #define ERROR_JTAG_INVALID_INTERFACE (-101)
825 #define ERROR_JTAG_NOT_IMPLEMENTED (-102)
826 #define ERROR_JTAG_TRST_ASSERTED (-103)
827 #define ERROR_JTAG_QUEUE_FAILED (-104)
828 #define ERROR_JTAG_NOT_STABLE_STATE (-105)
829 #define ERROR_JTAG_DEVICE_ERROR (-107)
830
831 #ifdef INCLUDE_JTAG_MINIDRIVER_H
832
833 extern int interface_jtag_add_ir_scan(
834 int num_fields, const scan_field_t* fields,
835 tap_state_t endstate);
836 extern int interface_jtag_add_plain_ir_scan(
837 int num_fields, const scan_field_t* fields,
838 tap_state_t endstate);
839
840 extern int interface_jtag_add_dr_scan(
841 int num_fields, const scan_field_t* fields,
842 tap_state_t endstate);
843 extern int interface_jtag_add_plain_dr_scan(
844 int num_fields, const scan_field_t* fields,
845 tap_state_t endstate);
846
847 extern int interface_jtag_add_tlr(void);
848 extern int interface_jtag_add_pathmove(int num_states, const tap_state_t* path);
849 extern int interface_jtag_add_runtest(int num_cycles, tap_state_t endstate);
850
851 /**
852 * This drives the actual srst and trst pins. srst will always be 0
853 * if jtag_reset_config & RESET_SRST_PULLS_TRST != 0 and ditto for
854 * trst.
855 *
856 * the higher level jtag_add_reset will invoke jtag_add_tlr() if
857 * approperiate
858 */
859 extern int interface_jtag_add_reset(int trst, int srst);
860 extern int interface_jtag_add_end_state(tap_state_t endstate);
861 extern int interface_jtag_add_sleep(u32 us);
862 extern int interface_jtag_add_clocks(int num_cycles);
863 extern int interface_jtag_execute_queue(void);
864
865 #endif // INCLUDE_JTAG_MINIDRIVER_H
866
867 /* this allows JTAG devices to implement the entire jtag_xxx() layer in hw/sw */
868 #ifdef HAVE_JTAG_MINIDRIVER_H
869 /* Here a #define MINIDRIVER() and an inline version of hw fifo interface_jtag_add_dr_out can be defined */
870 #include "jtag_minidriver.h"
871 #define MINIDRIVER(a) notused ## a
872 #else
873 #define MINIDRIVER(a) a
874 extern void interface_jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
875 tap_state_t end_state);
876
877 #endif
878
879 /* jtag_add_dr_out() is a version of jtag_add_dr_scan() which
880 * only scans data out. It operates on 32 bit integers instead
881 * of 8 bit, which makes it a better impedance match with
882 * the calling code which often operate on 32 bit integers.
883 *
884 * Current or end_state can not be TAP_RESET. end_state can be TAP_INVALID
885 *
886 * num_bits[i] is the number of bits to clock out from value[i] LSB first.
887 *
888 * If the device is in bypass, then that is an error condition in
889 * the caller code that is not detected by this fn, whereas jtag_add_dr_scan()
890 * does detect it. Similarly if the device is not in bypass, data must
891 * be passed to it.
892 *
893 * If anything fails, then jtag_error will be set and jtag_execute() will
894 * return an error. There is no way to determine if there was a failure
895 * during this function call.
896 *
897 * This is an inline fn to speed up embedded hosts. Also note that
898 * interface_jtag_add_dr_out() can be a *small* inline function for
899 * embedded hosts.
900 *
901 * There is no jtag_add_dr_outin() version of this fn that also allows
902 * clocking data back in. Patches gladly accepted!
903 */
904 static __inline__ void jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
905 tap_state_t end_state)
906 {
907 if (end_state != TAP_INVALID)
908 cmd_queue_end_state = end_state;
909 cmd_queue_cur_state = cmd_queue_end_state;
910 interface_jtag_add_dr_out(tap, num_fields, num_bits, value, cmd_queue_end_state);
911 }
912
913
914
915
916 /**
917 * Function jtag_add_statemove
918 * moves from the current state to the goal \a state. This needs
919 * to be handled according to the xsvf spec, see the XSTATE command
920 * description.
921 */
922 extern int jtag_add_statemove(tap_state_t goal_state);
923
924 #endif /* JTAG_H */

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)