Remove unused in_handler_t type definition from jtag.h
[openocd.git] / src / jtag / jtag.h
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifndef JTAG_H
24 #define JTAG_H
25
26 #include "binarybuffer.h"
27 #include "log.h"
28
29
30 #ifdef _DEBUG_JTAG_IO_
31 #define DEBUG_JTAG_IO(expr ...) LOG_DEBUG(expr)
32 #else
33 #define DEBUG_JTAG_IO(expr ...)
34 #endif
35
36 #ifndef DEBUG_JTAG_IOZ
37 #define DEBUG_JTAG_IOZ 64
38 #endif
39
40 /*-----<Macros>--------------------------------------------------*/
41
42 /** When given an array, compute its DIMension, i.e. number of elements in the array */
43 #define DIM(x) (sizeof(x)/sizeof((x)[0]))
44
45 /** Calculate the number of bytes required to hold @a n TAP scan bits */
46 #define TAP_SCAN_BYTES(n) CEIL(n, 8)
47
48 /*-----</Macros>-------------------------------------------------*/
49
50
51
52 /*
53 * Tap states from ARM7TDMI-S Technical reference manual.
54 * Also, validated against several other ARM core technical manuals.
55 *
56 * N.B. tap_get_tms_path() was changed to reflect this corrected
57 * numbering and ordering of the TAP states.
58 *
59 * DANGER!!!! some interfaces care about the actual numbers used
60 * as they are handed off directly to hardware implementations.
61 */
62
63 typedef enum tap_state
64 {
65 #if BUILD_ECOSBOARD
66 /* These are the old numbers. Leave as-is for now... */
67 TAP_RESET = 0, TAP_IDLE = 8,
68 TAP_DRSELECT = 1, TAP_DRCAPTURE = 2, TAP_DRSHIFT = 3, TAP_DREXIT1 = 4,
69 TAP_DRPAUSE = 5, TAP_DREXIT2 = 6, TAP_DRUPDATE = 7,
70 TAP_IRSELECT = 9, TAP_IRCAPTURE = 10, TAP_IRSHIFT = 11, TAP_IREXIT1 = 12,
71 TAP_IRPAUSE = 13, TAP_IREXIT2 = 14, TAP_IRUPDATE = 15,
72
73 TAP_NUM_STATES = 16, TAP_INVALID = -1,
74 #else
75 /* Proper ARM recommended numbers */
76 TAP_DREXIT2 = 0x0,
77 TAP_DREXIT1 = 0x1,
78 TAP_DRSHIFT = 0x2,
79 TAP_DRPAUSE = 0x3,
80 TAP_IRSELECT = 0x4,
81 TAP_DRUPDATE = 0x5,
82 TAP_DRCAPTURE = 0x6,
83 TAP_DRSELECT = 0x7,
84 TAP_IREXIT2 = 0x8,
85 TAP_IREXIT1 = 0x9,
86 TAP_IRSHIFT = 0xa,
87 TAP_IRPAUSE = 0xb,
88 TAP_IDLE = 0xc,
89 TAP_IRUPDATE = 0xd,
90 TAP_IRCAPTURE = 0xe,
91 TAP_RESET = 0x0f,
92
93 TAP_NUM_STATES = 0x10,
94
95 TAP_INVALID = -1,
96 #endif
97 } tap_state_t;
98
99 typedef struct tap_transition_s
100 {
101 tap_state_t high;
102 tap_state_t low;
103 } tap_transition_t;
104
105 //extern tap_transition_t tap_transitions[16]; /* describe the TAP state diagram */
106
107
108 /*-----<Cable Helper API>-------------------------------------------*/
109
110 /* The "Cable Helper API" is what the cable drivers can use to help implement
111 * their "Cable API". So a Cable Helper API is a set of helper functions used by
112 * cable drivers, and this is different from a Cable API. A "Cable API" is what
113 * higher level code used to talk to a cable.
114 */
115
116
117 /** implementation of wrapper function tap_set_state() */
118 void tap_set_state_impl(tap_state_t new_state);
119
120 /**
121 * Function tap_set_state
122 * sets the state of a "state follower" which tracks the state of the TAPs connected to the
123 * cable. The state follower is hopefully always in the same state as the actual
124 * TAPs in the jtag chain, and will be so if there are no bugs in the tracking logic within that
125 * cable driver. All the cable drivers call this function to indicate the state they think
126 * the TAPs attached to their cables are in. Because this function can also log transitions,
127 * it will be helpful to call this function with every transition that the TAPs being manipulated
128 * are expected to traverse, not just end points of a multi-step state path.
129 * @param new_state is the state we think the TAPs are currently in or are about to enter.
130 */
131 #if defined(_DEBUG_JTAG_IO_)
132 #define tap_set_state(new_state) \
133 do { \
134 LOG_DEBUG( "tap_set_state(%s)", tap_state_name(new_state) ); \
135 tap_set_state_impl(new_state); \
136 } while (0)
137 #else
138 static inline void tap_set_state(tap_state_t new_state)
139 {
140 tap_set_state_impl(new_state);
141 }
142
143 #endif
144
145 /**
146 * Function tap_get_state
147 * gets the state of the "state follower" which tracks the state of the TAPs connected to
148 * the cable.
149 * @see tap_set_state
150 * @return tap_state_t - The state the TAPs are in now.
151 */
152 tap_state_t tap_get_state(void);
153
154 /**
155 * Function tap_set_end_state
156 * sets the state of an "end state follower" which tracks the state that any cable driver
157 * thinks will be the end (resultant) state of the current TAP SIR or SDR operation. At completion
158 * of that TAP operation this value is copied into the state follower via tap_set_state().
159 * @param new_end_state is that state the TAPs should enter at completion of a pending TAP operation.
160 */
161 void tap_set_end_state(tap_state_t new_end_state);
162
163 /**
164 * Function tap_get_end_state
165 * @see tap_set_end_state
166 * @return tap_state_t - The state the TAPs should be in at completion of the current TAP operation.
167 */
168 tap_state_t tap_get_end_state(void);
169
170 /**
171 * Function tap_get_tms_path
172 * returns a 7 bit long "bit sequence" indicating what has to be done with TMS
173 * during a sequence of seven TAP clock cycles in order to get from
174 * state \a "from" to state \a "to".
175 * @param from is the starting state
176 * @param to is the resultant or final state
177 * @return int - a 7 bit sequence, with the first bit in the sequence at bit 0.
178 */
179 int tap_get_tms_path(tap_state_t from, tap_state_t to);
180
181
182 /**
183 * Function int tap_get_tms_path_len
184 * returns the total number of bits that represents a TMS path
185 * transition as given by the function tap_get_tms_path().
186 *
187 * For at least one interface (JLink) it's not OK to simply "pad" TMS sequences
188 * to fit a whole byte. (I suspect this is a general TAP problem within OOCD.)
189 * Padding TMS causes all manner of instability that's not easily
190 * discovered. Using this routine we can apply EXACTLY the state transitions
191 * required to make something work - no more - no less.
192 *
193 * @param from is the starting state
194 * @param to is the resultant or final state
195 * @return int - the total number of bits in a transition.
196 */
197 int tap_get_tms_path_len(tap_state_t from, tap_state_t to);
198
199
200 /**
201 * Function tap_move_ndx
202 * when given a stable state, returns an index from 0-5. The index corresponds to a
203 * sequence of stable states which are given in this order: <p>
204 * { TAP_RESET, TAP_IDLE, TAP_DRSHIFT, TAP_DRPAUSE, TAP_IRSHIFT, TAP_IRPAUSE }
205 * <p>
206 * This sequence corresponds to look up tables which are used in some of the
207 * cable drivers.
208 * @param astate is the stable state to find in the sequence. If a non stable
209 * state is passed, this may cause the program to output an error message
210 * and terminate.
211 * @return int - the array (or sequence) index as described above
212 */
213 int tap_move_ndx(tap_state_t astate);
214
215 /**
216 * Function tap_is_state_stable
217 * returns true if the \a astate is stable.
218 */
219 bool tap_is_state_stable(tap_state_t astate);
220
221 /**
222 * Function tap_state_transition
223 * takes a current TAP state and returns the next state according to the tms value.
224 * @param current_state is the state of a TAP currently.
225 * @param tms is either zero or non-zero, just like a real TMS line in a jtag interface.
226 * @return tap_state_t - the next state a TAP would enter.
227 */
228 tap_state_t tap_state_transition(tap_state_t current_state, bool tms);
229
230 /**
231 * Function tap_state_name
232 * Returns a string suitable for display representing the JTAG tap_state
233 */
234 const char* tap_state_name(tap_state_t state);
235
236 #ifdef _DEBUG_JTAG_IO_
237 /**
238 * @brief Prints verbose TAP state transitions for the given TMS/TDI buffers.
239 * @param tms_buf must points to a buffer containing the TMS bitstream.
240 * @param tdi_buf must points to a buffer containing the TDI bitstream.
241 * @param tap_len must specify the length of the TMS/TDI bitstreams.
242 * @param start_tap_state must specify the current TAP state.
243 * @returns the final TAP state; pass as @a start_tap_state in following call.
244 */
245 tap_state_t jtag_debug_state_machine(const void *tms_buf, const void *tdi_buf,
246 unsigned tap_len, tap_state_t start_tap_state);
247 #else
248 static inline tap_state_t jtag_debug_state_machine(const void *tms_buf,
249 const void *tdi_buf, unsigned tap_len, tap_state_t start_tap_state)
250 {
251 return start_tap_state;
252 }
253 #endif // _DEBUG_JTAG_IO_
254
255 /*-----</Cable Helper API>------------------------------------------*/
256
257
258 extern tap_state_t cmd_queue_end_state; /* finish DR scans in dr_end_state */
259 extern tap_state_t cmd_queue_cur_state; /* current TAP state */
260
261 typedef struct scan_field_s
262 {
263 jtag_tap_t* tap; /* tap pointer this instruction refers to */
264 int num_bits; /* number of bits this field specifies (up to 32) */
265 u8* out_value; /* value to be scanned into the device */
266 u8* in_value; /* pointer to a 32-bit memory location to take data scanned out */
267
268 u8* check_value; /* Used together with jtag_add_dr_scan_check() to check data clocked
269 in */
270 u8* check_mask; /* mask to go with check_value */
271
272 /* internal work space */
273 int allocated; /* in_value has been allocated for the queue */
274 int modified; /* did we modify the in_value? */
275 u8 intmp[4]; /* temporary storage for checking synchronously */
276 } scan_field_t;
277
278 enum scan_type {
279 /* IN: from device to host, OUT: from host to device */
280 SCAN_IN = 1, SCAN_OUT = 2, SCAN_IO = 3
281 };
282
283 typedef struct scan_command_s
284 {
285 bool ir_scan; /* instruction/not data scan */
286 int num_fields; /* number of fields in *fields array */
287 scan_field_t* fields; /* pointer to an array of data scan fields */
288 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
289 } scan_command_t;
290
291 typedef struct statemove_command_s
292 {
293 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
294 } statemove_command_t;
295
296 typedef struct pathmove_command_s
297 {
298 int num_states; /* number of states in *path */
299 tap_state_t* path; /* states that have to be passed */
300 } pathmove_command_t;
301
302 typedef struct runtest_command_s
303 {
304 int num_cycles; /* number of cycles that should be spent in Run-Test/Idle */
305 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
306 } runtest_command_t;
307
308
309 typedef struct stableclocks_command_s
310 {
311 int num_cycles; /* number of clock cycles that should be sent */
312 } stableclocks_command_t;
313
314
315 typedef struct reset_command_s
316 {
317 int trst; /* trst/srst 0: deassert, 1: assert, -1: don't change */
318 int srst;
319 } reset_command_t;
320
321 typedef struct end_state_command_s
322 {
323 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
324 } end_state_command_t;
325
326 typedef struct sleep_command_s
327 {
328 u32 us; /* number of microseconds to sleep */
329 } sleep_command_t;
330
331 typedef union jtag_command_container_u
332 {
333 scan_command_t* scan;
334 statemove_command_t* statemove;
335 pathmove_command_t* pathmove;
336 runtest_command_t* runtest;
337 stableclocks_command_t* stableclocks;
338 reset_command_t* reset;
339 end_state_command_t* end_state;
340 sleep_command_t* sleep;
341 } jtag_command_container_t;
342
343 enum jtag_command_type {
344 JTAG_SCAN = 1,
345 JTAG_STATEMOVE = 2,
346 JTAG_RUNTEST = 3,
347 JTAG_RESET = 4,
348 JTAG_PATHMOVE = 6,
349 JTAG_SLEEP = 7,
350 JTAG_STABLECLOCKS = 8
351 };
352
353 typedef struct jtag_command_s
354 {
355 jtag_command_container_t cmd;
356 enum jtag_command_type type;
357 struct jtag_command_s* next;
358 } jtag_command_t;
359
360 extern jtag_command_t* jtag_command_queue;
361
362 /* forward declaration */
363 typedef struct jtag_tap_event_action_s jtag_tap_event_action_t;
364
365 /* this is really: typedef jtag_tap_t */
366 /* But - the typedef is done in "types.h" */
367 /* due to "forward decloration reasons" */
368 struct jtag_tap_s
369 {
370 const char* chip;
371 const char* tapname;
372 const char* dotted_name;
373 int abs_chain_position;
374 int enabled;
375 int ir_length; /* size of instruction register */
376 u32 ir_capture_value;
377 u8* expected; /* Capture-IR expected value */
378 u32 ir_capture_mask;
379 u8* expected_mask; /* Capture-IR expected mask */
380 u32 idcode; /* device identification code */
381 u32* expected_ids; /* Array of expected identification codes */
382 u8 expected_ids_cnt; /* Number of expected identification codes */
383 u8* cur_instr; /* current instruction */
384 int bypass; /* bypass register selected */
385
386 jtag_tap_event_action_t* event_action;
387
388 jtag_tap_t* next_tap;
389 };
390 extern jtag_tap_t* jtag_AllTaps(void);
391 extern jtag_tap_t* jtag_TapByPosition(int n);
392 extern jtag_tap_t* jtag_TapByString(const char* dotted_name);
393 extern jtag_tap_t* jtag_TapByJimObj(Jim_Interp* interp, Jim_Obj* obj);
394 extern jtag_tap_t* jtag_TapByAbsPosition(int abs_position);
395 extern int jtag_NumEnabledTaps(void);
396 extern int jtag_NumTotalTaps(void);
397
398 static __inline__ jtag_tap_t* jtag_NextEnabledTap(jtag_tap_t* p)
399 {
400 if (p == NULL)
401 {
402 /* start at the head of list */
403 p = jtag_AllTaps();
404 }
405 else
406 {
407 /* start *after* this one */
408 p = p->next_tap;
409 }
410 while (p)
411 {
412 if (p->enabled)
413 {
414 break;
415 }
416 else
417 {
418 p = p->next_tap;
419 }
420 }
421
422 return p;
423 }
424
425
426 enum reset_line_mode {
427 LINE_OPEN_DRAIN = 0x0,
428 LINE_PUSH_PULL = 0x1,
429 };
430
431 typedef struct jtag_interface_s
432 {
433 char* name;
434
435 /* queued command execution
436 */
437 int (*execute_queue)(void);
438
439 /* interface initalization
440 */
441 int (*speed)(int speed);
442 int (*register_commands)(struct command_context_s* cmd_ctx);
443 int (*init)(void);
444 int (*quit)(void);
445
446 /* returns JTAG maxium speed for KHz. 0=RTCK. The function returns
447 * a failure if it can't support the KHz/RTCK.
448 *
449 * WARNING!!!! if RTCK is *slow* then think carefully about
450 * whether you actually want to support this in the driver.
451 * Many target scripts are written to handle the absence of RTCK
452 * and use a fallback kHz TCK.
453 */
454 int (*khz)(int khz, int* jtag_speed);
455
456 /* returns the KHz for the provided JTAG speed. 0=RTCK. The function returns
457 * a failure if it can't support the KHz/RTCK. */
458 int (*speed_div)(int speed, int* khz);
459
460 /* Read and clear the power dropout flag. Note that a power dropout
461 * can be transitionary, easily much less than a ms.
462 *
463 * So to find out if the power is *currently* on, you must invoke
464 * this method twice. Once to clear the power dropout flag and a
465 * second time to read the current state.
466 *
467 * Currently the default implementation is never to detect power dropout.
468 */
469 int (*power_dropout)(int* power_dropout);
470
471 /* Read and clear the srst asserted detection flag.
472 *
473 * NB!!!! like power_dropout this does *not* read the current
474 * state. srst assertion is transitionary and *can* be much
475 * less than 1ms.
476 */
477 int (*srst_asserted)(int* srst_asserted);
478 } jtag_interface_t;
479
480 enum jtag_event {
481 JTAG_TRST_ASSERTED
482 };
483
484 extern char* jtag_event_strings[];
485
486 enum jtag_tap_event {
487 JTAG_TAP_EVENT_ENABLE,
488 JTAG_TAP_EVENT_DISABLE
489 };
490
491 extern const Jim_Nvp nvp_jtag_tap_event[];
492
493 struct jtag_tap_event_action_s
494 {
495 enum jtag_tap_event event;
496 Jim_Obj* body;
497 jtag_tap_event_action_t* next;
498 };
499
500 extern int jtag_trst;
501 extern int jtag_srst;
502
503 typedef struct jtag_event_callback_s
504 {
505 int (*callback)(enum jtag_event event, void* priv);
506 void* priv;
507 struct jtag_event_callback_s* next;
508 } jtag_event_callback_t;
509
510 extern jtag_event_callback_t* jtag_event_callbacks;
511
512 extern int jtag_speed;
513 extern int jtag_speed_post_reset;
514
515 enum reset_types {
516 RESET_NONE = 0x0,
517 RESET_HAS_TRST = 0x1,
518 RESET_HAS_SRST = 0x2,
519 RESET_TRST_AND_SRST = 0x3,
520 RESET_SRST_PULLS_TRST = 0x4,
521 RESET_TRST_PULLS_SRST = 0x8,
522 RESET_TRST_OPEN_DRAIN = 0x10,
523 RESET_SRST_PUSH_PULL = 0x20,
524 };
525
526 extern enum reset_types jtag_reset_config;
527
528 /* initialize interface upon startup. A successful no-op
529 * upon subsequent invocations
530 */
531 extern int jtag_interface_init(struct command_context_s* cmd_ctx);
532
533 /// Shutdown the JTAG interface upon program exit.
534 extern int jtag_interface_quit(void);
535
536 /* initialize JTAG chain using only a RESET reset. If init fails,
537 * try reset + init.
538 */
539 extern int jtag_init(struct command_context_s* cmd_ctx);
540
541 /* reset, then initialize JTAG chain */
542 extern int jtag_init_reset(struct command_context_s* cmd_ctx);
543 extern int jtag_register_commands(struct command_context_s* cmd_ctx);
544
545 /* JTAG interface, can be implemented with a software or hardware fifo
546 *
547 * TAP_DRSHIFT and TAP_IRSHIFT are illegal end states. TAP_DRSHIFT/IRSHIFT as end states
548 * can be emulated by using a larger scan.
549 *
550 * Code that is relatively insensitive to the path(as long
551 * as it is JTAG compliant) taken through state machine can use
552 * endstate for jtag_add_xxx_scan(). Otherwise the pause state must be
553 * specified as end state and a subsequent jtag_add_pathmove() must
554 * be issued.
555 *
556 */
557 extern void jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
558 /* same as jtag_add_ir_scan except no verify is performed */
559 extern void jtag_add_ir_scan_noverify(int num_fields, const scan_field_t *fields, tap_state_t state);
560 extern int interface_jtag_add_ir_scan(int num_fields, const scan_field_t* fields, tap_state_t endstate);
561 extern void jtag_add_dr_scan(int num_fields, const scan_field_t* fields, tap_state_t endstate);
562
563 /* set in_value to point to 32 bits of memory to scan into. This function
564 * is a way to handle the case of synchronous and asynchronous
565 * JTAG queues.
566 *
567 * In the event of an asynchronous queue execution the queue buffer
568 * allocation method is used, for the synchronous case the temporary 32 bits come
569 * from the input field itself.
570 */
571
572 #ifndef HAVE_JTAG_MINIDRIVER_H
573 extern void jtag_alloc_in_value32(scan_field_t *field);
574 #else
575 static __inline__ void jtag_alloc_in_value32(scan_field_t *field)
576 {
577 field->in_value=field->intmp;
578 }
579 #endif
580
581
582
583 /* This version of jtag_add_dr_scan() uses the check_value/mask fields */
584 extern void jtag_add_dr_scan_check(int num_fields, scan_field_t* fields, tap_state_t endstate);
585 extern int interface_jtag_add_dr_scan(int num_fields, const scan_field_t* fields, tap_state_t endstate);
586 extern void jtag_add_plain_ir_scan(int num_fields, const scan_field_t* fields, tap_state_t endstate);
587 extern int interface_jtag_add_plain_ir_scan(int num_fields, const scan_field_t* fields, tap_state_t endstate);
588 extern void jtag_add_plain_dr_scan(int num_fields, const scan_field_t* fields, tap_state_t endstate);
589 extern int interface_jtag_add_plain_dr_scan(int num_fields, const scan_field_t* fields, tap_state_t endstate);
590
591
592 /* Simplest/typical callback - do some conversion on the data clocked in.
593 * This callback is for such conversion that can not fail.
594 * For conversion types or checks that can
595 * fail, use the jtag_callback_t variant */
596 typedef void (*jtag_callback1_t)(u8 *in);
597
598 #ifndef HAVE_JTAG_MINIDRIVER_H
599 /* A simpler version of jtag_add_callback4 */
600 extern void jtag_add_callback(jtag_callback1_t, u8 *in);
601 #else
602 /* implemented by minidriver */
603 #endif
604
605
606 /* This type can store an integer safely by a normal cast on 64 and
607 * 32 bit systems. */
608 typedef intptr_t jtag_callback_data_t;
609
610 /* The generic callback mechanism.
611 *
612 * The callback is invoked with three arguments. The first argument is
613 * the pointer to the data clocked in.
614 */
615 typedef int (*jtag_callback_t)(u8 *in, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3);
616
617
618 /* This callback can be executed immediately the queue has been flushed. Note that
619 * the JTAG queue can either be executed synchronously or asynchronously. Typically
620 * for USB the queue is executed asynchronously. For low latency interfaces, the
621 * queue may be executed synchronously.
622 *
623 * These callbacks are typically executed *after* the *entire* JTAG queue has been
624 * executed for e.g. USB interfaces.
625 *
626 * The callbacks are guaranteeed to be invoked in the order that they were queued.
627 *
628 * The strange name is due to C's lack of overloading using function arguments
629 *
630 * The callback mechansim is very general and does not really make any assumptions
631 * about what the callback does and what the arguments are.
632 *
633 * in - typically used to point to the data to operate on. More often than not
634 * this will be the data clocked in during a shift operation
635 *
636 * data1 - an integer that is big enough to be used either as an 'int' or
637 * cast to/from a pointer
638 *
639 * data2 - an integer that is big enough to be used either as an 'int' or
640 * cast to/from a pointer
641 *
642 * Why stop at 'data2' for arguments? Somewhat historical reasons. This is
643 * sufficient to implement the jtag_check_value_mask(), besides the
644 * line is best drawn somewhere...
645 *
646 * If the execution of the queue fails before the callbacks, then the
647 * callbacks may or may not be invoked depending on driver implementation.
648 */
649 #ifndef HAVE_JTAG_MINIDRIVER_H
650 extern void jtag_add_callback4(jtag_callback_t, u8 *in, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3);
651 #else
652 /* implemented by minidriver */
653 #endif
654
655
656 /* run a TAP_RESET reset. End state is TAP_RESET, regardless
657 * of start state.
658 */
659 extern void jtag_add_tlr(void);
660 extern int interface_jtag_add_tlr(void);
661
662 /* Application code *must* assume that interfaces will
663 * implement transitions between states with different
664 * paths and path lengths through the state diagram. The
665 * path will vary across interface and also across versions
666 * of the same interface over time. Even if the OpenOCD code
667 * is unchanged, the actual path taken may vary over time
668 * and versions of interface firmware or PCB revisions.
669 *
670 * Use jtag_add_pathmove() when specific transition sequences
671 * are required.
672 *
673 * Do not use jtag_add_pathmove() unless you need to, but do use it
674 * if you have to.
675 *
676 * DANGER! If the target is dependent upon a particular sequence
677 * of transitions for things to work correctly(e.g. as a workaround
678 * for an errata that contradicts the JTAG standard), then pathmove
679 * must be used, even if some jtag interfaces happen to use the
680 * desired path. Worse, the jtag interface used for testing a
681 * particular implementation, could happen to use the "desired"
682 * path when transitioning to/from end
683 * state.
684 *
685 * A list of unambigious single clock state transitions, not
686 * all drivers can support this, but it is required for e.g.
687 * XScale and Xilinx support
688 *
689 * Note! TAP_RESET must not be used in the path!
690 *
691 * Note that the first on the list must be reachable
692 * via a single transition from the current state.
693 *
694 * All drivers are required to implement jtag_add_pathmove().
695 * However, if the pathmove sequence can not be precisely
696 * executed, an interface_jtag_add_pathmove() or jtag_execute_queue()
697 * must return an error. It is legal, but not recommended, that
698 * a driver returns an error in all cases for a pathmove if it
699 * can only implement a few transitions and therefore
700 * a partial implementation of pathmove would have little practical
701 * application.
702 */
703 extern void jtag_add_pathmove(int num_states, const tap_state_t* path);
704 extern int interface_jtag_add_pathmove(int num_states, const tap_state_t* path);
705
706 /* go to TAP_IDLE, if we're not already there and cycle
707 * precisely num_cycles in the TAP_IDLE after which move
708 * to the end state, if it is != TAP_IDLE
709 *
710 * nb! num_cycles can be 0, in which case the fn will navigate
711 * to endstate via TAP_IDLE
712 */
713 extern void jtag_add_runtest(int num_cycles, tap_state_t endstate);
714 extern int interface_jtag_add_runtest(int num_cycles, tap_state_t endstate);
715
716 /* A reset of the TAP state machine can be requested.
717 *
718 * Whether tms or trst reset is used depends on the capabilities of
719 * the target and jtag interface(reset_config command configures this).
720 *
721 * srst can driver a reset of the TAP state machine and vice
722 * versa
723 *
724 * Application code may need to examine value of jtag_reset_config
725 * to determine the proper codepath
726 *
727 * DANGER! Even though srst drives trst, trst might not be connected to
728 * the interface, and it might actually be *harmful* to assert trst in this case.
729 *
730 * This is why combinations such as "reset_config srst_only srst_pulls_trst"
731 * are supported.
732 *
733 * only req_tlr_or_trst and srst can have a transition for a
734 * call as the effects of transitioning both at the "same time"
735 * are undefined, but when srst_pulls_trst or vice versa,
736 * then trst & srst *must* be asserted together.
737 */
738 extern void jtag_add_reset(int req_tlr_or_trst, int srst);
739
740 /* this drives the actual srst and trst pins. srst will always be 0
741 * if jtag_reset_config & RESET_SRST_PULLS_TRST != 0 and ditto for
742 * trst.
743 *
744 * the higher level jtag_add_reset will invoke jtag_add_tlr() if
745 * approperiate
746 */
747 extern int interface_jtag_add_reset(int trst, int srst);
748 extern void jtag_add_end_state(tap_state_t endstate);
749 extern int interface_jtag_add_end_state(tap_state_t endstate);
750 extern void jtag_add_sleep(u32 us);
751 extern int interface_jtag_add_sleep(u32 us);
752
753
754 /**
755 * Function jtag_add_stable_clocks
756 * first checks that the state in which the clocks are to be issued is
757 * stable, then queues up clock_count clocks for transmission.
758 */
759 void jtag_add_clocks(int num_cycles);
760 int interface_jtag_add_clocks(int num_cycles);
761
762
763 /*
764 * For software FIFO implementations, the queued commands can be executed
765 * during this call or earlier. A sw queue might decide to push out
766 * some of the jtag_add_xxx() operations once the queue is "big enough".
767 *
768 * This fn will return an error code if any of the prior jtag_add_xxx()
769 * calls caused a failure, e.g. check failure. Note that it does not
770 * matter if the operation was executed *before* jtag_execute_queue(),
771 * jtag_execute_queue() will still return an error code.
772 *
773 * All jtag_add_xxx() calls that have in_handler!=NULL will have been
774 * executed when this fn returns, but if what has been queued only
775 * clocks data out, without reading anything back, then JTAG could
776 * be running *after* jtag_execute_queue() returns. The API does
777 * not define a way to flush a hw FIFO that runs *after*
778 * jtag_execute_queue() returns.
779 *
780 * jtag_add_xxx() commands can either be executed immediately or
781 * at some time between the jtag_add_xxx() fn call and jtag_execute_queue().
782 */
783 extern int jtag_execute_queue(void);
784
785 /* same as jtag_execute_queue() but does not clear the error flag */
786 extern void jtag_execute_queue_noclear(void);
787
788 /* this flag is set when an error occurs while executing the queue. cleared
789 * by jtag_execute_queue()
790 *
791 * this flag can also be set from application code if some error happens
792 * during processing that should be reported during jtag_execute_queue().
793 */
794 extern int jtag_error;
795
796 static __inline__ void jtag_set_error(int error)
797 {
798 if ((error==ERROR_OK)||(jtag_error!=ERROR_OK))
799 {
800 /* keep first error */
801 return;
802 }
803 jtag_error=error;
804 }
805
806
807
808 /* can be implemented by hw+sw */
809 extern int interface_jtag_execute_queue(void);
810 extern int jtag_power_dropout(int* dropout);
811 extern int jtag_srst_asserted(int* srst_asserted);
812
813 /* JTAG support functions */
814 struct invalidstruct
815 {
816
817 };
818
819 /* execute jtag queue and check value and use mask if mask is != NULL. invokes
820 * jtag_set_error() with any error. */
821 extern void jtag_check_value_mask(scan_field_t *field, u8 *value, u8 *mask);
822 extern enum scan_type jtag_scan_type(const scan_command_t* cmd);
823 extern int jtag_scan_size(const scan_command_t* cmd);
824 extern int jtag_read_buffer(u8* buffer, const scan_command_t* cmd);
825 extern int jtag_build_buffer(const scan_command_t* cmd, u8** buffer);
826
827 extern void jtag_sleep(u32 us);
828 extern int jtag_call_event_callbacks(enum jtag_event event);
829 extern int jtag_register_event_callback(int (* callback)(enum jtag_event event, void* priv), void* priv);
830
831 extern int jtag_verify_capture_ir;
832
833 void jtag_tap_handle_event(jtag_tap_t* tap, enum jtag_tap_event e);
834
835 /* error codes
836 * JTAG subsystem uses codes between -100 and -199 */
837
838 #define ERROR_JTAG_INIT_FAILED (-100)
839 #define ERROR_JTAG_INVALID_INTERFACE (-101)
840 #define ERROR_JTAG_NOT_IMPLEMENTED (-102)
841 #define ERROR_JTAG_TRST_ASSERTED (-103)
842 #define ERROR_JTAG_QUEUE_FAILED (-104)
843 #define ERROR_JTAG_NOT_STABLE_STATE (-105)
844 #define ERROR_JTAG_DEVICE_ERROR (-107)
845
846
847 /* this allows JTAG devices to implement the entire jtag_xxx() layer in hw/sw */
848 #ifdef HAVE_JTAG_MINIDRIVER_H
849 /* Here a #define MINIDRIVER() and an inline version of hw fifo interface_jtag_add_dr_out can be defined */
850 #include "jtag_minidriver.h"
851 #define MINIDRIVER(a) notused ## a
852 #else
853 #define MINIDRIVER(a) a
854 extern void interface_jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
855 tap_state_t end_state);
856
857 #endif
858
859 /* jtag_add_dr_out() is a version of jtag_add_dr_scan() which
860 * only scans data out. It operates on 32 bit integers instead
861 * of 8 bit, which makes it a better impedance match with
862 * the calling code which often operate on 32 bit integers.
863 *
864 * Current or end_state can not be TAP_RESET. end_state can be TAP_INVALID
865 *
866 * num_bits[i] is the number of bits to clock out from value[i] LSB first.
867 *
868 * If the device is in bypass, then that is an error condition in
869 * the caller code that is not detected by this fn, whereas jtag_add_dr_scan()
870 * does detect it. Similarly if the device is not in bypass, data must
871 * be passed to it.
872 *
873 * If anything fails, then jtag_error will be set and jtag_execute() will
874 * return an error. There is no way to determine if there was a failure
875 * during this function call.
876 *
877 * This is an inline fn to speed up embedded hosts. Also note that
878 * interface_jtag_add_dr_out() can be a *small* inline function for
879 * embedded hosts.
880 *
881 * There is no jtag_add_dr_outin() version of this fn that also allows
882 * clocking data back in. Patches gladly accepted!
883 */
884 static __inline__ void jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
885 tap_state_t end_state)
886 {
887 if (end_state != TAP_INVALID)
888 cmd_queue_end_state = end_state;
889 cmd_queue_cur_state = cmd_queue_end_state;
890 interface_jtag_add_dr_out(tap, num_fields, num_bits, value, cmd_queue_end_state);
891 }
892
893
894
895
896 /**
897 * Function jtag_add_statemove
898 * moves from the current state to the goal \a state. This needs
899 * to be handled according to the xsvf spec, see the XSTATE command
900 * description.
901 */
902 extern int jtag_add_statemove(tap_state_t goal_state);
903
904 #endif /* JTAG_H */

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)