d5ed4f5807493b5a597d51bf1292c7bac85dd6f5
[openocd.git] / src / jtag / jtag.h
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifndef JTAG_H
24 #define JTAG_H
25
26 #include "types.h"
27 #include "binarybuffer.h"
28 #include "log.h"
29
30 #include "command.h"
31
32
33 #ifdef _DEBUG_JTAG_IO_
34 #define DEBUG_JTAG_IO(expr ...) LOG_DEBUG(expr)
35 #else
36 #define DEBUG_JTAG_IO(expr ...)
37 #endif
38
39 #ifndef DEBUG_JTAG_IOZ
40 #define DEBUG_JTAG_IOZ 64
41 #endif
42
43 /*-----<Macros>--------------------------------------------------*/
44
45 /** When given an array, compute its DIMension, i.e. number of elements in the array */
46 #define DIM(x) (sizeof(x)/sizeof((x)[0]))
47
48 /** Calculate the number of bytes required to hold @a n TAP scan bits */
49 #define TAP_SCAN_BYTES(n) CEIL(n, 8)
50
51 /*-----</Macros>-------------------------------------------------*/
52
53
54
55 /*
56 * Tap states from ARM7TDMI-S Technical reference manual.
57 * Also, validated against several other ARM core technical manuals.
58 *
59 * N.B. tap_get_tms_path() was changed to reflect this corrected
60 * numbering and ordering of the TAP states.
61 *
62 * DANGER!!!! some interfaces care about the actual numbers used
63 * as they are handed off directly to hardware implementations.
64 */
65
66 typedef enum tap_state
67 {
68 #if BUILD_ECOSBOARD
69 /* These are the old numbers. Leave as-is for now... */
70 TAP_RESET = 0, TAP_IDLE = 8,
71 TAP_DRSELECT = 1, TAP_DRCAPTURE = 2, TAP_DRSHIFT = 3, TAP_DREXIT1 = 4,
72 TAP_DRPAUSE = 5, TAP_DREXIT2 = 6, TAP_DRUPDATE = 7,
73 TAP_IRSELECT = 9, TAP_IRCAPTURE = 10, TAP_IRSHIFT = 11, TAP_IREXIT1 = 12,
74 TAP_IRPAUSE = 13, TAP_IREXIT2 = 14, TAP_IRUPDATE = 15,
75
76 TAP_NUM_STATES = 16, TAP_INVALID = -1,
77 #else
78 /* Proper ARM recommended numbers */
79 TAP_DREXIT2 = 0x0,
80 TAP_DREXIT1 = 0x1,
81 TAP_DRSHIFT = 0x2,
82 TAP_DRPAUSE = 0x3,
83 TAP_IRSELECT = 0x4,
84 TAP_DRUPDATE = 0x5,
85 TAP_DRCAPTURE = 0x6,
86 TAP_DRSELECT = 0x7,
87 TAP_IREXIT2 = 0x8,
88 TAP_IREXIT1 = 0x9,
89 TAP_IRSHIFT = 0xa,
90 TAP_IRPAUSE = 0xb,
91 TAP_IDLE = 0xc,
92 TAP_IRUPDATE = 0xd,
93 TAP_IRCAPTURE = 0xe,
94 TAP_RESET = 0x0f,
95
96 TAP_NUM_STATES = 0x10,
97
98 TAP_INVALID = -1,
99 #endif
100 } tap_state_t;
101
102 typedef struct tap_transition_s
103 {
104 tap_state_t high;
105 tap_state_t low;
106 } tap_transition_t;
107
108 //extern tap_transition_t tap_transitions[16]; /* describe the TAP state diagram */
109
110
111 /*-----<Cable Helper API>-------------------------------------------*/
112
113 /* The "Cable Helper API" is what the cable drivers can use to help implement
114 * their "Cable API". So a Cable Helper API is a set of helper functions used by
115 * cable drivers, and this is different from a Cable API. A "Cable API" is what
116 * higher level code used to talk to a cable.
117 */
118
119
120 /** implementation of wrapper function tap_set_state() */
121 void tap_set_state_impl(tap_state_t new_state);
122
123 /**
124 * Function tap_set_state
125 * sets the state of a "state follower" which tracks the state of the TAPs connected to the
126 * cable. The state follower is hopefully always in the same state as the actual
127 * TAPs in the jtag chain, and will be so if there are no bugs in the tracking logic within that
128 * cable driver. All the cable drivers call this function to indicate the state they think
129 * the TAPs attached to their cables are in. Because this function can also log transitions,
130 * it will be helpful to call this function with every transition that the TAPs being manipulated
131 * are expected to traverse, not just end points of a multi-step state path.
132 * @param new_state is the state we think the TAPs are currently in or are about to enter.
133 */
134 #if defined(_DEBUG_JTAG_IO_)
135 #define tap_set_state(new_state) \
136 do { \
137 LOG_DEBUG( "tap_set_state(%s)", tap_state_name(new_state) ); \
138 tap_set_state_impl(new_state); \
139 } while (0)
140 #else
141 static inline void tap_set_state(tap_state_t new_state)
142 {
143 tap_set_state_impl(new_state);
144 }
145
146 #endif
147
148 /**
149 * Function tap_get_state
150 * gets the state of the "state follower" which tracks the state of the TAPs connected to
151 * the cable.
152 * @see tap_set_state
153 * @return tap_state_t - The state the TAPs are in now.
154 */
155 tap_state_t tap_get_state(void);
156
157 /**
158 * Function tap_set_end_state
159 * sets the state of an "end state follower" which tracks the state that any cable driver
160 * thinks will be the end (resultant) state of the current TAP SIR or SDR operation. At completion
161 * of that TAP operation this value is copied into the state follower via tap_set_state().
162 * @param new_end_state is that state the TAPs should enter at completion of a pending TAP operation.
163 */
164 void tap_set_end_state(tap_state_t new_end_state);
165
166 /**
167 * Function tap_get_end_state
168 * @see tap_set_end_state
169 * @return tap_state_t - The state the TAPs should be in at completion of the current TAP operation.
170 */
171 tap_state_t tap_get_end_state(void);
172
173 /**
174 * Function tap_get_tms_path
175 * returns a 7 bit long "bit sequence" indicating what has to be done with TMS
176 * during a sequence of seven TAP clock cycles in order to get from
177 * state \a "from" to state \a "to".
178 * @param from is the starting state
179 * @param to is the resultant or final state
180 * @return int - a 7 bit sequence, with the first bit in the sequence at bit 0.
181 */
182 int tap_get_tms_path(tap_state_t from, tap_state_t to);
183
184
185 /**
186 * Function int tap_get_tms_path_len
187 * returns the total number of bits that represents a TMS path
188 * transition as given by the function tap_get_tms_path().
189 *
190 * For at least one interface (JLink) it's not OK to simply "pad" TMS sequences
191 * to fit a whole byte. (I suspect this is a general TAP problem within OOCD.)
192 * Padding TMS causes all manner of instability that's not easily
193 * discovered. Using this routine we can apply EXACTLY the state transitions
194 * required to make something work - no more - no less.
195 *
196 * @param from is the starting state
197 * @param to is the resultant or final state
198 * @return int - the total number of bits in a transition.
199 */
200 int tap_get_tms_path_len(tap_state_t from, tap_state_t to);
201
202
203 /**
204 * Function tap_move_ndx
205 * when given a stable state, returns an index from 0-5. The index corresponds to a
206 * sequence of stable states which are given in this order: <p>
207 * { TAP_RESET, TAP_IDLE, TAP_DRSHIFT, TAP_DRPAUSE, TAP_IRSHIFT, TAP_IRPAUSE }
208 * <p>
209 * This sequence corresponds to look up tables which are used in some of the
210 * cable drivers.
211 * @param astate is the stable state to find in the sequence. If a non stable
212 * state is passed, this may cause the program to output an error message
213 * and terminate.
214 * @return int - the array (or sequence) index as described above
215 */
216 int tap_move_ndx(tap_state_t astate);
217
218 /**
219 * Function tap_is_state_stable
220 * returns true if the \a astate is stable.
221 */
222 bool tap_is_state_stable(tap_state_t astate);
223
224 /**
225 * Function tap_state_transition
226 * takes a current TAP state and returns the next state according to the tms value.
227 * @param current_state is the state of a TAP currently.
228 * @param tms is either zero or non-zero, just like a real TMS line in a jtag interface.
229 * @return tap_state_t - the next state a TAP would enter.
230 */
231 tap_state_t tap_state_transition(tap_state_t current_state, bool tms);
232
233 /**
234 * Function tap_state_name
235 * Returns a string suitable for display representing the JTAG tap_state
236 */
237 const char* tap_state_name(tap_state_t state);
238
239 #ifdef _DEBUG_JTAG_IO_
240 /**
241 * @brief Prints verbose TAP state transitions for the given TMS/TDI buffers.
242 * @param tms_buf must points to a buffer containing the TMS bitstream.
243 * @param tdi_buf must points to a buffer containing the TDI bitstream.
244 * @param tap_len must specify the length of the TMS/TDI bitstreams.
245 * @param start_tap_state must specify the current TAP state.
246 * @returns the final TAP state; pass as @a start_tap_state in following call.
247 */
248 tap_state_t jtag_debug_state_machine(const void *tms_buf, const void *tdi_buf,
249 unsigned tap_len, tap_state_t start_tap_state);
250 #else
251 static inline tap_state_t jtag_debug_state_machine(const void *tms_buf,
252 const void *tdi_buf, unsigned tap_len, tap_state_t start_tap_state)
253 {
254 return start_tap_state;
255 }
256 #endif // _DEBUG_JTAG_IO_
257
258 /*-----</Cable Helper API>------------------------------------------*/
259
260
261 extern tap_state_t cmd_queue_end_state; /* finish DR scans in dr_end_state */
262 extern tap_state_t cmd_queue_cur_state; /* current TAP state */
263
264 typedef void* error_handler_t; /* Later on we can delete error_handler_t, but keep it for now to make patches more readable */
265
266 struct scan_field_s;
267 typedef int (*in_handler_t)(u8* in_value, void* priv, struct scan_field_s* field);
268
269 typedef struct scan_field_s
270 {
271 jtag_tap_t* tap; /* tap pointer this instruction refers to */
272 int num_bits; /* number of bits this field specifies (up to 32) */
273 u8* out_value; /* value to be scanned into the device */
274 u8* in_value; /* pointer to a 32-bit memory location to take data scanned out */
275 } scan_field_t;
276
277 enum scan_type {
278 /* IN: from device to host, OUT: from host to device */
279 SCAN_IN = 1, SCAN_OUT = 2, SCAN_IO = 3
280 };
281
282 typedef struct scan_command_s
283 {
284 int ir_scan; /* instruction/not data scan */
285 int num_fields; /* number of fields in *fields array */
286 scan_field_t* fields; /* pointer to an array of data scan fields */
287 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
288 } scan_command_t;
289
290 typedef struct statemove_command_s
291 {
292 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
293 } statemove_command_t;
294
295 typedef struct pathmove_command_s
296 {
297 int num_states; /* number of states in *path */
298 tap_state_t* path; /* states that have to be passed */
299 } pathmove_command_t;
300
301 typedef struct runtest_command_s
302 {
303 int num_cycles; /* number of cycles that should be spent in Run-Test/Idle */
304 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
305 } runtest_command_t;
306
307
308 typedef struct stableclocks_command_s
309 {
310 int num_cycles; /* number of clock cycles that should be sent */
311 } stableclocks_command_t;
312
313
314 typedef struct reset_command_s
315 {
316 int trst; /* trst/srst 0: deassert, 1: assert, -1: don't change */
317 int srst;
318 } reset_command_t;
319
320 typedef struct end_state_command_s
321 {
322 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
323 } end_state_command_t;
324
325 typedef struct sleep_command_s
326 {
327 u32 us; /* number of microseconds to sleep */
328 } sleep_command_t;
329
330 typedef union jtag_command_container_u
331 {
332 scan_command_t* scan;
333 statemove_command_t* statemove;
334 pathmove_command_t* pathmove;
335 runtest_command_t* runtest;
336 stableclocks_command_t* stableclocks;
337 reset_command_t* reset;
338 end_state_command_t* end_state;
339 sleep_command_t* sleep;
340 } jtag_command_container_t;
341
342 enum jtag_command_type {
343 JTAG_SCAN = 1,
344 JTAG_STATEMOVE = 2,
345 JTAG_RUNTEST = 3,
346 JTAG_RESET = 4,
347 JTAG_END_STATE = 5,
348 JTAG_PATHMOVE = 6,
349 JTAG_SLEEP = 7,
350 JTAG_STABLECLOCKS = 8
351 };
352
353 typedef struct jtag_command_s
354 {
355 jtag_command_container_t cmd;
356 enum jtag_command_type type;
357 struct jtag_command_s* next;
358 } jtag_command_t;
359
360 extern jtag_command_t* jtag_command_queue;
361
362 /* forward declaration */
363 typedef struct jtag_tap_event_action_s jtag_tap_event_action_t;
364
365 /* this is really: typedef jtag_tap_t */
366 /* But - the typedef is done in "types.h" */
367 /* due to "forward decloration reasons" */
368 struct jtag_tap_s
369 {
370 const char* chip;
371 const char* tapname;
372 const char* dotted_name;
373 int abs_chain_position;
374 int enabled;
375 int ir_length; /* size of instruction register */
376 u32 ir_capture_value;
377 u8* expected; /* Capture-IR expected value */
378 u32 ir_capture_mask;
379 u8* expected_mask; /* Capture-IR expected mask */
380 u32 idcode; /* device identification code */
381 u32* expected_ids; /* Array of expected identification codes */
382 u8 expected_ids_cnt; /* Number of expected identification codes */
383 u8* cur_instr; /* current instruction */
384 int bypass; /* bypass register selected */
385
386 jtag_tap_event_action_t* event_action;
387
388 jtag_tap_t* next_tap;
389 };
390 extern jtag_tap_t* jtag_AllTaps(void);
391 extern jtag_tap_t* jtag_TapByPosition(int n);
392 extern jtag_tap_t* jtag_TapByString(const char* dotted_name);
393 extern jtag_tap_t* jtag_TapByJimObj(Jim_Interp* interp, Jim_Obj* obj);
394 extern jtag_tap_t* jtag_TapByAbsPosition(int abs_position);
395 extern int jtag_NumEnabledTaps(void);
396 extern int jtag_NumTotalTaps(void);
397
398 static __inline__ jtag_tap_t* jtag_NextEnabledTap(jtag_tap_t* p)
399 {
400 if (p == NULL)
401 {
402 /* start at the head of list */
403 p = jtag_AllTaps();
404 }
405 else
406 {
407 /* start *after* this one */
408 p = p->next_tap;
409 }
410 while (p)
411 {
412 if (p->enabled)
413 {
414 break;
415 }
416 else
417 {
418 p = p->next_tap;
419 }
420 }
421
422 return p;
423 }
424
425
426 enum reset_line_mode {
427 LINE_OPEN_DRAIN = 0x0,
428 LINE_PUSH_PULL = 0x1,
429 };
430
431 typedef struct jtag_interface_s
432 {
433 char* name;
434
435 /* queued command execution
436 */
437 int (*execute_queue)(void);
438
439 /* interface initalization
440 */
441 int (*speed)(int speed);
442 int (*register_commands)(struct command_context_s* cmd_ctx);
443 int (*init)(void);
444 int (*quit)(void);
445
446 /* returns JTAG maxium speed for KHz. 0=RTCK. The function returns
447 * a failure if it can't support the KHz/RTCK.
448 *
449 * WARNING!!!! if RTCK is *slow* then think carefully about
450 * whether you actually want to support this in the driver.
451 * Many target scripts are written to handle the absence of RTCK
452 * and use a fallback kHz TCK.
453 */
454 int (*khz)(int khz, int* jtag_speed);
455
456 /* returns the KHz for the provided JTAG speed. 0=RTCK. The function returns
457 * a failure if it can't support the KHz/RTCK. */
458 int (*speed_div)(int speed, int* khz);
459
460 /* Read and clear the power dropout flag. Note that a power dropout
461 * can be transitionary, easily much less than a ms.
462 *
463 * So to find out if the power is *currently* on, you must invoke
464 * this method twice. Once to clear the power dropout flag and a
465 * second time to read the current state.
466 *
467 * Currently the default implementation is never to detect power dropout.
468 */
469 int (*power_dropout)(int* power_dropout);
470
471 /* Read and clear the srst asserted detection flag.
472 *
473 * NB!!!! like power_dropout this does *not* read the current
474 * state. srst assertion is transitionary and *can* be much
475 * less than 1ms.
476 */
477 int (*srst_asserted)(int* srst_asserted);
478 } jtag_interface_t;
479
480 enum jtag_event {
481 JTAG_TRST_ASSERTED
482 };
483
484 extern char* jtag_event_strings[];
485
486 enum jtag_tap_event {
487 JTAG_TAP_EVENT_ENABLE,
488 JTAG_TAP_EVENT_DISABLE
489 };
490
491 extern const Jim_Nvp nvp_jtag_tap_event[];
492
493 struct jtag_tap_event_action_s
494 {
495 enum jtag_tap_event event;
496 Jim_Obj* body;
497 jtag_tap_event_action_t* next;
498 };
499
500 extern int jtag_trst;
501 extern int jtag_srst;
502
503 typedef struct jtag_event_callback_s
504 {
505 int (*callback)(enum jtag_event event, void* priv);
506 void* priv;
507 struct jtag_event_callback_s* next;
508 } jtag_event_callback_t;
509
510 extern jtag_event_callback_t* jtag_event_callbacks;
511
512 extern jtag_interface_t* jtag; /* global pointer to configured JTAG interface */
513
514 extern int jtag_speed;
515 extern int jtag_speed_post_reset;
516
517 enum reset_types {
518 RESET_NONE = 0x0,
519 RESET_HAS_TRST = 0x1,
520 RESET_HAS_SRST = 0x2,
521 RESET_TRST_AND_SRST = 0x3,
522 RESET_SRST_PULLS_TRST = 0x4,
523 RESET_TRST_PULLS_SRST = 0x8,
524 RESET_TRST_OPEN_DRAIN = 0x10,
525 RESET_SRST_PUSH_PULL = 0x20,
526 };
527
528 extern enum reset_types jtag_reset_config;
529
530 /* initialize interface upon startup. A successful no-op
531 * upon subsequent invocations
532 */
533 extern int jtag_interface_init(struct command_context_s* cmd_ctx);
534
535 /* initialize JTAG chain using only a RESET reset. If init fails,
536 * try reset + init.
537 */
538 extern int jtag_init(struct command_context_s* cmd_ctx);
539
540 /* reset, then initialize JTAG chain */
541 extern int jtag_init_reset(struct command_context_s* cmd_ctx);
542 extern int jtag_register_commands(struct command_context_s* cmd_ctx);
543
544 /* JTAG interface, can be implemented with a software or hardware fifo
545 *
546 * TAP_DRSHIFT and TAP_IRSHIFT are illegal end states. TAP_DRSHIFT/IRSHIFT as end states
547 * can be emulated by using a larger scan.
548 *
549 * Code that is relatively insensitive to the path(as long
550 * as it is JTAG compliant) taken through state machine can use
551 * endstate for jtag_add_xxx_scan(). Otherwise the pause state must be
552 * specified as end state and a subsequent jtag_add_pathmove() must
553 * be issued.
554 *
555 */
556 extern void jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
557 /* same as jtag_add_ir_scan except no verify is performed */
558 extern void jtag_add_ir_scan_noverify(int num_fields, scan_field_t *fields, tap_state_t state);
559 extern int interface_jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
560 extern void jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
561 /* same as jtag_add_dr_scan but the scan is executed immediately. sets jtag_error if there
562 * was a failure.
563 */
564 extern void jtag_add_dr_scan_now(int num_fields, scan_field_t* fields, tap_state_t endstate);
565 extern int interface_jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
566 extern void jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
567 extern int interface_jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
568 extern void jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
569 extern int interface_jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
570
571
572 /* Simplest/typical callback - do some conversion on the data clocked in.
573 * This callback is for such conversion that can not fail.
574 * For conversion types or checks that can
575 * fail, use the jtag_callback_t variant */
576 typedef void (*jtag_callback1_t)(u8 *in);
577
578 #ifndef HAVE_JTAG_MINIDRIVER_H
579 /* A simpler version of jtag_add_callback3 */
580 extern void jtag_add_callback(jtag_callback1_t, u8 *in);
581 #else
582 /* implemented by minidriver */
583 #endif
584
585 /* This type can store an integer safely by a normal cast on 64 and
586 * 32 bit systems. */
587 typedef void *jtag_callback_data_t;
588
589 /* The generic callback mechanism.
590 *
591 * The callback is invoked with three arguments. The first argument is
592 * the pointer to the data clocked in.
593 */
594 typedef int (*jtag_callback_t)(u8 *in, jtag_callback_data_t data1, jtag_callback_data_t data2);
595
596
597 /* This callback can be executed immediately the queue has been flushed. Note that
598 * the JTAG queue can either be executed synchronously or asynchronously. Typically
599 * for USB the queue is executed asynchronously. For low latency interfaces, the
600 * queue may be executed synchronously.
601 *
602 * These callbacks are typically executed *after* the *entire* JTAG queue has been
603 * executed for e.g. USB interfaces.
604 *
605 * The callbacks are guaranteeed to be invoked in the order that they were queued.
606 *
607 * The strange name is due to C's lack of overloading using function arguments
608 *
609 * The callback mechansim is very general and does not really make any assumptions
610 * about what the callback does and what the arguments are.
611 *
612 * in - typically used to point to the data to operate on. More often than not
613 * this will be the data clocked in during a shift operation
614 *
615 * data1 - an integer that is big enough to be used either as an 'int' or
616 * cast to/from a pointer
617 *
618 * data2 - an integer that is big enough to be used either as an 'int' or
619 * cast to/from a pointer
620 *
621 * Why stop at 'data2' for arguments? Somewhat historical reasons. This is
622 * sufficient to implement the jtag_check_value_mask(), besides the
623 * line is best drawn somewhere...
624 *
625 * If the execution of the queue fails before the callbacks, then the
626 * callbacks may or may not be invoked depending on driver implementation.
627 */
628 #ifndef HAVE_JTAG_MINIDRIVER_H
629 extern void jtag_add_callback3(jtag_callback_t, u8 *in, jtag_callback_data_t data1, jtag_callback_data_t data2);
630 #else
631 /* implemented by minidriver */
632 #endif
633
634
635 /* run a TAP_RESET reset. End state is TAP_RESET, regardless
636 * of start state.
637 */
638 extern void jtag_add_tlr(void);
639 extern int interface_jtag_add_tlr(void);
640
641 /* Application code *must* assume that interfaces will
642 * implement transitions between states with different
643 * paths and path lengths through the state diagram. The
644 * path will vary across interface and also across versions
645 * of the same interface over time. Even if the OpenOCD code
646 * is unchanged, the actual path taken may vary over time
647 * and versions of interface firmware or PCB revisions.
648 *
649 * Use jtag_add_pathmove() when specific transition sequences
650 * are required.
651 *
652 * Do not use jtag_add_pathmove() unless you need to, but do use it
653 * if you have to.
654 *
655 * DANGER! If the target is dependent upon a particular sequence
656 * of transitions for things to work correctly(e.g. as a workaround
657 * for an errata that contradicts the JTAG standard), then pathmove
658 * must be used, even if some jtag interfaces happen to use the
659 * desired path. Worse, the jtag interface used for testing a
660 * particular implementation, could happen to use the "desired"
661 * path when transitioning to/from end
662 * state.
663 *
664 * A list of unambigious single clock state transitions, not
665 * all drivers can support this, but it is required for e.g.
666 * XScale and Xilinx support
667 *
668 * Note! TAP_RESET must not be used in the path!
669 *
670 * Note that the first on the list must be reachable
671 * via a single transition from the current state.
672 *
673 * All drivers are required to implement jtag_add_pathmove().
674 * However, if the pathmove sequence can not be precisely
675 * executed, an interface_jtag_add_pathmove() or jtag_execute_queue()
676 * must return an error. It is legal, but not recommended, that
677 * a driver returns an error in all cases for a pathmove if it
678 * can only implement a few transitions and therefore
679 * a partial implementation of pathmove would have little practical
680 * application.
681 */
682 extern void jtag_add_pathmove(int num_states, tap_state_t* path);
683 extern int interface_jtag_add_pathmove(int num_states, tap_state_t* path);
684
685 /* go to TAP_IDLE, if we're not already there and cycle
686 * precisely num_cycles in the TAP_IDLE after which move
687 * to the end state, if it is != TAP_IDLE
688 *
689 * nb! num_cycles can be 0, in which case the fn will navigate
690 * to endstate via TAP_IDLE
691 */
692 extern void jtag_add_runtest(int num_cycles, tap_state_t endstate);
693 extern int interface_jtag_add_runtest(int num_cycles, tap_state_t endstate);
694
695 /* A reset of the TAP state machine can be requested.
696 *
697 * Whether tms or trst reset is used depends on the capabilities of
698 * the target and jtag interface(reset_config command configures this).
699 *
700 * srst can driver a reset of the TAP state machine and vice
701 * versa
702 *
703 * Application code may need to examine value of jtag_reset_config
704 * to determine the proper codepath
705 *
706 * DANGER! Even though srst drives trst, trst might not be connected to
707 * the interface, and it might actually be *harmful* to assert trst in this case.
708 *
709 * This is why combinations such as "reset_config srst_only srst_pulls_trst"
710 * are supported.
711 *
712 * only req_tlr_or_trst and srst can have a transition for a
713 * call as the effects of transitioning both at the "same time"
714 * are undefined, but when srst_pulls_trst or vice versa,
715 * then trst & srst *must* be asserted together.
716 */
717 extern void jtag_add_reset(int req_tlr_or_trst, int srst);
718
719 /* this drives the actual srst and trst pins. srst will always be 0
720 * if jtag_reset_config & RESET_SRST_PULLS_TRST != 0 and ditto for
721 * trst.
722 *
723 * the higher level jtag_add_reset will invoke jtag_add_tlr() if
724 * approperiate
725 */
726 extern int interface_jtag_add_reset(int trst, int srst);
727 extern void jtag_add_end_state(tap_state_t endstate);
728 extern int interface_jtag_add_end_state(tap_state_t endstate);
729 extern void jtag_add_sleep(u32 us);
730 extern int interface_jtag_add_sleep(u32 us);
731
732
733 /**
734 * Function jtag_add_stable_clocks
735 * first checks that the state in which the clocks are to be issued is
736 * stable, then queues up clock_count clocks for transmission.
737 */
738 void jtag_add_clocks(int num_cycles);
739 int interface_jtag_add_clocks(int num_cycles);
740
741
742 /*
743 * For software FIFO implementations, the queued commands can be executed
744 * during this call or earlier. A sw queue might decide to push out
745 * some of the jtag_add_xxx() operations once the queue is "big enough".
746 *
747 * This fn will return an error code if any of the prior jtag_add_xxx()
748 * calls caused a failure, e.g. check failure. Note that it does not
749 * matter if the operation was executed *before* jtag_execute_queue(),
750 * jtag_execute_queue() will still return an error code.
751 *
752 * All jtag_add_xxx() calls that have in_handler!=NULL will have been
753 * executed when this fn returns, but if what has been queued only
754 * clocks data out, without reading anything back, then JTAG could
755 * be running *after* jtag_execute_queue() returns. The API does
756 * not define a way to flush a hw FIFO that runs *after*
757 * jtag_execute_queue() returns.
758 *
759 * jtag_add_xxx() commands can either be executed immediately or
760 * at some time between the jtag_add_xxx() fn call and jtag_execute_queue().
761 */
762 extern int jtag_execute_queue(void);
763
764 /* same as jtag_execute_queue() but does not clear the error flag */
765 extern void jtag_execute_queue_noclear(void);
766
767 /* this flag is set when an error occurs while executing the queue. cleared
768 * by jtag_execute_queue()
769 *
770 * this flag can also be set from application code if some error happens
771 * during processing that should be reported during jtag_execute_queue().
772 */
773 extern int jtag_error;
774
775 static __inline__ void jtag_set_error(int error)
776 {
777 if ((error==ERROR_OK)||(jtag_error!=ERROR_OK))
778 {
779 /* keep first error */
780 return;
781 }
782 jtag_error=error;
783 }
784
785
786
787 /* can be implemented by hw+sw */
788 extern int interface_jtag_execute_queue(void);
789 extern int jtag_power_dropout(int* dropout);
790 extern int jtag_srst_asserted(int* srst_asserted);
791
792 /* JTAG support functions */
793 struct invalidstruct
794 {
795
796 };
797
798 /* execute jtag queue and check value and use mask if mask is != NULL. invokes
799 * jtag_set_error() with any error. */
800 extern void jtag_check_value_mask(scan_field_t *field, u8 *value, u8 *mask);
801 extern enum scan_type jtag_scan_type(scan_command_t* cmd);
802 extern int jtag_scan_size(scan_command_t* cmd);
803 extern int jtag_read_buffer(u8* buffer, scan_command_t* cmd);
804 extern int jtag_build_buffer(scan_command_t* cmd, u8** buffer);
805
806 extern void jtag_sleep(u32 us);
807 extern int jtag_call_event_callbacks(enum jtag_event event);
808 extern int jtag_register_event_callback(int (* callback)(enum jtag_event event, void* priv), void* priv);
809
810 extern int jtag_verify_capture_ir;
811
812 void jtag_tap_handle_event(jtag_tap_t* tap, enum jtag_tap_event e);
813
814 /* error codes
815 * JTAG subsystem uses codes between -100 and -199 */
816
817 #define ERROR_JTAG_INIT_FAILED (-100)
818 #define ERROR_JTAG_INVALID_INTERFACE (-101)
819 #define ERROR_JTAG_NOT_IMPLEMENTED (-102)
820 #define ERROR_JTAG_TRST_ASSERTED (-103)
821 #define ERROR_JTAG_QUEUE_FAILED (-104)
822 #define ERROR_JTAG_NOT_STABLE_STATE (-105)
823 #define ERROR_JTAG_DEVICE_ERROR (-107)
824
825
826 /* this allows JTAG devices to implement the entire jtag_xxx() layer in hw/sw */
827 #ifdef HAVE_JTAG_MINIDRIVER_H
828 /* Here a #define MINIDRIVER() and an inline version of hw fifo interface_jtag_add_dr_out can be defined */
829 #include "jtag_minidriver.h"
830 #define MINIDRIVER(a) notused ## a
831 #else
832 #define MINIDRIVER(a) a
833
834 /* jtag_add_dr_out() is a faster version of jtag_add_dr_scan()
835 *
836 * Current or end_state can not be TAP_RESET. end_state can be TAP_INVALID
837 *
838 * num_bits[i] is the number of bits to clock out from value[i] LSB first.
839 *
840 * If the device is in bypass, then that is an error condition in
841 * the caller code that is not detected by this fn, whereas jtag_add_dr_scan()
842 * does detect it. Similarly if the device is not in bypass, data must
843 * be passed to it.
844 *
845 * If anything fails, then jtag_error will be set and jtag_execute() will
846 * return an error. There is no way to determine if there was a failure
847 * during this function call.
848 *
849 * Note that this jtag_add_dr_out can be defined as an inline function.
850 */
851 extern void interface_jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
852 tap_state_t end_state);
853
854 #endif
855
856 static __inline__ void jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
857 tap_state_t end_state)
858 {
859 if (end_state != TAP_INVALID)
860 cmd_queue_end_state = end_state;
861 cmd_queue_cur_state = cmd_queue_end_state;
862 interface_jtag_add_dr_out(tap, num_fields, num_bits, value, cmd_queue_end_state);
863 }
864
865
866 #endif /* JTAG_H */