434320b49546b5e119f7911b697b971366b39d0a
[openocd.git] / src / jtag / jtag.h
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifndef JTAG_H
24 #define JTAG_H
25
26 #include "types.h"
27 #include "binarybuffer.h"
28 #include "log.h"
29
30 #include "command.h"
31
32
33 #ifdef _DEBUG_JTAG_IO_
34 #define DEBUG_JTAG_IO(expr ...) LOG_DEBUG(expr)
35 #else
36 #define DEBUG_JTAG_IO(expr ...)
37 #endif
38
39 #ifndef DEBUG_JTAG_IOZ
40 #define DEBUG_JTAG_IOZ 64
41 #endif
42
43 /*-----<Macros>--------------------------------------------------*/
44
45 /** When given an array, compute its DIMension, i.e. number of elements in the array */
46 #define DIM(x) (sizeof(x)/sizeof((x)[0]))
47
48 /** Calculate the number of bytes required to hold @a n TAP scan bits */
49 #define TAP_SCAN_BYTES(n) CEIL(n, 8)
50
51 /*-----</Macros>-------------------------------------------------*/
52
53
54
55 /*
56 * Tap states from ARM7TDMI-S Technical reference manual.
57 * Also, validated against several other ARM core technical manuals.
58 *
59 * N.B. tap_get_tms_path() was changed to reflect this corrected
60 * numbering and ordering of the TAP states.
61 *
62 * DANGER!!!! some interfaces care about the actual numbers used
63 * as they are handed off directly to hardware implementations.
64 */
65
66 typedef enum tap_state
67 {
68 #if BUILD_ECOSBOARD
69 /* These are the old numbers. Leave as-is for now... */
70 TAP_RESET = 0, TAP_IDLE = 8,
71 TAP_DRSELECT = 1, TAP_DRCAPTURE = 2, TAP_DRSHIFT = 3, TAP_DREXIT1 = 4,
72 TAP_DRPAUSE = 5, TAP_DREXIT2 = 6, TAP_DRUPDATE = 7,
73 TAP_IRSELECT = 9, TAP_IRCAPTURE = 10, TAP_IRSHIFT = 11, TAP_IREXIT1 = 12,
74 TAP_IRPAUSE = 13, TAP_IREXIT2 = 14, TAP_IRUPDATE = 15,
75
76 TAP_NUM_STATES = 16, TAP_INVALID = -1,
77 #else
78 /* Proper ARM recommended numbers */
79 TAP_DREXIT2 = 0x0,
80 TAP_DREXIT1 = 0x1,
81 TAP_DRSHIFT = 0x2,
82 TAP_DRPAUSE = 0x3,
83 TAP_IRSELECT = 0x4,
84 TAP_DRUPDATE = 0x5,
85 TAP_DRCAPTURE = 0x6,
86 TAP_DRSELECT = 0x7,
87 TAP_IREXIT2 = 0x8,
88 TAP_IREXIT1 = 0x9,
89 TAP_IRSHIFT = 0xa,
90 TAP_IRPAUSE = 0xb,
91 TAP_IDLE = 0xc,
92 TAP_IRUPDATE = 0xd,
93 TAP_IRCAPTURE = 0xe,
94 TAP_RESET = 0x0f,
95
96 TAP_NUM_STATES = 0x10,
97
98 TAP_INVALID = -1,
99 #endif
100 } tap_state_t;
101
102 typedef struct tap_transition_s
103 {
104 tap_state_t high;
105 tap_state_t low;
106 } tap_transition_t;
107
108 //extern tap_transition_t tap_transitions[16]; /* describe the TAP state diagram */
109
110
111 /*-----<Cable Helper API>-------------------------------------------*/
112
113 /* The "Cable Helper API" is what the cable drivers can use to help implement
114 * their "Cable API". So a Cable Helper API is a set of helper functions used by
115 * cable drivers, and this is different from a Cable API. A "Cable API" is what
116 * higher level code used to talk to a cable.
117 */
118
119
120 /** implementation of wrapper function tap_set_state() */
121 void tap_set_state_impl(tap_state_t new_state);
122
123 /**
124 * Function tap_set_state
125 * sets the state of a "state follower" which tracks the state of the TAPs connected to the
126 * cable. The state follower is hopefully always in the same state as the actual
127 * TAPs in the jtag chain, and will be so if there are no bugs in the tracking logic within that
128 * cable driver. All the cable drivers call this function to indicate the state they think
129 * the TAPs attached to their cables are in. Because this function can also log transitions,
130 * it will be helpful to call this function with every transition that the TAPs being manipulated
131 * are expected to traverse, not just end points of a multi-step state path.
132 * @param new_state is the state we think the TAPs are currently in or are about to enter.
133 */
134 #if defined(_DEBUG_JTAG_IO_)
135 #define tap_set_state(new_state) \
136 do { \
137 LOG_DEBUG( "tap_set_state(%s)", tap_state_name(new_state) ); \
138 tap_set_state_impl(new_state); \
139 } while (0)
140 #else
141 static inline void tap_set_state(tap_state_t new_state)
142 {
143 tap_set_state_impl(new_state);
144 }
145
146 #endif
147
148 /**
149 * Function tap_get_state
150 * gets the state of the "state follower" which tracks the state of the TAPs connected to
151 * the cable.
152 * @see tap_set_state
153 * @return tap_state_t - The state the TAPs are in now.
154 */
155 tap_state_t tap_get_state(void);
156
157 /**
158 * Function tap_set_end_state
159 * sets the state of an "end state follower" which tracks the state that any cable driver
160 * thinks will be the end (resultant) state of the current TAP SIR or SDR operation. At completion
161 * of that TAP operation this value is copied into the state follower via tap_set_state().
162 * @param new_end_state is that state the TAPs should enter at completion of a pending TAP operation.
163 */
164 void tap_set_end_state(tap_state_t new_end_state);
165
166 /**
167 * Function tap_get_end_state
168 * @see tap_set_end_state
169 * @return tap_state_t - The state the TAPs should be in at completion of the current TAP operation.
170 */
171 tap_state_t tap_get_end_state(void);
172
173 /**
174 * Function tap_get_tms_path
175 * returns a 7 bit long "bit sequence" indicating what has to be done with TMS
176 * during a sequence of seven TAP clock cycles in order to get from
177 * state \a "from" to state \a "to".
178 * @param from is the starting state
179 * @param to is the resultant or final state
180 * @return int - a 7 bit sequence, with the first bit in the sequence at bit 0.
181 */
182 int tap_get_tms_path(tap_state_t from, tap_state_t to);
183
184 /**
185 * Function tap_move_ndx
186 * when given a stable state, returns an index from 0-5. The index corresponds to a
187 * sequence of stable states which are given in this order: <p>
188 * { TAP_RESET, TAP_IDLE, TAP_DRSHIFT, TAP_DRPAUSE, TAP_IRSHIFT, TAP_IRPAUSE }
189 * <p>
190 * This sequence corresponds to look up tables which are used in some of the
191 * cable drivers.
192 * @param astate is the stable state to find in the sequence. If a non stable
193 * state is passed, this may cause the program to output an error message
194 * and terminate.
195 * @return int - the array (or sequence) index as described above
196 */
197 int tap_move_ndx(tap_state_t astate);
198
199 /**
200 * Function tap_is_state_stable
201 * returns true if the \a astate is stable.
202 */
203 bool tap_is_state_stable(tap_state_t astate);
204
205 /**
206 * Function tap_state_transition
207 * takes a current TAP state and returns the next state according to the tms value.
208 * @param current_state is the state of a TAP currently.
209 * @param tms is either zero or non-zero, just like a real TMS line in a jtag interface.
210 * @return tap_state_t - the next state a TAP would enter.
211 */
212 tap_state_t tap_state_transition(tap_state_t current_state, bool tms);
213
214 /**
215 * Function tap_state_name
216 * Returns a string suitable for display representing the JTAG tap_state
217 */
218 const char* tap_state_name(tap_state_t state);
219
220 #ifdef _DEBUG_JTAG_IO_
221 /**
222 * @brief Prints verbose TAP state transitions for the given TMS/TDI buffers.
223 * @param tms_buf must points to a buffer containing the TMS bitstream.
224 * @param tdi_buf must points to a buffer containing the TDI bitstream.
225 * @param tap_len must specify the length of the TMS/TDI bitstreams.
226 * @param start_tap_state must specify the current TAP state.
227 * @returns the final TAP state; pass as @a start_tap_state in following call.
228 */
229 tap_state_t jtag_debug_state_machine(const void *tms_buf, const void *tdi_buf,
230 unsigned tap_len, tap_state_t start_tap_state);
231 #else
232 static inline tap_state_t jtag_debug_state_machine(const void *tms_buf,
233 const void *tdi_buf, unsigned tap_len, tap_state_t start_tap_state)
234 {
235 return start_tap_state;
236 }
237 #endif // _DEBUG_JTAG_IO_
238
239 /*-----</Cable Helper API>------------------------------------------*/
240
241
242 extern tap_state_t cmd_queue_end_state; /* finish DR scans in dr_end_state */
243 extern tap_state_t cmd_queue_cur_state; /* current TAP state */
244
245 typedef void* error_handler_t; /* Later on we can delete error_handler_t, but keep it for now to make patches more readable */
246
247 struct scan_field_s;
248 typedef int (*in_handler_t)(u8* in_value, void* priv, struct scan_field_s* field);
249
250 typedef struct scan_field_s
251 {
252 jtag_tap_t* tap; /* tap pointer this instruction refers to */
253 int num_bits; /* number of bits this field specifies (up to 32) */
254 u8* out_value; /* value to be scanned into the device */
255 u8* out_mask; /* only masked bits care */
256 u8* in_value; /* pointer to a 32-bit memory location to take data scanned out */
257 /* in_check_value/mask, in_handler_error_handler, in_handler_priv can be used by the in handler, otherwise they contain garbage */
258 u8* in_check_value; /* used to validate scan results */
259 u8* in_check_mask; /* check specified bits against check_value */
260 in_handler_t in_handler; /* process received buffer using this handler */
261 void* in_handler_priv; /* additional information for the in_handler */
262 } scan_field_t;
263
264 enum scan_type {
265 /* IN: from device to host, OUT: from host to device */
266 SCAN_IN = 1, SCAN_OUT = 2, SCAN_IO = 3
267 };
268
269 typedef struct scan_command_s
270 {
271 int ir_scan; /* instruction/not data scan */
272 int num_fields; /* number of fields in *fields array */
273 scan_field_t* fields; /* pointer to an array of data scan fields */
274 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
275 } scan_command_t;
276
277 typedef struct statemove_command_s
278 {
279 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
280 } statemove_command_t;
281
282 typedef struct pathmove_command_s
283 {
284 int num_states; /* number of states in *path */
285 tap_state_t* path; /* states that have to be passed */
286 } pathmove_command_t;
287
288 typedef struct runtest_command_s
289 {
290 int num_cycles; /* number of cycles that should be spent in Run-Test/Idle */
291 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
292 } runtest_command_t;
293
294
295 typedef struct stableclocks_command_s
296 {
297 int num_cycles; /* number of clock cycles that should be sent */
298 } stableclocks_command_t;
299
300
301 typedef struct reset_command_s
302 {
303 int trst; /* trst/srst 0: deassert, 1: assert, -1: don't change */
304 int srst;
305 } reset_command_t;
306
307 typedef struct end_state_command_s
308 {
309 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
310 } end_state_command_t;
311
312 typedef struct sleep_command_s
313 {
314 u32 us; /* number of microseconds to sleep */
315 } sleep_command_t;
316
317 typedef union jtag_command_container_u
318 {
319 scan_command_t* scan;
320 statemove_command_t* statemove;
321 pathmove_command_t* pathmove;
322 runtest_command_t* runtest;
323 stableclocks_command_t* stableclocks;
324 reset_command_t* reset;
325 end_state_command_t* end_state;
326 sleep_command_t* sleep;
327 } jtag_command_container_t;
328
329 enum jtag_command_type {
330 JTAG_SCAN = 1,
331 JTAG_STATEMOVE = 2,
332 JTAG_RUNTEST = 3,
333 JTAG_RESET = 4,
334 JTAG_END_STATE = 5,
335 JTAG_PATHMOVE = 6,
336 JTAG_SLEEP = 7,
337 JTAG_STABLECLOCKS = 8
338 };
339
340 typedef struct jtag_command_s
341 {
342 jtag_command_container_t cmd;
343 enum jtag_command_type type;
344 struct jtag_command_s* next;
345 } jtag_command_t;
346
347 extern jtag_command_t* jtag_command_queue;
348
349 /* forward declaration */
350 typedef struct jtag_tap_event_action_s jtag_tap_event_action_t;
351
352 /* this is really: typedef jtag_tap_t */
353 /* But - the typedef is done in "types.h" */
354 /* due to "forward decloration reasons" */
355 struct jtag_tap_s
356 {
357 const char* chip;
358 const char* tapname;
359 const char* dotted_name;
360 int abs_chain_position;
361 int enabled;
362 int ir_length; /* size of instruction register */
363 u32 ir_capture_value;
364 u8* expected; /* Capture-IR expected value */
365 u32 ir_capture_mask;
366 u8* expected_mask; /* Capture-IR expected mask */
367 u32 idcode; /* device identification code */
368 u32* expected_ids; /* Array of expected identification codes */
369 u8 expected_ids_cnt; /* Number of expected identification codes */
370 u8* cur_instr; /* current instruction */
371 int bypass; /* bypass register selected */
372
373 jtag_tap_event_action_t* event_action;
374
375 jtag_tap_t* next_tap;
376 };
377 extern jtag_tap_t* jtag_AllTaps(void);
378 extern jtag_tap_t* jtag_TapByPosition(int n);
379 extern jtag_tap_t* jtag_TapByPosition(int n);
380 extern jtag_tap_t* jtag_TapByString(const char* dotted_name);
381 extern jtag_tap_t* jtag_TapByJimObj(Jim_Interp* interp, Jim_Obj* obj);
382 extern jtag_tap_t* jtag_TapByAbsPosition(int abs_position);
383 extern int jtag_NumEnabledTaps(void);
384 extern int jtag_NumTotalTaps(void);
385
386 static __inline__ jtag_tap_t* jtag_NextEnabledTap(jtag_tap_t* p)
387 {
388 if (p == NULL)
389 {
390 /* start at the head of list */
391 p = jtag_AllTaps();
392 }
393 else
394 {
395 /* start *after* this one */
396 p = p->next_tap;
397 }
398 while (p)
399 {
400 if (p->enabled)
401 {
402 break;
403 }
404 else
405 {
406 p = p->next_tap;
407 }
408 }
409
410 return p;
411 }
412
413
414 enum reset_line_mode {
415 LINE_OPEN_DRAIN = 0x0,
416 LINE_PUSH_PULL = 0x1,
417 };
418
419 typedef struct jtag_interface_s
420 {
421 char* name;
422
423 /* queued command execution
424 */
425 int (*execute_queue)(void);
426
427 /* interface initalization
428 */
429 int (*speed)(int speed);
430 int (*register_commands)(struct command_context_s* cmd_ctx);
431 int (*init)(void);
432 int (*quit)(void);
433
434 /* returns JTAG maxium speed for KHz. 0=RTCK. The function returns
435 * a failure if it can't support the KHz/RTCK.
436 *
437 * WARNING!!!! if RTCK is *slow* then think carefully about
438 * whether you actually want to support this in the driver.
439 * Many target scripts are written to handle the absence of RTCK
440 * and use a fallback kHz TCK.
441 */
442 int (*khz)(int khz, int* jtag_speed);
443
444 /* returns the KHz for the provided JTAG speed. 0=RTCK. The function returns
445 * a failure if it can't support the KHz/RTCK. */
446 int (*speed_div)(int speed, int* khz);
447
448 /* Read and clear the power dropout flag. Note that a power dropout
449 * can be transitionary, easily much less than a ms.
450 *
451 * So to find out if the power is *currently* on, you must invoke
452 * this method twice. Once to clear the power dropout flag and a
453 * second time to read the current state.
454 *
455 * Currently the default implementation is never to detect power dropout.
456 */
457 int (*power_dropout)(int* power_dropout);
458
459 /* Read and clear the srst asserted detection flag.
460 *
461 * NB!!!! like power_dropout this does *not* read the current
462 * state. srst assertion is transitionary and *can* be much
463 * less than 1ms.
464 */
465 int (*srst_asserted)(int* srst_asserted);
466 } jtag_interface_t;
467
468 enum jtag_event {
469 JTAG_TRST_ASSERTED
470 };
471
472 extern char* jtag_event_strings[];
473
474 enum jtag_tap_event {
475 JTAG_TAP_EVENT_ENABLE,
476 JTAG_TAP_EVENT_DISABLE
477 };
478
479 extern const Jim_Nvp nvp_jtag_tap_event[];
480
481 struct jtag_tap_event_action_s
482 {
483 enum jtag_tap_event event;
484 Jim_Obj* body;
485 jtag_tap_event_action_t* next;
486 };
487
488 extern int jtag_trst;
489 extern int jtag_srst;
490
491 typedef struct jtag_event_callback_s
492 {
493 int (*callback)(enum jtag_event event, void* priv);
494 void* priv;
495 struct jtag_event_callback_s* next;
496 } jtag_event_callback_t;
497
498 extern jtag_event_callback_t* jtag_event_callbacks;
499
500 extern jtag_interface_t* jtag; /* global pointer to configured JTAG interface */
501
502 extern int jtag_speed;
503 extern int jtag_speed_post_reset;
504
505 enum reset_types {
506 RESET_NONE = 0x0,
507 RESET_HAS_TRST = 0x1,
508 RESET_HAS_SRST = 0x2,
509 RESET_TRST_AND_SRST = 0x3,
510 RESET_SRST_PULLS_TRST = 0x4,
511 RESET_TRST_PULLS_SRST = 0x8,
512 RESET_TRST_OPEN_DRAIN = 0x10,
513 RESET_SRST_PUSH_PULL = 0x20,
514 };
515
516 extern enum reset_types jtag_reset_config;
517
518 /* initialize interface upon startup. A successful no-op
519 * upon subsequent invocations
520 */
521 extern int jtag_interface_init(struct command_context_s* cmd_ctx);
522
523 /* initialize JTAG chain using only a RESET reset. If init fails,
524 * try reset + init.
525 */
526 extern int jtag_init(struct command_context_s* cmd_ctx);
527
528 /* reset, then initialize JTAG chain */
529 extern int jtag_init_reset(struct command_context_s* cmd_ctx);
530 extern int jtag_register_commands(struct command_context_s* cmd_ctx);
531
532 /* JTAG interface, can be implemented with a software or hardware fifo
533 *
534 * TAP_DRSHIFT and TAP_IRSHIFT are illegal end states. TAP_DRSHIFT/IRSHIFT as end states
535 * can be emulated by using a larger scan.
536 *
537 * Code that is relatively insensitive to the path(as long
538 * as it is JTAG compliant) taken through state machine can use
539 * endstate for jtag_add_xxx_scan(). Otherwise the pause state must be
540 * specified as end state and a subsequent jtag_add_pathmove() must
541 * be issued.
542 *
543 */
544 extern void jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
545 extern int interface_jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
546 extern void jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
547 extern int interface_jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
548 extern void jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
549 extern int interface_jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
550 extern void jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
551 extern int interface_jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
552
553 /* run a TAP_RESET reset. End state is TAP_RESET, regardless
554 * of start state.
555 */
556 extern void jtag_add_tlr(void);
557 extern int interface_jtag_add_tlr(void);
558
559 /* Do not use jtag_add_pathmove() unless you need to, but do use it
560 * if you have to.
561 *
562 * DANGER! If the target is dependent upon a particular sequence
563 * of transitions for things to work correctly(e.g. as a workaround
564 * for an errata that contradicts the JTAG standard), then pathmove
565 * must be used, even if some jtag interfaces happen to use the
566 * desired path. Worse, the jtag interface used for testing a
567 * particular implementation, could happen to use the "desired"
568 * path when transitioning to/from end
569 * state.
570 *
571 * A list of unambigious single clock state transitions, not
572 * all drivers can support this, but it is required for e.g.
573 * XScale and Xilinx support
574 *
575 * Note! TAP_RESET must not be used in the path!
576 *
577 * Note that the first on the list must be reachable
578 * via a single transition from the current state.
579 *
580 * All drivers are required to implement jtag_add_pathmove().
581 * However, if the pathmove sequence can not be precisely
582 * executed, an interface_jtag_add_pathmove() or jtag_execute_queue()
583 * must return an error. It is legal, but not recommended, that
584 * a driver returns an error in all cases for a pathmove if it
585 * can only implement a few transitions and therefore
586 * a partial implementation of pathmove would have little practical
587 * application.
588 */
589 extern void jtag_add_pathmove(int num_states, tap_state_t* path);
590 extern int interface_jtag_add_pathmove(int num_states, tap_state_t* path);
591
592 /* go to TAP_IDLE, if we're not already there and cycle
593 * precisely num_cycles in the TAP_IDLE after which move
594 * to the end state, if it is != TAP_IDLE
595 *
596 * nb! num_cycles can be 0, in which case the fn will navigate
597 * to endstate via TAP_IDLE
598 */
599 extern void jtag_add_runtest(int num_cycles, tap_state_t endstate);
600 extern int interface_jtag_add_runtest(int num_cycles, tap_state_t endstate);
601
602 /* A reset of the TAP state machine can be requested.
603 *
604 * Whether tms or trst reset is used depends on the capabilities of
605 * the target and jtag interface(reset_config command configures this).
606 *
607 * srst can driver a reset of the TAP state machine and vice
608 * versa
609 *
610 * Application code may need to examine value of jtag_reset_config
611 * to determine the proper codepath
612 *
613 * DANGER! Even though srst drives trst, trst might not be connected to
614 * the interface, and it might actually be *harmful* to assert trst in this case.
615 *
616 * This is why combinations such as "reset_config srst_only srst_pulls_trst"
617 * are supported.
618 *
619 * only req_tlr_or_trst and srst can have a transition for a
620 * call as the effects of transitioning both at the "same time"
621 * are undefined, but when srst_pulls_trst or vice versa,
622 * then trst & srst *must* be asserted together.
623 */
624 extern void jtag_add_reset(int req_tlr_or_trst, int srst);
625
626 /* this drives the actual srst and trst pins. srst will always be 0
627 * if jtag_reset_config & RESET_SRST_PULLS_TRST != 0 and ditto for
628 * trst.
629 *
630 * the higher level jtag_add_reset will invoke jtag_add_tlr() if
631 * approperiate
632 */
633 extern int interface_jtag_add_reset(int trst, int srst);
634 extern void jtag_add_end_state(tap_state_t endstate);
635 extern int interface_jtag_add_end_state(tap_state_t endstate);
636 extern void jtag_add_sleep(u32 us);
637 extern int interface_jtag_add_sleep(u32 us);
638
639
640 /**
641 * Function jtag_add_stable_clocks
642 * first checks that the state in which the clocks are to be issued is
643 * stable, then queues up clock_count clocks for transmission.
644 */
645 void jtag_add_clocks(int num_cycles);
646 int interface_jtag_add_clocks(int num_cycles);
647
648
649 /*
650 * For software FIFO implementations, the queued commands can be executed
651 * during this call or earlier. A sw queue might decide to push out
652 * some of the jtag_add_xxx() operations once the queue is "big enough".
653 *
654 * This fn will return an error code if any of the prior jtag_add_xxx()
655 * calls caused a failure, e.g. check failure. Note that it does not
656 * matter if the operation was executed *before* jtag_execute_queue(),
657 * jtag_execute_queue() will still return an error code.
658 *
659 * All jtag_add_xxx() calls that have in_handler!=NULL will have been
660 * executed when this fn returns, but if what has been queued only
661 * clocks data out, without reading anything back, then JTAG could
662 * be running *after* jtag_execute_queue() returns. The API does
663 * not define a way to flush a hw FIFO that runs *after*
664 * jtag_execute_queue() returns.
665 *
666 * jtag_add_xxx() commands can either be executed immediately or
667 * at some time between the jtag_add_xxx() fn call and jtag_execute_queue().
668 */
669 extern int jtag_execute_queue(void);
670
671 /* can be implemented by hw+sw */
672 extern int interface_jtag_execute_queue(void);
673 extern int jtag_power_dropout(int* dropout);
674 extern int jtag_srst_asserted(int* srst_asserted);
675
676 /* JTAG support functions */
677 extern void jtag_set_check_value(scan_field_t* field, u8* value, u8* mask, error_handler_t* in_error_handler);
678 extern enum scan_type jtag_scan_type(scan_command_t* cmd);
679 extern int jtag_scan_size(scan_command_t* cmd);
680 extern int jtag_read_buffer(u8* buffer, scan_command_t* cmd);
681 extern int jtag_build_buffer(scan_command_t* cmd, u8** buffer);
682
683 extern void jtag_sleep(u32 us);
684 extern int jtag_call_event_callbacks(enum jtag_event event);
685 extern int jtag_register_event_callback(int (* callback)(enum jtag_event event, void* priv), void* priv);
686
687 extern int jtag_verify_capture_ir;
688
689 void jtag_tap_handle_event(jtag_tap_t* tap, enum jtag_tap_event e);
690
691 /* error codes
692 * JTAG subsystem uses codes between -100 and -199 */
693
694 #define ERROR_JTAG_INIT_FAILED (-100)
695 #define ERROR_JTAG_INVALID_INTERFACE (-101)
696 #define ERROR_JTAG_NOT_IMPLEMENTED (-102)
697 #define ERROR_JTAG_TRST_ASSERTED (-103)
698 #define ERROR_JTAG_QUEUE_FAILED (-104)
699 #define ERROR_JTAG_NOT_STABLE_STATE (-105)
700 #define ERROR_JTAG_DEVICE_ERROR (-107)
701
702
703 /* this allows JTAG devices to implement the entire jtag_xxx() layer in hw/sw */
704 #ifdef HAVE_JTAG_MINIDRIVER_H
705 /* Here a #define MINIDRIVER() and an inline version of hw fifo interface_jtag_add_dr_out can be defined */
706 #include "jtag_minidriver.h"
707 #define MINIDRIVER(a) notused ## a
708 #else
709 #define MINIDRIVER(a) a
710
711 /* jtag_add_dr_out() is a faster version of jtag_add_dr_scan()
712 *
713 * Current or end_state can not be TAP_RESET. end_state can be TAP_INVALID
714 *
715 * num_bits[i] is the number of bits to clock out from value[i] LSB first.
716 *
717 * If the device is in bypass, then that is an error condition in
718 * the caller code that is not detected by this fn, whereas jtag_add_dr_scan()
719 * does detect it. Similarly if the device is not in bypass, data must
720 * be passed to it.
721 *
722 * If anything fails, then jtag_error will be set and jtag_execute() will
723 * return an error. There is no way to determine if there was a failure
724 * during this function call.
725 *
726 * Note that this jtag_add_dr_out can be defined as an inline function.
727 */
728 extern void interface_jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
729 tap_state_t end_state);
730
731 #endif
732
733 static __inline__ void jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
734 tap_state_t end_state)
735 {
736 if (end_state != TAP_INVALID)
737 cmd_queue_end_state = end_state;
738 cmd_queue_cur_state = cmd_queue_end_state;
739 interface_jtag_add_dr_out(tap, num_fields, num_bits, value, cmd_queue_end_state);
740 }
741
742
743 #endif /* JTAG_H */