Audit and eliminate redundant #include directives from src/jtag.
[openocd.git] / src / jtag / jtag.h
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifndef JTAG_H
24 #define JTAG_H
25
26 #include "binarybuffer.h"
27 #include "log.h"
28
29
30 #ifdef _DEBUG_JTAG_IO_
31 #define DEBUG_JTAG_IO(expr ...) LOG_DEBUG(expr)
32 #else
33 #define DEBUG_JTAG_IO(expr ...)
34 #endif
35
36 #ifndef DEBUG_JTAG_IOZ
37 #define DEBUG_JTAG_IOZ 64
38 #endif
39
40 /*-----<Macros>--------------------------------------------------*/
41
42 /** When given an array, compute its DIMension, i.e. number of elements in the array */
43 #define DIM(x) (sizeof(x)/sizeof((x)[0]))
44
45 /** Calculate the number of bytes required to hold @a n TAP scan bits */
46 #define TAP_SCAN_BYTES(n) CEIL(n, 8)
47
48 /*-----</Macros>-------------------------------------------------*/
49
50
51
52 /*
53 * Tap states from ARM7TDMI-S Technical reference manual.
54 * Also, validated against several other ARM core technical manuals.
55 *
56 * N.B. tap_get_tms_path() was changed to reflect this corrected
57 * numbering and ordering of the TAP states.
58 *
59 * DANGER!!!! some interfaces care about the actual numbers used
60 * as they are handed off directly to hardware implementations.
61 */
62
63 typedef enum tap_state
64 {
65 #if BUILD_ECOSBOARD
66 /* These are the old numbers. Leave as-is for now... */
67 TAP_RESET = 0, TAP_IDLE = 8,
68 TAP_DRSELECT = 1, TAP_DRCAPTURE = 2, TAP_DRSHIFT = 3, TAP_DREXIT1 = 4,
69 TAP_DRPAUSE = 5, TAP_DREXIT2 = 6, TAP_DRUPDATE = 7,
70 TAP_IRSELECT = 9, TAP_IRCAPTURE = 10, TAP_IRSHIFT = 11, TAP_IREXIT1 = 12,
71 TAP_IRPAUSE = 13, TAP_IREXIT2 = 14, TAP_IRUPDATE = 15,
72
73 TAP_NUM_STATES = 16, TAP_INVALID = -1,
74 #else
75 /* Proper ARM recommended numbers */
76 TAP_DREXIT2 = 0x0,
77 TAP_DREXIT1 = 0x1,
78 TAP_DRSHIFT = 0x2,
79 TAP_DRPAUSE = 0x3,
80 TAP_IRSELECT = 0x4,
81 TAP_DRUPDATE = 0x5,
82 TAP_DRCAPTURE = 0x6,
83 TAP_DRSELECT = 0x7,
84 TAP_IREXIT2 = 0x8,
85 TAP_IREXIT1 = 0x9,
86 TAP_IRSHIFT = 0xa,
87 TAP_IRPAUSE = 0xb,
88 TAP_IDLE = 0xc,
89 TAP_IRUPDATE = 0xd,
90 TAP_IRCAPTURE = 0xe,
91 TAP_RESET = 0x0f,
92
93 TAP_NUM_STATES = 0x10,
94
95 TAP_INVALID = -1,
96 #endif
97 } tap_state_t;
98
99 typedef struct tap_transition_s
100 {
101 tap_state_t high;
102 tap_state_t low;
103 } tap_transition_t;
104
105 //extern tap_transition_t tap_transitions[16]; /* describe the TAP state diagram */
106
107
108 /*-----<Cable Helper API>-------------------------------------------*/
109
110 /* The "Cable Helper API" is what the cable drivers can use to help implement
111 * their "Cable API". So a Cable Helper API is a set of helper functions used by
112 * cable drivers, and this is different from a Cable API. A "Cable API" is what
113 * higher level code used to talk to a cable.
114 */
115
116
117 /** implementation of wrapper function tap_set_state() */
118 void tap_set_state_impl(tap_state_t new_state);
119
120 /**
121 * Function tap_set_state
122 * sets the state of a "state follower" which tracks the state of the TAPs connected to the
123 * cable. The state follower is hopefully always in the same state as the actual
124 * TAPs in the jtag chain, and will be so if there are no bugs in the tracking logic within that
125 * cable driver. All the cable drivers call this function to indicate the state they think
126 * the TAPs attached to their cables are in. Because this function can also log transitions,
127 * it will be helpful to call this function with every transition that the TAPs being manipulated
128 * are expected to traverse, not just end points of a multi-step state path.
129 * @param new_state is the state we think the TAPs are currently in or are about to enter.
130 */
131 #if defined(_DEBUG_JTAG_IO_)
132 #define tap_set_state(new_state) \
133 do { \
134 LOG_DEBUG( "tap_set_state(%s)", tap_state_name(new_state) ); \
135 tap_set_state_impl(new_state); \
136 } while (0)
137 #else
138 static inline void tap_set_state(tap_state_t new_state)
139 {
140 tap_set_state_impl(new_state);
141 }
142
143 #endif
144
145 /**
146 * Function tap_get_state
147 * gets the state of the "state follower" which tracks the state of the TAPs connected to
148 * the cable.
149 * @see tap_set_state
150 * @return tap_state_t - The state the TAPs are in now.
151 */
152 tap_state_t tap_get_state(void);
153
154 /**
155 * Function tap_set_end_state
156 * sets the state of an "end state follower" which tracks the state that any cable driver
157 * thinks will be the end (resultant) state of the current TAP SIR or SDR operation. At completion
158 * of that TAP operation this value is copied into the state follower via tap_set_state().
159 * @param new_end_state is that state the TAPs should enter at completion of a pending TAP operation.
160 */
161 void tap_set_end_state(tap_state_t new_end_state);
162
163 /**
164 * Function tap_get_end_state
165 * @see tap_set_end_state
166 * @return tap_state_t - The state the TAPs should be in at completion of the current TAP operation.
167 */
168 tap_state_t tap_get_end_state(void);
169
170 /**
171 * Function tap_get_tms_path
172 * returns a 7 bit long "bit sequence" indicating what has to be done with TMS
173 * during a sequence of seven TAP clock cycles in order to get from
174 * state \a "from" to state \a "to".
175 * @param from is the starting state
176 * @param to is the resultant or final state
177 * @return int - a 7 bit sequence, with the first bit in the sequence at bit 0.
178 */
179 int tap_get_tms_path(tap_state_t from, tap_state_t to);
180
181
182 /**
183 * Function int tap_get_tms_path_len
184 * returns the total number of bits that represents a TMS path
185 * transition as given by the function tap_get_tms_path().
186 *
187 * For at least one interface (JLink) it's not OK to simply "pad" TMS sequences
188 * to fit a whole byte. (I suspect this is a general TAP problem within OOCD.)
189 * Padding TMS causes all manner of instability that's not easily
190 * discovered. Using this routine we can apply EXACTLY the state transitions
191 * required to make something work - no more - no less.
192 *
193 * @param from is the starting state
194 * @param to is the resultant or final state
195 * @return int - the total number of bits in a transition.
196 */
197 int tap_get_tms_path_len(tap_state_t from, tap_state_t to);
198
199
200 /**
201 * Function tap_move_ndx
202 * when given a stable state, returns an index from 0-5. The index corresponds to a
203 * sequence of stable states which are given in this order: <p>
204 * { TAP_RESET, TAP_IDLE, TAP_DRSHIFT, TAP_DRPAUSE, TAP_IRSHIFT, TAP_IRPAUSE }
205 * <p>
206 * This sequence corresponds to look up tables which are used in some of the
207 * cable drivers.
208 * @param astate is the stable state to find in the sequence. If a non stable
209 * state is passed, this may cause the program to output an error message
210 * and terminate.
211 * @return int - the array (or sequence) index as described above
212 */
213 int tap_move_ndx(tap_state_t astate);
214
215 /**
216 * Function tap_is_state_stable
217 * returns true if the \a astate is stable.
218 */
219 bool tap_is_state_stable(tap_state_t astate);
220
221 /**
222 * Function tap_state_transition
223 * takes a current TAP state and returns the next state according to the tms value.
224 * @param current_state is the state of a TAP currently.
225 * @param tms is either zero or non-zero, just like a real TMS line in a jtag interface.
226 * @return tap_state_t - the next state a TAP would enter.
227 */
228 tap_state_t tap_state_transition(tap_state_t current_state, bool tms);
229
230 /**
231 * Function tap_state_name
232 * Returns a string suitable for display representing the JTAG tap_state
233 */
234 const char* tap_state_name(tap_state_t state);
235
236 #ifdef _DEBUG_JTAG_IO_
237 /**
238 * @brief Prints verbose TAP state transitions for the given TMS/TDI buffers.
239 * @param tms_buf must points to a buffer containing the TMS bitstream.
240 * @param tdi_buf must points to a buffer containing the TDI bitstream.
241 * @param tap_len must specify the length of the TMS/TDI bitstreams.
242 * @param start_tap_state must specify the current TAP state.
243 * @returns the final TAP state; pass as @a start_tap_state in following call.
244 */
245 tap_state_t jtag_debug_state_machine(const void *tms_buf, const void *tdi_buf,
246 unsigned tap_len, tap_state_t start_tap_state);
247 #else
248 static inline tap_state_t jtag_debug_state_machine(const void *tms_buf,
249 const void *tdi_buf, unsigned tap_len, tap_state_t start_tap_state)
250 {
251 return start_tap_state;
252 }
253 #endif // _DEBUG_JTAG_IO_
254
255 /*-----</Cable Helper API>------------------------------------------*/
256
257
258 extern tap_state_t cmd_queue_end_state; /* finish DR scans in dr_end_state */
259 extern tap_state_t cmd_queue_cur_state; /* current TAP state */
260
261 typedef void* error_handler_t; /* Later on we can delete error_handler_t, but keep it for now to make patches more readable */
262
263 struct scan_field_s;
264 typedef int (*in_handler_t)(u8* in_value, void* priv, struct scan_field_s* field);
265
266 typedef struct scan_field_s
267 {
268 jtag_tap_t* tap; /* tap pointer this instruction refers to */
269 int num_bits; /* number of bits this field specifies (up to 32) */
270 u8* out_value; /* value to be scanned into the device */
271 u8* in_value; /* pointer to a 32-bit memory location to take data scanned out */
272 } scan_field_t;
273
274 enum scan_type {
275 /* IN: from device to host, OUT: from host to device */
276 SCAN_IN = 1, SCAN_OUT = 2, SCAN_IO = 3
277 };
278
279 typedef struct scan_command_s
280 {
281 int ir_scan; /* instruction/not data scan */
282 int num_fields; /* number of fields in *fields array */
283 scan_field_t* fields; /* pointer to an array of data scan fields */
284 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
285 } scan_command_t;
286
287 typedef struct statemove_command_s
288 {
289 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
290 } statemove_command_t;
291
292 typedef struct pathmove_command_s
293 {
294 int num_states; /* number of states in *path */
295 tap_state_t* path; /* states that have to be passed */
296 } pathmove_command_t;
297
298 typedef struct runtest_command_s
299 {
300 int num_cycles; /* number of cycles that should be spent in Run-Test/Idle */
301 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
302 } runtest_command_t;
303
304
305 typedef struct stableclocks_command_s
306 {
307 int num_cycles; /* number of clock cycles that should be sent */
308 } stableclocks_command_t;
309
310
311 typedef struct reset_command_s
312 {
313 int trst; /* trst/srst 0: deassert, 1: assert, -1: don't change */
314 int srst;
315 } reset_command_t;
316
317 typedef struct end_state_command_s
318 {
319 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
320 } end_state_command_t;
321
322 typedef struct sleep_command_s
323 {
324 u32 us; /* number of microseconds to sleep */
325 } sleep_command_t;
326
327 typedef union jtag_command_container_u
328 {
329 scan_command_t* scan;
330 statemove_command_t* statemove;
331 pathmove_command_t* pathmove;
332 runtest_command_t* runtest;
333 stableclocks_command_t* stableclocks;
334 reset_command_t* reset;
335 end_state_command_t* end_state;
336 sleep_command_t* sleep;
337 } jtag_command_container_t;
338
339 enum jtag_command_type {
340 JTAG_SCAN = 1,
341 JTAG_STATEMOVE = 2,
342 JTAG_RUNTEST = 3,
343 JTAG_RESET = 4,
344 JTAG_END_STATE = 5,
345 JTAG_PATHMOVE = 6,
346 JTAG_SLEEP = 7,
347 JTAG_STABLECLOCKS = 8
348 };
349
350 typedef struct jtag_command_s
351 {
352 jtag_command_container_t cmd;
353 enum jtag_command_type type;
354 struct jtag_command_s* next;
355 } jtag_command_t;
356
357 extern jtag_command_t* jtag_command_queue;
358
359 /* forward declaration */
360 typedef struct jtag_tap_event_action_s jtag_tap_event_action_t;
361
362 /* this is really: typedef jtag_tap_t */
363 /* But - the typedef is done in "types.h" */
364 /* due to "forward decloration reasons" */
365 struct jtag_tap_s
366 {
367 const char* chip;
368 const char* tapname;
369 const char* dotted_name;
370 int abs_chain_position;
371 int enabled;
372 int ir_length; /* size of instruction register */
373 u32 ir_capture_value;
374 u8* expected; /* Capture-IR expected value */
375 u32 ir_capture_mask;
376 u8* expected_mask; /* Capture-IR expected mask */
377 u32 idcode; /* device identification code */
378 u32* expected_ids; /* Array of expected identification codes */
379 u8 expected_ids_cnt; /* Number of expected identification codes */
380 u8* cur_instr; /* current instruction */
381 int bypass; /* bypass register selected */
382
383 jtag_tap_event_action_t* event_action;
384
385 jtag_tap_t* next_tap;
386 };
387 extern jtag_tap_t* jtag_AllTaps(void);
388 extern jtag_tap_t* jtag_TapByPosition(int n);
389 extern jtag_tap_t* jtag_TapByString(const char* dotted_name);
390 extern jtag_tap_t* jtag_TapByJimObj(Jim_Interp* interp, Jim_Obj* obj);
391 extern jtag_tap_t* jtag_TapByAbsPosition(int abs_position);
392 extern int jtag_NumEnabledTaps(void);
393 extern int jtag_NumTotalTaps(void);
394
395 static __inline__ jtag_tap_t* jtag_NextEnabledTap(jtag_tap_t* p)
396 {
397 if (p == NULL)
398 {
399 /* start at the head of list */
400 p = jtag_AllTaps();
401 }
402 else
403 {
404 /* start *after* this one */
405 p = p->next_tap;
406 }
407 while (p)
408 {
409 if (p->enabled)
410 {
411 break;
412 }
413 else
414 {
415 p = p->next_tap;
416 }
417 }
418
419 return p;
420 }
421
422
423 enum reset_line_mode {
424 LINE_OPEN_DRAIN = 0x0,
425 LINE_PUSH_PULL = 0x1,
426 };
427
428 typedef struct jtag_interface_s
429 {
430 char* name;
431
432 /* queued command execution
433 */
434 int (*execute_queue)(void);
435
436 /* interface initalization
437 */
438 int (*speed)(int speed);
439 int (*register_commands)(struct command_context_s* cmd_ctx);
440 int (*init)(void);
441 int (*quit)(void);
442
443 /* returns JTAG maxium speed for KHz. 0=RTCK. The function returns
444 * a failure if it can't support the KHz/RTCK.
445 *
446 * WARNING!!!! if RTCK is *slow* then think carefully about
447 * whether you actually want to support this in the driver.
448 * Many target scripts are written to handle the absence of RTCK
449 * and use a fallback kHz TCK.
450 */
451 int (*khz)(int khz, int* jtag_speed);
452
453 /* returns the KHz for the provided JTAG speed. 0=RTCK. The function returns
454 * a failure if it can't support the KHz/RTCK. */
455 int (*speed_div)(int speed, int* khz);
456
457 /* Read and clear the power dropout flag. Note that a power dropout
458 * can be transitionary, easily much less than a ms.
459 *
460 * So to find out if the power is *currently* on, you must invoke
461 * this method twice. Once to clear the power dropout flag and a
462 * second time to read the current state.
463 *
464 * Currently the default implementation is never to detect power dropout.
465 */
466 int (*power_dropout)(int* power_dropout);
467
468 /* Read and clear the srst asserted detection flag.
469 *
470 * NB!!!! like power_dropout this does *not* read the current
471 * state. srst assertion is transitionary and *can* be much
472 * less than 1ms.
473 */
474 int (*srst_asserted)(int* srst_asserted);
475 } jtag_interface_t;
476
477 enum jtag_event {
478 JTAG_TRST_ASSERTED
479 };
480
481 extern char* jtag_event_strings[];
482
483 enum jtag_tap_event {
484 JTAG_TAP_EVENT_ENABLE,
485 JTAG_TAP_EVENT_DISABLE
486 };
487
488 extern const Jim_Nvp nvp_jtag_tap_event[];
489
490 struct jtag_tap_event_action_s
491 {
492 enum jtag_tap_event event;
493 Jim_Obj* body;
494 jtag_tap_event_action_t* next;
495 };
496
497 extern int jtag_trst;
498 extern int jtag_srst;
499
500 typedef struct jtag_event_callback_s
501 {
502 int (*callback)(enum jtag_event event, void* priv);
503 void* priv;
504 struct jtag_event_callback_s* next;
505 } jtag_event_callback_t;
506
507 extern jtag_event_callback_t* jtag_event_callbacks;
508
509 extern jtag_interface_t* jtag; /* global pointer to configured JTAG interface */
510
511 extern int jtag_speed;
512 extern int jtag_speed_post_reset;
513
514 enum reset_types {
515 RESET_NONE = 0x0,
516 RESET_HAS_TRST = 0x1,
517 RESET_HAS_SRST = 0x2,
518 RESET_TRST_AND_SRST = 0x3,
519 RESET_SRST_PULLS_TRST = 0x4,
520 RESET_TRST_PULLS_SRST = 0x8,
521 RESET_TRST_OPEN_DRAIN = 0x10,
522 RESET_SRST_PUSH_PULL = 0x20,
523 };
524
525 extern enum reset_types jtag_reset_config;
526
527 /* initialize interface upon startup. A successful no-op
528 * upon subsequent invocations
529 */
530 extern int jtag_interface_init(struct command_context_s* cmd_ctx);
531
532 /* initialize JTAG chain using only a RESET reset. If init fails,
533 * try reset + init.
534 */
535 extern int jtag_init(struct command_context_s* cmd_ctx);
536
537 /* reset, then initialize JTAG chain */
538 extern int jtag_init_reset(struct command_context_s* cmd_ctx);
539 extern int jtag_register_commands(struct command_context_s* cmd_ctx);
540
541 /* JTAG interface, can be implemented with a software or hardware fifo
542 *
543 * TAP_DRSHIFT and TAP_IRSHIFT are illegal end states. TAP_DRSHIFT/IRSHIFT as end states
544 * can be emulated by using a larger scan.
545 *
546 * Code that is relatively insensitive to the path(as long
547 * as it is JTAG compliant) taken through state machine can use
548 * endstate for jtag_add_xxx_scan(). Otherwise the pause state must be
549 * specified as end state and a subsequent jtag_add_pathmove() must
550 * be issued.
551 *
552 */
553 extern void jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
554 /* same as jtag_add_ir_scan except no verify is performed */
555 extern void jtag_add_ir_scan_noverify(int num_fields, scan_field_t *fields, tap_state_t state);
556 extern int interface_jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
557 extern void jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
558 /* same as jtag_add_dr_scan but the scan is executed immediately. sets jtag_error if there
559 * was a failure.
560 */
561 extern void jtag_add_dr_scan_now(int num_fields, scan_field_t* fields, tap_state_t endstate);
562 extern int interface_jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
563 extern void jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
564 extern int interface_jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
565 extern void jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
566 extern int interface_jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
567
568
569 /* Simplest/typical callback - do some conversion on the data clocked in.
570 * This callback is for such conversion that can not fail.
571 * For conversion types or checks that can
572 * fail, use the jtag_callback_t variant */
573 typedef void (*jtag_callback1_t)(u8 *in);
574
575 #ifndef HAVE_JTAG_MINIDRIVER_H
576 /* A simpler version of jtag_add_callback3 */
577 extern void jtag_add_callback(jtag_callback1_t, u8 *in);
578 #else
579 /* implemented by minidriver */
580 #endif
581
582 /* This type can store an integer safely by a normal cast on 64 and
583 * 32 bit systems. */
584 typedef void *jtag_callback_data_t;
585
586 /* The generic callback mechanism.
587 *
588 * The callback is invoked with three arguments. The first argument is
589 * the pointer to the data clocked in.
590 */
591 typedef int (*jtag_callback_t)(u8 *in, jtag_callback_data_t data1, jtag_callback_data_t data2);
592
593
594 /* This callback can be executed immediately the queue has been flushed. Note that
595 * the JTAG queue can either be executed synchronously or asynchronously. Typically
596 * for USB the queue is executed asynchronously. For low latency interfaces, the
597 * queue may be executed synchronously.
598 *
599 * These callbacks are typically executed *after* the *entire* JTAG queue has been
600 * executed for e.g. USB interfaces.
601 *
602 * The callbacks are guaranteeed to be invoked in the order that they were queued.
603 *
604 * The strange name is due to C's lack of overloading using function arguments
605 *
606 * The callback mechansim is very general and does not really make any assumptions
607 * about what the callback does and what the arguments are.
608 *
609 * in - typically used to point to the data to operate on. More often than not
610 * this will be the data clocked in during a shift operation
611 *
612 * data1 - an integer that is big enough to be used either as an 'int' or
613 * cast to/from a pointer
614 *
615 * data2 - an integer that is big enough to be used either as an 'int' or
616 * cast to/from a pointer
617 *
618 * Why stop at 'data2' for arguments? Somewhat historical reasons. This is
619 * sufficient to implement the jtag_check_value_mask(), besides the
620 * line is best drawn somewhere...
621 *
622 * If the execution of the queue fails before the callbacks, then the
623 * callbacks may or may not be invoked depending on driver implementation.
624 */
625 #ifndef HAVE_JTAG_MINIDRIVER_H
626 extern void jtag_add_callback3(jtag_callback_t, u8 *in, jtag_callback_data_t data1, jtag_callback_data_t data2);
627 #else
628 /* implemented by minidriver */
629 #endif
630
631
632 /* run a TAP_RESET reset. End state is TAP_RESET, regardless
633 * of start state.
634 */
635 extern void jtag_add_tlr(void);
636 extern int interface_jtag_add_tlr(void);
637
638 /* Application code *must* assume that interfaces will
639 * implement transitions between states with different
640 * paths and path lengths through the state diagram. The
641 * path will vary across interface and also across versions
642 * of the same interface over time. Even if the OpenOCD code
643 * is unchanged, the actual path taken may vary over time
644 * and versions of interface firmware or PCB revisions.
645 *
646 * Use jtag_add_pathmove() when specific transition sequences
647 * are required.
648 *
649 * Do not use jtag_add_pathmove() unless you need to, but do use it
650 * if you have to.
651 *
652 * DANGER! If the target is dependent upon a particular sequence
653 * of transitions for things to work correctly(e.g. as a workaround
654 * for an errata that contradicts the JTAG standard), then pathmove
655 * must be used, even if some jtag interfaces happen to use the
656 * desired path. Worse, the jtag interface used for testing a
657 * particular implementation, could happen to use the "desired"
658 * path when transitioning to/from end
659 * state.
660 *
661 * A list of unambigious single clock state transitions, not
662 * all drivers can support this, but it is required for e.g.
663 * XScale and Xilinx support
664 *
665 * Note! TAP_RESET must not be used in the path!
666 *
667 * Note that the first on the list must be reachable
668 * via a single transition from the current state.
669 *
670 * All drivers are required to implement jtag_add_pathmove().
671 * However, if the pathmove sequence can not be precisely
672 * executed, an interface_jtag_add_pathmove() or jtag_execute_queue()
673 * must return an error. It is legal, but not recommended, that
674 * a driver returns an error in all cases for a pathmove if it
675 * can only implement a few transitions and therefore
676 * a partial implementation of pathmove would have little practical
677 * application.
678 */
679 extern void jtag_add_pathmove(int num_states, tap_state_t* path);
680 extern int interface_jtag_add_pathmove(int num_states, tap_state_t* path);
681
682 /* go to TAP_IDLE, if we're not already there and cycle
683 * precisely num_cycles in the TAP_IDLE after which move
684 * to the end state, if it is != TAP_IDLE
685 *
686 * nb! num_cycles can be 0, in which case the fn will navigate
687 * to endstate via TAP_IDLE
688 */
689 extern void jtag_add_runtest(int num_cycles, tap_state_t endstate);
690 extern int interface_jtag_add_runtest(int num_cycles, tap_state_t endstate);
691
692 /* A reset of the TAP state machine can be requested.
693 *
694 * Whether tms or trst reset is used depends on the capabilities of
695 * the target and jtag interface(reset_config command configures this).
696 *
697 * srst can driver a reset of the TAP state machine and vice
698 * versa
699 *
700 * Application code may need to examine value of jtag_reset_config
701 * to determine the proper codepath
702 *
703 * DANGER! Even though srst drives trst, trst might not be connected to
704 * the interface, and it might actually be *harmful* to assert trst in this case.
705 *
706 * This is why combinations such as "reset_config srst_only srst_pulls_trst"
707 * are supported.
708 *
709 * only req_tlr_or_trst and srst can have a transition for a
710 * call as the effects of transitioning both at the "same time"
711 * are undefined, but when srst_pulls_trst or vice versa,
712 * then trst & srst *must* be asserted together.
713 */
714 extern void jtag_add_reset(int req_tlr_or_trst, int srst);
715
716 /* this drives the actual srst and trst pins. srst will always be 0
717 * if jtag_reset_config & RESET_SRST_PULLS_TRST != 0 and ditto for
718 * trst.
719 *
720 * the higher level jtag_add_reset will invoke jtag_add_tlr() if
721 * approperiate
722 */
723 extern int interface_jtag_add_reset(int trst, int srst);
724 extern void jtag_add_end_state(tap_state_t endstate);
725 extern int interface_jtag_add_end_state(tap_state_t endstate);
726 extern void jtag_add_sleep(u32 us);
727 extern int interface_jtag_add_sleep(u32 us);
728
729
730 /**
731 * Function jtag_add_stable_clocks
732 * first checks that the state in which the clocks are to be issued is
733 * stable, then queues up clock_count clocks for transmission.
734 */
735 void jtag_add_clocks(int num_cycles);
736 int interface_jtag_add_clocks(int num_cycles);
737
738
739 /*
740 * For software FIFO implementations, the queued commands can be executed
741 * during this call or earlier. A sw queue might decide to push out
742 * some of the jtag_add_xxx() operations once the queue is "big enough".
743 *
744 * This fn will return an error code if any of the prior jtag_add_xxx()
745 * calls caused a failure, e.g. check failure. Note that it does not
746 * matter if the operation was executed *before* jtag_execute_queue(),
747 * jtag_execute_queue() will still return an error code.
748 *
749 * All jtag_add_xxx() calls that have in_handler!=NULL will have been
750 * executed when this fn returns, but if what has been queued only
751 * clocks data out, without reading anything back, then JTAG could
752 * be running *after* jtag_execute_queue() returns. The API does
753 * not define a way to flush a hw FIFO that runs *after*
754 * jtag_execute_queue() returns.
755 *
756 * jtag_add_xxx() commands can either be executed immediately or
757 * at some time between the jtag_add_xxx() fn call and jtag_execute_queue().
758 */
759 extern int jtag_execute_queue(void);
760
761 /* same as jtag_execute_queue() but does not clear the error flag */
762 extern void jtag_execute_queue_noclear(void);
763
764 /* this flag is set when an error occurs while executing the queue. cleared
765 * by jtag_execute_queue()
766 *
767 * this flag can also be set from application code if some error happens
768 * during processing that should be reported during jtag_execute_queue().
769 */
770 extern int jtag_error;
771
772 static __inline__ void jtag_set_error(int error)
773 {
774 if ((error==ERROR_OK)||(jtag_error!=ERROR_OK))
775 {
776 /* keep first error */
777 return;
778 }
779 jtag_error=error;
780 }
781
782
783
784 /* can be implemented by hw+sw */
785 extern int interface_jtag_execute_queue(void);
786 extern int jtag_power_dropout(int* dropout);
787 extern int jtag_srst_asserted(int* srst_asserted);
788
789 /* JTAG support functions */
790 struct invalidstruct
791 {
792
793 };
794
795 /* execute jtag queue and check value and use mask if mask is != NULL. invokes
796 * jtag_set_error() with any error. */
797 extern void jtag_check_value_mask(scan_field_t *field, u8 *value, u8 *mask);
798 extern enum scan_type jtag_scan_type(scan_command_t* cmd);
799 extern int jtag_scan_size(scan_command_t* cmd);
800 extern int jtag_read_buffer(u8* buffer, scan_command_t* cmd);
801 extern int jtag_build_buffer(scan_command_t* cmd, u8** buffer);
802
803 extern void jtag_sleep(u32 us);
804 extern int jtag_call_event_callbacks(enum jtag_event event);
805 extern int jtag_register_event_callback(int (* callback)(enum jtag_event event, void* priv), void* priv);
806
807 extern int jtag_verify_capture_ir;
808
809 void jtag_tap_handle_event(jtag_tap_t* tap, enum jtag_tap_event e);
810
811 /* error codes
812 * JTAG subsystem uses codes between -100 and -199 */
813
814 #define ERROR_JTAG_INIT_FAILED (-100)
815 #define ERROR_JTAG_INVALID_INTERFACE (-101)
816 #define ERROR_JTAG_NOT_IMPLEMENTED (-102)
817 #define ERROR_JTAG_TRST_ASSERTED (-103)
818 #define ERROR_JTAG_QUEUE_FAILED (-104)
819 #define ERROR_JTAG_NOT_STABLE_STATE (-105)
820 #define ERROR_JTAG_DEVICE_ERROR (-107)
821
822
823 /* this allows JTAG devices to implement the entire jtag_xxx() layer in hw/sw */
824 #ifdef HAVE_JTAG_MINIDRIVER_H
825 /* Here a #define MINIDRIVER() and an inline version of hw fifo interface_jtag_add_dr_out can be defined */
826 #include "jtag_minidriver.h"
827 #define MINIDRIVER(a) notused ## a
828 #else
829 #define MINIDRIVER(a) a
830
831 /* jtag_add_dr_out() is a faster version of jtag_add_dr_scan()
832 *
833 * Current or end_state can not be TAP_RESET. end_state can be TAP_INVALID
834 *
835 * num_bits[i] is the number of bits to clock out from value[i] LSB first.
836 *
837 * If the device is in bypass, then that is an error condition in
838 * the caller code that is not detected by this fn, whereas jtag_add_dr_scan()
839 * does detect it. Similarly if the device is not in bypass, data must
840 * be passed to it.
841 *
842 * If anything fails, then jtag_error will be set and jtag_execute() will
843 * return an error. There is no way to determine if there was a failure
844 * during this function call.
845 *
846 * Note that this jtag_add_dr_out can be defined as an inline function.
847 */
848 extern void interface_jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
849 tap_state_t end_state);
850
851 #endif
852
853 static __inline__ void jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
854 tap_state_t end_state)
855 {
856 if (end_state != TAP_INVALID)
857 cmd_queue_end_state = end_state;
858 cmd_queue_cur_state = cmd_queue_end_state;
859 interface_jtag_add_dr_out(tap, num_fields, num_bits, value, cmd_queue_end_state);
860 }
861
862
863 #endif /* JTAG_H */

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)