coding style: fix space around pointer's asterisk
[openocd.git] / src / jtag / drivers / ftdi.c
1 /**************************************************************************
2 * Copyright (C) 2012 by Andreas Fritiofson *
3 * andreas.fritiofson@gmail.com *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
17 ***************************************************************************/
18
19 /**
20 * @file
21 * JTAG adapters based on the FT2232 full and high speed USB parts are
22 * popular low cost JTAG debug solutions. Many FT2232 based JTAG adapters
23 * are discrete, but development boards may integrate them as alternatives
24 * to more capable (and expensive) third party JTAG pods.
25 *
26 * JTAG uses only one of the two communications channels ("MPSSE engines")
27 * on these devices. Adapters based on FT4232 parts have four ports/channels
28 * (A/B/C/D), instead of just two (A/B).
29 *
30 * Especially on development boards integrating one of these chips (as
31 * opposed to discrete pods/dongles), the additional channels can be used
32 * for a variety of purposes, but OpenOCD only uses one channel at a time.
33 *
34 * - As a USB-to-serial adapter for the target's console UART ...
35 * which may be able to support ROM boot loaders that load initial
36 * firmware images to flash (or SRAM).
37 *
38 * - On systems which support ARM's SWD in addition to JTAG, or instead
39 * of it, that second port can be used for reading SWV/SWO trace data.
40 *
41 * - Additional JTAG links, e.g. to a CPLD or * FPGA.
42 *
43 * FT2232 based JTAG adapters are "dumb" not "smart", because most JTAG
44 * request/response interactions involve round trips over the USB link.
45 * A "smart" JTAG adapter has intelligence close to the scan chain, so it
46 * can for example poll quickly for a status change (usually taking on the
47 * order of microseconds not milliseconds) before beginning a queued
48 * transaction which require the previous one to have completed.
49 *
50 * There are dozens of adapters of this type, differing in details which
51 * this driver needs to understand. Those "layout" details are required
52 * as part of FT2232 driver configuration.
53 *
54 * This code uses information contained in the MPSSE specification which was
55 * found here:
56 * https://www.ftdichip.com/Support/Documents/AppNotes/AN2232C-01_MPSSE_Cmnd.pdf
57 * Hereafter this is called the "MPSSE Spec".
58 *
59 * The datasheet for the ftdichip.com's FT2232H part is here:
60 * https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
61 *
62 * Also note the issue with code 0x4b (clock data to TMS) noted in
63 * http://developer.intra2net.com/mailarchive/html/libftdi/2009/msg00292.html
64 * which can affect longer JTAG state paths.
65 */
66
67 #ifdef HAVE_CONFIG_H
68 #include "config.h"
69 #endif
70
71 /* project specific includes */
72 #include <jtag/drivers/jtag_usb_common.h>
73 #include <jtag/interface.h>
74 #include <jtag/swd.h>
75 #include <transport/transport.h>
76 #include <helper/time_support.h>
77
78 #if IS_CYGWIN == 1
79 #include <windows.h>
80 #endif
81
82 #include <assert.h>
83
84 /* FTDI access library includes */
85 #include "mpsse.h"
86
87 #define JTAG_MODE (LSB_FIRST | POS_EDGE_IN | NEG_EDGE_OUT)
88 #define JTAG_MODE_ALT (LSB_FIRST | NEG_EDGE_IN | NEG_EDGE_OUT)
89 #define SWD_MODE (LSB_FIRST | POS_EDGE_IN | NEG_EDGE_OUT)
90
91 static char *ftdi_device_desc;
92 static char *ftdi_serial;
93 static uint8_t ftdi_channel;
94 static uint8_t ftdi_jtag_mode = JTAG_MODE;
95
96 static bool swd_mode;
97
98 #define MAX_USB_IDS 8
99 /* vid = pid = 0 marks the end of the list */
100 static uint16_t ftdi_vid[MAX_USB_IDS + 1] = { 0 };
101 static uint16_t ftdi_pid[MAX_USB_IDS + 1] = { 0 };
102
103 static struct mpsse_ctx *mpsse_ctx;
104
105 struct signal {
106 const char *name;
107 uint16_t data_mask;
108 uint16_t input_mask;
109 uint16_t oe_mask;
110 bool invert_data;
111 bool invert_input;
112 bool invert_oe;
113 struct signal *next;
114 };
115
116 static struct signal *signals;
117
118 /* FIXME: Where to store per-instance data? We need an SWD context. */
119 static struct swd_cmd_queue_entry {
120 uint8_t cmd;
121 uint32_t *dst;
122 uint8_t trn_ack_data_parity_trn[DIV_ROUND_UP(4 + 3 + 32 + 1 + 4, 8)];
123 } *swd_cmd_queue;
124 static size_t swd_cmd_queue_length;
125 static size_t swd_cmd_queue_alloced;
126 static int queued_retval;
127 static int freq;
128
129 static uint16_t output;
130 static uint16_t direction;
131 static uint16_t jtag_output_init;
132 static uint16_t jtag_direction_init;
133
134 static int ftdi_swd_switch_seq(enum swd_special_seq seq);
135
136 static struct signal *find_signal_by_name(const char *name)
137 {
138 for (struct signal *sig = signals; sig; sig = sig->next) {
139 if (strcmp(name, sig->name) == 0)
140 return sig;
141 }
142 return NULL;
143 }
144
145 static struct signal *create_signal(const char *name)
146 {
147 struct signal **psig = &signals;
148 while (*psig)
149 psig = &(*psig)->next;
150
151 *psig = calloc(1, sizeof(**psig));
152 if (*psig == NULL)
153 return NULL;
154
155 (*psig)->name = strdup(name);
156 if ((*psig)->name == NULL) {
157 free(*psig);
158 *psig = NULL;
159 }
160 return *psig;
161 }
162
163 static int ftdi_set_signal(const struct signal *s, char value)
164 {
165 bool data;
166 bool oe;
167
168 if (s->data_mask == 0 && s->oe_mask == 0) {
169 LOG_ERROR("interface doesn't provide signal '%s'", s->name);
170 return ERROR_FAIL;
171 }
172 switch (value) {
173 case '0':
174 data = s->invert_data;
175 oe = !s->invert_oe;
176 break;
177 case '1':
178 if (s->data_mask == 0) {
179 LOG_ERROR("interface can't drive '%s' high", s->name);
180 return ERROR_FAIL;
181 }
182 data = !s->invert_data;
183 oe = !s->invert_oe;
184 break;
185 case 'z':
186 case 'Z':
187 if (s->oe_mask == 0) {
188 LOG_ERROR("interface can't tri-state '%s'", s->name);
189 return ERROR_FAIL;
190 }
191 data = s->invert_data;
192 oe = s->invert_oe;
193 break;
194 default:
195 assert(0 && "invalid signal level specifier");
196 return ERROR_FAIL;
197 }
198
199 uint16_t old_output = output;
200 uint16_t old_direction = direction;
201
202 output = data ? output | s->data_mask : output & ~s->data_mask;
203 if (s->oe_mask == s->data_mask)
204 direction = oe ? direction | s->oe_mask : direction & ~s->oe_mask;
205 else
206 output = oe ? output | s->oe_mask : output & ~s->oe_mask;
207
208 if ((output & 0xff) != (old_output & 0xff) || (direction & 0xff) != (old_direction & 0xff))
209 mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
210 if ((output >> 8 != old_output >> 8) || (direction >> 8 != old_direction >> 8))
211 mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
212
213 return ERROR_OK;
214 }
215
216 static int ftdi_get_signal(const struct signal *s, uint16_t *value_out)
217 {
218 uint8_t data_low = 0;
219 uint8_t data_high = 0;
220
221 if (s->input_mask == 0) {
222 LOG_ERROR("interface doesn't provide signal '%s'", s->name);
223 return ERROR_FAIL;
224 }
225
226 if (s->input_mask & 0xff)
227 mpsse_read_data_bits_low_byte(mpsse_ctx, &data_low);
228 if (s->input_mask >> 8)
229 mpsse_read_data_bits_high_byte(mpsse_ctx, &data_high);
230
231 mpsse_flush(mpsse_ctx);
232
233 *value_out = (((uint16_t)data_high) << 8) | data_low;
234
235 if (s->invert_input)
236 *value_out = ~(*value_out);
237
238 *value_out &= s->input_mask;
239
240 return ERROR_OK;
241 }
242
243 /**
244 * Function move_to_state
245 * moves the TAP controller from the current state to a
246 * \a goal_state through a path given by tap_get_tms_path(). State transition
247 * logging is performed by delegation to clock_tms().
248 *
249 * @param goal_state is the destination state for the move.
250 */
251 static void move_to_state(tap_state_t goal_state)
252 {
253 tap_state_t start_state = tap_get_state();
254
255 /* goal_state is 1/2 of a tuple/pair of states which allow convenient
256 lookup of the required TMS pattern to move to this state from the
257 start state.
258 */
259
260 /* do the 2 lookups */
261 uint8_t tms_bits = tap_get_tms_path(start_state, goal_state);
262 int tms_count = tap_get_tms_path_len(start_state, goal_state);
263 assert(tms_count <= 8);
264
265 LOG_DEBUG_IO("start=%s goal=%s", tap_state_name(start_state), tap_state_name(goal_state));
266
267 /* Track state transitions step by step */
268 for (int i = 0; i < tms_count; i++)
269 tap_set_state(tap_state_transition(tap_get_state(), (tms_bits >> i) & 1));
270
271 mpsse_clock_tms_cs_out(mpsse_ctx,
272 &tms_bits,
273 0,
274 tms_count,
275 false,
276 ftdi_jtag_mode);
277 }
278
279 static int ftdi_speed(int speed)
280 {
281 int retval;
282 retval = mpsse_set_frequency(mpsse_ctx, speed);
283
284 if (retval < 0) {
285 LOG_ERROR("couldn't set FTDI TCK speed");
286 return retval;
287 }
288
289 if (!swd_mode && speed >= 10000000 && ftdi_jtag_mode != JTAG_MODE_ALT)
290 LOG_INFO("ftdi: if you experience problems at higher adapter clocks, try "
291 "the command \"ftdi_tdo_sample_edge falling\"");
292 return ERROR_OK;
293 }
294
295 static int ftdi_speed_div(int speed, int *khz)
296 {
297 *khz = speed / 1000;
298 return ERROR_OK;
299 }
300
301 static int ftdi_khz(int khz, int *jtag_speed)
302 {
303 if (khz == 0 && !mpsse_is_high_speed(mpsse_ctx)) {
304 LOG_DEBUG("RCLK not supported");
305 return ERROR_FAIL;
306 }
307
308 *jtag_speed = khz * 1000;
309 return ERROR_OK;
310 }
311
312 static void ftdi_end_state(tap_state_t state)
313 {
314 if (tap_is_state_stable(state))
315 tap_set_end_state(state);
316 else {
317 LOG_ERROR("BUG: %s is not a stable end state", tap_state_name(state));
318 exit(-1);
319 }
320 }
321
322 static void ftdi_execute_runtest(struct jtag_command *cmd)
323 {
324 int i;
325 uint8_t zero = 0;
326
327 LOG_DEBUG_IO("runtest %i cycles, end in %s",
328 cmd->cmd.runtest->num_cycles,
329 tap_state_name(cmd->cmd.runtest->end_state));
330
331 if (tap_get_state() != TAP_IDLE)
332 move_to_state(TAP_IDLE);
333
334 /* TODO: Reuse ftdi_execute_stableclocks */
335 i = cmd->cmd.runtest->num_cycles;
336 while (i > 0) {
337 /* there are no state transitions in this code, so omit state tracking */
338 unsigned this_len = i > 7 ? 7 : i;
339 mpsse_clock_tms_cs_out(mpsse_ctx, &zero, 0, this_len, false, ftdi_jtag_mode);
340 i -= this_len;
341 }
342
343 ftdi_end_state(cmd->cmd.runtest->end_state);
344
345 if (tap_get_state() != tap_get_end_state())
346 move_to_state(tap_get_end_state());
347
348 LOG_DEBUG_IO("runtest: %i, end in %s",
349 cmd->cmd.runtest->num_cycles,
350 tap_state_name(tap_get_end_state()));
351 }
352
353 static void ftdi_execute_statemove(struct jtag_command *cmd)
354 {
355 LOG_DEBUG_IO("statemove end in %s",
356 tap_state_name(cmd->cmd.statemove->end_state));
357
358 ftdi_end_state(cmd->cmd.statemove->end_state);
359
360 /* shortest-path move to desired end state */
361 if (tap_get_state() != tap_get_end_state() || tap_get_end_state() == TAP_RESET)
362 move_to_state(tap_get_end_state());
363 }
364
365 /**
366 * Clock a bunch of TMS (or SWDIO) transitions, to change the JTAG
367 * (or SWD) state machine. REVISIT: Not the best method, perhaps.
368 */
369 static void ftdi_execute_tms(struct jtag_command *cmd)
370 {
371 LOG_DEBUG_IO("TMS: %d bits", cmd->cmd.tms->num_bits);
372
373 /* TODO: Missing tap state tracking, also missing from ft2232.c! */
374 mpsse_clock_tms_cs_out(mpsse_ctx,
375 cmd->cmd.tms->bits,
376 0,
377 cmd->cmd.tms->num_bits,
378 false,
379 ftdi_jtag_mode);
380 }
381
382 static void ftdi_execute_pathmove(struct jtag_command *cmd)
383 {
384 tap_state_t *path = cmd->cmd.pathmove->path;
385 int num_states = cmd->cmd.pathmove->num_states;
386
387 LOG_DEBUG_IO("pathmove: %i states, current: %s end: %s", num_states,
388 tap_state_name(tap_get_state()),
389 tap_state_name(path[num_states-1]));
390
391 int state_count = 0;
392 unsigned bit_count = 0;
393 uint8_t tms_byte = 0;
394
395 LOG_DEBUG_IO("-");
396
397 /* this loop verifies that the path is legal and logs each state in the path */
398 while (num_states--) {
399
400 /* either TMS=0 or TMS=1 must work ... */
401 if (tap_state_transition(tap_get_state(), false)
402 == path[state_count])
403 buf_set_u32(&tms_byte, bit_count++, 1, 0x0);
404 else if (tap_state_transition(tap_get_state(), true)
405 == path[state_count]) {
406 buf_set_u32(&tms_byte, bit_count++, 1, 0x1);
407
408 /* ... or else the caller goofed BADLY */
409 } else {
410 LOG_ERROR("BUG: %s -> %s isn't a valid "
411 "TAP state transition",
412 tap_state_name(tap_get_state()),
413 tap_state_name(path[state_count]));
414 exit(-1);
415 }
416
417 tap_set_state(path[state_count]);
418 state_count++;
419
420 if (bit_count == 7 || num_states == 0) {
421 mpsse_clock_tms_cs_out(mpsse_ctx,
422 &tms_byte,
423 0,
424 bit_count,
425 false,
426 ftdi_jtag_mode);
427 bit_count = 0;
428 }
429 }
430 tap_set_end_state(tap_get_state());
431 }
432
433 static void ftdi_execute_scan(struct jtag_command *cmd)
434 {
435 LOG_DEBUG_IO("%s type:%d", cmd->cmd.scan->ir_scan ? "IRSCAN" : "DRSCAN",
436 jtag_scan_type(cmd->cmd.scan));
437
438 /* Make sure there are no trailing fields with num_bits == 0, or the logic below will fail. */
439 while (cmd->cmd.scan->num_fields > 0
440 && cmd->cmd.scan->fields[cmd->cmd.scan->num_fields - 1].num_bits == 0) {
441 cmd->cmd.scan->num_fields--;
442 LOG_DEBUG_IO("discarding trailing empty field");
443 }
444
445 if (cmd->cmd.scan->num_fields == 0) {
446 LOG_DEBUG_IO("empty scan, doing nothing");
447 return;
448 }
449
450 if (cmd->cmd.scan->ir_scan) {
451 if (tap_get_state() != TAP_IRSHIFT)
452 move_to_state(TAP_IRSHIFT);
453 } else {
454 if (tap_get_state() != TAP_DRSHIFT)
455 move_to_state(TAP_DRSHIFT);
456 }
457
458 ftdi_end_state(cmd->cmd.scan->end_state);
459
460 struct scan_field *field = cmd->cmd.scan->fields;
461 unsigned scan_size = 0;
462
463 for (int i = 0; i < cmd->cmd.scan->num_fields; i++, field++) {
464 scan_size += field->num_bits;
465 LOG_DEBUG_IO("%s%s field %d/%d %d bits",
466 field->in_value ? "in" : "",
467 field->out_value ? "out" : "",
468 i,
469 cmd->cmd.scan->num_fields,
470 field->num_bits);
471
472 if (i == cmd->cmd.scan->num_fields - 1 && tap_get_state() != tap_get_end_state()) {
473 /* Last field, and we're leaving IRSHIFT/DRSHIFT. Clock last bit during tap
474 * movement. This last field can't have length zero, it was checked above. */
475 mpsse_clock_data(mpsse_ctx,
476 field->out_value,
477 0,
478 field->in_value,
479 0,
480 field->num_bits - 1,
481 ftdi_jtag_mode);
482 uint8_t last_bit = 0;
483 if (field->out_value)
484 bit_copy(&last_bit, 0, field->out_value, field->num_bits - 1, 1);
485 uint8_t tms_bits = 0x01;
486 mpsse_clock_tms_cs(mpsse_ctx,
487 &tms_bits,
488 0,
489 field->in_value,
490 field->num_bits - 1,
491 1,
492 last_bit,
493 ftdi_jtag_mode);
494 tap_set_state(tap_state_transition(tap_get_state(), 1));
495 mpsse_clock_tms_cs_out(mpsse_ctx,
496 &tms_bits,
497 1,
498 1,
499 last_bit,
500 ftdi_jtag_mode);
501 tap_set_state(tap_state_transition(tap_get_state(), 0));
502 } else
503 mpsse_clock_data(mpsse_ctx,
504 field->out_value,
505 0,
506 field->in_value,
507 0,
508 field->num_bits,
509 ftdi_jtag_mode);
510 }
511
512 if (tap_get_state() != tap_get_end_state())
513 move_to_state(tap_get_end_state());
514
515 LOG_DEBUG_IO("%s scan, %i bits, end in %s",
516 (cmd->cmd.scan->ir_scan) ? "IR" : "DR", scan_size,
517 tap_state_name(tap_get_end_state()));
518 }
519
520 static int ftdi_reset(int trst, int srst)
521 {
522 struct signal *sig_ntrst = find_signal_by_name("nTRST");
523 struct signal *sig_nsrst = find_signal_by_name("nSRST");
524
525 LOG_DEBUG_IO("reset trst: %i srst %i", trst, srst);
526
527 if (trst == 1) {
528 if (sig_ntrst)
529 ftdi_set_signal(sig_ntrst, '0');
530 else
531 LOG_ERROR("Can't assert TRST: nTRST signal is not defined");
532 } else if (sig_ntrst && jtag_get_reset_config() & RESET_HAS_TRST &&
533 trst == 0) {
534 if (jtag_get_reset_config() & RESET_TRST_OPEN_DRAIN)
535 ftdi_set_signal(sig_ntrst, 'z');
536 else
537 ftdi_set_signal(sig_ntrst, '1');
538 }
539
540 if (srst == 1) {
541 if (sig_nsrst)
542 ftdi_set_signal(sig_nsrst, '0');
543 else
544 LOG_ERROR("Can't assert SRST: nSRST signal is not defined");
545 } else if (sig_nsrst && jtag_get_reset_config() & RESET_HAS_SRST &&
546 srst == 0) {
547 if (jtag_get_reset_config() & RESET_SRST_PUSH_PULL)
548 ftdi_set_signal(sig_nsrst, '1');
549 else
550 ftdi_set_signal(sig_nsrst, 'z');
551 }
552
553 LOG_DEBUG_IO("trst: %i, srst: %i", trst, srst);
554 return ERROR_OK;
555 }
556
557 static void ftdi_execute_sleep(struct jtag_command *cmd)
558 {
559 LOG_DEBUG_IO("sleep %" PRIi32, cmd->cmd.sleep->us);
560
561 mpsse_flush(mpsse_ctx);
562 jtag_sleep(cmd->cmd.sleep->us);
563 LOG_DEBUG_IO("sleep %" PRIi32 " usec while in %s",
564 cmd->cmd.sleep->us,
565 tap_state_name(tap_get_state()));
566 }
567
568 static void ftdi_execute_stableclocks(struct jtag_command *cmd)
569 {
570 /* this is only allowed while in a stable state. A check for a stable
571 * state was done in jtag_add_clocks()
572 */
573 int num_cycles = cmd->cmd.stableclocks->num_cycles;
574
575 /* 7 bits of either ones or zeros. */
576 uint8_t tms = tap_get_state() == TAP_RESET ? 0x7f : 0x00;
577
578 /* TODO: Use mpsse_clock_data with in=out=0 for this, if TMS can be set to
579 * the correct level and remain there during the scan */
580 while (num_cycles > 0) {
581 /* there are no state transitions in this code, so omit state tracking */
582 unsigned this_len = num_cycles > 7 ? 7 : num_cycles;
583 mpsse_clock_tms_cs_out(mpsse_ctx, &tms, 0, this_len, false, ftdi_jtag_mode);
584 num_cycles -= this_len;
585 }
586
587 LOG_DEBUG_IO("clocks %i while in %s",
588 cmd->cmd.stableclocks->num_cycles,
589 tap_state_name(tap_get_state()));
590 }
591
592 static void ftdi_execute_command(struct jtag_command *cmd)
593 {
594 switch (cmd->type) {
595 case JTAG_RUNTEST:
596 ftdi_execute_runtest(cmd);
597 break;
598 case JTAG_TLR_RESET:
599 ftdi_execute_statemove(cmd);
600 break;
601 case JTAG_PATHMOVE:
602 ftdi_execute_pathmove(cmd);
603 break;
604 case JTAG_SCAN:
605 ftdi_execute_scan(cmd);
606 break;
607 case JTAG_SLEEP:
608 ftdi_execute_sleep(cmd);
609 break;
610 case JTAG_STABLECLOCKS:
611 ftdi_execute_stableclocks(cmd);
612 break;
613 case JTAG_TMS:
614 ftdi_execute_tms(cmd);
615 break;
616 default:
617 LOG_ERROR("BUG: unknown JTAG command type encountered: %d", cmd->type);
618 break;
619 }
620 }
621
622 static int ftdi_execute_queue(void)
623 {
624 /* blink, if the current layout has that feature */
625 struct signal *led = find_signal_by_name("LED");
626 if (led)
627 ftdi_set_signal(led, '1');
628
629 for (struct jtag_command *cmd = jtag_command_queue; cmd; cmd = cmd->next) {
630 /* fill the write buffer with the desired command */
631 ftdi_execute_command(cmd);
632 }
633
634 if (led)
635 ftdi_set_signal(led, '0');
636
637 int retval = mpsse_flush(mpsse_ctx);
638 if (retval != ERROR_OK)
639 LOG_ERROR("error while flushing MPSSE queue: %d", retval);
640
641 return retval;
642 }
643
644 static int ftdi_initialize(void)
645 {
646 if (tap_get_tms_path_len(TAP_IRPAUSE, TAP_IRPAUSE) == 7)
647 LOG_DEBUG("ftdi interface using 7 step jtag state transitions");
648 else
649 LOG_DEBUG("ftdi interface using shortest path jtag state transitions");
650
651 for (int i = 0; ftdi_vid[i] || ftdi_pid[i]; i++) {
652 mpsse_ctx = mpsse_open(&ftdi_vid[i], &ftdi_pid[i], ftdi_device_desc,
653 ftdi_serial, jtag_usb_get_location(), ftdi_channel);
654 if (mpsse_ctx)
655 break;
656 }
657
658 if (!mpsse_ctx)
659 return ERROR_JTAG_INIT_FAILED;
660
661 output = jtag_output_init;
662 direction = jtag_direction_init;
663
664 if (swd_mode) {
665 struct signal *sig = find_signal_by_name("SWD_EN");
666 if (!sig) {
667 LOG_ERROR("SWD mode is active but SWD_EN signal is not defined");
668 return ERROR_JTAG_INIT_FAILED;
669 }
670 /* A dummy SWD_EN would have zero mask */
671 if (sig->data_mask)
672 ftdi_set_signal(sig, '1');
673 }
674
675 mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
676 mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
677
678 mpsse_loopback_config(mpsse_ctx, false);
679
680 freq = mpsse_set_frequency(mpsse_ctx, jtag_get_speed_khz() * 1000);
681
682 return mpsse_flush(mpsse_ctx);
683 }
684
685 static int ftdi_quit(void)
686 {
687 mpsse_close(mpsse_ctx);
688
689 struct signal *sig = signals;
690 while (sig) {
691 struct signal *next = sig->next;
692 free((void *)sig->name);
693 free(sig);
694 sig = next;
695 }
696
697 free(ftdi_device_desc);
698 free(ftdi_serial);
699
700 free(swd_cmd_queue);
701
702 return ERROR_OK;
703 }
704
705 COMMAND_HANDLER(ftdi_handle_device_desc_command)
706 {
707 if (CMD_ARGC == 1) {
708 if (ftdi_device_desc)
709 free(ftdi_device_desc);
710 ftdi_device_desc = strdup(CMD_ARGV[0]);
711 } else {
712 LOG_ERROR("expected exactly one argument to ftdi_device_desc <description>");
713 }
714
715 return ERROR_OK;
716 }
717
718 COMMAND_HANDLER(ftdi_handle_serial_command)
719 {
720 if (CMD_ARGC == 1) {
721 if (ftdi_serial)
722 free(ftdi_serial);
723 ftdi_serial = strdup(CMD_ARGV[0]);
724 } else {
725 return ERROR_COMMAND_SYNTAX_ERROR;
726 }
727
728 return ERROR_OK;
729 }
730
731 COMMAND_HANDLER(ftdi_handle_channel_command)
732 {
733 if (CMD_ARGC == 1)
734 COMMAND_PARSE_NUMBER(u8, CMD_ARGV[0], ftdi_channel);
735 else
736 return ERROR_COMMAND_SYNTAX_ERROR;
737
738 return ERROR_OK;
739 }
740
741 COMMAND_HANDLER(ftdi_handle_layout_init_command)
742 {
743 if (CMD_ARGC != 2)
744 return ERROR_COMMAND_SYNTAX_ERROR;
745
746 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], jtag_output_init);
747 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], jtag_direction_init);
748
749 return ERROR_OK;
750 }
751
752 COMMAND_HANDLER(ftdi_handle_layout_signal_command)
753 {
754 if (CMD_ARGC < 1)
755 return ERROR_COMMAND_SYNTAX_ERROR;
756
757 bool invert_data = false;
758 uint16_t data_mask = 0;
759 bool invert_input = false;
760 uint16_t input_mask = 0;
761 bool invert_oe = false;
762 uint16_t oe_mask = 0;
763 for (unsigned i = 1; i < CMD_ARGC; i += 2) {
764 if (strcmp("-data", CMD_ARGV[i]) == 0) {
765 invert_data = false;
766 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
767 } else if (strcmp("-ndata", CMD_ARGV[i]) == 0) {
768 invert_data = true;
769 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
770 } else if (strcmp("-input", CMD_ARGV[i]) == 0) {
771 invert_input = false;
772 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], input_mask);
773 } else if (strcmp("-ninput", CMD_ARGV[i]) == 0) {
774 invert_input = true;
775 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], input_mask);
776 } else if (strcmp("-oe", CMD_ARGV[i]) == 0) {
777 invert_oe = false;
778 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
779 } else if (strcmp("-noe", CMD_ARGV[i]) == 0) {
780 invert_oe = true;
781 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
782 } else if (!strcmp("-alias", CMD_ARGV[i]) ||
783 !strcmp("-nalias", CMD_ARGV[i])) {
784 if (!strcmp("-nalias", CMD_ARGV[i])) {
785 invert_data = true;
786 invert_input = true;
787 }
788 struct signal *sig = find_signal_by_name(CMD_ARGV[i + 1]);
789 if (!sig) {
790 LOG_ERROR("signal %s is not defined", CMD_ARGV[i + 1]);
791 return ERROR_FAIL;
792 }
793 data_mask = sig->data_mask;
794 input_mask = sig->input_mask;
795 oe_mask = sig->oe_mask;
796 invert_input ^= sig->invert_input;
797 invert_oe = sig->invert_oe;
798 invert_data ^= sig->invert_data;
799 } else {
800 LOG_ERROR("unknown option '%s'", CMD_ARGV[i]);
801 return ERROR_COMMAND_SYNTAX_ERROR;
802 }
803 }
804
805 struct signal *sig;
806 sig = find_signal_by_name(CMD_ARGV[0]);
807 if (!sig)
808 sig = create_signal(CMD_ARGV[0]);
809 if (!sig) {
810 LOG_ERROR("failed to create signal %s", CMD_ARGV[0]);
811 return ERROR_FAIL;
812 }
813
814 sig->invert_data = invert_data;
815 sig->data_mask = data_mask;
816 sig->invert_input = invert_input;
817 sig->input_mask = input_mask;
818 sig->invert_oe = invert_oe;
819 sig->oe_mask = oe_mask;
820
821 return ERROR_OK;
822 }
823
824 COMMAND_HANDLER(ftdi_handle_set_signal_command)
825 {
826 if (CMD_ARGC < 2)
827 return ERROR_COMMAND_SYNTAX_ERROR;
828
829 struct signal *sig;
830 sig = find_signal_by_name(CMD_ARGV[0]);
831 if (!sig) {
832 LOG_ERROR("interface configuration doesn't define signal '%s'", CMD_ARGV[0]);
833 return ERROR_FAIL;
834 }
835
836 switch (*CMD_ARGV[1]) {
837 case '0':
838 case '1':
839 case 'z':
840 case 'Z':
841 /* single character level specifier only */
842 if (CMD_ARGV[1][1] == '\0') {
843 ftdi_set_signal(sig, *CMD_ARGV[1]);
844 break;
845 }
846 /* fallthrough */
847 default:
848 LOG_ERROR("unknown signal level '%s', use 0, 1 or z", CMD_ARGV[1]);
849 return ERROR_COMMAND_SYNTAX_ERROR;
850 }
851
852 return mpsse_flush(mpsse_ctx);
853 }
854
855 COMMAND_HANDLER(ftdi_handle_get_signal_command)
856 {
857 if (CMD_ARGC < 1)
858 return ERROR_COMMAND_SYNTAX_ERROR;
859
860 struct signal *sig;
861 uint16_t sig_data = 0;
862 sig = find_signal_by_name(CMD_ARGV[0]);
863 if (!sig) {
864 LOG_ERROR("interface configuration doesn't define signal '%s'", CMD_ARGV[0]);
865 return ERROR_FAIL;
866 }
867
868 int ret = ftdi_get_signal(sig, &sig_data);
869 if (ret != ERROR_OK)
870 return ret;
871
872 LOG_USER("Signal %s = %#06x", sig->name, sig_data);
873
874 return ERROR_OK;
875 }
876
877 COMMAND_HANDLER(ftdi_handle_vid_pid_command)
878 {
879 if (CMD_ARGC > MAX_USB_IDS * 2) {
880 LOG_WARNING("ignoring extra IDs in ftdi_vid_pid "
881 "(maximum is %d pairs)", MAX_USB_IDS);
882 CMD_ARGC = MAX_USB_IDS * 2;
883 }
884 if (CMD_ARGC < 2 || (CMD_ARGC & 1)) {
885 LOG_WARNING("incomplete ftdi_vid_pid configuration directive");
886 if (CMD_ARGC < 2)
887 return ERROR_COMMAND_SYNTAX_ERROR;
888 /* remove the incomplete trailing id */
889 CMD_ARGC -= 1;
890 }
891
892 unsigned i;
893 for (i = 0; i < CMD_ARGC; i += 2) {
894 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i], ftdi_vid[i >> 1]);
895 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], ftdi_pid[i >> 1]);
896 }
897
898 /*
899 * Explicitly terminate, in case there are multiples instances of
900 * ftdi_vid_pid.
901 */
902 ftdi_vid[i >> 1] = ftdi_pid[i >> 1] = 0;
903
904 return ERROR_OK;
905 }
906
907 COMMAND_HANDLER(ftdi_handle_tdo_sample_edge_command)
908 {
909 Jim_Nvp *n;
910 static const Jim_Nvp nvp_ftdi_jtag_modes[] = {
911 { .name = "rising", .value = JTAG_MODE },
912 { .name = "falling", .value = JTAG_MODE_ALT },
913 { .name = NULL, .value = -1 },
914 };
915
916 if (CMD_ARGC > 0) {
917 n = Jim_Nvp_name2value_simple(nvp_ftdi_jtag_modes, CMD_ARGV[0]);
918 if (n->name == NULL)
919 return ERROR_COMMAND_SYNTAX_ERROR;
920 ftdi_jtag_mode = n->value;
921
922 }
923
924 n = Jim_Nvp_value2name_simple(nvp_ftdi_jtag_modes, ftdi_jtag_mode);
925 command_print(CMD, "ftdi samples TDO on %s edge of TCK", n->name);
926
927 return ERROR_OK;
928 }
929
930 static const struct command_registration ftdi_command_handlers[] = {
931 {
932 .name = "ftdi_device_desc",
933 .handler = &ftdi_handle_device_desc_command,
934 .mode = COMMAND_CONFIG,
935 .help = "set the USB device description of the FTDI device",
936 .usage = "description_string",
937 },
938 {
939 .name = "ftdi_serial",
940 .handler = &ftdi_handle_serial_command,
941 .mode = COMMAND_CONFIG,
942 .help = "set the serial number of the FTDI device",
943 .usage = "serial_string",
944 },
945 {
946 .name = "ftdi_channel",
947 .handler = &ftdi_handle_channel_command,
948 .mode = COMMAND_CONFIG,
949 .help = "set the channel of the FTDI device that is used as JTAG",
950 .usage = "(0-3)",
951 },
952 {
953 .name = "ftdi_layout_init",
954 .handler = &ftdi_handle_layout_init_command,
955 .mode = COMMAND_CONFIG,
956 .help = "initialize the FTDI GPIO signals used "
957 "to control output-enables and reset signals",
958 .usage = "data direction",
959 },
960 {
961 .name = "ftdi_layout_signal",
962 .handler = &ftdi_handle_layout_signal_command,
963 .mode = COMMAND_ANY,
964 .help = "define a signal controlled by one or more FTDI GPIO as data "
965 "and/or output enable",
966 .usage = "name [-data mask|-ndata mask] [-oe mask|-noe mask] [-alias|-nalias name]",
967 },
968 {
969 .name = "ftdi_set_signal",
970 .handler = &ftdi_handle_set_signal_command,
971 .mode = COMMAND_EXEC,
972 .help = "control a layout-specific signal",
973 .usage = "name (1|0|z)",
974 },
975 {
976 .name = "ftdi_get_signal",
977 .handler = &ftdi_handle_get_signal_command,
978 .mode = COMMAND_EXEC,
979 .help = "read the value of a layout-specific signal",
980 .usage = "name",
981 },
982 {
983 .name = "ftdi_vid_pid",
984 .handler = &ftdi_handle_vid_pid_command,
985 .mode = COMMAND_CONFIG,
986 .help = "the vendor ID and product ID of the FTDI device",
987 .usage = "(vid pid)* ",
988 },
989 {
990 .name = "ftdi_tdo_sample_edge",
991 .handler = &ftdi_handle_tdo_sample_edge_command,
992 .mode = COMMAND_ANY,
993 .help = "set which TCK clock edge is used for sampling TDO "
994 "- default is rising-edge (Setting to falling-edge may "
995 "allow signalling speed increase)",
996 .usage = "(rising|falling)",
997 },
998 COMMAND_REGISTRATION_DONE
999 };
1000
1001 static int create_default_signal(const char *name, uint16_t data_mask)
1002 {
1003 struct signal *sig = create_signal(name);
1004 if (!sig) {
1005 LOG_ERROR("failed to create signal %s", name);
1006 return ERROR_FAIL;
1007 }
1008 sig->invert_data = false;
1009 sig->data_mask = data_mask;
1010 sig->invert_oe = false;
1011 sig->oe_mask = 0;
1012
1013 return ERROR_OK;
1014 }
1015
1016 static int create_signals(void)
1017 {
1018 if (create_default_signal("TCK", 0x01) != ERROR_OK)
1019 return ERROR_FAIL;
1020 if (create_default_signal("TDI", 0x02) != ERROR_OK)
1021 return ERROR_FAIL;
1022 if (create_default_signal("TDO", 0x04) != ERROR_OK)
1023 return ERROR_FAIL;
1024 if (create_default_signal("TMS", 0x08) != ERROR_OK)
1025 return ERROR_FAIL;
1026 return ERROR_OK;
1027 }
1028
1029 static int ftdi_swd_init(void)
1030 {
1031 LOG_INFO("FTDI SWD mode enabled");
1032 swd_mode = true;
1033
1034 if (create_signals() != ERROR_OK)
1035 return ERROR_FAIL;
1036
1037 swd_cmd_queue_alloced = 10;
1038 swd_cmd_queue = malloc(swd_cmd_queue_alloced * sizeof(*swd_cmd_queue));
1039
1040 return swd_cmd_queue != NULL ? ERROR_OK : ERROR_FAIL;
1041 }
1042
1043 static void ftdi_swd_swdio_en(bool enable)
1044 {
1045 struct signal *oe = find_signal_by_name("SWDIO_OE");
1046 if (oe) {
1047 if (oe->data_mask)
1048 ftdi_set_signal(oe, enable ? '1' : '0');
1049 else {
1050 /* Sets TDI/DO pin to input during rx when both pins are connected
1051 to SWDIO */
1052 if (enable)
1053 direction |= jtag_direction_init & 0x0002U;
1054 else
1055 direction &= ~0x0002U;
1056 mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
1057 }
1058 }
1059 }
1060
1061 /**
1062 * Flush the MPSSE queue and process the SWD transaction queue
1063 * @param dap
1064 * @return
1065 */
1066 static int ftdi_swd_run_queue(void)
1067 {
1068 LOG_DEBUG_IO("Executing %zu queued transactions", swd_cmd_queue_length);
1069 int retval;
1070 struct signal *led = find_signal_by_name("LED");
1071
1072 if (queued_retval != ERROR_OK) {
1073 LOG_DEBUG_IO("Skipping due to previous errors: %d", queued_retval);
1074 goto skip;
1075 }
1076
1077 /* A transaction must be followed by another transaction or at least 8 idle cycles to
1078 * ensure that data is clocked through the AP. */
1079 mpsse_clock_data_out(mpsse_ctx, NULL, 0, 8, SWD_MODE);
1080
1081 /* Terminate the "blink", if the current layout has that feature */
1082 if (led)
1083 ftdi_set_signal(led, '0');
1084
1085 queued_retval = mpsse_flush(mpsse_ctx);
1086 if (queued_retval != ERROR_OK) {
1087 LOG_ERROR("MPSSE failed");
1088 goto skip;
1089 }
1090
1091 for (size_t i = 0; i < swd_cmd_queue_length; i++) {
1092 int ack = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1, 3);
1093
1094 LOG_DEBUG_IO("%s %s %s reg %X = %08"PRIx32,
1095 ack == SWD_ACK_OK ? "OK" : ack == SWD_ACK_WAIT ? "WAIT" : ack == SWD_ACK_FAULT ? "FAULT" : "JUNK",
1096 swd_cmd_queue[i].cmd & SWD_CMD_APnDP ? "AP" : "DP",
1097 swd_cmd_queue[i].cmd & SWD_CMD_RnW ? "read" : "write",
1098 (swd_cmd_queue[i].cmd & SWD_CMD_A32) >> 1,
1099 buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn,
1100 1 + 3 + (swd_cmd_queue[i].cmd & SWD_CMD_RnW ? 0 : 1), 32));
1101
1102 if (ack != SWD_ACK_OK) {
1103 queued_retval = ack == SWD_ACK_WAIT ? ERROR_WAIT : ERROR_FAIL;
1104 goto skip;
1105
1106 } else if (swd_cmd_queue[i].cmd & SWD_CMD_RnW) {
1107 uint32_t data = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3, 32);
1108 int parity = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 32, 1);
1109
1110 if (parity != parity_u32(data)) {
1111 LOG_ERROR("SWD Read data parity mismatch");
1112 queued_retval = ERROR_FAIL;
1113 goto skip;
1114 }
1115
1116 if (swd_cmd_queue[i].dst != NULL)
1117 *swd_cmd_queue[i].dst = data;
1118 }
1119 }
1120
1121 skip:
1122 swd_cmd_queue_length = 0;
1123 retval = queued_retval;
1124 queued_retval = ERROR_OK;
1125
1126 /* Queue a new "blink" */
1127 if (led && retval == ERROR_OK)
1128 ftdi_set_signal(led, '1');
1129
1130 return retval;
1131 }
1132
1133 static void ftdi_swd_queue_cmd(uint8_t cmd, uint32_t *dst, uint32_t data, uint32_t ap_delay_clk)
1134 {
1135 if (swd_cmd_queue_length >= swd_cmd_queue_alloced) {
1136 /* Not enough room in the queue. Run the queue and increase its size for next time.
1137 * Note that it's not possible to avoid running the queue here, because mpsse contains
1138 * pointers into the queue which may be invalid after the realloc. */
1139 queued_retval = ftdi_swd_run_queue();
1140 struct swd_cmd_queue_entry *q = realloc(swd_cmd_queue, swd_cmd_queue_alloced * 2 * sizeof(*swd_cmd_queue));
1141 if (q != NULL) {
1142 swd_cmd_queue = q;
1143 swd_cmd_queue_alloced *= 2;
1144 LOG_DEBUG("Increased SWD command queue to %zu elements", swd_cmd_queue_alloced);
1145 }
1146 }
1147
1148 if (queued_retval != ERROR_OK)
1149 return;
1150
1151 size_t i = swd_cmd_queue_length++;
1152 swd_cmd_queue[i].cmd = cmd | SWD_CMD_START | SWD_CMD_PARK;
1153
1154 mpsse_clock_data_out(mpsse_ctx, &swd_cmd_queue[i].cmd, 0, 8, SWD_MODE);
1155
1156 if (swd_cmd_queue[i].cmd & SWD_CMD_RnW) {
1157 /* Queue a read transaction */
1158 swd_cmd_queue[i].dst = dst;
1159
1160 ftdi_swd_swdio_en(false);
1161 mpsse_clock_data_in(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1162 0, 1 + 3 + 32 + 1 + 1, SWD_MODE);
1163 ftdi_swd_swdio_en(true);
1164 } else {
1165 /* Queue a write transaction */
1166 ftdi_swd_swdio_en(false);
1167
1168 mpsse_clock_data_in(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1169 0, 1 + 3 + 1, SWD_MODE);
1170
1171 ftdi_swd_swdio_en(true);
1172
1173 buf_set_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 1, 32, data);
1174 buf_set_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 1 + 32, 1, parity_u32(data));
1175
1176 mpsse_clock_data_out(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1177 1 + 3 + 1, 32 + 1, SWD_MODE);
1178 }
1179
1180 /* Insert idle cycles after AP accesses to avoid WAIT */
1181 if (cmd & SWD_CMD_APnDP)
1182 mpsse_clock_data_out(mpsse_ctx, NULL, 0, ap_delay_clk, SWD_MODE);
1183
1184 }
1185
1186 static void ftdi_swd_read_reg(uint8_t cmd, uint32_t *value, uint32_t ap_delay_clk)
1187 {
1188 assert(cmd & SWD_CMD_RnW);
1189 ftdi_swd_queue_cmd(cmd, value, 0, ap_delay_clk);
1190 }
1191
1192 static void ftdi_swd_write_reg(uint8_t cmd, uint32_t value, uint32_t ap_delay_clk)
1193 {
1194 assert(!(cmd & SWD_CMD_RnW));
1195 ftdi_swd_queue_cmd(cmd, NULL, value, ap_delay_clk);
1196 }
1197
1198 static int ftdi_swd_switch_seq(enum swd_special_seq seq)
1199 {
1200 switch (seq) {
1201 case LINE_RESET:
1202 LOG_DEBUG("SWD line reset");
1203 ftdi_swd_swdio_en(true);
1204 mpsse_clock_data_out(mpsse_ctx, swd_seq_line_reset, 0, swd_seq_line_reset_len, SWD_MODE);
1205 break;
1206 case JTAG_TO_SWD:
1207 LOG_DEBUG("JTAG-to-SWD");
1208 ftdi_swd_swdio_en(true);
1209 mpsse_clock_data_out(mpsse_ctx, swd_seq_jtag_to_swd, 0, swd_seq_jtag_to_swd_len, SWD_MODE);
1210 break;
1211 case SWD_TO_JTAG:
1212 LOG_DEBUG("SWD-to-JTAG");
1213 ftdi_swd_swdio_en(true);
1214 mpsse_clock_data_out(mpsse_ctx, swd_seq_swd_to_jtag, 0, swd_seq_swd_to_jtag_len, SWD_MODE);
1215 break;
1216 default:
1217 LOG_ERROR("Sequence %d not supported", seq);
1218 return ERROR_FAIL;
1219 }
1220
1221 return ERROR_OK;
1222 }
1223
1224 static const struct swd_driver ftdi_swd = {
1225 .init = ftdi_swd_init,
1226 .switch_seq = ftdi_swd_switch_seq,
1227 .read_reg = ftdi_swd_read_reg,
1228 .write_reg = ftdi_swd_write_reg,
1229 .run = ftdi_swd_run_queue,
1230 };
1231
1232 static const char * const ftdi_transports[] = { "jtag", "swd", NULL };
1233
1234 static struct jtag_interface ftdi_interface = {
1235 .supported = DEBUG_CAP_TMS_SEQ,
1236 .execute_queue = ftdi_execute_queue,
1237 };
1238
1239 struct adapter_driver ftdi_adapter_driver = {
1240 .name = "ftdi",
1241 .transports = ftdi_transports,
1242 .commands = ftdi_command_handlers,
1243
1244 .init = ftdi_initialize,
1245 .quit = ftdi_quit,
1246 .reset = ftdi_reset,
1247 .speed = ftdi_speed,
1248 .khz = ftdi_khz,
1249 .speed_div = ftdi_speed_div,
1250
1251 .jtag_ops = &ftdi_interface,
1252 .swd_ops = &ftdi_swd,
1253 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)