Remove FSF address from GPL notices
[openocd.git] / src / helper / binarybuffer.c
1 /***************************************************************************
2 * Copyright (C) 2004, 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
20 ***************************************************************************/
21
22 #ifdef HAVE_CONFIG_H
23 #include "config.h"
24 #endif
25
26 #include "log.h"
27 #include "binarybuffer.h"
28
29 static const unsigned char bit_reverse_table256[] = {
30 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
31 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
32 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
33 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
34 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
35 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
36 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
37 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
38 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
39 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
40 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
41 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
42 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
43 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
44 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
45 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
46 };
47
48 void *buf_cpy(const void *from, void *_to, unsigned size)
49 {
50 if (NULL == from || NULL == _to)
51 return NULL;
52
53 /* copy entire buffer */
54 memcpy(_to, from, DIV_ROUND_UP(size, 8));
55
56 /* mask out bits that don't belong to the buffer */
57 unsigned trailing_bits = size % 8;
58 if (trailing_bits) {
59 uint8_t *to = _to;
60 to[size / 8] &= (1 << trailing_bits) - 1;
61 }
62 return _to;
63 }
64
65 static bool buf_cmp_masked(uint8_t a, uint8_t b, uint8_t m)
66 {
67 return (a & m) != (b & m);
68 }
69 static bool buf_cmp_trailing(uint8_t a, uint8_t b, uint8_t m, unsigned trailing)
70 {
71 uint8_t mask = (1 << trailing) - 1;
72 return buf_cmp_masked(a, b, mask & m);
73 }
74
75 bool buf_cmp(const void *_buf1, const void *_buf2, unsigned size)
76 {
77 if (!_buf1 || !_buf2)
78 return _buf1 != _buf2;
79
80 unsigned last = size / 8;
81 if (memcmp(_buf1, _buf2, last) != 0)
82 return false;
83
84 unsigned trailing = size % 8;
85 if (!trailing)
86 return false;
87
88 const uint8_t *buf1 = _buf1, *buf2 = _buf2;
89 return buf_cmp_trailing(buf1[last], buf2[last], 0xff, trailing);
90 }
91
92 bool buf_cmp_mask(const void *_buf1, const void *_buf2,
93 const void *_mask, unsigned size)
94 {
95 if (!_buf1 || !_buf2)
96 return _buf1 != _buf2 || _buf1 != _mask;
97
98 const uint8_t *buf1 = _buf1, *buf2 = _buf2, *mask = _mask;
99 unsigned last = size / 8;
100 for (unsigned i = 0; i < last; i++) {
101 if (buf_cmp_masked(buf1[i], buf2[i], mask[i]))
102 return true;
103 }
104 unsigned trailing = size % 8;
105 if (!trailing)
106 return false;
107 return buf_cmp_trailing(buf1[last], buf2[last], mask[last], trailing);
108 }
109
110
111 void *buf_set_ones(void *_buf, unsigned size)
112 {
113 uint8_t *buf = _buf;
114 if (!buf)
115 return NULL;
116
117 memset(buf, 0xff, size / 8);
118
119 unsigned trailing_bits = size % 8;
120 if (trailing_bits)
121 buf[size / 8] = (1 << trailing_bits) - 1;
122
123 return buf;
124 }
125
126 void *buf_set_buf(const void *_src, unsigned src_start,
127 void *_dst, unsigned dst_start, unsigned len)
128 {
129 const uint8_t *src = _src;
130 uint8_t *dst = _dst;
131 unsigned i, sb, db, sq, dq, lb, lq;
132
133 sb = src_start / 8;
134 db = dst_start / 8;
135 sq = src_start % 8;
136 dq = dst_start % 8;
137 lb = len / 8;
138 lq = len % 8;
139
140 src += sb;
141 dst += db;
142
143 /* check if both buffers are on byte boundary and
144 * len is a multiple of 8bit so we can simple copy
145 * the buffer */
146 if ((sq == 0) && (dq == 0) && (lq == 0)) {
147 for (i = 0; i < lb; i++)
148 *dst++ = *src++;
149 return _dst;
150 }
151
152 /* fallback to slow bit copy */
153 for (i = 0; i < len; i++) {
154 if (((*src >> (sq&7)) & 1) == 1)
155 *dst |= 1 << (dq&7);
156 else
157 *dst &= ~(1 << (dq&7));
158 if (sq++ == 7) {
159 sq = 0;
160 src++;
161 }
162 if (dq++ == 7) {
163 dq = 0;
164 dst++;
165 }
166 }
167
168 return _dst;
169 }
170
171 uint32_t flip_u32(uint32_t value, unsigned int num)
172 {
173 uint32_t c = (bit_reverse_table256[value & 0xff] << 24) |
174 (bit_reverse_table256[(value >> 8) & 0xff] << 16) |
175 (bit_reverse_table256[(value >> 16) & 0xff] << 8) |
176 (bit_reverse_table256[(value >> 24) & 0xff]);
177
178 if (num < 32)
179 c = c >> (32 - num);
180
181 return c;
182 }
183
184 static int ceil_f_to_u32(float x)
185 {
186 if (x < 0) /* return zero for negative numbers */
187 return 0;
188
189 uint32_t y = x; /* cut off fraction */
190
191 if ((x - y) > 0.0) /* if there was a fractional part, increase by one */
192 y++;
193
194 return y;
195 }
196
197 char *buf_to_str(const void *_buf, unsigned buf_len, unsigned radix)
198 {
199 float factor;
200 switch (radix) {
201 case 16:
202 factor = 2.0; /* log(256) / log(16) = 2.0 */
203 break;
204 case 10:
205 factor = 2.40824; /* log(256) / log(10) = 2.40824 */
206 break;
207 case 8:
208 factor = 2.66667; /* log(256) / log(8) = 2.66667 */
209 break;
210 default:
211 return NULL;
212 }
213
214 unsigned str_len = ceil_f_to_u32(DIV_ROUND_UP(buf_len, 8) * factor);
215 char *str = calloc(str_len + 1, 1);
216
217 const uint8_t *buf = _buf;
218 int b256_len = DIV_ROUND_UP(buf_len, 8);
219 for (int i = b256_len - 1; i >= 0; i--) {
220 uint32_t tmp = buf[i];
221 if (((unsigned)i == (buf_len / 8)) && (buf_len % 8))
222 tmp &= (0xff >> (8 - (buf_len % 8)));
223
224 /* base-256 digits */
225 for (unsigned j = str_len; j > 0; j--) {
226 tmp += (uint32_t)str[j-1] * 256;
227 str[j-1] = (uint8_t)(tmp % radix);
228 tmp /= radix;
229 }
230 }
231
232 const char * const DIGITS = "0123456789ABCDEF";
233 for (unsigned j = 0; j < str_len; j++)
234 str[j] = DIGITS[(int)str[j]];
235
236 return str;
237 }
238
239 /** identify radix, and skip radix-prefix (0, 0x or 0X) */
240 static void str_radix_guess(const char **_str, unsigned *_str_len,
241 unsigned *_radix)
242 {
243 unsigned radix = *_radix;
244 if (0 != radix)
245 return;
246 const char *str = *_str;
247 unsigned str_len = *_str_len;
248 if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X')) {
249 radix = 16;
250 str += 2;
251 str_len -= 2;
252 } else if ((str[0] == '0') && (str_len != 1)) {
253 radix = 8;
254 str += 1;
255 str_len -= 1;
256 } else
257 radix = 10;
258 *_str = str;
259 *_str_len = str_len;
260 *_radix = radix;
261 }
262
263 int str_to_buf(const char *str, unsigned str_len,
264 void *_buf, unsigned buf_len, unsigned radix)
265 {
266 str_radix_guess(&str, &str_len, &radix);
267
268 float factor;
269 if (radix == 16)
270 factor = 0.5; /* log(16) / log(256) = 0.5 */
271 else if (radix == 10)
272 factor = 0.41524; /* log(10) / log(256) = 0.41524 */
273 else if (radix == 8)
274 factor = 0.375; /* log(8) / log(256) = 0.375 */
275 else
276 return 0;
277
278 /* copy to zero-terminated buffer */
279 char *charbuf = strndup(str, str_len);
280
281 /* number of digits in base-256 notation */
282 unsigned b256_len = ceil_f_to_u32(str_len * factor);
283 uint8_t *b256_buf = calloc(b256_len, 1);
284
285 /* go through zero terminated buffer
286 * input digits (ASCII) */
287 unsigned i;
288 for (i = 0; charbuf[i]; i++) {
289 uint32_t tmp = charbuf[i];
290 if ((tmp >= '0') && (tmp <= '9'))
291 tmp = (tmp - '0');
292 else if ((tmp >= 'a') && (tmp <= 'f'))
293 tmp = (tmp - 'a' + 10);
294 else if ((tmp >= 'A') && (tmp <= 'F'))
295 tmp = (tmp - 'A' + 10);
296 else
297 continue; /* skip characters other than [0-9,a-f,A-F] */
298
299 if (tmp >= radix)
300 continue; /* skip digits invalid for the current radix */
301
302 /* base-256 digits */
303 for (unsigned j = 0; j < b256_len; j++) {
304 tmp += (uint32_t)b256_buf[j] * radix;
305 b256_buf[j] = (uint8_t)(tmp & 0xFF);
306 tmp >>= 8;
307 }
308
309 }
310
311 uint8_t *buf = _buf;
312 for (unsigned j = 0; j < DIV_ROUND_UP(buf_len, 8); j++) {
313 if (j < b256_len)
314 buf[j] = b256_buf[j];
315 else
316 buf[j] = 0;
317 }
318
319 /* mask out bits that don't belong to the buffer */
320 if (buf_len % 8)
321 buf[(buf_len / 8)] &= 0xff >> (8 - (buf_len % 8));
322
323 free(b256_buf);
324 free(charbuf);
325
326 return i;
327 }
328
329 void bit_copy_queue_init(struct bit_copy_queue *q)
330 {
331 INIT_LIST_HEAD(&q->list);
332 }
333
334 int bit_copy_queued(struct bit_copy_queue *q, uint8_t *dst, unsigned dst_offset, const uint8_t *src,
335 unsigned src_offset, unsigned bit_count)
336 {
337 struct bit_copy_queue_entry *qe = malloc(sizeof(*qe));
338 if (!qe)
339 return ERROR_FAIL;
340
341 qe->dst = dst;
342 qe->dst_offset = dst_offset;
343 qe->src = src;
344 qe->src_offset = src_offset;
345 qe->bit_count = bit_count;
346 list_add_tail(&qe->list, &q->list);
347
348 return ERROR_OK;
349 }
350
351 void bit_copy_execute(struct bit_copy_queue *q)
352 {
353 struct bit_copy_queue_entry *qe;
354 struct bit_copy_queue_entry *tmp;
355 list_for_each_entry_safe(qe, tmp, &q->list, list) {
356 bit_copy(qe->dst, qe->dst_offset, qe->src, qe->src_offset, qe->bit_count);
357 list_del(&qe->list);
358 free(qe);
359 }
360 }
361
362 void bit_copy_discard(struct bit_copy_queue *q)
363 {
364 struct bit_copy_queue_entry *qe;
365 struct bit_copy_queue_entry *tmp;
366 list_for_each_entry_safe(qe, tmp, &q->list, list) {
367 list_del(&qe->list);
368 free(qe);
369 }
370 }
371
372 int unhexify(char *bin, const char *hex, int count)
373 {
374 int i, tmp;
375
376 for (i = 0; i < count; i++) {
377 if (sscanf(hex + (2 * i), "%02x", &tmp) != 1)
378 return i;
379 bin[i] = tmp;
380 }
381
382 return i;
383 }
384
385 int hexify(char *hex, const char *bin, int count, int out_maxlen)
386 {
387 int i, cmd_len = 0;
388
389 /* May use a length, or a null-terminated string as input. */
390 if (count == 0)
391 count = strlen(bin);
392
393 for (i = 0; i < count; i++)
394 cmd_len += snprintf(hex + cmd_len, out_maxlen - cmd_len, "%02x", bin[i] & 0xff);
395
396 return cmd_len;
397 }
398
399 void buffer_shr(void *_buf, unsigned buf_len, unsigned count)
400 {
401 unsigned i;
402 unsigned char *buf = _buf;
403 unsigned bytes_to_remove;
404 unsigned shift;
405
406 bytes_to_remove = count / 8;
407 shift = count - (bytes_to_remove * 8);
408
409 for (i = 0; i < (buf_len - 1); i++)
410 buf[i] = (buf[i] >> shift) | ((buf[i+1] << (8 - shift)) & 0xff);
411
412 buf[(buf_len - 1)] = buf[(buf_len - 1)] >> shift;
413
414 if (bytes_to_remove) {
415 memmove(buf, &buf[bytes_to_remove], buf_len - bytes_to_remove);
416 memset(&buf[buf_len - bytes_to_remove], 0, bytes_to_remove);
417 }
418 }