fdfaad4cf7e8102f7593312bf471b39059512129
[openocd.git] / src / flash / nor / stm32lx.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 by Clement Burin des Roziers *
9 * clement.burin-des-roziers@hikob.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
23 ***************************************************************************/
24
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "imp.h"
30 #include <helper/binarybuffer.h>
31 #include <target/algorithm.h>
32 #include <target/armv7m.h>
33 #include <target/cortex_m.h>
34
35 /* stm32lx flash register locations */
36
37 #define FLASH_ACR 0x00
38 #define FLASH_PECR 0x04
39 #define FLASH_PDKEYR 0x08
40 #define FLASH_PEKEYR 0x0C
41 #define FLASH_PRGKEYR 0x10
42 #define FLASH_OPTKEYR 0x14
43 #define FLASH_SR 0x18
44 #define FLASH_OBR 0x1C
45 #define FLASH_WRPR 0x20
46
47 /* FLASH_ACR bites */
48 #define FLASH_ACR__LATENCY (1<<0)
49 #define FLASH_ACR__PRFTEN (1<<1)
50 #define FLASH_ACR__ACC64 (1<<2)
51 #define FLASH_ACR__SLEEP_PD (1<<3)
52 #define FLASH_ACR__RUN_PD (1<<4)
53
54 /* FLASH_PECR bits */
55 #define FLASH_PECR__PELOCK (1<<0)
56 #define FLASH_PECR__PRGLOCK (1<<1)
57 #define FLASH_PECR__OPTLOCK (1<<2)
58 #define FLASH_PECR__PROG (1<<3)
59 #define FLASH_PECR__DATA (1<<4)
60 #define FLASH_PECR__FTDW (1<<8)
61 #define FLASH_PECR__ERASE (1<<9)
62 #define FLASH_PECR__FPRG (1<<10)
63 #define FLASH_PECR__EOPIE (1<<16)
64 #define FLASH_PECR__ERRIE (1<<17)
65 #define FLASH_PECR__OBL_LAUNCH (1<<18)
66
67 /* FLASH_SR bits */
68 #define FLASH_SR__BSY (1<<0)
69 #define FLASH_SR__EOP (1<<1)
70 #define FLASH_SR__ENDHV (1<<2)
71 #define FLASH_SR__READY (1<<3)
72 #define FLASH_SR__WRPERR (1<<8)
73 #define FLASH_SR__PGAERR (1<<9)
74 #define FLASH_SR__SIZERR (1<<10)
75 #define FLASH_SR__OPTVERR (1<<11)
76
77 /* Unlock keys */
78 #define PEKEY1 0x89ABCDEF
79 #define PEKEY2 0x02030405
80 #define PRGKEY1 0x8C9DAEBF
81 #define PRGKEY2 0x13141516
82 #define OPTKEY1 0xFBEAD9C8
83 #define OPTKEY2 0x24252627
84
85 /* other registers */
86 #define DBGMCU_IDCODE 0xE0042000
87 #define DBGMCU_IDCODE_L0 0x40015800
88
89 /* Constants */
90 #define FLASH_SECTOR_SIZE 4096
91 #define FLASH_BANK0_ADDRESS 0x08000000
92
93 /* option bytes */
94 #define OPTION_BYTES_ADDRESS 0x1FF80000
95
96 #define OPTION_BYTE_0_PR1 0xFFFF0000
97 #define OPTION_BYTE_0_PR0 0xFF5500AA
98
99 static int stm32lx_unlock_program_memory(struct flash_bank *bank);
100 static int stm32lx_lock_program_memory(struct flash_bank *bank);
101 static int stm32lx_enable_write_half_page(struct flash_bank *bank);
102 static int stm32lx_erase_sector(struct flash_bank *bank, int sector);
103 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank);
104 static int stm32lx_lock(struct flash_bank *bank);
105 static int stm32lx_unlock(struct flash_bank *bank);
106 static int stm32lx_mass_erase(struct flash_bank *bank);
107 static int stm32lx_wait_until_bsy_clear_timeout(struct flash_bank *bank, int timeout);
108 static int stm32lx_update_part_info(struct flash_bank *bank, uint16_t flash_size_in_kb);
109
110 struct stm32lx_rev {
111 uint16_t rev;
112 const char *str;
113 };
114
115 struct stm32lx_part_info {
116 uint16_t id;
117 const char *device_str;
118 const struct stm32lx_rev *revs;
119 size_t num_revs;
120 unsigned int page_size;
121 unsigned int pages_per_sector;
122 uint16_t max_flash_size_kb;
123 uint16_t first_bank_size_kb; /* used when has_dual_banks is true */
124 bool has_dual_banks;
125
126 uint32_t flash_base; /* Flash controller registers location */
127 uint32_t fsize_base; /* Location of FSIZE register */
128 };
129
130 struct stm32lx_flash_bank {
131 int probed;
132 uint32_t idcode;
133 uint32_t user_bank_size;
134 uint32_t flash_base;
135
136 struct stm32lx_part_info part_info;
137 };
138
139 static const struct stm32lx_rev stm32_416_revs[] = {
140 { 0x1000, "A" }, { 0x1008, "Y" }, { 0x1038, "W" }, { 0x1078, "V" },
141 };
142 static const struct stm32lx_rev stm32_417_revs[] = {
143 { 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" }, { 0x1038, "X" }
144 };
145 static const struct stm32lx_rev stm32_425_revs[] = {
146 { 0x1000, "A" }, { 0x2000, "B" }, { 0x2008, "Y" },
147 };
148 static const struct stm32lx_rev stm32_427_revs[] = {
149 { 0x1000, "A" }, { 0x1018, "Y" }, { 0x1038, "X" },
150 };
151 static const struct stm32lx_rev stm32_429_revs[] = {
152 { 0x1000, "A" }, { 0x1018, "Z" },
153 };
154 static const struct stm32lx_rev stm32_436_revs[] = {
155 { 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" },
156 };
157 static const struct stm32lx_rev stm32_437_revs[] = {
158 { 0x1000, "A" },
159 };
160 static const struct stm32lx_rev stm32_447_revs[] = {
161 { 0x1000, "A" }, { 0x2000, "B" }, { 0x2008, "Z" },
162 };
163 static const struct stm32lx_rev stm32_457_revs[] = {
164 { 0x1000, "A" }, { 0x1008, "Z" },
165 };
166
167 static const struct stm32lx_part_info stm32lx_parts[] = {
168 {
169 .id = 0x416,
170 .revs = stm32_416_revs,
171 .num_revs = ARRAY_SIZE(stm32_416_revs),
172 .device_str = "STM32L1xx (Cat.1 - Low/Medium Density)",
173 .page_size = 256,
174 .pages_per_sector = 16,
175 .max_flash_size_kb = 128,
176 .has_dual_banks = false,
177 .flash_base = 0x40023C00,
178 .fsize_base = 0x1FF8004C,
179 },
180 {
181 .id = 0x417,
182 .revs = stm32_417_revs,
183 .num_revs = ARRAY_SIZE(stm32_417_revs),
184 .device_str = "STM32L0xx (Cat. 3)",
185 .page_size = 128,
186 .pages_per_sector = 32,
187 .max_flash_size_kb = 64,
188 .has_dual_banks = false,
189 .flash_base = 0x40022000,
190 .fsize_base = 0x1FF8007C,
191 },
192 {
193 .id = 0x425,
194 .revs = stm32_425_revs,
195 .num_revs = ARRAY_SIZE(stm32_425_revs),
196 .device_str = "STM32L0xx (Cat. 2)",
197 .page_size = 128,
198 .pages_per_sector = 32,
199 .max_flash_size_kb = 32,
200 .has_dual_banks = false,
201 .flash_base = 0x40022000,
202 .fsize_base = 0x1FF8007C,
203 },
204 {
205 .id = 0x427,
206 .revs = stm32_427_revs,
207 .num_revs = ARRAY_SIZE(stm32_427_revs),
208 .device_str = "STM32L1xx (Cat.3 - Medium+ Density)",
209 .page_size = 256,
210 .pages_per_sector = 16,
211 .max_flash_size_kb = 256,
212 .has_dual_banks = false,
213 .flash_base = 0x40023C00,
214 .fsize_base = 0x1FF800CC,
215 },
216 {
217 .id = 0x429,
218 .revs = stm32_429_revs,
219 .num_revs = ARRAY_SIZE(stm32_429_revs),
220 .device_str = "STM32L1xx (Cat.2)",
221 .page_size = 256,
222 .pages_per_sector = 16,
223 .max_flash_size_kb = 128,
224 .has_dual_banks = false,
225 .flash_base = 0x40023C00,
226 .fsize_base = 0x1FF8004C,
227 },
228 {
229 .id = 0x436,
230 .revs = stm32_436_revs,
231 .num_revs = ARRAY_SIZE(stm32_436_revs),
232 .device_str = "STM32L1xx (Cat.4/Cat.3 - Medium+/High Density)",
233 .page_size = 256,
234 .pages_per_sector = 16,
235 .max_flash_size_kb = 384,
236 .first_bank_size_kb = 192,
237 .has_dual_banks = true,
238 .flash_base = 0x40023C00,
239 .fsize_base = 0x1FF800CC,
240 },
241 {
242 .id = 0x437,
243 .revs = stm32_437_revs,
244 .num_revs = ARRAY_SIZE(stm32_437_revs),
245 .device_str = "STM32L1xx (Cat.5/Cat.6)",
246 .page_size = 256,
247 .pages_per_sector = 16,
248 .max_flash_size_kb = 512,
249 .first_bank_size_kb = 0, /* determined in runtime */
250 .has_dual_banks = true,
251 .flash_base = 0x40023C00,
252 .fsize_base = 0x1FF800CC,
253 },
254 {
255 .id = 0x447,
256 .revs = stm32_447_revs,
257 .num_revs = ARRAY_SIZE(stm32_447_revs),
258 .device_str = "STM32L0xx (Cat.5)",
259 .page_size = 128,
260 .pages_per_sector = 32,
261 .max_flash_size_kb = 192,
262 .first_bank_size_kb = 0, /* determined in runtime */
263 .has_dual_banks = false, /* determined in runtime */
264 .flash_base = 0x40022000,
265 .fsize_base = 0x1FF8007C,
266 },
267 {
268 .id = 0x457,
269 .revs = stm32_457_revs,
270 .num_revs = ARRAY_SIZE(stm32_457_revs),
271 .device_str = "STM32L0xx (Cat.1)",
272 .page_size = 128,
273 .pages_per_sector = 32,
274 .max_flash_size_kb = 16,
275 .has_dual_banks = false,
276 .flash_base = 0x40022000,
277 .fsize_base = 0x1FF8007C,
278 },
279 };
280
281 /* flash bank stm32lx <base> <size> 0 0 <target#>
282 */
283 FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command)
284 {
285 struct stm32lx_flash_bank *stm32lx_info;
286 if (CMD_ARGC < 6)
287 return ERROR_COMMAND_SYNTAX_ERROR;
288
289 /* Create the bank structure */
290 stm32lx_info = calloc(1, sizeof(*stm32lx_info));
291
292 /* Check allocation */
293 if (stm32lx_info == NULL) {
294 LOG_ERROR("failed to allocate bank structure");
295 return ERROR_FAIL;
296 }
297
298 bank->driver_priv = stm32lx_info;
299
300 stm32lx_info->probed = 0;
301 stm32lx_info->user_bank_size = bank->size;
302
303 /* the stm32l erased value is 0x00 */
304 bank->default_padded_value = bank->erased_value = 0x00;
305
306 return ERROR_OK;
307 }
308
309 COMMAND_HANDLER(stm32lx_handle_mass_erase_command)
310 {
311 int i;
312
313 if (CMD_ARGC < 1)
314 return ERROR_COMMAND_SYNTAX_ERROR;
315
316 struct flash_bank *bank;
317 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
318 if (ERROR_OK != retval)
319 return retval;
320
321 retval = stm32lx_mass_erase(bank);
322 if (retval == ERROR_OK) {
323 /* set all sectors as erased */
324 for (i = 0; i < bank->num_sectors; i++)
325 bank->sectors[i].is_erased = 1;
326
327 command_print(CMD_CTX, "stm32lx mass erase complete");
328 } else {
329 command_print(CMD_CTX, "stm32lx mass erase failed");
330 }
331
332 return retval;
333 }
334
335 COMMAND_HANDLER(stm32lx_handle_lock_command)
336 {
337 if (CMD_ARGC < 1)
338 return ERROR_COMMAND_SYNTAX_ERROR;
339
340 struct flash_bank *bank;
341 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
342 if (ERROR_OK != retval)
343 return retval;
344
345 retval = stm32lx_lock(bank);
346
347 if (retval == ERROR_OK)
348 command_print(CMD_CTX, "STM32Lx locked, takes effect after power cycle.");
349 else
350 command_print(CMD_CTX, "STM32Lx lock failed");
351
352 return retval;
353 }
354
355 COMMAND_HANDLER(stm32lx_handle_unlock_command)
356 {
357 if (CMD_ARGC < 1)
358 return ERROR_COMMAND_SYNTAX_ERROR;
359
360 struct flash_bank *bank;
361 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
362 if (ERROR_OK != retval)
363 return retval;
364
365 retval = stm32lx_unlock(bank);
366
367 if (retval == ERROR_OK)
368 command_print(CMD_CTX, "STM32Lx unlocked, takes effect after power cycle.");
369 else
370 command_print(CMD_CTX, "STM32Lx unlock failed");
371
372 return retval;
373 }
374
375 static int stm32lx_protect_check(struct flash_bank *bank)
376 {
377 int retval;
378 struct target *target = bank->target;
379 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
380
381 uint32_t wrpr;
382
383 /*
384 * Read the WRPR word, and check each bit (corresponding to each
385 * flash sector
386 */
387 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_WRPR,
388 &wrpr);
389 if (retval != ERROR_OK)
390 return retval;
391
392 for (int i = 0; i < bank->num_sectors; i++) {
393 if (wrpr & (1 << i))
394 bank->sectors[i].is_protected = 1;
395 else
396 bank->sectors[i].is_protected = 0;
397 }
398 return ERROR_OK;
399 }
400
401 static int stm32lx_erase(struct flash_bank *bank, int first, int last)
402 {
403 int retval;
404
405 /*
406 * It could be possible to do a mass erase if all sectors must be
407 * erased, but it is not implemented yet.
408 */
409
410 if (bank->target->state != TARGET_HALTED) {
411 LOG_ERROR("Target not halted");
412 return ERROR_TARGET_NOT_HALTED;
413 }
414
415 /*
416 * Loop over the selected sectors and erase them
417 */
418 for (int i = first; i <= last; i++) {
419 retval = stm32lx_erase_sector(bank, i);
420 if (retval != ERROR_OK)
421 return retval;
422 bank->sectors[i].is_erased = 1;
423 }
424 return ERROR_OK;
425 }
426
427 static int stm32lx_protect(struct flash_bank *bank, int set, int first,
428 int last)
429 {
430 LOG_WARNING("protection of the STM32L flash is not implemented");
431 return ERROR_OK;
432 }
433
434 static int stm32lx_write_half_pages(struct flash_bank *bank, const uint8_t *buffer,
435 uint32_t offset, uint32_t count)
436 {
437 struct target *target = bank->target;
438 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
439
440 uint32_t hp_nb = stm32lx_info->part_info.page_size / 2;
441 uint32_t buffer_size = 16384;
442 struct working_area *write_algorithm;
443 struct working_area *source;
444 uint32_t address = bank->base + offset;
445
446 struct reg_param reg_params[3];
447 struct armv7m_algorithm armv7m_info;
448
449 int retval = ERROR_OK;
450
451 /* see contib/loaders/flash/stm32lx.S for src */
452
453 static const uint8_t stm32lx_flash_write_code[] = {
454 0x92, 0x00, 0x8A, 0x18, 0x01, 0xE0, 0x08, 0xC9, 0x08, 0xC0, 0x91, 0x42, 0xFB, 0xD1, 0x00, 0xBE
455 };
456
457 /* Make sure we're performing a half-page aligned write. */
458 if (count % hp_nb) {
459 LOG_ERROR("The byte count must be %" PRIu32 "B-aligned but count is %" PRIi32 "B)", hp_nb, count);
460 return ERROR_FAIL;
461 }
462
463 /* flash write code */
464 if (target_alloc_working_area(target, sizeof(stm32lx_flash_write_code),
465 &write_algorithm) != ERROR_OK) {
466 LOG_DEBUG("no working area for block memory writes");
467 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
468 }
469
470 /* Write the flashing code */
471 retval = target_write_buffer(target,
472 write_algorithm->address,
473 sizeof(stm32lx_flash_write_code),
474 stm32lx_flash_write_code);
475 if (retval != ERROR_OK) {
476 target_free_working_area(target, write_algorithm);
477 return retval;
478 }
479
480 /* Allocate half pages memory */
481 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
482 if (buffer_size > 1024)
483 buffer_size -= 1024;
484 else
485 buffer_size /= 2;
486
487 if (buffer_size <= stm32lx_info->part_info.page_size) {
488 /* we already allocated the writing code, but failed to get a
489 * buffer, free the algorithm */
490 target_free_working_area(target, write_algorithm);
491
492 LOG_WARNING("no large enough working area available, can't do block memory writes");
493 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
494 }
495 }
496
497 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
498 armv7m_info.core_mode = ARM_MODE_THREAD;
499 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
500 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
501 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
502
503 /* Enable half-page write */
504 retval = stm32lx_enable_write_half_page(bank);
505 if (retval != ERROR_OK) {
506 target_free_working_area(target, source);
507 target_free_working_area(target, write_algorithm);
508
509 destroy_reg_param(&reg_params[0]);
510 destroy_reg_param(&reg_params[1]);
511 destroy_reg_param(&reg_params[2]);
512 return retval;
513 }
514
515 struct armv7m_common *armv7m = target_to_armv7m(target);
516 if (armv7m == NULL) {
517
518 /* something is very wrong if armv7m is NULL */
519 LOG_ERROR("unable to get armv7m target");
520 return retval;
521 }
522
523 /* save any DEMCR flags and configure target to catch any Hard Faults */
524 uint32_t demcr_save = armv7m->demcr;
525 armv7m->demcr = VC_HARDERR;
526
527 /* Loop while there are bytes to write */
528 while (count > 0) {
529 uint32_t this_count;
530 this_count = (count > buffer_size) ? buffer_size : count;
531
532 /* Write the next half pages */
533 retval = target_write_buffer(target, source->address, this_count, buffer);
534 if (retval != ERROR_OK)
535 break;
536
537 /* 4: Store useful information in the registers */
538 /* the destination address of the copy (R0) */
539 buf_set_u32(reg_params[0].value, 0, 32, address);
540 /* The source address of the copy (R1) */
541 buf_set_u32(reg_params[1].value, 0, 32, source->address);
542 /* The length of the copy (R2) */
543 buf_set_u32(reg_params[2].value, 0, 32, this_count / 4);
544
545 /* 5: Execute the bunch of code */
546 retval = target_run_algorithm(target, 0, NULL, sizeof(reg_params)
547 / sizeof(*reg_params), reg_params,
548 write_algorithm->address, 0, 10000, &armv7m_info);
549 if (retval != ERROR_OK)
550 break;
551
552 /* check for Hard Fault */
553 if (armv7m->exception_number == 3)
554 break;
555
556 /* 6: Wait while busy */
557 retval = stm32lx_wait_until_bsy_clear(bank);
558 if (retval != ERROR_OK)
559 break;
560
561 buffer += this_count;
562 address += this_count;
563 count -= this_count;
564 }
565
566 /* restore previous flags */
567 armv7m->demcr = demcr_save;
568
569 if (armv7m->exception_number == 3) {
570
571 /* the stm32l15x devices seem to have an issue when blank.
572 * if a ram loader is executed on a blank device it will
573 * Hard Fault, this issue does not happen for a already programmed device.
574 * A related issue is described in the stm32l151xx errata (Doc ID 17721 Rev 6 - 2.1.3).
575 * The workaround of handling the Hard Fault exception does work, but makes the
576 * loader more complicated, as a compromise we manually write the pages, programming time
577 * is reduced by 50% using this slower method.
578 */
579
580 LOG_WARNING("Couldn't use loader, falling back to page memory writes");
581
582 while (count > 0) {
583 uint32_t this_count;
584 this_count = (count > hp_nb) ? hp_nb : count;
585
586 /* Write the next half pages */
587 retval = target_write_buffer(target, address, this_count, buffer);
588 if (retval != ERROR_OK)
589 break;
590
591 /* Wait while busy */
592 retval = stm32lx_wait_until_bsy_clear(bank);
593 if (retval != ERROR_OK)
594 break;
595
596 buffer += this_count;
597 address += this_count;
598 count -= this_count;
599 }
600 }
601
602 if (retval == ERROR_OK)
603 retval = stm32lx_lock_program_memory(bank);
604
605 target_free_working_area(target, source);
606 target_free_working_area(target, write_algorithm);
607
608 destroy_reg_param(&reg_params[0]);
609 destroy_reg_param(&reg_params[1]);
610 destroy_reg_param(&reg_params[2]);
611
612 return retval;
613 }
614
615 static int stm32lx_write(struct flash_bank *bank, const uint8_t *buffer,
616 uint32_t offset, uint32_t count)
617 {
618 struct target *target = bank->target;
619 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
620
621 uint32_t hp_nb = stm32lx_info->part_info.page_size / 2;
622 uint32_t halfpages_number;
623 uint32_t bytes_remaining = 0;
624 uint32_t address = bank->base + offset;
625 uint32_t bytes_written = 0;
626 int retval, retval2;
627
628 if (bank->target->state != TARGET_HALTED) {
629 LOG_ERROR("Target not halted");
630 return ERROR_TARGET_NOT_HALTED;
631 }
632
633 if (offset & 0x3) {
634 LOG_ERROR("offset 0x%" PRIx32 " breaks required 4-byte alignment", offset);
635 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
636 }
637
638 retval = stm32lx_unlock_program_memory(bank);
639 if (retval != ERROR_OK)
640 return retval;
641
642 /* first we need to write any unaligned head bytes upto
643 * the next 128 byte page */
644
645 if (offset % hp_nb)
646 bytes_remaining = MIN(count, hp_nb - (offset % hp_nb));
647
648 while (bytes_remaining > 0) {
649 uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
650
651 /* copy remaining bytes into the write buffer */
652 uint32_t bytes_to_write = MIN(4, bytes_remaining);
653 memcpy(value, buffer + bytes_written, bytes_to_write);
654
655 retval = target_write_buffer(target, address, 4, value);
656 if (retval != ERROR_OK)
657 goto reset_pg_and_lock;
658
659 bytes_written += bytes_to_write;
660 bytes_remaining -= bytes_to_write;
661 address += 4;
662
663 retval = stm32lx_wait_until_bsy_clear(bank);
664 if (retval != ERROR_OK)
665 goto reset_pg_and_lock;
666 }
667
668 offset += bytes_written;
669 count -= bytes_written;
670
671 /* this should always pass this check here */
672 assert((offset % hp_nb) == 0);
673
674 /* calculate half pages */
675 halfpages_number = count / hp_nb;
676
677 if (halfpages_number) {
678 retval = stm32lx_write_half_pages(bank, buffer + bytes_written, offset, hp_nb * halfpages_number);
679 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
680 /* attempt slow memory writes */
681 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
682 halfpages_number = 0;
683 } else {
684 if (retval != ERROR_OK)
685 return ERROR_FAIL;
686 }
687 }
688
689 /* write any remaining bytes */
690 uint32_t page_bytes_written = hp_nb * halfpages_number;
691 bytes_written += page_bytes_written;
692 address += page_bytes_written;
693 bytes_remaining = count - page_bytes_written;
694
695 retval = stm32lx_unlock_program_memory(bank);
696 if (retval != ERROR_OK)
697 return retval;
698
699 while (bytes_remaining > 0) {
700 uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
701
702 /* copy remaining bytes into the write buffer */
703 uint32_t bytes_to_write = MIN(4, bytes_remaining);
704 memcpy(value, buffer + bytes_written, bytes_to_write);
705
706 retval = target_write_buffer(target, address, 4, value);
707 if (retval != ERROR_OK)
708 goto reset_pg_and_lock;
709
710 bytes_written += bytes_to_write;
711 bytes_remaining -= bytes_to_write;
712 address += 4;
713
714 retval = stm32lx_wait_until_bsy_clear(bank);
715 if (retval != ERROR_OK)
716 goto reset_pg_and_lock;
717 }
718
719 reset_pg_and_lock:
720 retval2 = stm32lx_lock_program_memory(bank);
721 if (retval == ERROR_OK)
722 retval = retval2;
723
724 return retval;
725 }
726
727 static int stm32lx_read_id_code(struct target *target, uint32_t *id)
728 {
729 struct armv7m_common *armv7m = target_to_armv7m(target);
730 int retval;
731 if (armv7m->arm.is_armv6m == true)
732 retval = target_read_u32(target, DBGMCU_IDCODE_L0, id);
733 else
734 /* read stm32 device id register */
735 retval = target_read_u32(target, DBGMCU_IDCODE, id);
736 return retval;
737 }
738
739 static int stm32lx_probe(struct flash_bank *bank)
740 {
741 struct target *target = bank->target;
742 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
743 int i;
744 uint16_t flash_size_in_kb;
745 uint32_t device_id;
746 uint32_t base_address = FLASH_BANK0_ADDRESS;
747 uint32_t second_bank_base;
748 unsigned int n;
749
750 stm32lx_info->probed = 0;
751
752 int retval = stm32lx_read_id_code(bank->target, &device_id);
753 if (retval != ERROR_OK)
754 return retval;
755
756 stm32lx_info->idcode = device_id;
757
758 LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id);
759
760 for (n = 0; n < ARRAY_SIZE(stm32lx_parts); n++) {
761 if ((device_id & 0xfff) == stm32lx_parts[n].id) {
762 stm32lx_info->part_info = stm32lx_parts[n];
763 break;
764 }
765 }
766
767 if (n == ARRAY_SIZE(stm32lx_parts)) {
768 LOG_WARNING("Cannot identify target as a STM32L family.");
769 return ERROR_FAIL;
770 } else {
771 LOG_INFO("Device: %s", stm32lx_info->part_info.device_str);
772 }
773
774 stm32lx_info->flash_base = stm32lx_info->part_info.flash_base;
775
776 /* Get the flash size from target. */
777 retval = target_read_u16(target, stm32lx_info->part_info.fsize_base,
778 &flash_size_in_kb);
779
780 /* 0x436 devices report their flash size as a 0 or 1 code indicating 384K
781 * or 256K, respectively. Please see RM0038 r8 or newer and refer to
782 * section 30.1.1. */
783 if (retval == ERROR_OK && (device_id & 0xfff) == 0x436) {
784 if (flash_size_in_kb == 0)
785 flash_size_in_kb = 384;
786 else if (flash_size_in_kb == 1)
787 flash_size_in_kb = 256;
788 }
789
790 /* 0x429 devices only use the lowest 8 bits of the flash size register */
791 if (retval == ERROR_OK && (device_id & 0xfff) == 0x429) {
792 flash_size_in_kb &= 0xff;
793 }
794
795 /* Failed reading flash size or flash size invalid (early silicon),
796 * default to max target family */
797 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
798 LOG_WARNING("STM32L flash size failed, probe inaccurate - assuming %dk flash",
799 stm32lx_info->part_info.max_flash_size_kb);
800 flash_size_in_kb = stm32lx_info->part_info.max_flash_size_kb;
801 } else if (flash_size_in_kb > stm32lx_info->part_info.max_flash_size_kb) {
802 LOG_WARNING("STM32L probed flash size assumed incorrect since FLASH_SIZE=%dk > %dk, - assuming %dk flash",
803 flash_size_in_kb, stm32lx_info->part_info.max_flash_size_kb,
804 stm32lx_info->part_info.max_flash_size_kb);
805 flash_size_in_kb = stm32lx_info->part_info.max_flash_size_kb;
806 }
807
808 /* Overwrite default dual-bank configuration */
809 retval = stm32lx_update_part_info(bank, flash_size_in_kb);
810 if (retval != ERROR_OK)
811 return ERROR_FAIL;
812
813 if (stm32lx_info->part_info.has_dual_banks) {
814 /* Use the configured base address to determine if this is the first or second flash bank.
815 * Verify that the base address is reasonably correct and determine the flash bank size
816 */
817 second_bank_base = base_address +
818 stm32lx_info->part_info.first_bank_size_kb * 1024;
819 if (bank->base == second_bank_base || !bank->base) {
820 /* This is the second bank */
821 base_address = second_bank_base;
822 flash_size_in_kb = flash_size_in_kb -
823 stm32lx_info->part_info.first_bank_size_kb;
824 } else if (bank->base == base_address) {
825 /* This is the first bank */
826 flash_size_in_kb = stm32lx_info->part_info.first_bank_size_kb;
827 } else {
828 LOG_WARNING("STM32L flash bank base address config is incorrect."
829 " 0x%" PRIx32 " but should rather be 0x%" PRIx32 " or 0x%" PRIx32,
830 bank->base, base_address, second_bank_base);
831 return ERROR_FAIL;
832 }
833 LOG_INFO("STM32L flash has dual banks. Bank (%d) size is %dkb, base address is 0x%" PRIx32,
834 bank->bank_number, flash_size_in_kb, base_address);
835 } else {
836 LOG_INFO("STM32L flash size is %dkb, base address is 0x%" PRIx32, flash_size_in_kb, base_address);
837 }
838
839 /* if the user sets the size manually then ignore the probed value
840 * this allows us to work around devices that have a invalid flash size register value */
841 if (stm32lx_info->user_bank_size) {
842 flash_size_in_kb = stm32lx_info->user_bank_size / 1024;
843 LOG_INFO("ignoring flash probed value, using configured bank size: %dkbytes", flash_size_in_kb);
844 }
845
846 /* calculate numbers of sectors (4kB per sector) */
847 int num_sectors = (flash_size_in_kb * 1024) / FLASH_SECTOR_SIZE;
848
849 if (bank->sectors) {
850 free(bank->sectors);
851 bank->sectors = NULL;
852 }
853
854 bank->size = flash_size_in_kb * 1024;
855 bank->base = base_address;
856 bank->num_sectors = num_sectors;
857 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
858 if (bank->sectors == NULL) {
859 LOG_ERROR("failed to allocate bank sectors");
860 return ERROR_FAIL;
861 }
862
863 for (i = 0; i < num_sectors; i++) {
864 bank->sectors[i].offset = i * FLASH_SECTOR_SIZE;
865 bank->sectors[i].size = FLASH_SECTOR_SIZE;
866 bank->sectors[i].is_erased = -1;
867 bank->sectors[i].is_protected = 1;
868 }
869
870 stm32lx_info->probed = 1;
871
872 return ERROR_OK;
873 }
874
875 static int stm32lx_auto_probe(struct flash_bank *bank)
876 {
877 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
878
879 if (stm32lx_info->probed)
880 return ERROR_OK;
881
882 return stm32lx_probe(bank);
883 }
884
885 /* This method must return a string displaying information about the bank */
886 static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size)
887 {
888 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
889 const struct stm32lx_part_info *info = &stm32lx_info->part_info;
890 uint16_t rev_id = stm32lx_info->idcode >> 16;
891 const char *rev_str = NULL;
892
893 if (!stm32lx_info->probed) {
894 int retval = stm32lx_probe(bank);
895 if (retval != ERROR_OK) {
896 snprintf(buf, buf_size,
897 "Unable to find bank information.");
898 return retval;
899 }
900 }
901
902 for (unsigned int i = 0; i < info->num_revs; i++)
903 if (rev_id == info->revs[i].rev)
904 rev_str = info->revs[i].str;
905
906 if (rev_str != NULL) {
907 snprintf(buf, buf_size,
908 "%s - Rev: %s",
909 info->device_str, rev_str);
910 } else {
911 snprintf(buf, buf_size,
912 "%s - Rev: unknown (0x%04x)",
913 info->device_str, rev_id);
914 }
915
916 return ERROR_OK;
917 }
918
919 static const struct command_registration stm32lx_exec_command_handlers[] = {
920 {
921 .name = "mass_erase",
922 .handler = stm32lx_handle_mass_erase_command,
923 .mode = COMMAND_EXEC,
924 .usage = "bank_id",
925 .help = "Erase entire flash device. including available EEPROM",
926 },
927 {
928 .name = "lock",
929 .handler = stm32lx_handle_lock_command,
930 .mode = COMMAND_EXEC,
931 .usage = "bank_id",
932 .help = "Increase the readout protection to Level 1.",
933 },
934 {
935 .name = "unlock",
936 .handler = stm32lx_handle_unlock_command,
937 .mode = COMMAND_EXEC,
938 .usage = "bank_id",
939 .help = "Lower the readout protection from Level 1 to 0.",
940 },
941 COMMAND_REGISTRATION_DONE
942 };
943
944 static const struct command_registration stm32lx_command_handlers[] = {
945 {
946 .name = "stm32lx",
947 .mode = COMMAND_ANY,
948 .help = "stm32lx flash command group",
949 .usage = "",
950 .chain = stm32lx_exec_command_handlers,
951 },
952 COMMAND_REGISTRATION_DONE
953 };
954
955 struct flash_driver stm32lx_flash = {
956 .name = "stm32lx",
957 .commands = stm32lx_command_handlers,
958 .flash_bank_command = stm32lx_flash_bank_command,
959 .erase = stm32lx_erase,
960 .protect = stm32lx_protect,
961 .write = stm32lx_write,
962 .read = default_flash_read,
963 .probe = stm32lx_probe,
964 .auto_probe = stm32lx_auto_probe,
965 .erase_check = default_flash_blank_check,
966 .protect_check = stm32lx_protect_check,
967 .info = stm32lx_get_info,
968 };
969
970 /* Static methods implementation */
971 static int stm32lx_unlock_program_memory(struct flash_bank *bank)
972 {
973 struct target *target = bank->target;
974 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
975 int retval;
976 uint32_t reg32;
977
978 /*
979 * Unlocking the program memory is done by unlocking the PECR,
980 * then by writing the 2 PRGKEY to the PRGKEYR register
981 */
982
983 /* check flash is not already unlocked */
984 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
985 &reg32);
986 if (retval != ERROR_OK)
987 return retval;
988
989 if ((reg32 & FLASH_PECR__PRGLOCK) == 0)
990 return ERROR_OK;
991
992 /* To unlock the PECR write the 2 PEKEY to the PEKEYR register */
993 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR,
994 PEKEY1);
995 if (retval != ERROR_OK)
996 return retval;
997
998 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR,
999 PEKEY2);
1000 if (retval != ERROR_OK)
1001 return retval;
1002
1003 /* Make sure it worked */
1004 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1005 &reg32);
1006 if (retval != ERROR_OK)
1007 return retval;
1008
1009 if (reg32 & FLASH_PECR__PELOCK) {
1010 LOG_ERROR("PELOCK is not cleared :(");
1011 return ERROR_FLASH_OPERATION_FAILED;
1012 }
1013
1014 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR,
1015 PRGKEY1);
1016 if (retval != ERROR_OK)
1017 return retval;
1018 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR,
1019 PRGKEY2);
1020 if (retval != ERROR_OK)
1021 return retval;
1022
1023 /* Make sure it worked */
1024 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1025 &reg32);
1026 if (retval != ERROR_OK)
1027 return retval;
1028
1029 if (reg32 & FLASH_PECR__PRGLOCK) {
1030 LOG_ERROR("PRGLOCK is not cleared :(");
1031 return ERROR_FLASH_OPERATION_FAILED;
1032 }
1033
1034 return ERROR_OK;
1035 }
1036
1037 static int stm32lx_enable_write_half_page(struct flash_bank *bank)
1038 {
1039 struct target *target = bank->target;
1040 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1041 int retval;
1042 uint32_t reg32;
1043
1044 /**
1045 * Unlock the program memory, then set the FPRG bit in the PECR register.
1046 */
1047 retval = stm32lx_unlock_program_memory(bank);
1048 if (retval != ERROR_OK)
1049 return retval;
1050
1051 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1052 &reg32);
1053 if (retval != ERROR_OK)
1054 return retval;
1055
1056 reg32 |= FLASH_PECR__FPRG;
1057 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1058 reg32);
1059 if (retval != ERROR_OK)
1060 return retval;
1061
1062 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1063 &reg32);
1064 if (retval != ERROR_OK)
1065 return retval;
1066
1067 reg32 |= FLASH_PECR__PROG;
1068 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1069 reg32);
1070
1071 return retval;
1072 }
1073
1074 static int stm32lx_lock_program_memory(struct flash_bank *bank)
1075 {
1076 struct target *target = bank->target;
1077 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1078 int retval;
1079 uint32_t reg32;
1080
1081 /* To lock the program memory, simply set the lock bit and lock PECR */
1082
1083 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1084 &reg32);
1085 if (retval != ERROR_OK)
1086 return retval;
1087
1088 reg32 |= FLASH_PECR__PRGLOCK;
1089 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1090 reg32);
1091 if (retval != ERROR_OK)
1092 return retval;
1093
1094 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1095 &reg32);
1096 if (retval != ERROR_OK)
1097 return retval;
1098
1099 reg32 |= FLASH_PECR__PELOCK;
1100 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1101 reg32);
1102 if (retval != ERROR_OK)
1103 return retval;
1104
1105 return ERROR_OK;
1106 }
1107
1108 static int stm32lx_erase_sector(struct flash_bank *bank, int sector)
1109 {
1110 struct target *target = bank->target;
1111 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1112 int retval;
1113 uint32_t reg32;
1114
1115 /*
1116 * To erase a sector (i.e. stm32lx_info->part_info.pages_per_sector pages),
1117 * first unlock the memory, loop over the pages of this sector
1118 * and write 0x0 to its first word.
1119 */
1120
1121 retval = stm32lx_unlock_program_memory(bank);
1122 if (retval != ERROR_OK)
1123 return retval;
1124
1125 for (int page = 0; page < (int)stm32lx_info->part_info.pages_per_sector;
1126 page++) {
1127 reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE;
1128 retval = target_write_u32(target,
1129 stm32lx_info->flash_base + FLASH_PECR, reg32);
1130 if (retval != ERROR_OK)
1131 return retval;
1132
1133 retval = stm32lx_wait_until_bsy_clear(bank);
1134 if (retval != ERROR_OK)
1135 return retval;
1136
1137 uint32_t addr = bank->base + bank->sectors[sector].offset + (page
1138 * stm32lx_info->part_info.page_size);
1139 retval = target_write_u32(target, addr, 0x0);
1140 if (retval != ERROR_OK)
1141 return retval;
1142
1143 retval = stm32lx_wait_until_bsy_clear(bank);
1144 if (retval != ERROR_OK)
1145 return retval;
1146 }
1147
1148 retval = stm32lx_lock_program_memory(bank);
1149 if (retval != ERROR_OK)
1150 return retval;
1151
1152 return ERROR_OK;
1153 }
1154
1155 static inline int stm32lx_get_flash_status(struct flash_bank *bank, uint32_t *status)
1156 {
1157 struct target *target = bank->target;
1158 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1159
1160 return target_read_u32(target, stm32lx_info->flash_base + FLASH_SR, status);
1161 }
1162
1163 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank)
1164 {
1165 return stm32lx_wait_until_bsy_clear_timeout(bank, 100);
1166 }
1167
1168 static int stm32lx_unlock_options_bytes(struct flash_bank *bank)
1169 {
1170 struct target *target = bank->target;
1171 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1172 int retval;
1173 uint32_t reg32;
1174
1175 /*
1176 * Unlocking the options bytes is done by unlocking the PECR,
1177 * then by writing the 2 FLASH_PEKEYR to the FLASH_OPTKEYR register
1178 */
1179
1180 /* check flash is not already unlocked */
1181 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, &reg32);
1182 if (retval != ERROR_OK)
1183 return retval;
1184
1185 if ((reg32 & FLASH_PECR__OPTLOCK) == 0)
1186 return ERROR_OK;
1187
1188 if ((reg32 & FLASH_PECR__PELOCK) != 0) {
1189
1190 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY1);
1191 if (retval != ERROR_OK)
1192 return retval;
1193
1194 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY2);
1195 if (retval != ERROR_OK)
1196 return retval;
1197 }
1198
1199 /* To unlock the PECR write the 2 OPTKEY to the FLASH_OPTKEYR register */
1200 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY1);
1201 if (retval != ERROR_OK)
1202 return retval;
1203
1204 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY2);
1205 if (retval != ERROR_OK)
1206 return retval;
1207
1208 return ERROR_OK;
1209 }
1210
1211 static int stm32lx_wait_until_bsy_clear_timeout(struct flash_bank *bank, int timeout)
1212 {
1213 struct target *target = bank->target;
1214 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1215 uint32_t status;
1216 int retval = ERROR_OK;
1217
1218 /* wait for busy to clear */
1219 for (;;) {
1220 retval = stm32lx_get_flash_status(bank, &status);
1221 if (retval != ERROR_OK)
1222 return retval;
1223
1224 LOG_DEBUG("status: 0x%" PRIx32 "", status);
1225 if ((status & FLASH_SR__BSY) == 0)
1226 break;
1227
1228 if (timeout-- <= 0) {
1229 LOG_ERROR("timed out waiting for flash");
1230 return ERROR_FAIL;
1231 }
1232 alive_sleep(1);
1233 }
1234
1235 if (status & FLASH_SR__WRPERR) {
1236 LOG_ERROR("access denied / write protected");
1237 retval = ERROR_FAIL;
1238 }
1239
1240 if (status & FLASH_SR__PGAERR) {
1241 LOG_ERROR("invalid program address");
1242 retval = ERROR_FAIL;
1243 }
1244
1245 /* Clear but report errors */
1246 if (status & FLASH_SR__OPTVERR) {
1247 /* If this operation fails, we ignore it and report the original retval */
1248 target_write_u32(target, stm32lx_info->flash_base + FLASH_SR, status & FLASH_SR__OPTVERR);
1249 }
1250
1251 return retval;
1252 }
1253
1254 static int stm32lx_obl_launch(struct flash_bank *bank)
1255 {
1256 struct target *target = bank->target;
1257 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1258 int retval;
1259
1260 /* This will fail as the target gets immediately rebooted */
1261 target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1262 FLASH_PECR__OBL_LAUNCH);
1263
1264 size_t tries = 10;
1265 do {
1266 target_halt(target);
1267 retval = target_poll(target);
1268 } while (--tries > 0 &&
1269 (retval != ERROR_OK || target->state != TARGET_HALTED));
1270
1271 return tries ? ERROR_OK : ERROR_FAIL;
1272 }
1273
1274 static int stm32lx_lock(struct flash_bank *bank)
1275 {
1276 int retval;
1277 struct target *target = bank->target;
1278
1279 if (target->state != TARGET_HALTED) {
1280 LOG_ERROR("Target not halted");
1281 return ERROR_TARGET_NOT_HALTED;
1282 }
1283
1284 retval = stm32lx_unlock_options_bytes(bank);
1285 if (retval != ERROR_OK)
1286 return retval;
1287
1288 /* set the RDP protection level to 1 */
1289 retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR1);
1290 if (retval != ERROR_OK)
1291 return retval;
1292
1293 return ERROR_OK;
1294 }
1295
1296 static int stm32lx_unlock(struct flash_bank *bank)
1297 {
1298 int retval;
1299 struct target *target = bank->target;
1300
1301 if (target->state != TARGET_HALTED) {
1302 LOG_ERROR("Target not halted");
1303 return ERROR_TARGET_NOT_HALTED;
1304 }
1305
1306 retval = stm32lx_unlock_options_bytes(bank);
1307 if (retval != ERROR_OK)
1308 return retval;
1309
1310 /* set the RDP protection level to 0 */
1311 retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR0);
1312 if (retval != ERROR_OK)
1313 return retval;
1314
1315 retval = stm32lx_wait_until_bsy_clear_timeout(bank, 30000);
1316 if (retval != ERROR_OK)
1317 return retval;
1318
1319 return ERROR_OK;
1320 }
1321
1322 static int stm32lx_mass_erase(struct flash_bank *bank)
1323 {
1324 int retval;
1325 struct target *target = bank->target;
1326 struct stm32lx_flash_bank *stm32lx_info = NULL;
1327 uint32_t reg32;
1328
1329 if (target->state != TARGET_HALTED) {
1330 LOG_ERROR("Target not halted");
1331 return ERROR_TARGET_NOT_HALTED;
1332 }
1333
1334 stm32lx_info = bank->driver_priv;
1335
1336 retval = stm32lx_lock(bank);
1337 if (retval != ERROR_OK)
1338 return retval;
1339
1340 retval = stm32lx_obl_launch(bank);
1341 if (retval != ERROR_OK)
1342 return retval;
1343
1344 retval = stm32lx_unlock(bank);
1345 if (retval != ERROR_OK)
1346 return retval;
1347
1348 retval = stm32lx_obl_launch(bank);
1349 if (retval != ERROR_OK)
1350 return retval;
1351
1352 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, &reg32);
1353 if (retval != ERROR_OK)
1354 return retval;
1355
1356 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, reg32 | FLASH_PECR__OPTLOCK);
1357 if (retval != ERROR_OK)
1358 return retval;
1359
1360 return ERROR_OK;
1361 }
1362
1363 static int stm32lx_update_part_info(struct flash_bank *bank, uint16_t flash_size_in_kb)
1364 {
1365 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1366
1367 switch (stm32lx_info->part_info.id) {
1368 case 0x447: /* STM32L0xx (Cat.5) devices */
1369 if (flash_size_in_kb == 192 || flash_size_in_kb == 128) {
1370 stm32lx_info->part_info.first_bank_size_kb = flash_size_in_kb / 2;
1371 stm32lx_info->part_info.has_dual_banks = true;
1372 }
1373 break;
1374 case 0x437: /* STM32L1xx (Cat.5/Cat.6) */
1375 stm32lx_info->part_info.first_bank_size_kb = flash_size_in_kb / 2;
1376 break;
1377 }
1378
1379 return ERROR_OK;
1380 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)