ce41f9421ff18670a405c68f6d7dd0c65fab8944
[openocd.git] / src / flash / nor / stm32lx.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 by Clement Burin des Roziers *
9 * clement.burin-des-roziers@hikob.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/armv7m.h>
35
36 /* stm32lx flash register locations */
37
38 #define FLASH_BASE 0x40023C00
39 #define FLASH_ACR 0x40023C00
40 #define FLASH_PECR 0x40023C04
41 #define FLASH_PDKEYR 0x40023C08
42 #define FLASH_PEKEYR 0x40023C0C
43 #define FLASH_PRGKEYR 0x40023C10
44 #define FLASH_OPTKEYR 0x40023C14
45 #define FLASH_SR 0x40023C18
46 #define FLASH_OBR 0x40023C1C
47 #define FLASH_WRPR 0x40023C20
48
49 /* FLASH_ACR bites */
50 #define FLASH_ACR__LATENCY (1<<0)
51 #define FLASH_ACR__PRFTEN (1<<1)
52 #define FLASH_ACR__ACC64 (1<<2)
53 #define FLASH_ACR__SLEEP_PD (1<<3)
54 #define FLASH_ACR__RUN_PD (1<<4)
55
56 /* FLASH_PECR bits */
57 #define FLASH_PECR__PELOCK (1<<0)
58 #define FLASH_PECR__PRGLOCK (1<<1)
59 #define FLASH_PECR__OPTLOCK (1<<2)
60 #define FLASH_PECR__PROG (1<<3)
61 #define FLASH_PECR__DATA (1<<4)
62 #define FLASH_PECR__FTDW (1<<8)
63 #define FLASH_PECR__ERASE (1<<9)
64 #define FLASH_PECR__FPRG (1<<10)
65 #define FLASH_PECR__EOPIE (1<<16)
66 #define FLASH_PECR__ERRIE (1<<17)
67 #define FLASH_PECR__OBL_LAUNCH (1<<18)
68
69 /* FLASH_SR bits */
70 #define FLASH_SR__BSY (1<<0)
71 #define FLASH_SR__EOP (1<<1)
72 #define FLASH_SR__ENDHV (1<<2)
73 #define FLASH_SR__READY (1<<3)
74 #define FLASH_SR__WRPERR (1<<8)
75 #define FLASH_SR__PGAERR (1<<9)
76 #define FLASH_SR__SIZERR (1<<10)
77 #define FLASH_SR__OPTVERR (1<<11)
78
79 /* Unlock keys */
80 #define PEKEY1 0x89ABCDEF
81 #define PEKEY2 0x02030405
82 #define PRGKEY1 0x8C9DAEBF
83 #define PRGKEY2 0x13141516
84 #define OPTKEY1 0xFBEAD9C8
85 #define OPTKEY2 0x24252627
86
87 /* other registers */
88 #define DBGMCU_IDCODE 0xE0042000
89 #define F_SIZE 0x1FF8004C
90
91 /* Constants */
92 #define FLASH_PAGE_SIZE 256
93 #define FLASH_SECTOR_SIZE 4096
94 #define FLASH_PAGES_PER_SECTOR 16
95 #define FLASH_BANK0_ADDRESS 0x08000000
96
97 /* stm32lx option byte register location */
98 #define OB_RDP 0x1FF80000
99 #define OB_USER 0x1FF80004
100 #define OB_WRP0_1 0x1FF80008
101 #define OB_WRP2_3 0x1FF8000C
102
103 /* OB_RDP values */
104 #define OB_RDP__LEVEL0 0xFF5500AA
105 #define OB_RDP__LEVEL1 0xFFFF0000
106
107 /* stm32lx RCC register locations */
108 #define RCC_CR 0x40023800
109 #define RCC_ICSCR 0x40023804
110 #define RCC_CFGR 0x40023808
111
112 /* RCC_ICSCR bits */
113 #define RCC_ICSCR__MSIRANGE_MASK (7<<13)
114
115 static int stm32lx_unlock_program_memory(struct flash_bank *bank);
116 static int stm32lx_lock_program_memory(struct flash_bank *bank);
117 static int stm32lx_enable_write_half_page(struct flash_bank *bank);
118 static int stm32lx_erase_sector(struct flash_bank *bank, int sector);
119 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank);
120
121 struct stm32lx_flash_bank {
122 int probed;
123 };
124
125 /* flash bank stm32lx <base> <size> 0 0 <target#>
126 */
127 FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command)
128 {
129 struct stm32lx_flash_bank *stm32lx_info;
130 if (CMD_ARGC < 6)
131 return ERROR_COMMAND_SYNTAX_ERROR;
132
133 /* Create the bank structure */
134 stm32lx_info = malloc(sizeof(struct stm32lx_flash_bank));
135
136 /* Check allocation */
137 if (stm32lx_info == NULL) {
138 LOG_ERROR("failed to allocate bank structure");
139 return ERROR_FAIL;
140 }
141
142 bank->driver_priv = stm32lx_info;
143
144 stm32lx_info->probed = 0;
145
146 return ERROR_OK;
147 }
148
149 static int stm32lx_protect_check(struct flash_bank *bank)
150 {
151 int retval;
152 struct target *target = bank->target;
153
154 uint32_t wrpr;
155
156 if (target->state != TARGET_HALTED) {
157 LOG_ERROR("Target not halted");
158 return ERROR_TARGET_NOT_HALTED;
159 }
160
161 /*
162 * Read the WRPR word, and check each bit (corresponding to each
163 * flash sector
164 */
165 retval = target_read_u32(target, FLASH_WRPR, &wrpr);
166 if (retval != ERROR_OK)
167 return retval;
168
169 for (int i = 0; i < 32; i++) {
170 if (wrpr & (1 << i))
171 bank->sectors[i].is_protected = 1;
172 else
173 bank->sectors[i].is_protected = 0;
174 }
175 return ERROR_OK;
176 }
177
178 static int stm32lx_erase(struct flash_bank *bank, int first, int last)
179 {
180 int retval;
181
182 /*
183 * It could be possible to do a mass erase if all sectors must be
184 * erased, but it is not implemented yet.
185 */
186
187 if (bank->target->state != TARGET_HALTED) {
188 LOG_ERROR("Target not halted");
189 return ERROR_TARGET_NOT_HALTED;
190 }
191
192 /*
193 * Loop over the selected sectors and erase them
194 */
195 for (int i = first; i <= last; i++) {
196 retval = stm32lx_erase_sector(bank, i);
197 if (retval != ERROR_OK)
198 return retval;
199 bank->sectors[i].is_erased = 1;
200 }
201 return ERROR_OK;
202 }
203
204 static int stm32lx_protect(struct flash_bank *bank, int set, int first,
205 int last)
206 {
207 LOG_WARNING("protection of the STM32L flash is not implemented");
208 return ERROR_OK;
209 }
210
211 static int stm32lx_write_half_pages(struct flash_bank *bank, uint8_t *buffer,
212 uint32_t offset, uint32_t count)
213 {
214 struct target *target = bank->target;
215 uint32_t buffer_size = 4096 * 4;
216 struct working_area *write_algorithm;
217 struct working_area *source;
218 uint32_t address = bank->base + offset;
219
220 struct reg_param reg_params[5];
221 struct armv7m_algorithm armv7m_info;
222
223 int retval = ERROR_OK;
224 uint32_t reg32;
225
226 /* see contib/loaders/flash/stm32lx.s for src */
227
228 static const uint16_t stm32lx_flash_write_code_16[] = {
229 /* 00000000 <write_word-0x4>: */
230 0x2300, /* 0: 2300 movs r3, #0 */
231 0xe004, /* 2: e004 b.n e <test_done> */
232
233 /* 00000004 <write_word>: */
234 0xf851, 0xcb04, /* 4: f851 cb04 ldr.w ip, [r1], #4 */
235 0xf840, 0xcb04, /* 8: f840 cb04 str.w ip, [r0], #4 */
236 0x3301, /* c: 3301 adds r3, #1 */
237
238 /* 0000000e <test_done>: */
239 0x4293, /* e: 4293 cmp r3, r2 */
240 0xd3f8, /* 10: d3f8 bcc.n 4 <write_word> */
241 0xbe00, /* 12: be00 bkpt 0x0000 */
242
243 };
244
245 /* Flip endian */
246 uint8_t stm32lx_flash_write_code[sizeof(stm32lx_flash_write_code_16)];
247 for (unsigned int i = 0; i < sizeof(stm32lx_flash_write_code_16) / 2; i++) {
248 stm32lx_flash_write_code[i * 2 + 0] = stm32lx_flash_write_code_16[i]
249 & 0xff;
250 stm32lx_flash_write_code[i * 2 + 1] = (stm32lx_flash_write_code_16[i]
251 >> 8) & 0xff;
252 }
253 /* Check if there is an even number of half pages (128bytes) */
254 if (count % 128) {
255 LOG_ERROR("there should be an even number "
256 "of half pages = 128 bytes (count = %" PRIi32 " bytes)", count);
257 return ERROR_FAIL;
258 }
259
260 /* Allocate working area */
261 reg32 = sizeof(stm32lx_flash_write_code);
262 /* Add bytes to make 4byte aligned */
263 reg32 += (4 - (reg32 % 4)) % 4;
264 retval = target_alloc_working_area(target, reg32,
265 &write_algorithm);
266 if (retval != ERROR_OK)
267 return retval;
268
269 /* Write the flashing code */
270 retval = target_write_buffer(target,
271 write_algorithm->address,
272 sizeof(stm32lx_flash_write_code),
273 (uint8_t *)stm32lx_flash_write_code);
274 if (retval != ERROR_OK) {
275 target_free_working_area(target, write_algorithm);
276 return retval;
277 }
278
279 /* Allocate half pages memory */
280 while (target_alloc_working_area_try(target, buffer_size, &source)
281 != ERROR_OK) {
282 if (buffer_size > 1024)
283 buffer_size -= 1024;
284 else
285 buffer_size /= 2;
286
287 if (buffer_size <= 256) {
288 /* we already allocated the writing code, but failed to get a
289 * buffer, free the algorithm */
290 target_free_working_area(target, write_algorithm);
291
292 LOG_WARNING("no large enough working area available, can't do block memory writes");
293 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
294 }
295 }
296 LOG_DEBUG("allocated working area for data (%" PRIx32 " bytes)", buffer_size);
297
298 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
299 armv7m_info.core_mode = ARMV7M_MODE_ANY;
300 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
301 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
302 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
303 init_reg_param(&reg_params[3], "r3", 32, PARAM_IN_OUT);
304 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
305
306 /* Enable half-page write */
307 retval = stm32lx_enable_write_half_page(bank);
308 if (retval != ERROR_OK) {
309 target_free_working_area(target, source);
310 target_free_working_area(target, write_algorithm);
311
312 destroy_reg_param(&reg_params[0]);
313 destroy_reg_param(&reg_params[1]);
314 destroy_reg_param(&reg_params[2]);
315 destroy_reg_param(&reg_params[3]);
316 return retval;
317 }
318
319 /* Loop while there are bytes to write */
320 while (count > 0) {
321 uint32_t this_count;
322 this_count = (count > buffer_size) ? buffer_size : count;
323
324 /* Write the next half pages */
325 retval = target_write_buffer(target, source->address, this_count,
326 buffer);
327 if (retval != ERROR_OK)
328 break;
329
330 /* 4: Store useful information in the registers */
331 /* the destination address of the copy (R0) */
332 buf_set_u32(reg_params[0].value, 0, 32, address);
333 /* The source address of the copy (R1) */
334 buf_set_u32(reg_params[1].value, 0, 32, source->address);
335 /* The length of the copy (R2) */
336 buf_set_u32(reg_params[2].value, 0, 32, this_count / 4);
337
338 /* 5: Execute the bunch of code */
339 retval = target_run_algorithm(target, 0, NULL, sizeof(reg_params)
340 / sizeof(*reg_params), reg_params,
341 write_algorithm->address, 0, 20000, &armv7m_info);
342 if (retval != ERROR_OK)
343 break;
344
345 /* 6: Wait while busy */
346 retval = stm32lx_wait_until_bsy_clear(bank);
347 if (retval != ERROR_OK)
348 break;
349
350 buffer += this_count;
351 address += this_count;
352 count -= this_count;
353 }
354
355 if (retval == ERROR_OK)
356 retval = stm32lx_lock_program_memory(bank);
357
358 target_free_working_area(target, source);
359 target_free_working_area(target, write_algorithm);
360
361 destroy_reg_param(&reg_params[0]);
362 destroy_reg_param(&reg_params[1]);
363 destroy_reg_param(&reg_params[2]);
364 destroy_reg_param(&reg_params[3]);
365
366 return retval;
367 }
368 static int stm32lx_write(struct flash_bank *bank, uint8_t *buffer,
369 uint32_t offset, uint32_t count)
370 {
371 struct target *target = bank->target;
372
373 uint32_t halfpages_number;
374 uint32_t words_remaining;
375 uint32_t bytes_remaining;
376 uint32_t address = bank->base + offset;
377 uint32_t bytes_written = 0;
378 int retval;
379
380 if (bank->target->state != TARGET_HALTED) {
381 LOG_ERROR("Target not halted");
382 return ERROR_TARGET_NOT_HALTED;
383 }
384
385 if (offset & 0x1) {
386 LOG_ERROR("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
387 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
388 }
389
390 /* Check if there are some full half pages */
391 if (((offset % 128) == 0) && (count >= 128)) {
392 halfpages_number = count / 128;
393 words_remaining = (count - 128 * halfpages_number) / 4;
394 bytes_remaining = (count & 0x3);
395 } else {
396 halfpages_number = 0;
397 words_remaining = (count / 4);
398 bytes_remaining = (count & 0x3);
399 }
400
401 if (halfpages_number) {
402 retval = stm32lx_write_half_pages(bank, buffer, offset, 128 * halfpages_number);
403 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
404 /* attempt slow memory writes */
405 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
406 halfpages_number = 0;
407 words_remaining = (count / 4);
408 } else {
409 if (retval != ERROR_OK)
410 return ERROR_FAIL;
411 }
412 }
413
414 bytes_written = 128 * halfpages_number;
415 address += bytes_written;
416
417 retval = stm32lx_unlock_program_memory(bank);
418 if (retval != ERROR_OK)
419 return retval;
420
421 while (words_remaining > 0) {
422 uint32_t value;
423 uint8_t *p = buffer + bytes_written;
424
425 /* Prepare the word, Little endian conversion */
426 value = p[0] + (p[1] << 8) + (p[2] << 16) + (p[3] << 24);
427
428 retval = target_write_u32(target, address, value);
429 if (retval != ERROR_OK)
430 return retval;
431
432 bytes_written += 4;
433 words_remaining--;
434 address += 4;
435
436 retval = stm32lx_wait_until_bsy_clear(bank);
437 if (retval != ERROR_OK)
438 return retval;
439 }
440
441 if (bytes_remaining) {
442 uint8_t last_word[4] = {0xff, 0xff, 0xff, 0xff};
443
444 /* copy the last remaining bytes into the write buffer */
445 memcpy(last_word, buffer+bytes_written, bytes_remaining);
446
447 retval = target_write_buffer(target, address, 4, last_word);
448 if (retval != ERROR_OK)
449 return retval;
450
451 retval = stm32lx_wait_until_bsy_clear(bank);
452 if (retval != ERROR_OK)
453 return retval;
454 }
455
456 retval = stm32lx_lock_program_memory(bank);
457 if (retval != ERROR_OK)
458 return retval;
459
460 return ERROR_OK;
461 }
462
463 static int stm32lx_probe(struct flash_bank *bank)
464 {
465 struct target *target = bank->target;
466 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
467 int i;
468 uint16_t flash_size_in_kb;
469 uint16_t max_flash_size_in_kb;
470 uint32_t device_id;
471
472 stm32lx_info->probed = 0;
473
474 /* read stm32 device id register */
475 int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
476 if (retval != ERROR_OK)
477 return retval;
478
479 LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id);
480
481 /* set max flash size depending on family */
482 switch (device_id & 0xfff) {
483 case 0x416:
484 max_flash_size_in_kb = 128;
485 break;
486 case 0x436:
487 max_flash_size_in_kb = 384;
488 break;
489 default:
490 LOG_WARNING("Cannot identify target as a STM32L family.");
491 return ERROR_FAIL;
492 }
493
494 /* get flash size from target. */
495 retval = target_read_u16(target, F_SIZE, &flash_size_in_kb);
496
497 /* failed reading flash size or flash size invalid (early silicon),
498 * default to max target family */
499 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
500 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
501 max_flash_size_in_kb);
502 flash_size_in_kb = max_flash_size_in_kb;
503 }
504
505 /* STM32L - we have 32 sectors, 16 pages per sector -> 512 pages
506 * 16 pages for a protection area */
507
508 /* calculate numbers of sectors (4kB per sector) */
509 int num_sectors = (flash_size_in_kb * 1024) / FLASH_SECTOR_SIZE;
510 LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
511
512 if (bank->sectors) {
513 free(bank->sectors);
514 bank->sectors = NULL;
515 }
516
517 bank->base = FLASH_BANK0_ADDRESS;
518 bank->size = flash_size_in_kb * 1024;
519 bank->num_sectors = num_sectors;
520 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
521 if (bank->sectors == NULL) {
522 LOG_ERROR("failed to allocate bank sectors");
523 return ERROR_FAIL;
524 }
525
526 for (i = 0; i < num_sectors; i++) {
527 bank->sectors[i].offset = i * FLASH_SECTOR_SIZE;
528 bank->sectors[i].size = FLASH_SECTOR_SIZE;
529 bank->sectors[i].is_erased = -1;
530 bank->sectors[i].is_protected = 1;
531 }
532
533 stm32lx_info->probed = 1;
534
535 return ERROR_OK;
536 }
537
538 static int stm32lx_auto_probe(struct flash_bank *bank)
539 {
540 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
541
542 if (stm32lx_info->probed)
543 return ERROR_OK;
544
545 return stm32lx_probe(bank);
546 }
547
548 static int stm32lx_erase_check(struct flash_bank *bank)
549 {
550 struct target *target = bank->target;
551 const int buffer_size = 4096;
552 int i;
553 uint32_t nBytes;
554 int retval = ERROR_OK;
555
556 if (bank->target->state != TARGET_HALTED) {
557 LOG_ERROR("Target not halted");
558 return ERROR_TARGET_NOT_HALTED;
559 }
560
561 uint8_t *buffer = malloc(buffer_size);
562 if (buffer == NULL) {
563 LOG_ERROR("failed to allocate read buffer");
564 return ERROR_FAIL;
565 }
566
567 for (i = 0; i < bank->num_sectors; i++) {
568 uint32_t j;
569 bank->sectors[i].is_erased = 1;
570
571 /* Loop chunk by chunk over the sector */
572 for (j = 0; j < bank->sectors[i].size; j += buffer_size) {
573 uint32_t chunk;
574 chunk = buffer_size;
575 if (chunk > (j - bank->sectors[i].size))
576 chunk = (j - bank->sectors[i].size);
577
578 retval = target_read_memory(target, bank->base
579 + bank->sectors[i].offset + j, 4, chunk / 4, buffer);
580 if (retval != ERROR_OK)
581 break;
582
583 for (nBytes = 0; nBytes < chunk; nBytes++) {
584 if (buffer[nBytes] != 0x00) {
585 bank->sectors[i].is_erased = 0;
586 break;
587 }
588 }
589 }
590 if (retval != ERROR_OK)
591 break;
592 }
593 free(buffer);
594
595 return retval;
596 }
597
598 static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size)
599 {
600 /* This method must return a string displaying information about the bank */
601
602 struct target *target = bank->target;
603 uint32_t device_id;
604 int printed;
605
606 /* read stm32 device id register */
607 int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
608 if (retval != ERROR_OK)
609 return retval;
610
611 if ((device_id & 0xfff) == 0x416) {
612 printed = snprintf(buf, buf_size, "stm32lx - Rev: ");
613 buf += printed;
614 buf_size -= printed;
615
616 switch (device_id >> 16) {
617 case 0x1000:
618 snprintf(buf, buf_size, "A");
619 break;
620
621 case 0x1008:
622 snprintf(buf, buf_size, "Y");
623 break;
624
625 case 0x1018:
626 snprintf(buf, buf_size, "X");
627 break;
628
629 case 0x1038:
630 snprintf(buf, buf_size, "W");
631 break;
632
633 case 0x1078:
634 snprintf(buf, buf_size, "V");
635 break;
636
637 default:
638 snprintf(buf, buf_size, "unknown");
639 break;
640 }
641 } else if ((device_id & 0xfff) == 0x436) {
642 printed = snprintf(buf, buf_size, "stm32lx (HD) - Rev: ");
643 buf += printed;
644 buf_size -= printed;
645
646 switch (device_id >> 16) {
647 case 0x1000:
648 snprintf(buf, buf_size, "A");
649 break;
650
651 case 0x1008:
652 snprintf(buf, buf_size, "Z");
653 break;
654
655 case 0x1018:
656 snprintf(buf, buf_size, "Y");
657 break;
658
659 default:
660 snprintf(buf, buf_size, "unknown");
661 break;
662 }
663 } else {
664 snprintf(buf, buf_size, "Cannot identify target as a stm32lx");
665 return ERROR_FAIL;
666 }
667
668 return ERROR_OK;
669 }
670
671 static const struct command_registration stm32lx_exec_command_handlers[] = {
672 COMMAND_REGISTRATION_DONE
673 };
674
675 static const struct command_registration stm32lx_command_handlers[] = {
676 {
677 .name = "stm32lx",
678 .mode = COMMAND_ANY,
679 .help = "stm32lx flash command group",
680 .usage = "",
681 .chain = stm32lx_exec_command_handlers,
682 },
683 COMMAND_REGISTRATION_DONE
684 };
685
686 struct flash_driver stm32lx_flash = {
687 .name = "stm32lx",
688 .commands = stm32lx_command_handlers,
689 .flash_bank_command = stm32lx_flash_bank_command,
690 .erase = stm32lx_erase,
691 .protect = stm32lx_protect,
692 .write = stm32lx_write,
693 .read = default_flash_read,
694 .probe = stm32lx_probe,
695 .auto_probe = stm32lx_auto_probe,
696 .erase_check = stm32lx_erase_check,
697 .protect_check = stm32lx_protect_check,
698 .info = stm32lx_get_info,
699 };
700
701 /* Static methods implementation */
702 static int stm32lx_unlock_program_memory(struct flash_bank *bank)
703 {
704 struct target *target = bank->target;
705 int retval;
706 uint32_t reg32;
707
708 /*
709 * Unlocking the program memory is done by unlocking the PECR,
710 * then by writing the 2 PRGKEY to the PRGKEYR register
711 */
712
713 /* To unlock the PECR write the 2 PEKEY to the PEKEYR register */
714 retval = target_write_u32(target, FLASH_PEKEYR, PEKEY1);
715 if (retval != ERROR_OK)
716 return retval;
717
718 retval = target_write_u32(target, FLASH_PEKEYR, PEKEY2);
719 if (retval != ERROR_OK)
720 return retval;
721
722 /* Make sure it worked */
723 retval = target_read_u32(target, FLASH_PECR, &reg32);
724 if (retval != ERROR_OK)
725 return retval;
726
727 if (reg32 & FLASH_PECR__PELOCK) {
728 LOG_ERROR("PELOCK is not cleared :(");
729 return ERROR_FLASH_OPERATION_FAILED;
730 }
731
732 retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY1);
733 if (retval != ERROR_OK)
734 return retval;
735 retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY2);
736 if (retval != ERROR_OK)
737 return retval;
738
739 /* Make sure it worked */
740 retval = target_read_u32(target, FLASH_PECR, &reg32);
741 if (retval != ERROR_OK)
742 return retval;
743
744 if (reg32 & FLASH_PECR__PRGLOCK) {
745 LOG_ERROR("PRGLOCK is not cleared :(");
746 return ERROR_FLASH_OPERATION_FAILED;
747 }
748 return ERROR_OK;
749 }
750
751 static int stm32lx_enable_write_half_page(struct flash_bank *bank)
752 {
753 struct target *target = bank->target;
754 int retval;
755 uint32_t reg32;
756
757 /**
758 * Unlock the program memory, then set the FPRG bit in the PECR register.
759 */
760 retval = stm32lx_unlock_program_memory(bank);
761 if (retval != ERROR_OK)
762 return retval;
763
764 retval = target_read_u32(target, FLASH_PECR, &reg32);
765 if (retval != ERROR_OK)
766 return retval;
767
768 reg32 |= FLASH_PECR__FPRG;
769 retval = target_write_u32(target, FLASH_PECR, reg32);
770 if (retval != ERROR_OK)
771 return retval;
772
773 retval = target_read_u32(target, FLASH_PECR, &reg32);
774 if (retval != ERROR_OK)
775 return retval;
776
777 reg32 |= FLASH_PECR__PROG;
778 retval = target_write_u32(target, FLASH_PECR, reg32);
779
780 return retval;
781 }
782
783 static int stm32lx_lock_program_memory(struct flash_bank *bank)
784 {
785 struct target *target = bank->target;
786 int retval;
787 uint32_t reg32;
788
789 /* To lock the program memory, simply set the lock bit and lock PECR */
790
791 retval = target_read_u32(target, FLASH_PECR, &reg32);
792 if (retval != ERROR_OK)
793 return retval;
794
795 reg32 |= FLASH_PECR__PRGLOCK;
796 retval = target_write_u32(target, FLASH_PECR, reg32);
797 if (retval != ERROR_OK)
798 return retval;
799
800 retval = target_read_u32(target, FLASH_PECR, &reg32);
801 if (retval != ERROR_OK)
802 return retval;
803
804 reg32 |= FLASH_PECR__PELOCK;
805 retval = target_write_u32(target, FLASH_PECR, reg32);
806 if (retval != ERROR_OK)
807 return retval;
808
809 return ERROR_OK;
810 }
811
812 static int stm32lx_erase_sector(struct flash_bank *bank, int sector)
813 {
814 struct target *target = bank->target;
815 int retval;
816 uint32_t reg32;
817
818 /*
819 * To erase a sector (i.e. FLASH_PAGES_PER_SECTOR pages),
820 * first unlock the memory, loop over the pages of this sector
821 * and write 0x0 to its first word.
822 */
823
824 retval = stm32lx_unlock_program_memory(bank);
825 if (retval != ERROR_OK)
826 return retval;
827
828 for (int page = 0; page < FLASH_PAGES_PER_SECTOR; page++) {
829 reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE;
830 retval = target_write_u32(target, FLASH_PECR, reg32);
831 if (retval != ERROR_OK)
832 return retval;
833
834 retval = stm32lx_wait_until_bsy_clear(bank);
835 if (retval != ERROR_OK)
836 return retval;
837
838 uint32_t addr = bank->base + bank->sectors[sector].offset + (page
839 * FLASH_PAGE_SIZE);
840 retval = target_write_u32(target, addr, 0x0);
841 if (retval != ERROR_OK)
842 return retval;
843
844 retval = stm32lx_wait_until_bsy_clear(bank);
845 if (retval != ERROR_OK)
846 return retval;
847 }
848
849 retval = stm32lx_lock_program_memory(bank);
850 if (retval != ERROR_OK)
851 return retval;
852
853 return ERROR_OK;
854 }
855
856 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank)
857 {
858 struct target *target = bank->target;
859 uint32_t status;
860 int retval = ERROR_OK;
861 int timeout = 100;
862
863 /* wait for busy to clear */
864 for (;;) {
865 retval = target_read_u32(target, FLASH_SR, &status);
866 if (retval != ERROR_OK)
867 return retval;
868
869 if ((status & FLASH_SR__BSY) == 0)
870 break;
871 if (timeout-- <= 0) {
872 LOG_ERROR("timed out waiting for flash");
873 return ERROR_FAIL;
874 }
875 alive_sleep(1);
876 }
877
878 if (status & FLASH_SR__WRPERR) {
879 LOG_ERROR("access denied / write protected");
880 retval = ERROR_FAIL;
881 }
882
883 if (status & FLASH_SR__PGAERR) {
884 LOG_ERROR("invalid program address");
885 retval = ERROR_FAIL;
886 }
887
888 return retval;
889 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)