ab61538ffe2267321a4385f1469720b2d4ecf0b0
[openocd.git] / src / flash / nor / stm32lx.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 by Clement Burin des Roziers *
9 * clement.burin-des-roziers@hikob.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/armv7m.h>
35
36 /* stm32lx flash register locations */
37
38 #define FLASH_BASE 0x40023C00
39 #define FLASH_ACR 0x40023C00
40 #define FLASH_PECR 0x40023C04
41 #define FLASH_PDKEYR 0x40023C08
42 #define FLASH_PEKEYR 0x40023C0C
43 #define FLASH_PRGKEYR 0x40023C10
44 #define FLASH_OPTKEYR 0x40023C14
45 #define FLASH_SR 0x40023C18
46 #define FLASH_OBR 0x40023C1C
47 #define FLASH_WRPR 0x40023C20
48
49 /* FLASH_ACR bites */
50 #define FLASH_ACR__LATENCY (1<<0)
51 #define FLASH_ACR__PRFTEN (1<<1)
52 #define FLASH_ACR__ACC64 (1<<2)
53 #define FLASH_ACR__SLEEP_PD (1<<3)
54 #define FLASH_ACR__RUN_PD (1<<4)
55
56 /* FLASH_PECR bits */
57 #define FLASH_PECR__PELOCK (1<<0)
58 #define FLASH_PECR__PRGLOCK (1<<1)
59 #define FLASH_PECR__OPTLOCK (1<<2)
60 #define FLASH_PECR__PROG (1<<3)
61 #define FLASH_PECR__DATA (1<<4)
62 #define FLASH_PECR__FTDW (1<<8)
63 #define FLASH_PECR__ERASE (1<<9)
64 #define FLASH_PECR__FPRG (1<<10)
65 #define FLASH_PECR__EOPIE (1<<16)
66 #define FLASH_PECR__ERRIE (1<<17)
67 #define FLASH_PECR__OBL_LAUNCH (1<<18)
68
69 /* FLASH_SR bits */
70 #define FLASH_SR__BSY (1<<0)
71 #define FLASH_SR__EOP (1<<1)
72 #define FLASH_SR__ENDHV (1<<2)
73 #define FLASH_SR__READY (1<<3)
74 #define FLASH_SR__WRPERR (1<<8)
75 #define FLASH_SR__PGAERR (1<<9)
76 #define FLASH_SR__SIZERR (1<<10)
77 #define FLASH_SR__OPTVERR (1<<11)
78
79 /* Unlock keys */
80 #define PEKEY1 0x89ABCDEF
81 #define PEKEY2 0x02030405
82 #define PRGKEY1 0x8C9DAEBF
83 #define PRGKEY2 0x13141516
84 #define OPTKEY1 0xFBEAD9C8
85 #define OPTKEY2 0x24252627
86
87 /* other registers */
88 #define DBGMCU_IDCODE 0xE0042000
89 #define F_SIZE 0x1FF8004C
90
91 /* Constants */
92 #define FLASH_PAGE_SIZE 256
93 #define FLASH_SECTOR_SIZE 4096
94 #define FLASH_PAGES_PER_SECTOR 16
95 #define FLASH_BANK0_ADDRESS 0x08000000
96
97 /* stm32lx option byte register location */
98 #define OB_RDP 0x1FF80000
99 #define OB_USER 0x1FF80004
100 #define OB_WRP0_1 0x1FF80008
101 #define OB_WRP2_3 0x1FF8000C
102
103 /* OB_RDP values */
104 #define OB_RDP__LEVEL0 0xFF5500AA
105 #define OB_RDP__LEVEL1 0xFFFF0000
106
107 /* stm32lx RCC register locations */
108 #define RCC_CR 0x40023800
109 #define RCC_ICSCR 0x40023804
110 #define RCC_CFGR 0x40023808
111
112 /* RCC_ICSCR bits */
113 #define RCC_ICSCR__MSIRANGE_MASK (7<<13)
114
115 static int stm32lx_unlock_program_memory(struct flash_bank *bank);
116 static int stm32lx_lock_program_memory(struct flash_bank *bank);
117 static int stm32lx_enable_write_half_page(struct flash_bank *bank);
118 static int stm32lx_erase_sector(struct flash_bank *bank, int sector);
119 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank);
120
121 struct stm32lx_flash_bank {
122 struct working_area *write_algorithm;
123 int probed;
124 };
125
126 /* flash bank stm32lx <base> <size> 0 0 <target#>
127 */
128 FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command)
129 {
130 struct stm32lx_flash_bank *stm32lx_info;
131 if (CMD_ARGC < 6)
132 return ERROR_COMMAND_SYNTAX_ERROR;
133
134 /* Create the bank structure */
135 stm32lx_info = malloc(sizeof(struct stm32lx_flash_bank));
136
137 /* Check allocation */
138 if (stm32lx_info == NULL) {
139 LOG_ERROR("failed to allocate bank structure");
140 return ERROR_FAIL;
141 }
142
143 bank->driver_priv = stm32lx_info;
144
145 stm32lx_info->write_algorithm = NULL;
146 stm32lx_info->probed = 0;
147
148 return ERROR_OK;
149 }
150
151 static int stm32lx_protect_check(struct flash_bank *bank)
152 {
153 int retval;
154 struct target *target = bank->target;
155
156 uint32_t wrpr;
157
158 if (target->state != TARGET_HALTED) {
159 LOG_ERROR("Target not halted");
160 return ERROR_TARGET_NOT_HALTED;
161 }
162
163 /*
164 * Read the WRPR word, and check each bit (corresponding to each
165 * flash sector
166 */
167 retval = target_read_u32(target, FLASH_WRPR, &wrpr);
168 if (retval != ERROR_OK)
169 return retval;
170
171 for (int i = 0; i < 32; i++) {
172 if (wrpr & (1 << i))
173 bank->sectors[i].is_protected = 1;
174 else
175 bank->sectors[i].is_protected = 0;
176 }
177 return ERROR_OK;
178 }
179
180 static int stm32lx_erase(struct flash_bank *bank, int first, int last)
181 {
182 int retval;
183
184 /*
185 * It could be possible to do a mass erase if all sectors must be
186 * erased, but it is not implemented yet.
187 */
188
189 if (bank->target->state != TARGET_HALTED) {
190 LOG_ERROR("Target not halted");
191 return ERROR_TARGET_NOT_HALTED;
192 }
193
194 /*
195 * Loop over the selected sectors and erase them
196 */
197 for (int i = first; i <= last; i++) {
198 retval = stm32lx_erase_sector(bank, i);
199 if (retval != ERROR_OK)
200 return retval;
201 bank->sectors[i].is_erased = 1;
202 }
203 return ERROR_OK;
204 }
205
206 static int stm32lx_protect(struct flash_bank *bank, int set, int first,
207 int last)
208 {
209 LOG_WARNING("protection of the STM32L flash is not implemented");
210 return ERROR_OK;
211 }
212
213 static int stm32lx_write_half_pages(struct flash_bank *bank, uint8_t *buffer,
214 uint32_t offset, uint32_t count)
215 {
216 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
217 struct target *target = bank->target;
218 uint32_t buffer_size = 4096 * 4;
219 struct working_area *source;
220 uint32_t address = bank->base + offset;
221
222 struct reg_param reg_params[5];
223 struct armv7m_algorithm armv7m_info;
224
225 int retval = ERROR_OK;
226 uint32_t reg32;
227
228 /* see contib/loaders/flash/stm32lx.s for src */
229
230 static const uint16_t stm32lx_flash_write_code_16[] = {
231 /* 00000000 <write_word-0x4>: */
232 0x2300, /* 0: 2300 movs r3, #0 */
233 0xe004, /* 2: e004 b.n e <test_done> */
234
235 /* 00000004 <write_word>: */
236 0xf851, 0xcb04, /* 4: f851 cb04 ldr.w ip, [r1], #4 */
237 0xf840, 0xcb04, /* 8: f840 cb04 str.w ip, [r0], #4 */
238 0x3301, /* c: 3301 adds r3, #1 */
239
240 /* 0000000e <test_done>: */
241 0x4293, /* e: 4293 cmp r3, r2 */
242 0xd3f8, /* 10: d3f8 bcc.n 4 <write_word> */
243 0xbe00, /* 12: be00 bkpt 0x0000 */
244
245 };
246
247 /* Flip endian */
248 uint8_t stm32lx_flash_write_code[sizeof(stm32lx_flash_write_code_16)];
249 for (unsigned int i = 0; i < sizeof(stm32lx_flash_write_code_16) / 2; i++) {
250 stm32lx_flash_write_code[i * 2 + 0] = stm32lx_flash_write_code_16[i]
251 & 0xff;
252 stm32lx_flash_write_code[i * 2 + 1] = (stm32lx_flash_write_code_16[i]
253 >> 8) & 0xff;
254 }
255 /* Check if there is an even number of half pages (128bytes) */
256 if (count % 128) {
257 LOG_ERROR("there should be an even number "
258 "of half pages = 128 bytes (count = %" PRIi32 " bytes)", count);
259 return ERROR_FAIL;
260 }
261
262 /* Allocate working area */
263 reg32 = sizeof(stm32lx_flash_write_code);
264 /* Add bytes to make 4byte aligned */
265 reg32 += (4 - (reg32 % 4)) % 4;
266 retval = target_alloc_working_area(target, reg32,
267 &stm32lx_info->write_algorithm);
268 if (retval != ERROR_OK)
269 return retval;
270
271 /* Write the flashing code */
272 retval = target_write_buffer(target,
273 stm32lx_info->write_algorithm->address,
274 sizeof(stm32lx_flash_write_code),
275 (uint8_t *)stm32lx_flash_write_code);
276 if (retval != ERROR_OK) {
277 target_free_working_area(target, stm32lx_info->write_algorithm);
278 return retval;
279 }
280
281 /* Allocate half pages memory */
282 while (target_alloc_working_area_try(target, buffer_size, &source)
283 != ERROR_OK) {
284 if (buffer_size > 1024)
285 buffer_size -= 1024;
286 else
287 buffer_size /= 2;
288
289 if (buffer_size <= 256) {
290 /* if we already allocated the writing code, but failed to get a
291 * buffer, free the algorithm */
292 if (stm32lx_info->write_algorithm)
293 target_free_working_area(target, stm32lx_info->write_algorithm);
294
295 LOG_WARNING("no large enough working area available, can't do block memory writes");
296 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
297 }
298 }
299 LOG_DEBUG("allocated working area for data (%" PRIx32 " bytes)", buffer_size);
300
301 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
302 armv7m_info.core_mode = ARMV7M_MODE_ANY;
303 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
304 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
305 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
306 init_reg_param(&reg_params[3], "r3", 32, PARAM_IN_OUT);
307 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
308
309 /* Enable half-page write */
310 retval = stm32lx_enable_write_half_page(bank);
311 if (retval != ERROR_OK) {
312 target_free_working_area(target, source);
313 target_free_working_area(target, stm32lx_info->write_algorithm);
314
315 destroy_reg_param(&reg_params[0]);
316 destroy_reg_param(&reg_params[1]);
317 destroy_reg_param(&reg_params[2]);
318 destroy_reg_param(&reg_params[3]);
319 return retval;
320 }
321
322 /* Loop while there are bytes to write */
323 while (count > 0) {
324 uint32_t this_count;
325 this_count = (count > buffer_size) ? buffer_size : count;
326
327 /* Write the next half pages */
328 retval = target_write_buffer(target, source->address, this_count,
329 buffer);
330 if (retval != ERROR_OK)
331 break;
332
333 /* 4: Store useful information in the registers */
334 /* the destination address of the copy (R0) */
335 buf_set_u32(reg_params[0].value, 0, 32, address);
336 /* The source address of the copy (R1) */
337 buf_set_u32(reg_params[1].value, 0, 32, source->address);
338 /* The length of the copy (R2) */
339 buf_set_u32(reg_params[2].value, 0, 32, this_count / 4);
340
341 /* 5: Execute the bunch of code */
342 retval = target_run_algorithm(target, 0, NULL, sizeof(reg_params)
343 / sizeof(*reg_params), reg_params,
344 stm32lx_info->write_algorithm->address, 0, 20000, &armv7m_info);
345 if (retval != ERROR_OK)
346 break;
347
348 /* 6: Wait while busy */
349 retval = stm32lx_wait_until_bsy_clear(bank);
350 if (retval != ERROR_OK)
351 break;
352
353 buffer += this_count;
354 address += this_count;
355 count -= this_count;
356 }
357
358 if (retval == ERROR_OK)
359 retval = stm32lx_lock_program_memory(bank);
360
361 target_free_working_area(target, source);
362 target_free_working_area(target, stm32lx_info->write_algorithm);
363
364 destroy_reg_param(&reg_params[0]);
365 destroy_reg_param(&reg_params[1]);
366 destroy_reg_param(&reg_params[2]);
367 destroy_reg_param(&reg_params[3]);
368
369 return retval;
370 }
371 static int stm32lx_write(struct flash_bank *bank, uint8_t *buffer,
372 uint32_t offset, uint32_t count)
373 {
374 struct target *target = bank->target;
375
376 uint32_t halfpages_number;
377 uint32_t words_remaining;
378 uint32_t bytes_remaining;
379 uint32_t address = bank->base + offset;
380 uint32_t bytes_written = 0;
381 int retval;
382
383 if (bank->target->state != TARGET_HALTED) {
384 LOG_ERROR("Target not halted");
385 return ERROR_TARGET_NOT_HALTED;
386 }
387
388 if (offset & 0x1) {
389 LOG_ERROR("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
390 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
391 }
392
393 /* Check if there are some full half pages */
394 if (((offset % 128) == 0) && (count >= 128)) {
395 halfpages_number = count / 128;
396 words_remaining = (count - 128 * halfpages_number) / 4;
397 bytes_remaining = (count & 0x3);
398 } else {
399 halfpages_number = 0;
400 words_remaining = (count / 4);
401 bytes_remaining = (count & 0x3);
402 }
403
404 if (halfpages_number) {
405 retval = stm32lx_write_half_pages(bank, buffer, offset, 128
406 * halfpages_number);
407 if (retval != ERROR_OK)
408 return ERROR_FAIL;
409 }
410
411 bytes_written = 128 * halfpages_number;
412 address += bytes_written;
413
414 retval = stm32lx_unlock_program_memory(bank);
415 if (retval != ERROR_OK)
416 return retval;
417
418 while (words_remaining > 0) {
419 uint32_t value;
420 uint8_t *p = buffer + bytes_written;
421
422 /* Prepare the word, Little endian conversion */
423 value = p[0] + (p[1] << 8) + (p[2] << 16) + (p[3] << 24);
424
425 retval = target_write_u32(target, address, value);
426 if (retval != ERROR_OK)
427 return retval;
428
429 bytes_written += 4;
430 words_remaining--;
431 address += 4;
432
433 retval = stm32lx_wait_until_bsy_clear(bank);
434 if (retval != ERROR_OK)
435 return retval;
436 }
437
438 if (bytes_remaining) {
439 uint8_t last_word[4] = {0xff, 0xff, 0xff, 0xff};
440
441 /* copy the last remaining bytes into the write buffer */
442 memcpy(last_word, buffer+bytes_written, bytes_remaining);
443
444 retval = target_write_buffer(target, address, 4, last_word);
445 if (retval != ERROR_OK)
446 return retval;
447
448 retval = stm32lx_wait_until_bsy_clear(bank);
449 if (retval != ERROR_OK)
450 return retval;
451 }
452
453 retval = stm32lx_lock_program_memory(bank);
454 if (retval != ERROR_OK)
455 return retval;
456
457 return ERROR_OK;
458 }
459
460 static int stm32lx_probe(struct flash_bank *bank)
461 {
462 struct target *target = bank->target;
463 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
464 int i;
465 uint16_t flash_size_in_kb;
466 uint16_t max_flash_size_in_kb;
467 uint32_t device_id;
468
469 stm32lx_info->probed = 0;
470
471 /* read stm32 device id register */
472 int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
473 if (retval != ERROR_OK)
474 return retval;
475
476 LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id);
477
478 /* set max flash size depending on family */
479 switch (device_id & 0xfff) {
480 case 0x416:
481 max_flash_size_in_kb = 128;
482 break;
483 case 0x436:
484 max_flash_size_in_kb = 384;
485 break;
486 default:
487 LOG_WARNING("Cannot identify target as a STM32L family.");
488 return ERROR_FAIL;
489 }
490
491 /* get flash size from target. */
492 retval = target_read_u16(target, F_SIZE, &flash_size_in_kb);
493
494 /* failed reading flash size or flash size invalid (early silicon),
495 * default to max target family */
496 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
497 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
498 max_flash_size_in_kb);
499 flash_size_in_kb = max_flash_size_in_kb;
500 }
501
502 /* STM32L - we have 32 sectors, 16 pages per sector -> 512 pages
503 * 16 pages for a protection area */
504
505 /* calculate numbers of sectors (4kB per sector) */
506 int num_sectors = (flash_size_in_kb * 1024) / FLASH_SECTOR_SIZE;
507 LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
508
509 if (bank->sectors) {
510 free(bank->sectors);
511 bank->sectors = NULL;
512 }
513
514 bank->base = FLASH_BANK0_ADDRESS;
515 bank->size = flash_size_in_kb * 1024;
516 bank->num_sectors = num_sectors;
517 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
518 if (bank->sectors == NULL) {
519 LOG_ERROR("failed to allocate bank sectors");
520 return ERROR_FAIL;
521 }
522
523 for (i = 0; i < num_sectors; i++) {
524 bank->sectors[i].offset = i * FLASH_SECTOR_SIZE;
525 bank->sectors[i].size = FLASH_SECTOR_SIZE;
526 bank->sectors[i].is_erased = -1;
527 bank->sectors[i].is_protected = 1;
528 }
529
530 stm32lx_info->probed = 1;
531
532 return ERROR_OK;
533 }
534
535 static int stm32lx_auto_probe(struct flash_bank *bank)
536 {
537 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
538
539 if (stm32lx_info->probed)
540 return ERROR_OK;
541
542 return stm32lx_probe(bank);
543 }
544
545 static int stm32lx_erase_check(struct flash_bank *bank)
546 {
547 struct target *target = bank->target;
548 const int buffer_size = 4096;
549 int i;
550 uint32_t nBytes;
551 int retval = ERROR_OK;
552
553 if (bank->target->state != TARGET_HALTED) {
554 LOG_ERROR("Target not halted");
555 return ERROR_TARGET_NOT_HALTED;
556 }
557
558 uint8_t *buffer = malloc(buffer_size);
559 if (buffer == NULL) {
560 LOG_ERROR("failed to allocate read buffer");
561 return ERROR_FAIL;
562 }
563
564 for (i = 0; i < bank->num_sectors; i++) {
565 uint32_t j;
566 bank->sectors[i].is_erased = 1;
567
568 /* Loop chunk by chunk over the sector */
569 for (j = 0; j < bank->sectors[i].size; j += buffer_size) {
570 uint32_t chunk;
571 chunk = buffer_size;
572 if (chunk > (j - bank->sectors[i].size))
573 chunk = (j - bank->sectors[i].size);
574
575 retval = target_read_memory(target, bank->base
576 + bank->sectors[i].offset + j, 4, chunk / 4, buffer);
577 if (retval != ERROR_OK)
578 break;
579
580 for (nBytes = 0; nBytes < chunk; nBytes++) {
581 if (buffer[nBytes] != 0x00) {
582 bank->sectors[i].is_erased = 0;
583 break;
584 }
585 }
586 }
587 if (retval != ERROR_OK)
588 break;
589 }
590 free(buffer);
591
592 return retval;
593 }
594
595 static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size)
596 {
597 /* This method must return a string displaying information about the bank */
598
599 struct target *target = bank->target;
600 uint32_t device_id;
601 int printed;
602
603 /* read stm32 device id register */
604 int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
605 if (retval != ERROR_OK)
606 return retval;
607
608 if ((device_id & 0xfff) == 0x416) {
609 printed = snprintf(buf, buf_size, "stm32lx - Rev: ");
610 buf += printed;
611 buf_size -= printed;
612
613 switch (device_id >> 16) {
614 case 0x1000:
615 snprintf(buf, buf_size, "A");
616 break;
617
618 case 0x1008:
619 snprintf(buf, buf_size, "Y");
620 break;
621
622 case 0x1018:
623 snprintf(buf, buf_size, "X");
624 break;
625
626 case 0x1038:
627 snprintf(buf, buf_size, "W");
628 break;
629
630 case 0x1078:
631 snprintf(buf, buf_size, "V");
632 break;
633
634 default:
635 snprintf(buf, buf_size, "unknown");
636 break;
637 }
638 } else if ((device_id & 0xfff) == 0x436) {
639 printed = snprintf(buf, buf_size, "stm32lx (HD) - Rev: ");
640 buf += printed;
641 buf_size -= printed;
642
643 switch (device_id >> 16) {
644 case 0x1000:
645 snprintf(buf, buf_size, "A");
646 break;
647
648 case 0x1008:
649 snprintf(buf, buf_size, "Z");
650 break;
651
652 default:
653 snprintf(buf, buf_size, "unknown");
654 break;
655 }
656 } else {
657 snprintf(buf, buf_size, "Cannot identify target as a stm32lx");
658 return ERROR_FAIL;
659 }
660
661 return ERROR_OK;
662 }
663
664 static const struct command_registration stm32lx_exec_command_handlers[] = {
665 COMMAND_REGISTRATION_DONE
666 };
667
668 static const struct command_registration stm32lx_command_handlers[] = {
669 {
670 .name = "stm32lx",
671 .mode = COMMAND_ANY,
672 .help = "stm32lx flash command group",
673 .usage = "",
674 .chain = stm32lx_exec_command_handlers,
675 },
676 COMMAND_REGISTRATION_DONE
677 };
678
679 struct flash_driver stm32lx_flash = {
680 .name = "stm32lx",
681 .commands = stm32lx_command_handlers,
682 .flash_bank_command = stm32lx_flash_bank_command,
683 .erase = stm32lx_erase,
684 .protect = stm32lx_protect,
685 .write = stm32lx_write,
686 .read = default_flash_read,
687 .probe = stm32lx_probe,
688 .auto_probe = stm32lx_auto_probe,
689 .erase_check = stm32lx_erase_check,
690 .protect_check = stm32lx_protect_check,
691 .info = stm32lx_get_info,
692 };
693
694 /* Static methods implementation */
695 static int stm32lx_unlock_program_memory(struct flash_bank *bank)
696 {
697 struct target *target = bank->target;
698 int retval;
699 uint32_t reg32;
700
701 /*
702 * Unlocking the program memory is done by unlocking the PECR,
703 * then by writing the 2 PRGKEY to the PRGKEYR register
704 */
705
706 /* To unlock the PECR write the 2 PEKEY to the PEKEYR register */
707 retval = target_write_u32(target, FLASH_PEKEYR, PEKEY1);
708 if (retval != ERROR_OK)
709 return retval;
710
711 retval = target_write_u32(target, FLASH_PEKEYR, PEKEY2);
712 if (retval != ERROR_OK)
713 return retval;
714
715 /* Make sure it worked */
716 retval = target_read_u32(target, FLASH_PECR, &reg32);
717 if (retval != ERROR_OK)
718 return retval;
719
720 if (reg32 & FLASH_PECR__PELOCK) {
721 LOG_ERROR("PELOCK is not cleared :(");
722 return ERROR_FLASH_OPERATION_FAILED;
723 }
724
725 retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY1);
726 if (retval != ERROR_OK)
727 return retval;
728 retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY2);
729 if (retval != ERROR_OK)
730 return retval;
731
732 /* Make sure it worked */
733 retval = target_read_u32(target, FLASH_PECR, &reg32);
734 if (retval != ERROR_OK)
735 return retval;
736
737 if (reg32 & FLASH_PECR__PRGLOCK) {
738 LOG_ERROR("PRGLOCK is not cleared :(");
739 return ERROR_FLASH_OPERATION_FAILED;
740 }
741 return ERROR_OK;
742 }
743
744 static int stm32lx_enable_write_half_page(struct flash_bank *bank)
745 {
746 struct target *target = bank->target;
747 int retval;
748 uint32_t reg32;
749
750 /**
751 * Unlock the program memory, then set the FPRG bit in the PECR register.
752 */
753 retval = stm32lx_unlock_program_memory(bank);
754 if (retval != ERROR_OK)
755 return retval;
756
757 retval = target_read_u32(target, FLASH_PECR, &reg32);
758 if (retval != ERROR_OK)
759 return retval;
760
761 reg32 |= FLASH_PECR__FPRG;
762 retval = target_write_u32(target, FLASH_PECR, reg32);
763 if (retval != ERROR_OK)
764 return retval;
765
766 retval = target_read_u32(target, FLASH_PECR, &reg32);
767 if (retval != ERROR_OK)
768 return retval;
769
770 reg32 |= FLASH_PECR__PROG;
771 retval = target_write_u32(target, FLASH_PECR, reg32);
772
773 return retval;
774 }
775
776 static int stm32lx_lock_program_memory(struct flash_bank *bank)
777 {
778 struct target *target = bank->target;
779 int retval;
780 uint32_t reg32;
781
782 /* To lock the program memory, simply set the lock bit and lock PECR */
783
784 retval = target_read_u32(target, FLASH_PECR, &reg32);
785 if (retval != ERROR_OK)
786 return retval;
787
788 reg32 |= FLASH_PECR__PRGLOCK;
789 retval = target_write_u32(target, FLASH_PECR, reg32);
790 if (retval != ERROR_OK)
791 return retval;
792
793 retval = target_read_u32(target, FLASH_PECR, &reg32);
794 if (retval != ERROR_OK)
795 return retval;
796
797 reg32 |= FLASH_PECR__PELOCK;
798 retval = target_write_u32(target, FLASH_PECR, reg32);
799 if (retval != ERROR_OK)
800 return retval;
801
802 return ERROR_OK;
803 }
804
805 static int stm32lx_erase_sector(struct flash_bank *bank, int sector)
806 {
807 struct target *target = bank->target;
808 int retval;
809 uint32_t reg32;
810
811 /*
812 * To erase a sector (i.e. FLASH_PAGES_PER_SECTOR pages),
813 * first unlock the memory, loop over the pages of this sector
814 * and write 0x0 to its first word.
815 */
816
817 retval = stm32lx_unlock_program_memory(bank);
818 if (retval != ERROR_OK)
819 return retval;
820
821 for (int page = 0; page < FLASH_PAGES_PER_SECTOR; page++) {
822 reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE;
823 retval = target_write_u32(target, FLASH_PECR, reg32);
824 if (retval != ERROR_OK)
825 return retval;
826
827 retval = stm32lx_wait_until_bsy_clear(bank);
828 if (retval != ERROR_OK)
829 return retval;
830
831 uint32_t addr = bank->base + bank->sectors[sector].offset + (page
832 * FLASH_PAGE_SIZE);
833 retval = target_write_u32(target, addr, 0x0);
834 if (retval != ERROR_OK)
835 return retval;
836
837 retval = stm32lx_wait_until_bsy_clear(bank);
838 if (retval != ERROR_OK)
839 return retval;
840 }
841
842 retval = stm32lx_lock_program_memory(bank);
843 if (retval != ERROR_OK)
844 return retval;
845
846 return ERROR_OK;
847 }
848
849 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank)
850 {
851 struct target *target = bank->target;
852 uint32_t status;
853 int retval = ERROR_OK;
854 int timeout = 100;
855
856 /* wait for busy to clear */
857 for (;;) {
858 retval = target_read_u32(target, FLASH_SR, &status);
859 if (retval != ERROR_OK)
860 return retval;
861
862 if ((status & FLASH_SR__BSY) == 0)
863 break;
864 if (timeout-- <= 0) {
865 LOG_ERROR("timed out waiting for flash");
866 return ERROR_FAIL;
867 }
868 alive_sleep(1);
869 }
870
871 if (status & FLASH_SR__WRPERR) {
872 LOG_ERROR("access denied / write protected");
873 retval = ERROR_FAIL;
874 }
875
876 if (status & FLASH_SR__PGAERR) {
877 LOG_ERROR("invalid program address");
878 retval = ERROR_FAIL;
879 }
880
881 return retval;
882 }