a475841a3d3685eef01a4417fc3f4c24f81a8a8d
[openocd.git] / src / flash / nor / stm32lx.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 by Clement Burin des Roziers *
9 * clement.burin-des-roziers@hikob.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/armv7m.h>
35 #include <target/cortex_m.h>
36
37 /* stm32lx flash register locations */
38
39 #define FLASH_BASE 0x40023C00
40 #define FLASH_ACR 0x40023C00
41 #define FLASH_PECR 0x40023C04
42 #define FLASH_PDKEYR 0x40023C08
43 #define FLASH_PEKEYR 0x40023C0C
44 #define FLASH_PRGKEYR 0x40023C10
45 #define FLASH_OPTKEYR 0x40023C14
46 #define FLASH_SR 0x40023C18
47 #define FLASH_OBR 0x40023C1C
48 #define FLASH_WRPR 0x40023C20
49
50 /* FLASH_ACR bites */
51 #define FLASH_ACR__LATENCY (1<<0)
52 #define FLASH_ACR__PRFTEN (1<<1)
53 #define FLASH_ACR__ACC64 (1<<2)
54 #define FLASH_ACR__SLEEP_PD (1<<3)
55 #define FLASH_ACR__RUN_PD (1<<4)
56
57 /* FLASH_PECR bits */
58 #define FLASH_PECR__PELOCK (1<<0)
59 #define FLASH_PECR__PRGLOCK (1<<1)
60 #define FLASH_PECR__OPTLOCK (1<<2)
61 #define FLASH_PECR__PROG (1<<3)
62 #define FLASH_PECR__DATA (1<<4)
63 #define FLASH_PECR__FTDW (1<<8)
64 #define FLASH_PECR__ERASE (1<<9)
65 #define FLASH_PECR__FPRG (1<<10)
66 #define FLASH_PECR__EOPIE (1<<16)
67 #define FLASH_PECR__ERRIE (1<<17)
68 #define FLASH_PECR__OBL_LAUNCH (1<<18)
69
70 /* FLASH_SR bits */
71 #define FLASH_SR__BSY (1<<0)
72 #define FLASH_SR__EOP (1<<1)
73 #define FLASH_SR__ENDHV (1<<2)
74 #define FLASH_SR__READY (1<<3)
75 #define FLASH_SR__WRPERR (1<<8)
76 #define FLASH_SR__PGAERR (1<<9)
77 #define FLASH_SR__SIZERR (1<<10)
78 #define FLASH_SR__OPTVERR (1<<11)
79
80 /* Unlock keys */
81 #define PEKEY1 0x89ABCDEF
82 #define PEKEY2 0x02030405
83 #define PRGKEY1 0x8C9DAEBF
84 #define PRGKEY2 0x13141516
85 #define OPTKEY1 0xFBEAD9C8
86 #define OPTKEY2 0x24252627
87
88 /* other registers */
89 #define DBGMCU_IDCODE 0xE0042000
90 #define F_SIZE 0x1FF8004C
91
92 /* Constants */
93 #define FLASH_PAGE_SIZE 256
94 #define FLASH_SECTOR_SIZE 4096
95 #define FLASH_PAGES_PER_SECTOR 16
96 #define FLASH_BANK0_ADDRESS 0x08000000
97
98 /* stm32lx option byte register location */
99 #define OB_RDP 0x1FF80000
100 #define OB_USER 0x1FF80004
101 #define OB_WRP0_1 0x1FF80008
102 #define OB_WRP2_3 0x1FF8000C
103
104 /* OB_RDP values */
105 #define OB_RDP__LEVEL0 0xFF5500AA
106 #define OB_RDP__LEVEL1 0xFFFF0000
107
108 /* stm32lx RCC register locations */
109 #define RCC_CR 0x40023800
110 #define RCC_ICSCR 0x40023804
111 #define RCC_CFGR 0x40023808
112
113 /* RCC_ICSCR bits */
114 #define RCC_ICSCR__MSIRANGE_MASK (7<<13)
115
116 static int stm32lx_unlock_program_memory(struct flash_bank *bank);
117 static int stm32lx_lock_program_memory(struct flash_bank *bank);
118 static int stm32lx_enable_write_half_page(struct flash_bank *bank);
119 static int stm32lx_erase_sector(struct flash_bank *bank, int sector);
120 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank);
121
122 struct stm32lx_flash_bank {
123 int probed;
124 bool has_dual_banks;
125 };
126
127 /* flash bank stm32lx <base> <size> 0 0 <target#>
128 */
129 FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command)
130 {
131 struct stm32lx_flash_bank *stm32lx_info;
132 if (CMD_ARGC < 6)
133 return ERROR_COMMAND_SYNTAX_ERROR;
134
135 /* Create the bank structure */
136 stm32lx_info = malloc(sizeof(struct stm32lx_flash_bank));
137
138 /* Check allocation */
139 if (stm32lx_info == NULL) {
140 LOG_ERROR("failed to allocate bank structure");
141 return ERROR_FAIL;
142 }
143
144 bank->driver_priv = stm32lx_info;
145
146 stm32lx_info->probed = 0;
147 stm32lx_info->has_dual_banks = false;
148
149 return ERROR_OK;
150 }
151
152 static int stm32lx_protect_check(struct flash_bank *bank)
153 {
154 int retval;
155 struct target *target = bank->target;
156
157 uint32_t wrpr;
158
159 if (target->state != TARGET_HALTED) {
160 LOG_ERROR("Target not halted");
161 return ERROR_TARGET_NOT_HALTED;
162 }
163
164 /*
165 * Read the WRPR word, and check each bit (corresponding to each
166 * flash sector
167 */
168 retval = target_read_u32(target, FLASH_WRPR, &wrpr);
169 if (retval != ERROR_OK)
170 return retval;
171
172 for (int i = 0; i < 32; i++) {
173 if (wrpr & (1 << i))
174 bank->sectors[i].is_protected = 1;
175 else
176 bank->sectors[i].is_protected = 0;
177 }
178 return ERROR_OK;
179 }
180
181 static int stm32lx_erase(struct flash_bank *bank, int first, int last)
182 {
183 int retval;
184
185 /*
186 * It could be possible to do a mass erase if all sectors must be
187 * erased, but it is not implemented yet.
188 */
189
190 if (bank->target->state != TARGET_HALTED) {
191 LOG_ERROR("Target not halted");
192 return ERROR_TARGET_NOT_HALTED;
193 }
194
195 /*
196 * Loop over the selected sectors and erase them
197 */
198 for (int i = first; i <= last; i++) {
199 retval = stm32lx_erase_sector(bank, i);
200 if (retval != ERROR_OK)
201 return retval;
202 bank->sectors[i].is_erased = 1;
203 }
204 return ERROR_OK;
205 }
206
207 static int stm32lx_protect(struct flash_bank *bank, int set, int first,
208 int last)
209 {
210 LOG_WARNING("protection of the STM32L flash is not implemented");
211 return ERROR_OK;
212 }
213
214 static int stm32lx_write_half_pages(struct flash_bank *bank, uint8_t *buffer,
215 uint32_t offset, uint32_t count)
216 {
217 struct target *target = bank->target;
218 uint32_t buffer_size = 16384;
219 struct working_area *write_algorithm;
220 struct working_area *source;
221 uint32_t address = bank->base + offset;
222
223 struct reg_param reg_params[3];
224 struct armv7m_algorithm armv7m_info;
225
226 int retval = ERROR_OK;
227
228 /* see contib/loaders/flash/stm32lx.S for src */
229
230 static const uint8_t stm32lx_flash_write_code[] = {
231 /* write_word: */
232 0x00, 0x23, /* movs r3, #0 */
233 0x04, 0xe0, /* b test_done */
234
235 /* write_word: */
236 0x51, 0xf8, 0x04, 0xcb, /* ldr ip, [r1], #4 */
237 0x40, 0xf8, 0x04, 0xcb, /* str ip, [r0], #4 */
238 0x01, 0x33, /* adds r3, #1 */
239
240 /* test_done: */
241 0x93, 0x42, /* cmp r3, r2 */
242 0xf8, 0xd3, /* bcc write_word */
243 0x00, 0xbe, /* bkpt 0 */
244 };
245
246 /* Check if there is an even number of half pages (128bytes) */
247 if (count % 128) {
248 LOG_ERROR("there should be an even number "
249 "of half pages = 128 bytes (count = %" PRIi32 " bytes)", count);
250 return ERROR_FAIL;
251 }
252
253 /* flash write code */
254 if (target_alloc_working_area(target, sizeof(stm32lx_flash_write_code),
255 &write_algorithm) != ERROR_OK) {
256 LOG_DEBUG("no working area for block memory writes");
257 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
258 };
259
260 /* Write the flashing code */
261 retval = target_write_buffer(target,
262 write_algorithm->address,
263 sizeof(stm32lx_flash_write_code),
264 (uint8_t *)stm32lx_flash_write_code);
265 if (retval != ERROR_OK) {
266 target_free_working_area(target, write_algorithm);
267 return retval;
268 }
269
270 /* Allocate half pages memory */
271 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
272 if (buffer_size > 1024)
273 buffer_size -= 1024;
274 else
275 buffer_size /= 2;
276
277 if (buffer_size <= 256) {
278 /* we already allocated the writing code, but failed to get a
279 * buffer, free the algorithm */
280 target_free_working_area(target, write_algorithm);
281
282 LOG_WARNING("no large enough working area available, can't do block memory writes");
283 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
284 }
285 }
286
287 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
288 armv7m_info.core_mode = ARM_MODE_THREAD;
289 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
290 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
291 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
292
293 /* Enable half-page write */
294 retval = stm32lx_enable_write_half_page(bank);
295 if (retval != ERROR_OK) {
296 target_free_working_area(target, source);
297 target_free_working_area(target, write_algorithm);
298
299 destroy_reg_param(&reg_params[0]);
300 destroy_reg_param(&reg_params[1]);
301 destroy_reg_param(&reg_params[2]);
302 return retval;
303 }
304
305 struct armv7m_common *armv7m = target_to_armv7m(target);
306 if (armv7m == NULL) {
307
308 /* something is very wrong if armv7m is NULL */
309 LOG_ERROR("unable to get armv7m target");
310 return retval;
311 }
312
313 /* save any DEMCR flags and configure target to catch any Hard Faults */
314 uint32_t demcr_save = armv7m->demcr;
315 armv7m->demcr = VC_HARDERR;
316
317 /* Loop while there are bytes to write */
318 while (count > 0) {
319 uint32_t this_count;
320 this_count = (count > buffer_size) ? buffer_size : count;
321
322 /* Write the next half pages */
323 retval = target_write_buffer(target, source->address, this_count, buffer);
324 if (retval != ERROR_OK)
325 break;
326
327 /* 4: Store useful information in the registers */
328 /* the destination address of the copy (R0) */
329 buf_set_u32(reg_params[0].value, 0, 32, address);
330 /* The source address of the copy (R1) */
331 buf_set_u32(reg_params[1].value, 0, 32, source->address);
332 /* The length of the copy (R2) */
333 buf_set_u32(reg_params[2].value, 0, 32, this_count / 4);
334
335 /* 5: Execute the bunch of code */
336 retval = target_run_algorithm(target, 0, NULL, sizeof(reg_params)
337 / sizeof(*reg_params), reg_params,
338 write_algorithm->address, 0, 10000, &armv7m_info);
339 if (retval != ERROR_OK)
340 break;
341
342 /* check for Hard Fault */
343 if (armv7m->exception_number == 3)
344 break;
345
346 /* 6: Wait while busy */
347 retval = stm32lx_wait_until_bsy_clear(bank);
348 if (retval != ERROR_OK)
349 break;
350
351 buffer += this_count;
352 address += this_count;
353 count -= this_count;
354 }
355
356 /* restore previous flags */
357 armv7m->demcr = demcr_save;
358
359 if (armv7m->exception_number == 3) {
360
361 /* the stm32l15x devices seem to have an issue when blank.
362 * if a ram loader is executed on a blank device it will
363 * Hard Fault, this issue does not happen for a already programmed device.
364 * A related issue is described in the stm32l151xx errata (Doc ID 17721 Rev 6 - 2.1.3).
365 * The workaround of handling the Hard Fault exception does work, but makes the
366 * loader more complicated, as a compromise we manually write the pages, programming time
367 * is reduced by 50% using this slower method.
368 */
369
370 LOG_WARNING("couldn't use loader, falling back to page memory writes");
371
372 while (count > 0) {
373 uint32_t this_count;
374 this_count = (count > 128) ? 128 : count;
375
376 /* Write the next half pages */
377 retval = target_write_buffer(target, address, this_count, buffer);
378 if (retval != ERROR_OK)
379 break;
380
381 /* Wait while busy */
382 retval = stm32lx_wait_until_bsy_clear(bank);
383 if (retval != ERROR_OK)
384 break;
385
386 buffer += this_count;
387 address += this_count;
388 count -= this_count;
389 }
390 }
391
392 if (retval == ERROR_OK)
393 retval = stm32lx_lock_program_memory(bank);
394
395 target_free_working_area(target, source);
396 target_free_working_area(target, write_algorithm);
397
398 destroy_reg_param(&reg_params[0]);
399 destroy_reg_param(&reg_params[1]);
400 destroy_reg_param(&reg_params[2]);
401
402 return retval;
403 }
404
405 static int stm32lx_write(struct flash_bank *bank, uint8_t *buffer,
406 uint32_t offset, uint32_t count)
407 {
408 struct target *target = bank->target;
409
410 uint32_t halfpages_number;
411 uint32_t bytes_remaining = 0;
412 uint32_t address = bank->base + offset;
413 uint32_t bytes_written = 0;
414 int retval, retval2;
415
416 if (bank->target->state != TARGET_HALTED) {
417 LOG_ERROR("Target not halted");
418 return ERROR_TARGET_NOT_HALTED;
419 }
420
421 if (offset & 0x3) {
422 LOG_ERROR("offset 0x%" PRIx32 " breaks required 4-byte alignment", offset);
423 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
424 }
425
426 retval = stm32lx_unlock_program_memory(bank);
427 if (retval != ERROR_OK)
428 return retval;
429
430 /* first we need to write any unaligned head bytes upto
431 * the next 128 byte page */
432
433 if (offset % 128)
434 bytes_remaining = MIN(count, 128 - (offset % 128));
435
436 while (bytes_remaining > 0) {
437 uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
438
439 /* copy remaining bytes into the write buffer */
440 uint32_t bytes_to_write = MIN(4, bytes_remaining);
441 memcpy(value, buffer + bytes_written, bytes_to_write);
442
443 retval = target_write_buffer(target, address, 4, value);
444 if (retval != ERROR_OK)
445 goto reset_pg_and_lock;
446
447 bytes_written += bytes_to_write;
448 bytes_remaining -= bytes_to_write;
449 address += 4;
450
451 retval = stm32lx_wait_until_bsy_clear(bank);
452 if (retval != ERROR_OK)
453 goto reset_pg_and_lock;
454 }
455
456 offset += bytes_written;
457 count -= bytes_written;
458
459 /* this should always pass this check here */
460 assert((offset % 128) == 0);
461
462 /* calculate half pages */
463 halfpages_number = count / 128;
464
465 if (halfpages_number) {
466 retval = stm32lx_write_half_pages(bank, buffer + bytes_written, offset, 128 * halfpages_number);
467 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
468 /* attempt slow memory writes */
469 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
470 halfpages_number = 0;
471 } else {
472 if (retval != ERROR_OK)
473 return ERROR_FAIL;
474 }
475 }
476
477 /* write any remaining bytes */
478 uint32_t page_bytes_written = 128 * halfpages_number;
479 bytes_written += page_bytes_written;
480 address += page_bytes_written;
481 bytes_remaining = count - page_bytes_written;
482
483 retval = stm32lx_unlock_program_memory(bank);
484 if (retval != ERROR_OK)
485 return retval;
486
487 while (bytes_remaining > 0) {
488 uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
489
490 /* copy remaining bytes into the write buffer */
491 uint32_t bytes_to_write = MIN(4, bytes_remaining);
492 memcpy(value, buffer + bytes_written, bytes_to_write);
493
494 retval = target_write_buffer(target, address, 4, value);
495 if (retval != ERROR_OK)
496 goto reset_pg_and_lock;
497
498 bytes_written += bytes_to_write;
499 bytes_remaining -= bytes_to_write;
500 address += 4;
501
502 retval = stm32lx_wait_until_bsy_clear(bank);
503 if (retval != ERROR_OK)
504 goto reset_pg_and_lock;
505 }
506
507 reset_pg_and_lock:
508 retval2 = stm32lx_lock_program_memory(bank);
509 if (retval == ERROR_OK)
510 retval = retval2;
511
512 return retval;
513 }
514
515 static int stm32lx_probe(struct flash_bank *bank)
516 {
517 struct target *target = bank->target;
518 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
519 int i;
520 uint16_t flash_size_in_kb;
521 uint16_t max_flash_size_in_kb;
522 uint32_t device_id;
523 uint32_t base_address = FLASH_BANK0_ADDRESS;
524 uint32_t second_bank_base;
525 uint32_t first_bank_size_in_kb;
526
527 stm32lx_info->probed = 0;
528
529 /* read stm32 device id register */
530 int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
531 if (retval != ERROR_OK)
532 return retval;
533
534 LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id);
535
536 /* set max flash size depending on family */
537 switch (device_id & 0xfff) {
538 case 0x416:
539 max_flash_size_in_kb = 128;
540 break;
541 case 0x427:
542 /* single bank, high density */
543 max_flash_size_in_kb = 256;
544 break;
545 case 0x436:
546 /* According to ST, the devices with id 0x436 have dual bank flash and comes with
547 * a total flash size of 384k or 256kb. However, the first bank is always 192kb,
548 * and second one holds the rest. The reason is that the 256kb version is actually
549 * the same physical flash but only the first 256kb are verified.
550 */
551 max_flash_size_in_kb = 384;
552 first_bank_size_in_kb = 192;
553 stm32lx_info->has_dual_banks = true;
554 break;
555 default:
556 LOG_WARNING("Cannot identify target as a STM32L family.");
557 return ERROR_FAIL;
558 }
559
560 /* Get the flash size from target. */
561 retval = target_read_u16(target, F_SIZE, &flash_size_in_kb);
562
563 /* Failed reading flash size or flash size invalid (early silicon),
564 * default to max target family */
565 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
566 LOG_WARNING("STM32L flash size failed, probe inaccurate - assuming %dk flash",
567 max_flash_size_in_kb);
568 flash_size_in_kb = max_flash_size_in_kb;
569 } else if (flash_size_in_kb > max_flash_size_in_kb) {
570 LOG_WARNING("STM32L probed flash size assumed incorrect since FLASH_SIZE=%dk > %dk, - assuming %dk flash",
571 flash_size_in_kb, max_flash_size_in_kb, max_flash_size_in_kb);
572 flash_size_in_kb = max_flash_size_in_kb;
573 }
574
575 if (stm32lx_info->has_dual_banks) {
576 /* Use the configured base address to determine if this is the first or second flash bank.
577 * Verify that the base address is reasonably correct and determine the flash bank size
578 */
579 second_bank_base = base_address + first_bank_size_in_kb * 1024;
580 if (bank->base == second_bank_base) {
581 /* This is the second bank */
582 base_address = second_bank_base;
583 flash_size_in_kb = flash_size_in_kb - first_bank_size_in_kb;
584 } else if (bank->base == 0 || bank->base == base_address) {
585 /* This is the first bank */
586 flash_size_in_kb = first_bank_size_in_kb;
587 } else {
588 LOG_WARNING("STM32L flash bank base address config is incorrect. 0x%x but should rather be 0x%x or 0x%x",
589 bank->base, base_address, second_bank_base);
590 return ERROR_FAIL;
591 }
592 LOG_INFO("STM32L flash has dual banks. Bank (%d) size is %dkb, base address is 0x%x",
593 bank->bank_number, flash_size_in_kb, base_address);
594 } else {
595 LOG_INFO("STM32L flash size is %dkb, base address is 0x%x", flash_size_in_kb, base_address);
596 }
597
598 /* if the user sets the size manually then ignore the probed value
599 * this allows us to work around devices that have a invalid flash size register value */
600 if (bank->size) {
601 flash_size_in_kb = bank->size / 1024;
602 LOG_INFO("ignoring flash probed value, using configured bank size: %dkbytes", flash_size_in_kb);
603 }
604
605 /* STM32L - we have 32 sectors, 16 pages per sector -> 512 pages
606 * 16 pages for a protection area */
607
608 /* calculate numbers of sectors (4kB per sector) */
609 int num_sectors = (flash_size_in_kb * 1024) / FLASH_SECTOR_SIZE;
610
611 if (bank->sectors) {
612 free(bank->sectors);
613 bank->sectors = NULL;
614 }
615
616 bank->size = flash_size_in_kb * 1024;
617 bank->base = base_address;
618 bank->num_sectors = num_sectors;
619 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
620 if (bank->sectors == NULL) {
621 LOG_ERROR("failed to allocate bank sectors");
622 return ERROR_FAIL;
623 }
624
625 for (i = 0; i < num_sectors; i++) {
626 bank->sectors[i].offset = i * FLASH_SECTOR_SIZE;
627 bank->sectors[i].size = FLASH_SECTOR_SIZE;
628 bank->sectors[i].is_erased = -1;
629 bank->sectors[i].is_protected = 1;
630 }
631
632 stm32lx_info->probed = 1;
633
634 return ERROR_OK;
635 }
636
637 static int stm32lx_auto_probe(struct flash_bank *bank)
638 {
639 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
640
641 if (stm32lx_info->probed)
642 return ERROR_OK;
643
644 return stm32lx_probe(bank);
645 }
646
647 static int stm32lx_erase_check(struct flash_bank *bank)
648 {
649 struct target *target = bank->target;
650 const int buffer_size = 4096;
651 int i;
652 uint32_t nBytes;
653 int retval = ERROR_OK;
654
655 if (bank->target->state != TARGET_HALTED) {
656 LOG_ERROR("Target not halted");
657 return ERROR_TARGET_NOT_HALTED;
658 }
659
660 uint8_t *buffer = malloc(buffer_size);
661 if (buffer == NULL) {
662 LOG_ERROR("failed to allocate read buffer");
663 return ERROR_FAIL;
664 }
665
666 for (i = 0; i < bank->num_sectors; i++) {
667 uint32_t j;
668 bank->sectors[i].is_erased = 1;
669
670 /* Loop chunk by chunk over the sector */
671 for (j = 0; j < bank->sectors[i].size; j += buffer_size) {
672 uint32_t chunk;
673 chunk = buffer_size;
674 if (chunk > (j - bank->sectors[i].size))
675 chunk = (j - bank->sectors[i].size);
676
677 retval = target_read_memory(target, bank->base
678 + bank->sectors[i].offset + j, 4, chunk / 4, buffer);
679 if (retval != ERROR_OK)
680 break;
681
682 for (nBytes = 0; nBytes < chunk; nBytes++) {
683 if (buffer[nBytes] != 0x00) {
684 bank->sectors[i].is_erased = 0;
685 break;
686 }
687 }
688 }
689 if (retval != ERROR_OK)
690 break;
691 }
692 free(buffer);
693
694 return retval;
695 }
696
697 static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size)
698 {
699 /* This method must return a string displaying information about the bank */
700
701 struct target *target = bank->target;
702 uint32_t device_id;
703 int printed;
704
705 /* read stm32 device id register */
706 int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
707 if (retval != ERROR_OK)
708 return retval;
709
710 if ((device_id & 0xfff) == 0x416) {
711 printed = snprintf(buf, buf_size, "stm32lx - Rev: ");
712 buf += printed;
713 buf_size -= printed;
714
715 switch (device_id >> 16) {
716 case 0x1000:
717 snprintf(buf, buf_size, "A");
718 break;
719
720 case 0x1008:
721 snprintf(buf, buf_size, "Y");
722 break;
723
724 case 0x1018:
725 snprintf(buf, buf_size, "X");
726 break;
727
728 case 0x1038:
729 snprintf(buf, buf_size, "W");
730 break;
731
732 case 0x1078:
733 snprintf(buf, buf_size, "V");
734 break;
735
736 default:
737 snprintf(buf, buf_size, "unknown");
738 break;
739 }
740 } else if ((device_id & 0xfff) == 0x436) {
741 printed = snprintf(buf, buf_size, "stm32lx (HD) - Rev: ");
742 buf += printed;
743 buf_size -= printed;
744
745 switch (device_id >> 16) {
746 case 0x1000:
747 snprintf(buf, buf_size, "A");
748 break;
749
750 case 0x1008:
751 snprintf(buf, buf_size, "Z");
752 break;
753
754 case 0x1018:
755 snprintf(buf, buf_size, "Y");
756 break;
757
758 default:
759 snprintf(buf, buf_size, "unknown");
760 break;
761 }
762 } else {
763 snprintf(buf, buf_size, "Cannot identify target as a stm32lx");
764 return ERROR_FAIL;
765 }
766
767 return ERROR_OK;
768 }
769
770 static const struct command_registration stm32lx_exec_command_handlers[] = {
771 COMMAND_REGISTRATION_DONE
772 };
773
774 static const struct command_registration stm32lx_command_handlers[] = {
775 {
776 .name = "stm32lx",
777 .mode = COMMAND_ANY,
778 .help = "stm32lx flash command group",
779 .usage = "",
780 .chain = stm32lx_exec_command_handlers,
781 },
782 COMMAND_REGISTRATION_DONE
783 };
784
785 struct flash_driver stm32lx_flash = {
786 .name = "stm32lx",
787 .commands = stm32lx_command_handlers,
788 .flash_bank_command = stm32lx_flash_bank_command,
789 .erase = stm32lx_erase,
790 .protect = stm32lx_protect,
791 .write = stm32lx_write,
792 .read = default_flash_read,
793 .probe = stm32lx_probe,
794 .auto_probe = stm32lx_auto_probe,
795 .erase_check = stm32lx_erase_check,
796 .protect_check = stm32lx_protect_check,
797 .info = stm32lx_get_info,
798 };
799
800 /* Static methods implementation */
801 static int stm32lx_unlock_program_memory(struct flash_bank *bank)
802 {
803 struct target *target = bank->target;
804 int retval;
805 uint32_t reg32;
806
807 /*
808 * Unlocking the program memory is done by unlocking the PECR,
809 * then by writing the 2 PRGKEY to the PRGKEYR register
810 */
811
812 /* check flash is not already unlocked */
813 retval = target_read_u32(target, FLASH_PECR, &reg32);
814 if (retval != ERROR_OK)
815 return retval;
816
817 if ((reg32 & FLASH_PECR__PRGLOCK) == 0)
818 return ERROR_OK;
819
820 /* To unlock the PECR write the 2 PEKEY to the PEKEYR register */
821 retval = target_write_u32(target, FLASH_PEKEYR, PEKEY1);
822 if (retval != ERROR_OK)
823 return retval;
824
825 retval = target_write_u32(target, FLASH_PEKEYR, PEKEY2);
826 if (retval != ERROR_OK)
827 return retval;
828
829 /* Make sure it worked */
830 retval = target_read_u32(target, FLASH_PECR, &reg32);
831 if (retval != ERROR_OK)
832 return retval;
833
834 if (reg32 & FLASH_PECR__PELOCK) {
835 LOG_ERROR("PELOCK is not cleared :(");
836 return ERROR_FLASH_OPERATION_FAILED;
837 }
838
839 retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY1);
840 if (retval != ERROR_OK)
841 return retval;
842 retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY2);
843 if (retval != ERROR_OK)
844 return retval;
845
846 /* Make sure it worked */
847 retval = target_read_u32(target, FLASH_PECR, &reg32);
848 if (retval != ERROR_OK)
849 return retval;
850
851 if (reg32 & FLASH_PECR__PRGLOCK) {
852 LOG_ERROR("PRGLOCK is not cleared :(");
853 return ERROR_FLASH_OPERATION_FAILED;
854 }
855
856 return ERROR_OK;
857 }
858
859 static int stm32lx_enable_write_half_page(struct flash_bank *bank)
860 {
861 struct target *target = bank->target;
862 int retval;
863 uint32_t reg32;
864
865 /**
866 * Unlock the program memory, then set the FPRG bit in the PECR register.
867 */
868 retval = stm32lx_unlock_program_memory(bank);
869 if (retval != ERROR_OK)
870 return retval;
871
872 retval = target_read_u32(target, FLASH_PECR, &reg32);
873 if (retval != ERROR_OK)
874 return retval;
875
876 reg32 |= FLASH_PECR__FPRG;
877 retval = target_write_u32(target, FLASH_PECR, reg32);
878 if (retval != ERROR_OK)
879 return retval;
880
881 retval = target_read_u32(target, FLASH_PECR, &reg32);
882 if (retval != ERROR_OK)
883 return retval;
884
885 reg32 |= FLASH_PECR__PROG;
886 retval = target_write_u32(target, FLASH_PECR, reg32);
887
888 return retval;
889 }
890
891 static int stm32lx_lock_program_memory(struct flash_bank *bank)
892 {
893 struct target *target = bank->target;
894 int retval;
895 uint32_t reg32;
896
897 /* To lock the program memory, simply set the lock bit and lock PECR */
898
899 retval = target_read_u32(target, FLASH_PECR, &reg32);
900 if (retval != ERROR_OK)
901 return retval;
902
903 reg32 |= FLASH_PECR__PRGLOCK;
904 retval = target_write_u32(target, FLASH_PECR, reg32);
905 if (retval != ERROR_OK)
906 return retval;
907
908 retval = target_read_u32(target, FLASH_PECR, &reg32);
909 if (retval != ERROR_OK)
910 return retval;
911
912 reg32 |= FLASH_PECR__PELOCK;
913 retval = target_write_u32(target, FLASH_PECR, reg32);
914 if (retval != ERROR_OK)
915 return retval;
916
917 return ERROR_OK;
918 }
919
920 static int stm32lx_erase_sector(struct flash_bank *bank, int sector)
921 {
922 struct target *target = bank->target;
923 int retval;
924 uint32_t reg32;
925
926 /*
927 * To erase a sector (i.e. FLASH_PAGES_PER_SECTOR pages),
928 * first unlock the memory, loop over the pages of this sector
929 * and write 0x0 to its first word.
930 */
931
932 retval = stm32lx_unlock_program_memory(bank);
933 if (retval != ERROR_OK)
934 return retval;
935
936 for (int page = 0; page < FLASH_PAGES_PER_SECTOR; page++) {
937 reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE;
938 retval = target_write_u32(target, FLASH_PECR, reg32);
939 if (retval != ERROR_OK)
940 return retval;
941
942 retval = stm32lx_wait_until_bsy_clear(bank);
943 if (retval != ERROR_OK)
944 return retval;
945
946 uint32_t addr = bank->base + bank->sectors[sector].offset + (page
947 * FLASH_PAGE_SIZE);
948 retval = target_write_u32(target, addr, 0x0);
949 if (retval != ERROR_OK)
950 return retval;
951
952 retval = stm32lx_wait_until_bsy_clear(bank);
953 if (retval != ERROR_OK)
954 return retval;
955 }
956
957 retval = stm32lx_lock_program_memory(bank);
958 if (retval != ERROR_OK)
959 return retval;
960
961 return ERROR_OK;
962 }
963
964 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank)
965 {
966 struct target *target = bank->target;
967 uint32_t status;
968 int retval = ERROR_OK;
969 int timeout = 100;
970
971 /* wait for busy to clear */
972 for (;;) {
973 retval = target_read_u32(target, FLASH_SR, &status);
974 if (retval != ERROR_OK)
975 return retval;
976
977 if ((status & FLASH_SR__BSY) == 0)
978 break;
979 if (timeout-- <= 0) {
980 LOG_ERROR("timed out waiting for flash");
981 return ERROR_FAIL;
982 }
983 alive_sleep(1);
984 }
985
986 if (status & FLASH_SR__WRPERR) {
987 LOG_ERROR("access denied / write protected");
988 retval = ERROR_FAIL;
989 }
990
991 if (status & FLASH_SR__PGAERR) {
992 LOG_ERROR("invalid program address");
993 retval = ERROR_FAIL;
994 }
995
996 return retval;
997 }