flash/nor: consolidate flash protect/protect_check
[openocd.git] / src / flash / nor / stm32lx.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 by Clement Burin des Roziers *
9 * clement.burin-des-roziers@hikob.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
23 ***************************************************************************/
24
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "imp.h"
30 #include <helper/binarybuffer.h>
31 #include <target/algorithm.h>
32 #include <target/armv7m.h>
33 #include <target/cortex_m.h>
34
35 /* stm32lx flash register locations */
36
37 #define FLASH_ACR 0x00
38 #define FLASH_PECR 0x04
39 #define FLASH_PDKEYR 0x08
40 #define FLASH_PEKEYR 0x0C
41 #define FLASH_PRGKEYR 0x10
42 #define FLASH_OPTKEYR 0x14
43 #define FLASH_SR 0x18
44 #define FLASH_OBR 0x1C
45 #define FLASH_WRPR 0x20
46
47 /* FLASH_ACR bites */
48 #define FLASH_ACR__LATENCY (1<<0)
49 #define FLASH_ACR__PRFTEN (1<<1)
50 #define FLASH_ACR__ACC64 (1<<2)
51 #define FLASH_ACR__SLEEP_PD (1<<3)
52 #define FLASH_ACR__RUN_PD (1<<4)
53
54 /* FLASH_PECR bits */
55 #define FLASH_PECR__PELOCK (1<<0)
56 #define FLASH_PECR__PRGLOCK (1<<1)
57 #define FLASH_PECR__OPTLOCK (1<<2)
58 #define FLASH_PECR__PROG (1<<3)
59 #define FLASH_PECR__DATA (1<<4)
60 #define FLASH_PECR__FTDW (1<<8)
61 #define FLASH_PECR__ERASE (1<<9)
62 #define FLASH_PECR__FPRG (1<<10)
63 #define FLASH_PECR__EOPIE (1<<16)
64 #define FLASH_PECR__ERRIE (1<<17)
65 #define FLASH_PECR__OBL_LAUNCH (1<<18)
66
67 /* FLASH_SR bits */
68 #define FLASH_SR__BSY (1<<0)
69 #define FLASH_SR__EOP (1<<1)
70 #define FLASH_SR__ENDHV (1<<2)
71 #define FLASH_SR__READY (1<<3)
72 #define FLASH_SR__WRPERR (1<<8)
73 #define FLASH_SR__PGAERR (1<<9)
74 #define FLASH_SR__SIZERR (1<<10)
75 #define FLASH_SR__OPTVERR (1<<11)
76
77 /* Unlock keys */
78 #define PEKEY1 0x89ABCDEF
79 #define PEKEY2 0x02030405
80 #define PRGKEY1 0x8C9DAEBF
81 #define PRGKEY2 0x13141516
82 #define OPTKEY1 0xFBEAD9C8
83 #define OPTKEY2 0x24252627
84
85 /* other registers */
86 #define DBGMCU_IDCODE 0xE0042000
87 #define DBGMCU_IDCODE_L0 0x40015800
88
89 /* Constants */
90 #define FLASH_SECTOR_SIZE 4096
91 #define FLASH_BANK0_ADDRESS 0x08000000
92
93 /* option bytes */
94 #define OPTION_BYTES_ADDRESS 0x1FF80000
95
96 #define OPTION_BYTE_0_PR1 0xFFFF0000
97 #define OPTION_BYTE_0_PR0 0xFF5500AA
98
99 static int stm32lx_unlock_program_memory(struct flash_bank *bank);
100 static int stm32lx_lock_program_memory(struct flash_bank *bank);
101 static int stm32lx_enable_write_half_page(struct flash_bank *bank);
102 static int stm32lx_erase_sector(struct flash_bank *bank, int sector);
103 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank);
104 static int stm32lx_lock(struct flash_bank *bank);
105 static int stm32lx_unlock(struct flash_bank *bank);
106 static int stm32lx_mass_erase(struct flash_bank *bank);
107 static int stm32lx_wait_until_bsy_clear_timeout(struct flash_bank *bank, int timeout);
108 static int stm32lx_update_part_info(struct flash_bank *bank, uint16_t flash_size_in_kb);
109
110 struct stm32lx_rev {
111 uint16_t rev;
112 const char *str;
113 };
114
115 struct stm32lx_part_info {
116 uint16_t id;
117 const char *device_str;
118 const struct stm32lx_rev *revs;
119 size_t num_revs;
120 unsigned int page_size;
121 unsigned int pages_per_sector;
122 uint16_t max_flash_size_kb;
123 uint16_t first_bank_size_kb; /* used when has_dual_banks is true */
124 bool has_dual_banks;
125
126 uint32_t flash_base; /* Flash controller registers location */
127 uint32_t fsize_base; /* Location of FSIZE register */
128 };
129
130 struct stm32lx_flash_bank {
131 int probed;
132 uint32_t idcode;
133 uint32_t user_bank_size;
134 uint32_t flash_base;
135
136 struct stm32lx_part_info part_info;
137 };
138
139 static const struct stm32lx_rev stm32_416_revs[] = {
140 { 0x1000, "A" }, { 0x1008, "Y" }, { 0x1038, "W" }, { 0x1078, "V" },
141 };
142 static const struct stm32lx_rev stm32_417_revs[] = {
143 { 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" }, { 0x1038, "X" }
144 };
145 static const struct stm32lx_rev stm32_425_revs[] = {
146 { 0x1000, "A" }, { 0x2000, "B" }, { 0x2008, "Y" },
147 };
148 static const struct stm32lx_rev stm32_427_revs[] = {
149 { 0x1000, "A" }, { 0x1018, "Y" }, { 0x1038, "X" }, { 0x10f8, "V" },
150 };
151 static const struct stm32lx_rev stm32_429_revs[] = {
152 { 0x1000, "A" }, { 0x1018, "Z" },
153 };
154 static const struct stm32lx_rev stm32_436_revs[] = {
155 { 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" },
156 };
157 static const struct stm32lx_rev stm32_437_revs[] = {
158 { 0x1000, "A" },
159 };
160 static const struct stm32lx_rev stm32_447_revs[] = {
161 { 0x1000, "A" }, { 0x2000, "B" }, { 0x2008, "Z" },
162 };
163 static const struct stm32lx_rev stm32_457_revs[] = {
164 { 0x1000, "A" }, { 0x1008, "Z" },
165 };
166
167 static const struct stm32lx_part_info stm32lx_parts[] = {
168 {
169 .id = 0x416,
170 .revs = stm32_416_revs,
171 .num_revs = ARRAY_SIZE(stm32_416_revs),
172 .device_str = "STM32L1xx (Cat.1 - Low/Medium Density)",
173 .page_size = 256,
174 .pages_per_sector = 16,
175 .max_flash_size_kb = 128,
176 .has_dual_banks = false,
177 .flash_base = 0x40023C00,
178 .fsize_base = 0x1FF8004C,
179 },
180 {
181 .id = 0x417,
182 .revs = stm32_417_revs,
183 .num_revs = ARRAY_SIZE(stm32_417_revs),
184 .device_str = "STM32L0xx (Cat. 3)",
185 .page_size = 128,
186 .pages_per_sector = 32,
187 .max_flash_size_kb = 64,
188 .has_dual_banks = false,
189 .flash_base = 0x40022000,
190 .fsize_base = 0x1FF8007C,
191 },
192 {
193 .id = 0x425,
194 .revs = stm32_425_revs,
195 .num_revs = ARRAY_SIZE(stm32_425_revs),
196 .device_str = "STM32L0xx (Cat. 2)",
197 .page_size = 128,
198 .pages_per_sector = 32,
199 .max_flash_size_kb = 32,
200 .has_dual_banks = false,
201 .flash_base = 0x40022000,
202 .fsize_base = 0x1FF8007C,
203 },
204 {
205 .id = 0x427,
206 .revs = stm32_427_revs,
207 .num_revs = ARRAY_SIZE(stm32_427_revs),
208 .device_str = "STM32L1xx (Cat.3 - Medium+ Density)",
209 .page_size = 256,
210 .pages_per_sector = 16,
211 .max_flash_size_kb = 256,
212 .has_dual_banks = false,
213 .flash_base = 0x40023C00,
214 .fsize_base = 0x1FF800CC,
215 },
216 {
217 .id = 0x429,
218 .revs = stm32_429_revs,
219 .num_revs = ARRAY_SIZE(stm32_429_revs),
220 .device_str = "STM32L1xx (Cat.2)",
221 .page_size = 256,
222 .pages_per_sector = 16,
223 .max_flash_size_kb = 128,
224 .has_dual_banks = false,
225 .flash_base = 0x40023C00,
226 .fsize_base = 0x1FF8004C,
227 },
228 {
229 .id = 0x436,
230 .revs = stm32_436_revs,
231 .num_revs = ARRAY_SIZE(stm32_436_revs),
232 .device_str = "STM32L1xx (Cat.4/Cat.3 - Medium+/High Density)",
233 .page_size = 256,
234 .pages_per_sector = 16,
235 .max_flash_size_kb = 384,
236 .first_bank_size_kb = 192,
237 .has_dual_banks = true,
238 .flash_base = 0x40023C00,
239 .fsize_base = 0x1FF800CC,
240 },
241 {
242 .id = 0x437,
243 .revs = stm32_437_revs,
244 .num_revs = ARRAY_SIZE(stm32_437_revs),
245 .device_str = "STM32L1xx (Cat.5/Cat.6)",
246 .page_size = 256,
247 .pages_per_sector = 16,
248 .max_flash_size_kb = 512,
249 .first_bank_size_kb = 0, /* determined in runtime */
250 .has_dual_banks = true,
251 .flash_base = 0x40023C00,
252 .fsize_base = 0x1FF800CC,
253 },
254 {
255 .id = 0x447,
256 .revs = stm32_447_revs,
257 .num_revs = ARRAY_SIZE(stm32_447_revs),
258 .device_str = "STM32L0xx (Cat.5)",
259 .page_size = 128,
260 .pages_per_sector = 32,
261 .max_flash_size_kb = 192,
262 .first_bank_size_kb = 0, /* determined in runtime */
263 .has_dual_banks = false, /* determined in runtime */
264 .flash_base = 0x40022000,
265 .fsize_base = 0x1FF8007C,
266 },
267 {
268 .id = 0x457,
269 .revs = stm32_457_revs,
270 .num_revs = ARRAY_SIZE(stm32_457_revs),
271 .device_str = "STM32L0xx (Cat.1)",
272 .page_size = 128,
273 .pages_per_sector = 32,
274 .max_flash_size_kb = 16,
275 .has_dual_banks = false,
276 .flash_base = 0x40022000,
277 .fsize_base = 0x1FF8007C,
278 },
279 };
280
281 /* flash bank stm32lx <base> <size> 0 0 <target#>
282 */
283 FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command)
284 {
285 struct stm32lx_flash_bank *stm32lx_info;
286 if (CMD_ARGC < 6)
287 return ERROR_COMMAND_SYNTAX_ERROR;
288
289 /* Create the bank structure */
290 stm32lx_info = calloc(1, sizeof(*stm32lx_info));
291
292 /* Check allocation */
293 if (stm32lx_info == NULL) {
294 LOG_ERROR("failed to allocate bank structure");
295 return ERROR_FAIL;
296 }
297
298 bank->driver_priv = stm32lx_info;
299
300 stm32lx_info->probed = 0;
301 stm32lx_info->user_bank_size = bank->size;
302
303 /* the stm32l erased value is 0x00 */
304 bank->default_padded_value = bank->erased_value = 0x00;
305
306 return ERROR_OK;
307 }
308
309 COMMAND_HANDLER(stm32lx_handle_mass_erase_command)
310 {
311 int i;
312
313 if (CMD_ARGC < 1)
314 return ERROR_COMMAND_SYNTAX_ERROR;
315
316 struct flash_bank *bank;
317 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
318 if (ERROR_OK != retval)
319 return retval;
320
321 retval = stm32lx_mass_erase(bank);
322 if (retval == ERROR_OK) {
323 /* set all sectors as erased */
324 for (i = 0; i < bank->num_sectors; i++)
325 bank->sectors[i].is_erased = 1;
326
327 command_print(CMD_CTX, "stm32lx mass erase complete");
328 } else {
329 command_print(CMD_CTX, "stm32lx mass erase failed");
330 }
331
332 return retval;
333 }
334
335 COMMAND_HANDLER(stm32lx_handle_lock_command)
336 {
337 if (CMD_ARGC < 1)
338 return ERROR_COMMAND_SYNTAX_ERROR;
339
340 struct flash_bank *bank;
341 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
342 if (ERROR_OK != retval)
343 return retval;
344
345 retval = stm32lx_lock(bank);
346
347 if (retval == ERROR_OK)
348 command_print(CMD_CTX, "STM32Lx locked, takes effect after power cycle.");
349 else
350 command_print(CMD_CTX, "STM32Lx lock failed");
351
352 return retval;
353 }
354
355 COMMAND_HANDLER(stm32lx_handle_unlock_command)
356 {
357 if (CMD_ARGC < 1)
358 return ERROR_COMMAND_SYNTAX_ERROR;
359
360 struct flash_bank *bank;
361 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
362 if (ERROR_OK != retval)
363 return retval;
364
365 retval = stm32lx_unlock(bank);
366
367 if (retval == ERROR_OK)
368 command_print(CMD_CTX, "STM32Lx unlocked, takes effect after power cycle.");
369 else
370 command_print(CMD_CTX, "STM32Lx unlock failed");
371
372 return retval;
373 }
374
375 static int stm32lx_protect_check(struct flash_bank *bank)
376 {
377 int retval;
378 struct target *target = bank->target;
379 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
380
381 uint32_t wrpr;
382
383 /*
384 * Read the WRPR word, and check each bit (corresponding to each
385 * flash sector
386 */
387 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_WRPR,
388 &wrpr);
389 if (retval != ERROR_OK)
390 return retval;
391
392 for (int i = 0; i < bank->num_sectors; i++) {
393 if (wrpr & (1 << i))
394 bank->sectors[i].is_protected = 1;
395 else
396 bank->sectors[i].is_protected = 0;
397 }
398 return ERROR_OK;
399 }
400
401 static int stm32lx_erase(struct flash_bank *bank, int first, int last)
402 {
403 int retval;
404
405 /*
406 * It could be possible to do a mass erase if all sectors must be
407 * erased, but it is not implemented yet.
408 */
409
410 if (bank->target->state != TARGET_HALTED) {
411 LOG_ERROR("Target not halted");
412 return ERROR_TARGET_NOT_HALTED;
413 }
414
415 /*
416 * Loop over the selected sectors and erase them
417 */
418 for (int i = first; i <= last; i++) {
419 retval = stm32lx_erase_sector(bank, i);
420 if (retval != ERROR_OK)
421 return retval;
422 bank->sectors[i].is_erased = 1;
423 }
424 return ERROR_OK;
425 }
426
427 static int stm32lx_write_half_pages(struct flash_bank *bank, const uint8_t *buffer,
428 uint32_t offset, uint32_t count)
429 {
430 struct target *target = bank->target;
431 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
432
433 uint32_t hp_nb = stm32lx_info->part_info.page_size / 2;
434 uint32_t buffer_size = 16384;
435 struct working_area *write_algorithm;
436 struct working_area *source;
437 uint32_t address = bank->base + offset;
438
439 struct reg_param reg_params[3];
440 struct armv7m_algorithm armv7m_info;
441
442 int retval = ERROR_OK;
443
444 static const uint8_t stm32lx_flash_write_code[] = {
445 #include "../../../contrib/loaders/flash/stm32/stm32lx.inc"
446 };
447
448 /* Make sure we're performing a half-page aligned write. */
449 if (count % hp_nb) {
450 LOG_ERROR("The byte count must be %" PRIu32 "B-aligned but count is %" PRIi32 "B)", hp_nb, count);
451 return ERROR_FAIL;
452 }
453
454 /* flash write code */
455 if (target_alloc_working_area(target, sizeof(stm32lx_flash_write_code),
456 &write_algorithm) != ERROR_OK) {
457 LOG_DEBUG("no working area for block memory writes");
458 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
459 }
460
461 /* Write the flashing code */
462 retval = target_write_buffer(target,
463 write_algorithm->address,
464 sizeof(stm32lx_flash_write_code),
465 stm32lx_flash_write_code);
466 if (retval != ERROR_OK) {
467 target_free_working_area(target, write_algorithm);
468 return retval;
469 }
470
471 /* Allocate half pages memory */
472 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
473 if (buffer_size > 1024)
474 buffer_size -= 1024;
475 else
476 buffer_size /= 2;
477
478 if (buffer_size <= stm32lx_info->part_info.page_size) {
479 /* we already allocated the writing code, but failed to get a
480 * buffer, free the algorithm */
481 target_free_working_area(target, write_algorithm);
482
483 LOG_WARNING("no large enough working area available, can't do block memory writes");
484 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
485 }
486 }
487
488 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
489 armv7m_info.core_mode = ARM_MODE_THREAD;
490 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
491 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
492 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
493
494 /* Enable half-page write */
495 retval = stm32lx_enable_write_half_page(bank);
496 if (retval != ERROR_OK) {
497 target_free_working_area(target, source);
498 target_free_working_area(target, write_algorithm);
499
500 destroy_reg_param(&reg_params[0]);
501 destroy_reg_param(&reg_params[1]);
502 destroy_reg_param(&reg_params[2]);
503 return retval;
504 }
505
506 struct armv7m_common *armv7m = target_to_armv7m(target);
507 if (armv7m == NULL) {
508
509 /* something is very wrong if armv7m is NULL */
510 LOG_ERROR("unable to get armv7m target");
511 return retval;
512 }
513
514 /* save any DEMCR flags and configure target to catch any Hard Faults */
515 uint32_t demcr_save = armv7m->demcr;
516 armv7m->demcr = VC_HARDERR;
517
518 /* Loop while there are bytes to write */
519 while (count > 0) {
520 uint32_t this_count;
521 this_count = (count > buffer_size) ? buffer_size : count;
522
523 /* Write the next half pages */
524 retval = target_write_buffer(target, source->address, this_count, buffer);
525 if (retval != ERROR_OK)
526 break;
527
528 /* 4: Store useful information in the registers */
529 /* the destination address of the copy (R0) */
530 buf_set_u32(reg_params[0].value, 0, 32, address);
531 /* The source address of the copy (R1) */
532 buf_set_u32(reg_params[1].value, 0, 32, source->address);
533 /* The length of the copy (R2) */
534 buf_set_u32(reg_params[2].value, 0, 32, this_count / 4);
535
536 /* 5: Execute the bunch of code */
537 retval = target_run_algorithm(target, 0, NULL, sizeof(reg_params)
538 / sizeof(*reg_params), reg_params,
539 write_algorithm->address, 0, 10000, &armv7m_info);
540 if (retval != ERROR_OK)
541 break;
542
543 /* check for Hard Fault */
544 if (armv7m->exception_number == 3)
545 break;
546
547 /* 6: Wait while busy */
548 retval = stm32lx_wait_until_bsy_clear(bank);
549 if (retval != ERROR_OK)
550 break;
551
552 buffer += this_count;
553 address += this_count;
554 count -= this_count;
555 }
556
557 /* restore previous flags */
558 armv7m->demcr = demcr_save;
559
560 if (armv7m->exception_number == 3) {
561
562 /* the stm32l15x devices seem to have an issue when blank.
563 * if a ram loader is executed on a blank device it will
564 * Hard Fault, this issue does not happen for a already programmed device.
565 * A related issue is described in the stm32l151xx errata (Doc ID 17721 Rev 6 - 2.1.3).
566 * The workaround of handling the Hard Fault exception does work, but makes the
567 * loader more complicated, as a compromise we manually write the pages, programming time
568 * is reduced by 50% using this slower method.
569 */
570
571 LOG_WARNING("Couldn't use loader, falling back to page memory writes");
572
573 while (count > 0) {
574 uint32_t this_count;
575 this_count = (count > hp_nb) ? hp_nb : count;
576
577 /* Write the next half pages */
578 retval = target_write_buffer(target, address, this_count, buffer);
579 if (retval != ERROR_OK)
580 break;
581
582 /* Wait while busy */
583 retval = stm32lx_wait_until_bsy_clear(bank);
584 if (retval != ERROR_OK)
585 break;
586
587 buffer += this_count;
588 address += this_count;
589 count -= this_count;
590 }
591 }
592
593 if (retval == ERROR_OK)
594 retval = stm32lx_lock_program_memory(bank);
595
596 target_free_working_area(target, source);
597 target_free_working_area(target, write_algorithm);
598
599 destroy_reg_param(&reg_params[0]);
600 destroy_reg_param(&reg_params[1]);
601 destroy_reg_param(&reg_params[2]);
602
603 return retval;
604 }
605
606 static int stm32lx_write(struct flash_bank *bank, const uint8_t *buffer,
607 uint32_t offset, uint32_t count)
608 {
609 struct target *target = bank->target;
610 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
611
612 uint32_t hp_nb = stm32lx_info->part_info.page_size / 2;
613 uint32_t halfpages_number;
614 uint32_t bytes_remaining = 0;
615 uint32_t address = bank->base + offset;
616 uint32_t bytes_written = 0;
617 int retval, retval2;
618
619 if (bank->target->state != TARGET_HALTED) {
620 LOG_ERROR("Target not halted");
621 return ERROR_TARGET_NOT_HALTED;
622 }
623
624 if (offset & 0x3) {
625 LOG_ERROR("offset 0x%" PRIx32 " breaks required 4-byte alignment", offset);
626 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
627 }
628
629 retval = stm32lx_unlock_program_memory(bank);
630 if (retval != ERROR_OK)
631 return retval;
632
633 /* first we need to write any unaligned head bytes upto
634 * the next 128 byte page */
635
636 if (offset % hp_nb)
637 bytes_remaining = MIN(count, hp_nb - (offset % hp_nb));
638
639 while (bytes_remaining > 0) {
640 uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
641
642 /* copy remaining bytes into the write buffer */
643 uint32_t bytes_to_write = MIN(4, bytes_remaining);
644 memcpy(value, buffer + bytes_written, bytes_to_write);
645
646 retval = target_write_buffer(target, address, 4, value);
647 if (retval != ERROR_OK)
648 goto reset_pg_and_lock;
649
650 bytes_written += bytes_to_write;
651 bytes_remaining -= bytes_to_write;
652 address += 4;
653
654 retval = stm32lx_wait_until_bsy_clear(bank);
655 if (retval != ERROR_OK)
656 goto reset_pg_and_lock;
657 }
658
659 offset += bytes_written;
660 count -= bytes_written;
661
662 /* this should always pass this check here */
663 assert((offset % hp_nb) == 0);
664
665 /* calculate half pages */
666 halfpages_number = count / hp_nb;
667
668 if (halfpages_number) {
669 retval = stm32lx_write_half_pages(bank, buffer + bytes_written, offset, hp_nb * halfpages_number);
670 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
671 /* attempt slow memory writes */
672 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
673 halfpages_number = 0;
674 } else {
675 if (retval != ERROR_OK)
676 return ERROR_FAIL;
677 }
678 }
679
680 /* write any remaining bytes */
681 uint32_t page_bytes_written = hp_nb * halfpages_number;
682 bytes_written += page_bytes_written;
683 address += page_bytes_written;
684 bytes_remaining = count - page_bytes_written;
685
686 retval = stm32lx_unlock_program_memory(bank);
687 if (retval != ERROR_OK)
688 return retval;
689
690 while (bytes_remaining > 0) {
691 uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
692
693 /* copy remaining bytes into the write buffer */
694 uint32_t bytes_to_write = MIN(4, bytes_remaining);
695 memcpy(value, buffer + bytes_written, bytes_to_write);
696
697 retval = target_write_buffer(target, address, 4, value);
698 if (retval != ERROR_OK)
699 goto reset_pg_and_lock;
700
701 bytes_written += bytes_to_write;
702 bytes_remaining -= bytes_to_write;
703 address += 4;
704
705 retval = stm32lx_wait_until_bsy_clear(bank);
706 if (retval != ERROR_OK)
707 goto reset_pg_and_lock;
708 }
709
710 reset_pg_and_lock:
711 retval2 = stm32lx_lock_program_memory(bank);
712 if (retval == ERROR_OK)
713 retval = retval2;
714
715 return retval;
716 }
717
718 static int stm32lx_read_id_code(struct target *target, uint32_t *id)
719 {
720 struct armv7m_common *armv7m = target_to_armv7m(target);
721 int retval;
722 if (armv7m->arm.is_armv6m == true)
723 retval = target_read_u32(target, DBGMCU_IDCODE_L0, id);
724 else
725 /* read stm32 device id register */
726 retval = target_read_u32(target, DBGMCU_IDCODE, id);
727 return retval;
728 }
729
730 static int stm32lx_probe(struct flash_bank *bank)
731 {
732 struct target *target = bank->target;
733 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
734 int i;
735 uint16_t flash_size_in_kb;
736 uint32_t device_id;
737 uint32_t base_address = FLASH_BANK0_ADDRESS;
738 uint32_t second_bank_base;
739 unsigned int n;
740
741 stm32lx_info->probed = 0;
742
743 int retval = stm32lx_read_id_code(bank->target, &device_id);
744 if (retval != ERROR_OK)
745 return retval;
746
747 stm32lx_info->idcode = device_id;
748
749 LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id);
750
751 for (n = 0; n < ARRAY_SIZE(stm32lx_parts); n++) {
752 if ((device_id & 0xfff) == stm32lx_parts[n].id) {
753 stm32lx_info->part_info = stm32lx_parts[n];
754 break;
755 }
756 }
757
758 if (n == ARRAY_SIZE(stm32lx_parts)) {
759 LOG_WARNING("Cannot identify target as a STM32L family.");
760 return ERROR_FAIL;
761 } else {
762 LOG_INFO("Device: %s", stm32lx_info->part_info.device_str);
763 }
764
765 stm32lx_info->flash_base = stm32lx_info->part_info.flash_base;
766
767 /* Get the flash size from target. */
768 retval = target_read_u16(target, stm32lx_info->part_info.fsize_base,
769 &flash_size_in_kb);
770
771 /* 0x436 devices report their flash size as a 0 or 1 code indicating 384K
772 * or 256K, respectively. Please see RM0038 r8 or newer and refer to
773 * section 30.1.1. */
774 if (retval == ERROR_OK && (device_id & 0xfff) == 0x436) {
775 if (flash_size_in_kb == 0)
776 flash_size_in_kb = 384;
777 else if (flash_size_in_kb == 1)
778 flash_size_in_kb = 256;
779 }
780
781 /* 0x429 devices only use the lowest 8 bits of the flash size register */
782 if (retval == ERROR_OK && (device_id & 0xfff) == 0x429) {
783 flash_size_in_kb &= 0xff;
784 }
785
786 /* Failed reading flash size or flash size invalid (early silicon),
787 * default to max target family */
788 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
789 LOG_WARNING("STM32L flash size failed, probe inaccurate - assuming %dk flash",
790 stm32lx_info->part_info.max_flash_size_kb);
791 flash_size_in_kb = stm32lx_info->part_info.max_flash_size_kb;
792 } else if (flash_size_in_kb > stm32lx_info->part_info.max_flash_size_kb) {
793 LOG_WARNING("STM32L probed flash size assumed incorrect since FLASH_SIZE=%dk > %dk, - assuming %dk flash",
794 flash_size_in_kb, stm32lx_info->part_info.max_flash_size_kb,
795 stm32lx_info->part_info.max_flash_size_kb);
796 flash_size_in_kb = stm32lx_info->part_info.max_flash_size_kb;
797 }
798
799 /* Overwrite default dual-bank configuration */
800 retval = stm32lx_update_part_info(bank, flash_size_in_kb);
801 if (retval != ERROR_OK)
802 return ERROR_FAIL;
803
804 if (stm32lx_info->part_info.has_dual_banks) {
805 /* Use the configured base address to determine if this is the first or second flash bank.
806 * Verify that the base address is reasonably correct and determine the flash bank size
807 */
808 second_bank_base = base_address +
809 stm32lx_info->part_info.first_bank_size_kb * 1024;
810 if (bank->base == second_bank_base || !bank->base) {
811 /* This is the second bank */
812 base_address = second_bank_base;
813 flash_size_in_kb = flash_size_in_kb -
814 stm32lx_info->part_info.first_bank_size_kb;
815 } else if (bank->base == base_address) {
816 /* This is the first bank */
817 flash_size_in_kb = stm32lx_info->part_info.first_bank_size_kb;
818 } else {
819 LOG_WARNING("STM32L flash bank base address config is incorrect."
820 " 0x%" PRIx32 " but should rather be 0x%" PRIx32 " or 0x%" PRIx32,
821 bank->base, base_address, second_bank_base);
822 return ERROR_FAIL;
823 }
824 LOG_INFO("STM32L flash has dual banks. Bank (%d) size is %dkb, base address is 0x%" PRIx32,
825 bank->bank_number, flash_size_in_kb, base_address);
826 } else {
827 LOG_INFO("STM32L flash size is %dkb, base address is 0x%" PRIx32, flash_size_in_kb, base_address);
828 }
829
830 /* if the user sets the size manually then ignore the probed value
831 * this allows us to work around devices that have a invalid flash size register value */
832 if (stm32lx_info->user_bank_size) {
833 flash_size_in_kb = stm32lx_info->user_bank_size / 1024;
834 LOG_INFO("ignoring flash probed value, using configured bank size: %dkbytes", flash_size_in_kb);
835 }
836
837 /* calculate numbers of sectors (4kB per sector) */
838 int num_sectors = (flash_size_in_kb * 1024) / FLASH_SECTOR_SIZE;
839
840 if (bank->sectors) {
841 free(bank->sectors);
842 bank->sectors = NULL;
843 }
844
845 bank->size = flash_size_in_kb * 1024;
846 bank->base = base_address;
847 bank->num_sectors = num_sectors;
848 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
849 if (bank->sectors == NULL) {
850 LOG_ERROR("failed to allocate bank sectors");
851 return ERROR_FAIL;
852 }
853
854 for (i = 0; i < num_sectors; i++) {
855 bank->sectors[i].offset = i * FLASH_SECTOR_SIZE;
856 bank->sectors[i].size = FLASH_SECTOR_SIZE;
857 bank->sectors[i].is_erased = -1;
858 bank->sectors[i].is_protected = -1;
859 }
860
861 stm32lx_info->probed = 1;
862
863 return ERROR_OK;
864 }
865
866 static int stm32lx_auto_probe(struct flash_bank *bank)
867 {
868 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
869
870 if (stm32lx_info->probed)
871 return ERROR_OK;
872
873 return stm32lx_probe(bank);
874 }
875
876 /* This method must return a string displaying information about the bank */
877 static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size)
878 {
879 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
880 const struct stm32lx_part_info *info = &stm32lx_info->part_info;
881 uint16_t rev_id = stm32lx_info->idcode >> 16;
882 const char *rev_str = NULL;
883
884 if (!stm32lx_info->probed) {
885 int retval = stm32lx_probe(bank);
886 if (retval != ERROR_OK) {
887 snprintf(buf, buf_size,
888 "Unable to find bank information.");
889 return retval;
890 }
891 }
892
893 for (unsigned int i = 0; i < info->num_revs; i++)
894 if (rev_id == info->revs[i].rev)
895 rev_str = info->revs[i].str;
896
897 if (rev_str != NULL) {
898 snprintf(buf, buf_size,
899 "%s - Rev: %s",
900 info->device_str, rev_str);
901 } else {
902 snprintf(buf, buf_size,
903 "%s - Rev: unknown (0x%04x)",
904 info->device_str, rev_id);
905 }
906
907 return ERROR_OK;
908 }
909
910 static const struct command_registration stm32lx_exec_command_handlers[] = {
911 {
912 .name = "mass_erase",
913 .handler = stm32lx_handle_mass_erase_command,
914 .mode = COMMAND_EXEC,
915 .usage = "bank_id",
916 .help = "Erase entire flash device. including available EEPROM",
917 },
918 {
919 .name = "lock",
920 .handler = stm32lx_handle_lock_command,
921 .mode = COMMAND_EXEC,
922 .usage = "bank_id",
923 .help = "Increase the readout protection to Level 1.",
924 },
925 {
926 .name = "unlock",
927 .handler = stm32lx_handle_unlock_command,
928 .mode = COMMAND_EXEC,
929 .usage = "bank_id",
930 .help = "Lower the readout protection from Level 1 to 0.",
931 },
932 COMMAND_REGISTRATION_DONE
933 };
934
935 static const struct command_registration stm32lx_command_handlers[] = {
936 {
937 .name = "stm32lx",
938 .mode = COMMAND_ANY,
939 .help = "stm32lx flash command group",
940 .usage = "",
941 .chain = stm32lx_exec_command_handlers,
942 },
943 COMMAND_REGISTRATION_DONE
944 };
945
946 struct flash_driver stm32lx_flash = {
947 .name = "stm32lx",
948 .commands = stm32lx_command_handlers,
949 .flash_bank_command = stm32lx_flash_bank_command,
950 .erase = stm32lx_erase,
951 .write = stm32lx_write,
952 .read = default_flash_read,
953 .probe = stm32lx_probe,
954 .auto_probe = stm32lx_auto_probe,
955 .erase_check = default_flash_blank_check,
956 .protect_check = stm32lx_protect_check,
957 .info = stm32lx_get_info,
958 .free_driver_priv = default_flash_free_driver_priv,
959 };
960
961 /* Static methods implementation */
962 static int stm32lx_unlock_program_memory(struct flash_bank *bank)
963 {
964 struct target *target = bank->target;
965 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
966 int retval;
967 uint32_t reg32;
968
969 /*
970 * Unlocking the program memory is done by unlocking the PECR,
971 * then by writing the 2 PRGKEY to the PRGKEYR register
972 */
973
974 /* check flash is not already unlocked */
975 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
976 &reg32);
977 if (retval != ERROR_OK)
978 return retval;
979
980 if ((reg32 & FLASH_PECR__PRGLOCK) == 0)
981 return ERROR_OK;
982
983 /* To unlock the PECR write the 2 PEKEY to the PEKEYR register */
984 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR,
985 PEKEY1);
986 if (retval != ERROR_OK)
987 return retval;
988
989 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR,
990 PEKEY2);
991 if (retval != ERROR_OK)
992 return retval;
993
994 /* Make sure it worked */
995 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
996 &reg32);
997 if (retval != ERROR_OK)
998 return retval;
999
1000 if (reg32 & FLASH_PECR__PELOCK) {
1001 LOG_ERROR("PELOCK is not cleared :(");
1002 return ERROR_FLASH_OPERATION_FAILED;
1003 }
1004
1005 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR,
1006 PRGKEY1);
1007 if (retval != ERROR_OK)
1008 return retval;
1009 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR,
1010 PRGKEY2);
1011 if (retval != ERROR_OK)
1012 return retval;
1013
1014 /* Make sure it worked */
1015 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1016 &reg32);
1017 if (retval != ERROR_OK)
1018 return retval;
1019
1020 if (reg32 & FLASH_PECR__PRGLOCK) {
1021 LOG_ERROR("PRGLOCK is not cleared :(");
1022 return ERROR_FLASH_OPERATION_FAILED;
1023 }
1024
1025 return ERROR_OK;
1026 }
1027
1028 static int stm32lx_enable_write_half_page(struct flash_bank *bank)
1029 {
1030 struct target *target = bank->target;
1031 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1032 int retval;
1033 uint32_t reg32;
1034
1035 /**
1036 * Unlock the program memory, then set the FPRG bit in the PECR register.
1037 */
1038 retval = stm32lx_unlock_program_memory(bank);
1039 if (retval != ERROR_OK)
1040 return retval;
1041
1042 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1043 &reg32);
1044 if (retval != ERROR_OK)
1045 return retval;
1046
1047 reg32 |= FLASH_PECR__FPRG;
1048 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1049 reg32);
1050 if (retval != ERROR_OK)
1051 return retval;
1052
1053 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1054 &reg32);
1055 if (retval != ERROR_OK)
1056 return retval;
1057
1058 reg32 |= FLASH_PECR__PROG;
1059 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1060 reg32);
1061
1062 return retval;
1063 }
1064
1065 static int stm32lx_lock_program_memory(struct flash_bank *bank)
1066 {
1067 struct target *target = bank->target;
1068 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1069 int retval;
1070 uint32_t reg32;
1071
1072 /* To lock the program memory, simply set the lock bit and lock PECR */
1073
1074 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1075 &reg32);
1076 if (retval != ERROR_OK)
1077 return retval;
1078
1079 reg32 |= FLASH_PECR__PRGLOCK;
1080 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1081 reg32);
1082 if (retval != ERROR_OK)
1083 return retval;
1084
1085 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1086 &reg32);
1087 if (retval != ERROR_OK)
1088 return retval;
1089
1090 reg32 |= FLASH_PECR__PELOCK;
1091 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1092 reg32);
1093 if (retval != ERROR_OK)
1094 return retval;
1095
1096 return ERROR_OK;
1097 }
1098
1099 static int stm32lx_erase_sector(struct flash_bank *bank, int sector)
1100 {
1101 struct target *target = bank->target;
1102 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1103 int retval;
1104 uint32_t reg32;
1105
1106 /*
1107 * To erase a sector (i.e. stm32lx_info->part_info.pages_per_sector pages),
1108 * first unlock the memory, loop over the pages of this sector
1109 * and write 0x0 to its first word.
1110 */
1111
1112 retval = stm32lx_unlock_program_memory(bank);
1113 if (retval != ERROR_OK)
1114 return retval;
1115
1116 for (int page = 0; page < (int)stm32lx_info->part_info.pages_per_sector;
1117 page++) {
1118 reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE;
1119 retval = target_write_u32(target,
1120 stm32lx_info->flash_base + FLASH_PECR, reg32);
1121 if (retval != ERROR_OK)
1122 return retval;
1123
1124 retval = stm32lx_wait_until_bsy_clear(bank);
1125 if (retval != ERROR_OK)
1126 return retval;
1127
1128 uint32_t addr = bank->base + bank->sectors[sector].offset + (page
1129 * stm32lx_info->part_info.page_size);
1130 retval = target_write_u32(target, addr, 0x0);
1131 if (retval != ERROR_OK)
1132 return retval;
1133
1134 retval = stm32lx_wait_until_bsy_clear(bank);
1135 if (retval != ERROR_OK)
1136 return retval;
1137 }
1138
1139 retval = stm32lx_lock_program_memory(bank);
1140 if (retval != ERROR_OK)
1141 return retval;
1142
1143 return ERROR_OK;
1144 }
1145
1146 static inline int stm32lx_get_flash_status(struct flash_bank *bank, uint32_t *status)
1147 {
1148 struct target *target = bank->target;
1149 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1150
1151 return target_read_u32(target, stm32lx_info->flash_base + FLASH_SR, status);
1152 }
1153
1154 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank)
1155 {
1156 return stm32lx_wait_until_bsy_clear_timeout(bank, 100);
1157 }
1158
1159 static int stm32lx_unlock_options_bytes(struct flash_bank *bank)
1160 {
1161 struct target *target = bank->target;
1162 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1163 int retval;
1164 uint32_t reg32;
1165
1166 /*
1167 * Unlocking the options bytes is done by unlocking the PECR,
1168 * then by writing the 2 FLASH_PEKEYR to the FLASH_OPTKEYR register
1169 */
1170
1171 /* check flash is not already unlocked */
1172 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, &reg32);
1173 if (retval != ERROR_OK)
1174 return retval;
1175
1176 if ((reg32 & FLASH_PECR__OPTLOCK) == 0)
1177 return ERROR_OK;
1178
1179 if ((reg32 & FLASH_PECR__PELOCK) != 0) {
1180
1181 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY1);
1182 if (retval != ERROR_OK)
1183 return retval;
1184
1185 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY2);
1186 if (retval != ERROR_OK)
1187 return retval;
1188 }
1189
1190 /* To unlock the PECR write the 2 OPTKEY to the FLASH_OPTKEYR register */
1191 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY1);
1192 if (retval != ERROR_OK)
1193 return retval;
1194
1195 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY2);
1196 if (retval != ERROR_OK)
1197 return retval;
1198
1199 return ERROR_OK;
1200 }
1201
1202 static int stm32lx_wait_until_bsy_clear_timeout(struct flash_bank *bank, int timeout)
1203 {
1204 struct target *target = bank->target;
1205 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1206 uint32_t status;
1207 int retval = ERROR_OK;
1208
1209 /* wait for busy to clear */
1210 for (;;) {
1211 retval = stm32lx_get_flash_status(bank, &status);
1212 if (retval != ERROR_OK)
1213 return retval;
1214
1215 LOG_DEBUG("status: 0x%" PRIx32 "", status);
1216 if ((status & FLASH_SR__BSY) == 0)
1217 break;
1218
1219 if (timeout-- <= 0) {
1220 LOG_ERROR("timed out waiting for flash");
1221 return ERROR_FAIL;
1222 }
1223 alive_sleep(1);
1224 }
1225
1226 if (status & FLASH_SR__WRPERR) {
1227 LOG_ERROR("access denied / write protected");
1228 retval = ERROR_FAIL;
1229 }
1230
1231 if (status & FLASH_SR__PGAERR) {
1232 LOG_ERROR("invalid program address");
1233 retval = ERROR_FAIL;
1234 }
1235
1236 /* Clear but report errors */
1237 if (status & FLASH_SR__OPTVERR) {
1238 /* If this operation fails, we ignore it and report the original retval */
1239 target_write_u32(target, stm32lx_info->flash_base + FLASH_SR, status & FLASH_SR__OPTVERR);
1240 }
1241
1242 return retval;
1243 }
1244
1245 static int stm32lx_obl_launch(struct flash_bank *bank)
1246 {
1247 struct target *target = bank->target;
1248 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1249 int retval;
1250
1251 /* This will fail as the target gets immediately rebooted */
1252 target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1253 FLASH_PECR__OBL_LAUNCH);
1254
1255 size_t tries = 10;
1256 do {
1257 target_halt(target);
1258 retval = target_poll(target);
1259 } while (--tries > 0 &&
1260 (retval != ERROR_OK || target->state != TARGET_HALTED));
1261
1262 return tries ? ERROR_OK : ERROR_FAIL;
1263 }
1264
1265 static int stm32lx_lock(struct flash_bank *bank)
1266 {
1267 int retval;
1268 struct target *target = bank->target;
1269
1270 if (target->state != TARGET_HALTED) {
1271 LOG_ERROR("Target not halted");
1272 return ERROR_TARGET_NOT_HALTED;
1273 }
1274
1275 retval = stm32lx_unlock_options_bytes(bank);
1276 if (retval != ERROR_OK)
1277 return retval;
1278
1279 /* set the RDP protection level to 1 */
1280 retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR1);
1281 if (retval != ERROR_OK)
1282 return retval;
1283
1284 return ERROR_OK;
1285 }
1286
1287 static int stm32lx_unlock(struct flash_bank *bank)
1288 {
1289 int retval;
1290 struct target *target = bank->target;
1291
1292 if (target->state != TARGET_HALTED) {
1293 LOG_ERROR("Target not halted");
1294 return ERROR_TARGET_NOT_HALTED;
1295 }
1296
1297 retval = stm32lx_unlock_options_bytes(bank);
1298 if (retval != ERROR_OK)
1299 return retval;
1300
1301 /* set the RDP protection level to 0 */
1302 retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR0);
1303 if (retval != ERROR_OK)
1304 return retval;
1305
1306 retval = stm32lx_wait_until_bsy_clear_timeout(bank, 30000);
1307 if (retval != ERROR_OK)
1308 return retval;
1309
1310 return ERROR_OK;
1311 }
1312
1313 static int stm32lx_mass_erase(struct flash_bank *bank)
1314 {
1315 int retval;
1316 struct target *target = bank->target;
1317 struct stm32lx_flash_bank *stm32lx_info = NULL;
1318 uint32_t reg32;
1319
1320 if (target->state != TARGET_HALTED) {
1321 LOG_ERROR("Target not halted");
1322 return ERROR_TARGET_NOT_HALTED;
1323 }
1324
1325 stm32lx_info = bank->driver_priv;
1326
1327 retval = stm32lx_lock(bank);
1328 if (retval != ERROR_OK)
1329 return retval;
1330
1331 retval = stm32lx_obl_launch(bank);
1332 if (retval != ERROR_OK)
1333 return retval;
1334
1335 retval = stm32lx_unlock(bank);
1336 if (retval != ERROR_OK)
1337 return retval;
1338
1339 retval = stm32lx_obl_launch(bank);
1340 if (retval != ERROR_OK)
1341 return retval;
1342
1343 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, &reg32);
1344 if (retval != ERROR_OK)
1345 return retval;
1346
1347 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, reg32 | FLASH_PECR__OPTLOCK);
1348 if (retval != ERROR_OK)
1349 return retval;
1350
1351 return ERROR_OK;
1352 }
1353
1354 static int stm32lx_update_part_info(struct flash_bank *bank, uint16_t flash_size_in_kb)
1355 {
1356 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1357
1358 switch (stm32lx_info->part_info.id) {
1359 case 0x447: /* STM32L0xx (Cat.5) devices */
1360 if (flash_size_in_kb == 192 || flash_size_in_kb == 128) {
1361 stm32lx_info->part_info.first_bank_size_kb = flash_size_in_kb / 2;
1362 stm32lx_info->part_info.has_dual_banks = true;
1363 }
1364 break;
1365 case 0x437: /* STM32L1xx (Cat.5/Cat.6) */
1366 stm32lx_info->part_info.first_bank_size_kb = flash_size_in_kb / 2;
1367 break;
1368 }
1369
1370 return ERROR_OK;
1371 }