0c2fddc92004a3d6eca5cbfd8fb40d05eb7c873f
[openocd.git] / src / flash / nor / stm32lx.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 by Clement Burin des Roziers *
9 * clement.burin-des-roziers@hikob.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
23 ***************************************************************************/
24
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "imp.h"
30 #include <helper/binarybuffer.h>
31 #include <target/algorithm.h>
32 #include <target/armv7m.h>
33 #include <target/cortex_m.h>
34
35 /* stm32lx flash register locations */
36
37 #define FLASH_ACR 0x00
38 #define FLASH_PECR 0x04
39 #define FLASH_PDKEYR 0x08
40 #define FLASH_PEKEYR 0x0C
41 #define FLASH_PRGKEYR 0x10
42 #define FLASH_OPTKEYR 0x14
43 #define FLASH_SR 0x18
44 #define FLASH_OBR 0x1C
45 #define FLASH_WRPR 0x20
46
47 /* FLASH_ACR bites */
48 #define FLASH_ACR__LATENCY (1<<0)
49 #define FLASH_ACR__PRFTEN (1<<1)
50 #define FLASH_ACR__ACC64 (1<<2)
51 #define FLASH_ACR__SLEEP_PD (1<<3)
52 #define FLASH_ACR__RUN_PD (1<<4)
53
54 /* FLASH_PECR bits */
55 #define FLASH_PECR__PELOCK (1<<0)
56 #define FLASH_PECR__PRGLOCK (1<<1)
57 #define FLASH_PECR__OPTLOCK (1<<2)
58 #define FLASH_PECR__PROG (1<<3)
59 #define FLASH_PECR__DATA (1<<4)
60 #define FLASH_PECR__FTDW (1<<8)
61 #define FLASH_PECR__ERASE (1<<9)
62 #define FLASH_PECR__FPRG (1<<10)
63 #define FLASH_PECR__EOPIE (1<<16)
64 #define FLASH_PECR__ERRIE (1<<17)
65 #define FLASH_PECR__OBL_LAUNCH (1<<18)
66
67 /* FLASH_SR bits */
68 #define FLASH_SR__BSY (1<<0)
69 #define FLASH_SR__EOP (1<<1)
70 #define FLASH_SR__ENDHV (1<<2)
71 #define FLASH_SR__READY (1<<3)
72 #define FLASH_SR__WRPERR (1<<8)
73 #define FLASH_SR__PGAERR (1<<9)
74 #define FLASH_SR__SIZERR (1<<10)
75 #define FLASH_SR__OPTVERR (1<<11)
76
77 /* Unlock keys */
78 #define PEKEY1 0x89ABCDEF
79 #define PEKEY2 0x02030405
80 #define PRGKEY1 0x8C9DAEBF
81 #define PRGKEY2 0x13141516
82 #define OPTKEY1 0xFBEAD9C8
83 #define OPTKEY2 0x24252627
84
85 /* other registers */
86 #define DBGMCU_IDCODE 0xE0042000
87 #define DBGMCU_IDCODE_L0 0x40015800
88
89 /* Constants */
90 #define FLASH_SECTOR_SIZE 4096
91 #define FLASH_BANK0_ADDRESS 0x08000000
92
93 /* option bytes */
94 #define OPTION_BYTES_ADDRESS 0x1FF80000
95
96 #define OPTION_BYTE_0_PR1 0xFFFF0000
97 #define OPTION_BYTE_0_PR0 0xFF5500AA
98
99 static int stm32lx_unlock_program_memory(struct flash_bank *bank);
100 static int stm32lx_lock_program_memory(struct flash_bank *bank);
101 static int stm32lx_enable_write_half_page(struct flash_bank *bank);
102 static int stm32lx_erase_sector(struct flash_bank *bank, int sector);
103 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank);
104 static int stm32lx_lock(struct flash_bank *bank);
105 static int stm32lx_unlock(struct flash_bank *bank);
106 static int stm32lx_mass_erase(struct flash_bank *bank);
107 static int stm32lx_wait_until_bsy_clear_timeout(struct flash_bank *bank, int timeout);
108 static int stm32lx_update_part_info(struct flash_bank *bank, uint16_t flash_size_in_kb);
109
110 struct stm32lx_rev {
111 uint16_t rev;
112 const char *str;
113 };
114
115 struct stm32lx_part_info {
116 uint16_t id;
117 const char *device_str;
118 const struct stm32lx_rev *revs;
119 size_t num_revs;
120 unsigned int page_size;
121 unsigned int pages_per_sector;
122 uint16_t max_flash_size_kb;
123 uint16_t first_bank_size_kb; /* used when has_dual_banks is true */
124 bool has_dual_banks;
125
126 uint32_t flash_base; /* Flash controller registers location */
127 uint32_t fsize_base; /* Location of FSIZE register */
128 };
129
130 struct stm32lx_flash_bank {
131 int probed;
132 uint32_t idcode;
133 uint32_t user_bank_size;
134 uint32_t flash_base;
135
136 struct stm32lx_part_info part_info;
137 };
138
139 static const struct stm32lx_rev stm32_416_revs[] = {
140 { 0x1000, "A" }, { 0x1008, "Y" }, { 0x1038, "W" }, { 0x1078, "V" },
141 };
142 static const struct stm32lx_rev stm32_417_revs[] = {
143 { 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" }, { 0x1038, "X" }
144 };
145 static const struct stm32lx_rev stm32_425_revs[] = {
146 { 0x1000, "A" }, { 0x2000, "B" }, { 0x2008, "Y" },
147 };
148 static const struct stm32lx_rev stm32_427_revs[] = {
149 { 0x1000, "A" }, { 0x1018, "Y" }, { 0x1038, "X" },
150 };
151 static const struct stm32lx_rev stm32_429_revs[] = {
152 { 0x1000, "A" }, { 0x1018, "Z" },
153 };
154 static const struct stm32lx_rev stm32_436_revs[] = {
155 { 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" },
156 };
157 static const struct stm32lx_rev stm32_437_revs[] = {
158 { 0x1000, "A" },
159 };
160 static const struct stm32lx_rev stm32_447_revs[] = {
161 { 0x1000, "A" }, { 0x2000, "B" }, { 0x2008, "Z" },
162 };
163 static const struct stm32lx_rev stm32_457_revs[] = {
164 { 0x1000, "A" }, { 0x1008, "Z" },
165 };
166
167 static const struct stm32lx_part_info stm32lx_parts[] = {
168 {
169 .id = 0x416,
170 .revs = stm32_416_revs,
171 .num_revs = ARRAY_SIZE(stm32_416_revs),
172 .device_str = "STM32L1xx (Cat.1 - Low/Medium Density)",
173 .page_size = 256,
174 .pages_per_sector = 16,
175 .max_flash_size_kb = 128,
176 .has_dual_banks = false,
177 .flash_base = 0x40023C00,
178 .fsize_base = 0x1FF8004C,
179 },
180 {
181 .id = 0x417,
182 .revs = stm32_417_revs,
183 .num_revs = ARRAY_SIZE(stm32_417_revs),
184 .device_str = "STM32L0xx (Cat. 3)",
185 .page_size = 128,
186 .pages_per_sector = 32,
187 .max_flash_size_kb = 64,
188 .has_dual_banks = false,
189 .flash_base = 0x40022000,
190 .fsize_base = 0x1FF8007C,
191 },
192 {
193 .id = 0x425,
194 .revs = stm32_425_revs,
195 .num_revs = ARRAY_SIZE(stm32_425_revs),
196 .device_str = "STM32L0xx (Cat. 2)",
197 .page_size = 128,
198 .pages_per_sector = 32,
199 .max_flash_size_kb = 32,
200 .has_dual_banks = false,
201 .flash_base = 0x40022000,
202 .fsize_base = 0x1FF8007C,
203 },
204 {
205 .id = 0x427,
206 .revs = stm32_427_revs,
207 .num_revs = ARRAY_SIZE(stm32_427_revs),
208 .device_str = "STM32L1xx (Cat.3 - Medium+ Density)",
209 .page_size = 256,
210 .pages_per_sector = 16,
211 .max_flash_size_kb = 256,
212 .has_dual_banks = false,
213 .flash_base = 0x40023C00,
214 .fsize_base = 0x1FF800CC,
215 },
216 {
217 .id = 0x429,
218 .revs = stm32_429_revs,
219 .num_revs = ARRAY_SIZE(stm32_429_revs),
220 .device_str = "STM32L1xx (Cat.2)",
221 .page_size = 256,
222 .pages_per_sector = 16,
223 .max_flash_size_kb = 128,
224 .has_dual_banks = false,
225 .flash_base = 0x40023C00,
226 .fsize_base = 0x1FF8004C,
227 },
228 {
229 .id = 0x436,
230 .revs = stm32_436_revs,
231 .num_revs = ARRAY_SIZE(stm32_436_revs),
232 .device_str = "STM32L1xx (Cat.4/Cat.3 - Medium+/High Density)",
233 .page_size = 256,
234 .pages_per_sector = 16,
235 .max_flash_size_kb = 384,
236 .first_bank_size_kb = 192,
237 .has_dual_banks = true,
238 .flash_base = 0x40023C00,
239 .fsize_base = 0x1FF800CC,
240 },
241 {
242 .id = 0x437,
243 .revs = stm32_437_revs,
244 .num_revs = ARRAY_SIZE(stm32_437_revs),
245 .device_str = "STM32L1xx (Cat.5/Cat.6)",
246 .page_size = 256,
247 .pages_per_sector = 16,
248 .max_flash_size_kb = 512,
249 .first_bank_size_kb = 0, /* determined in runtime */
250 .has_dual_banks = true,
251 .flash_base = 0x40023C00,
252 .fsize_base = 0x1FF800CC,
253 },
254 {
255 .id = 0x447,
256 .revs = stm32_447_revs,
257 .num_revs = ARRAY_SIZE(stm32_447_revs),
258 .device_str = "STM32L0xx (Cat.5)",
259 .page_size = 128,
260 .pages_per_sector = 32,
261 .max_flash_size_kb = 192,
262 .first_bank_size_kb = 0, /* determined in runtime */
263 .has_dual_banks = false, /* determined in runtime */
264 .flash_base = 0x40022000,
265 .fsize_base = 0x1FF8007C,
266 },
267 {
268 .id = 0x457,
269 .revs = stm32_457_revs,
270 .num_revs = ARRAY_SIZE(stm32_457_revs),
271 .device_str = "STM32L0xx (Cat.1)",
272 .page_size = 128,
273 .pages_per_sector = 32,
274 .max_flash_size_kb = 16,
275 .has_dual_banks = false,
276 .flash_base = 0x40022000,
277 .fsize_base = 0x1FF8007C,
278 },
279 };
280
281 /* flash bank stm32lx <base> <size> 0 0 <target#>
282 */
283 FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command)
284 {
285 struct stm32lx_flash_bank *stm32lx_info;
286 if (CMD_ARGC < 6)
287 return ERROR_COMMAND_SYNTAX_ERROR;
288
289 /* Create the bank structure */
290 stm32lx_info = calloc(1, sizeof(*stm32lx_info));
291
292 /* Check allocation */
293 if (stm32lx_info == NULL) {
294 LOG_ERROR("failed to allocate bank structure");
295 return ERROR_FAIL;
296 }
297
298 bank->driver_priv = stm32lx_info;
299
300 stm32lx_info->probed = 0;
301 stm32lx_info->user_bank_size = bank->size;
302
303 /* the stm32l erased value is 0x00 */
304 bank->default_padded_value = bank->erased_value = 0x00;
305
306 return ERROR_OK;
307 }
308
309 COMMAND_HANDLER(stm32lx_handle_mass_erase_command)
310 {
311 int i;
312
313 if (CMD_ARGC < 1)
314 return ERROR_COMMAND_SYNTAX_ERROR;
315
316 struct flash_bank *bank;
317 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
318 if (ERROR_OK != retval)
319 return retval;
320
321 retval = stm32lx_mass_erase(bank);
322 if (retval == ERROR_OK) {
323 /* set all sectors as erased */
324 for (i = 0; i < bank->num_sectors; i++)
325 bank->sectors[i].is_erased = 1;
326
327 command_print(CMD_CTX, "stm32lx mass erase complete");
328 } else {
329 command_print(CMD_CTX, "stm32lx mass erase failed");
330 }
331
332 return retval;
333 }
334
335 COMMAND_HANDLER(stm32lx_handle_lock_command)
336 {
337 if (CMD_ARGC < 1)
338 return ERROR_COMMAND_SYNTAX_ERROR;
339
340 struct flash_bank *bank;
341 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
342 if (ERROR_OK != retval)
343 return retval;
344
345 retval = stm32lx_lock(bank);
346
347 if (retval == ERROR_OK)
348 command_print(CMD_CTX, "STM32Lx locked, takes effect after power cycle.");
349 else
350 command_print(CMD_CTX, "STM32Lx lock failed");
351
352 return retval;
353 }
354
355 COMMAND_HANDLER(stm32lx_handle_unlock_command)
356 {
357 if (CMD_ARGC < 1)
358 return ERROR_COMMAND_SYNTAX_ERROR;
359
360 struct flash_bank *bank;
361 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
362 if (ERROR_OK != retval)
363 return retval;
364
365 retval = stm32lx_unlock(bank);
366
367 if (retval == ERROR_OK)
368 command_print(CMD_CTX, "STM32Lx unlocked, takes effect after power cycle.");
369 else
370 command_print(CMD_CTX, "STM32Lx unlock failed");
371
372 return retval;
373 }
374
375 static int stm32lx_protect_check(struct flash_bank *bank)
376 {
377 int retval;
378 struct target *target = bank->target;
379 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
380
381 uint32_t wrpr;
382
383 /*
384 * Read the WRPR word, and check each bit (corresponding to each
385 * flash sector
386 */
387 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_WRPR,
388 &wrpr);
389 if (retval != ERROR_OK)
390 return retval;
391
392 for (int i = 0; i < bank->num_sectors; i++) {
393 if (wrpr & (1 << i))
394 bank->sectors[i].is_protected = 1;
395 else
396 bank->sectors[i].is_protected = 0;
397 }
398 return ERROR_OK;
399 }
400
401 static int stm32lx_erase(struct flash_bank *bank, int first, int last)
402 {
403 int retval;
404
405 /*
406 * It could be possible to do a mass erase if all sectors must be
407 * erased, but it is not implemented yet.
408 */
409
410 if (bank->target->state != TARGET_HALTED) {
411 LOG_ERROR("Target not halted");
412 return ERROR_TARGET_NOT_HALTED;
413 }
414
415 /*
416 * Loop over the selected sectors and erase them
417 */
418 for (int i = first; i <= last; i++) {
419 retval = stm32lx_erase_sector(bank, i);
420 if (retval != ERROR_OK)
421 return retval;
422 bank->sectors[i].is_erased = 1;
423 }
424 return ERROR_OK;
425 }
426
427 static int stm32lx_protect(struct flash_bank *bank, int set, int first,
428 int last)
429 {
430 LOG_WARNING("protection of the STM32L flash is not implemented");
431 return ERROR_OK;
432 }
433
434 static int stm32lx_write_half_pages(struct flash_bank *bank, const uint8_t *buffer,
435 uint32_t offset, uint32_t count)
436 {
437 struct target *target = bank->target;
438 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
439
440 uint32_t hp_nb = stm32lx_info->part_info.page_size / 2;
441 uint32_t buffer_size = 16384;
442 struct working_area *write_algorithm;
443 struct working_area *source;
444 uint32_t address = bank->base + offset;
445
446 struct reg_param reg_params[3];
447 struct armv7m_algorithm armv7m_info;
448
449 int retval = ERROR_OK;
450
451 /* see contib/loaders/flash/stm32lx.S for src */
452
453 static const uint8_t stm32lx_flash_write_code[] = {
454 0x92, 0x00, 0x8A, 0x18, 0x01, 0xE0, 0x08, 0xC9, 0x08, 0xC0, 0x91, 0x42, 0xFB, 0xD1, 0x00, 0xBE
455 };
456
457 /* Make sure we're performing a half-page aligned write. */
458 if (count % hp_nb) {
459 LOG_ERROR("The byte count must be %" PRIu32 "B-aligned but count is %" PRIi32 "B)", hp_nb, count);
460 return ERROR_FAIL;
461 }
462
463 /* flash write code */
464 if (target_alloc_working_area(target, sizeof(stm32lx_flash_write_code),
465 &write_algorithm) != ERROR_OK) {
466 LOG_DEBUG("no working area for block memory writes");
467 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
468 }
469
470 /* Write the flashing code */
471 retval = target_write_buffer(target,
472 write_algorithm->address,
473 sizeof(stm32lx_flash_write_code),
474 stm32lx_flash_write_code);
475 if (retval != ERROR_OK) {
476 target_free_working_area(target, write_algorithm);
477 return retval;
478 }
479
480 /* Allocate half pages memory */
481 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
482 if (buffer_size > 1024)
483 buffer_size -= 1024;
484 else
485 buffer_size /= 2;
486
487 if (buffer_size <= stm32lx_info->part_info.page_size) {
488 /* we already allocated the writing code, but failed to get a
489 * buffer, free the algorithm */
490 target_free_working_area(target, write_algorithm);
491
492 LOG_WARNING("no large enough working area available, can't do block memory writes");
493 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
494 }
495 }
496
497 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
498 armv7m_info.core_mode = ARM_MODE_THREAD;
499 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
500 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
501 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
502
503 /* Enable half-page write */
504 retval = stm32lx_enable_write_half_page(bank);
505 if (retval != ERROR_OK) {
506 target_free_working_area(target, source);
507 target_free_working_area(target, write_algorithm);
508
509 destroy_reg_param(&reg_params[0]);
510 destroy_reg_param(&reg_params[1]);
511 destroy_reg_param(&reg_params[2]);
512 return retval;
513 }
514
515 struct armv7m_common *armv7m = target_to_armv7m(target);
516 if (armv7m == NULL) {
517
518 /* something is very wrong if armv7m is NULL */
519 LOG_ERROR("unable to get armv7m target");
520 return retval;
521 }
522
523 /* save any DEMCR flags and configure target to catch any Hard Faults */
524 uint32_t demcr_save = armv7m->demcr;
525 armv7m->demcr = VC_HARDERR;
526
527 /* Loop while there are bytes to write */
528 while (count > 0) {
529 uint32_t this_count;
530 this_count = (count > buffer_size) ? buffer_size : count;
531
532 /* Write the next half pages */
533 retval = target_write_buffer(target, source->address, this_count, buffer);
534 if (retval != ERROR_OK)
535 break;
536
537 /* 4: Store useful information in the registers */
538 /* the destination address of the copy (R0) */
539 buf_set_u32(reg_params[0].value, 0, 32, address);
540 /* The source address of the copy (R1) */
541 buf_set_u32(reg_params[1].value, 0, 32, source->address);
542 /* The length of the copy (R2) */
543 buf_set_u32(reg_params[2].value, 0, 32, this_count / 4);
544
545 /* 5: Execute the bunch of code */
546 retval = target_run_algorithm(target, 0, NULL, sizeof(reg_params)
547 / sizeof(*reg_params), reg_params,
548 write_algorithm->address, 0, 10000, &armv7m_info);
549 if (retval != ERROR_OK)
550 break;
551
552 /* check for Hard Fault */
553 if (armv7m->exception_number == 3)
554 break;
555
556 /* 6: Wait while busy */
557 retval = stm32lx_wait_until_bsy_clear(bank);
558 if (retval != ERROR_OK)
559 break;
560
561 buffer += this_count;
562 address += this_count;
563 count -= this_count;
564 }
565
566 /* restore previous flags */
567 armv7m->demcr = demcr_save;
568
569 if (armv7m->exception_number == 3) {
570
571 /* the stm32l15x devices seem to have an issue when blank.
572 * if a ram loader is executed on a blank device it will
573 * Hard Fault, this issue does not happen for a already programmed device.
574 * A related issue is described in the stm32l151xx errata (Doc ID 17721 Rev 6 - 2.1.3).
575 * The workaround of handling the Hard Fault exception does work, but makes the
576 * loader more complicated, as a compromise we manually write the pages, programming time
577 * is reduced by 50% using this slower method.
578 */
579
580 LOG_WARNING("Couldn't use loader, falling back to page memory writes");
581
582 while (count > 0) {
583 uint32_t this_count;
584 this_count = (count > hp_nb) ? hp_nb : count;
585
586 /* Write the next half pages */
587 retval = target_write_buffer(target, address, this_count, buffer);
588 if (retval != ERROR_OK)
589 break;
590
591 /* Wait while busy */
592 retval = stm32lx_wait_until_bsy_clear(bank);
593 if (retval != ERROR_OK)
594 break;
595
596 buffer += this_count;
597 address += this_count;
598 count -= this_count;
599 }
600 }
601
602 if (retval == ERROR_OK)
603 retval = stm32lx_lock_program_memory(bank);
604
605 target_free_working_area(target, source);
606 target_free_working_area(target, write_algorithm);
607
608 destroy_reg_param(&reg_params[0]);
609 destroy_reg_param(&reg_params[1]);
610 destroy_reg_param(&reg_params[2]);
611
612 return retval;
613 }
614
615 static int stm32lx_write(struct flash_bank *bank, const uint8_t *buffer,
616 uint32_t offset, uint32_t count)
617 {
618 struct target *target = bank->target;
619 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
620
621 uint32_t hp_nb = stm32lx_info->part_info.page_size / 2;
622 uint32_t halfpages_number;
623 uint32_t bytes_remaining = 0;
624 uint32_t address = bank->base + offset;
625 uint32_t bytes_written = 0;
626 int retval, retval2;
627
628 if (bank->target->state != TARGET_HALTED) {
629 LOG_ERROR("Target not halted");
630 return ERROR_TARGET_NOT_HALTED;
631 }
632
633 if (offset & 0x3) {
634 LOG_ERROR("offset 0x%" PRIx32 " breaks required 4-byte alignment", offset);
635 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
636 }
637
638 retval = stm32lx_unlock_program_memory(bank);
639 if (retval != ERROR_OK)
640 return retval;
641
642 /* first we need to write any unaligned head bytes upto
643 * the next 128 byte page */
644
645 if (offset % hp_nb)
646 bytes_remaining = MIN(count, hp_nb - (offset % hp_nb));
647
648 while (bytes_remaining > 0) {
649 uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
650
651 /* copy remaining bytes into the write buffer */
652 uint32_t bytes_to_write = MIN(4, bytes_remaining);
653 memcpy(value, buffer + bytes_written, bytes_to_write);
654
655 retval = target_write_buffer(target, address, 4, value);
656 if (retval != ERROR_OK)
657 goto reset_pg_and_lock;
658
659 bytes_written += bytes_to_write;
660 bytes_remaining -= bytes_to_write;
661 address += 4;
662
663 retval = stm32lx_wait_until_bsy_clear(bank);
664 if (retval != ERROR_OK)
665 goto reset_pg_and_lock;
666 }
667
668 offset += bytes_written;
669 count -= bytes_written;
670
671 /* this should always pass this check here */
672 assert((offset % hp_nb) == 0);
673
674 /* calculate half pages */
675 halfpages_number = count / hp_nb;
676
677 if (halfpages_number) {
678 retval = stm32lx_write_half_pages(bank, buffer + bytes_written, offset, hp_nb * halfpages_number);
679 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
680 /* attempt slow memory writes */
681 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
682 halfpages_number = 0;
683 } else {
684 if (retval != ERROR_OK)
685 return ERROR_FAIL;
686 }
687 }
688
689 /* write any remaining bytes */
690 uint32_t page_bytes_written = hp_nb * halfpages_number;
691 bytes_written += page_bytes_written;
692 address += page_bytes_written;
693 bytes_remaining = count - page_bytes_written;
694
695 retval = stm32lx_unlock_program_memory(bank);
696 if (retval != ERROR_OK)
697 return retval;
698
699 while (bytes_remaining > 0) {
700 uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
701
702 /* copy remaining bytes into the write buffer */
703 uint32_t bytes_to_write = MIN(4, bytes_remaining);
704 memcpy(value, buffer + bytes_written, bytes_to_write);
705
706 retval = target_write_buffer(target, address, 4, value);
707 if (retval != ERROR_OK)
708 goto reset_pg_and_lock;
709
710 bytes_written += bytes_to_write;
711 bytes_remaining -= bytes_to_write;
712 address += 4;
713
714 retval = stm32lx_wait_until_bsy_clear(bank);
715 if (retval != ERROR_OK)
716 goto reset_pg_and_lock;
717 }
718
719 reset_pg_and_lock:
720 retval2 = stm32lx_lock_program_memory(bank);
721 if (retval == ERROR_OK)
722 retval = retval2;
723
724 return retval;
725 }
726
727 static int stm32lx_read_id_code(struct target *target, uint32_t *id)
728 {
729 /* read stm32 device id register */
730 int retval = target_read_u32(target, DBGMCU_IDCODE, id);
731 if (retval != ERROR_OK)
732 return retval;
733
734 /* STM32L0 parts will have 0 there, try reading the L0's location for
735 * DBG_IDCODE in case this is an L0 part. */
736 if (*id == 0)
737 retval = target_read_u32(target, DBGMCU_IDCODE_L0, id);
738
739 return retval;
740 }
741
742 static int stm32lx_probe(struct flash_bank *bank)
743 {
744 struct target *target = bank->target;
745 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
746 int i;
747 uint16_t flash_size_in_kb;
748 uint32_t device_id;
749 uint32_t base_address = FLASH_BANK0_ADDRESS;
750 uint32_t second_bank_base;
751 unsigned int n;
752
753 stm32lx_info->probed = 0;
754
755 int retval = stm32lx_read_id_code(bank->target, &device_id);
756 if (retval != ERROR_OK)
757 return retval;
758
759 stm32lx_info->idcode = device_id;
760
761 LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id);
762
763 for (n = 0; n < ARRAY_SIZE(stm32lx_parts); n++) {
764 if ((device_id & 0xfff) == stm32lx_parts[n].id) {
765 stm32lx_info->part_info = stm32lx_parts[n];
766 break;
767 }
768 }
769
770 if (n == ARRAY_SIZE(stm32lx_parts)) {
771 LOG_WARNING("Cannot identify target as a STM32L family.");
772 return ERROR_FAIL;
773 } else {
774 LOG_INFO("Device: %s", stm32lx_info->part_info.device_str);
775 }
776
777 stm32lx_info->flash_base = stm32lx_info->part_info.flash_base;
778
779 /* Get the flash size from target. */
780 retval = target_read_u16(target, stm32lx_info->part_info.fsize_base,
781 &flash_size_in_kb);
782
783 /* 0x436 devices report their flash size as a 0 or 1 code indicating 384K
784 * or 256K, respectively. Please see RM0038 r8 or newer and refer to
785 * section 30.1.1. */
786 if (retval == ERROR_OK && (device_id & 0xfff) == 0x436) {
787 if (flash_size_in_kb == 0)
788 flash_size_in_kb = 384;
789 else if (flash_size_in_kb == 1)
790 flash_size_in_kb = 256;
791 }
792
793 /* 0x429 devices only use the lowest 8 bits of the flash size register */
794 if (retval == ERROR_OK && (device_id & 0xfff) == 0x429) {
795 flash_size_in_kb &= 0xff;
796 }
797
798 /* Failed reading flash size or flash size invalid (early silicon),
799 * default to max target family */
800 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
801 LOG_WARNING("STM32L flash size failed, probe inaccurate - assuming %dk flash",
802 stm32lx_info->part_info.max_flash_size_kb);
803 flash_size_in_kb = stm32lx_info->part_info.max_flash_size_kb;
804 } else if (flash_size_in_kb > stm32lx_info->part_info.max_flash_size_kb) {
805 LOG_WARNING("STM32L probed flash size assumed incorrect since FLASH_SIZE=%dk > %dk, - assuming %dk flash",
806 flash_size_in_kb, stm32lx_info->part_info.max_flash_size_kb,
807 stm32lx_info->part_info.max_flash_size_kb);
808 flash_size_in_kb = stm32lx_info->part_info.max_flash_size_kb;
809 }
810
811 /* Overwrite default dual-bank configuration */
812 retval = stm32lx_update_part_info(bank, flash_size_in_kb);
813 if (retval != ERROR_OK)
814 return ERROR_FAIL;
815
816 if (stm32lx_info->part_info.has_dual_banks) {
817 /* Use the configured base address to determine if this is the first or second flash bank.
818 * Verify that the base address is reasonably correct and determine the flash bank size
819 */
820 second_bank_base = base_address +
821 stm32lx_info->part_info.first_bank_size_kb * 1024;
822 if (bank->base == second_bank_base || !bank->base) {
823 /* This is the second bank */
824 base_address = second_bank_base;
825 flash_size_in_kb = flash_size_in_kb -
826 stm32lx_info->part_info.first_bank_size_kb;
827 } else if (bank->base == base_address) {
828 /* This is the first bank */
829 flash_size_in_kb = stm32lx_info->part_info.first_bank_size_kb;
830 } else {
831 LOG_WARNING("STM32L flash bank base address config is incorrect."
832 " 0x%" PRIx32 " but should rather be 0x%" PRIx32 " or 0x%" PRIx32,
833 bank->base, base_address, second_bank_base);
834 return ERROR_FAIL;
835 }
836 LOG_INFO("STM32L flash has dual banks. Bank (%d) size is %dkb, base address is 0x%" PRIx32,
837 bank->bank_number, flash_size_in_kb, base_address);
838 } else {
839 LOG_INFO("STM32L flash size is %dkb, base address is 0x%" PRIx32, flash_size_in_kb, base_address);
840 }
841
842 /* if the user sets the size manually then ignore the probed value
843 * this allows us to work around devices that have a invalid flash size register value */
844 if (stm32lx_info->user_bank_size) {
845 flash_size_in_kb = stm32lx_info->user_bank_size / 1024;
846 LOG_INFO("ignoring flash probed value, using configured bank size: %dkbytes", flash_size_in_kb);
847 }
848
849 /* calculate numbers of sectors (4kB per sector) */
850 int num_sectors = (flash_size_in_kb * 1024) / FLASH_SECTOR_SIZE;
851
852 if (bank->sectors) {
853 free(bank->sectors);
854 bank->sectors = NULL;
855 }
856
857 bank->size = flash_size_in_kb * 1024;
858 bank->base = base_address;
859 bank->num_sectors = num_sectors;
860 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
861 if (bank->sectors == NULL) {
862 LOG_ERROR("failed to allocate bank sectors");
863 return ERROR_FAIL;
864 }
865
866 for (i = 0; i < num_sectors; i++) {
867 bank->sectors[i].offset = i * FLASH_SECTOR_SIZE;
868 bank->sectors[i].size = FLASH_SECTOR_SIZE;
869 bank->sectors[i].is_erased = -1;
870 bank->sectors[i].is_protected = 1;
871 }
872
873 stm32lx_info->probed = 1;
874
875 return ERROR_OK;
876 }
877
878 static int stm32lx_auto_probe(struct flash_bank *bank)
879 {
880 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
881
882 if (stm32lx_info->probed)
883 return ERROR_OK;
884
885 return stm32lx_probe(bank);
886 }
887
888 /* This method must return a string displaying information about the bank */
889 static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size)
890 {
891 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
892 const struct stm32lx_part_info *info = &stm32lx_info->part_info;
893 uint16_t rev_id = stm32lx_info->idcode >> 16;
894 const char *rev_str = NULL;
895
896 if (!stm32lx_info->probed) {
897 int retval = stm32lx_probe(bank);
898 if (retval != ERROR_OK) {
899 snprintf(buf, buf_size,
900 "Unable to find bank information.");
901 return retval;
902 }
903 }
904
905 for (unsigned int i = 0; i < info->num_revs; i++)
906 if (rev_id == info->revs[i].rev)
907 rev_str = info->revs[i].str;
908
909 if (rev_str != NULL) {
910 snprintf(buf, buf_size,
911 "%s - Rev: %s",
912 info->device_str, rev_str);
913 } else {
914 snprintf(buf, buf_size,
915 "%s - Rev: unknown (0x%04x)",
916 info->device_str, rev_id);
917 }
918
919 return ERROR_OK;
920 }
921
922 static const struct command_registration stm32lx_exec_command_handlers[] = {
923 {
924 .name = "mass_erase",
925 .handler = stm32lx_handle_mass_erase_command,
926 .mode = COMMAND_EXEC,
927 .usage = "bank_id",
928 .help = "Erase entire flash device. including available EEPROM",
929 },
930 {
931 .name = "lock",
932 .handler = stm32lx_handle_lock_command,
933 .mode = COMMAND_EXEC,
934 .usage = "bank_id",
935 .help = "Increase the readout protection to Level 1.",
936 },
937 {
938 .name = "unlock",
939 .handler = stm32lx_handle_unlock_command,
940 .mode = COMMAND_EXEC,
941 .usage = "bank_id",
942 .help = "Lower the readout protection from Level 1 to 0.",
943 },
944 COMMAND_REGISTRATION_DONE
945 };
946
947 static const struct command_registration stm32lx_command_handlers[] = {
948 {
949 .name = "stm32lx",
950 .mode = COMMAND_ANY,
951 .help = "stm32lx flash command group",
952 .usage = "",
953 .chain = stm32lx_exec_command_handlers,
954 },
955 COMMAND_REGISTRATION_DONE
956 };
957
958 struct flash_driver stm32lx_flash = {
959 .name = "stm32lx",
960 .commands = stm32lx_command_handlers,
961 .flash_bank_command = stm32lx_flash_bank_command,
962 .erase = stm32lx_erase,
963 .protect = stm32lx_protect,
964 .write = stm32lx_write,
965 .read = default_flash_read,
966 .probe = stm32lx_probe,
967 .auto_probe = stm32lx_auto_probe,
968 .erase_check = default_flash_blank_check,
969 .protect_check = stm32lx_protect_check,
970 .info = stm32lx_get_info,
971 };
972
973 /* Static methods implementation */
974 static int stm32lx_unlock_program_memory(struct flash_bank *bank)
975 {
976 struct target *target = bank->target;
977 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
978 int retval;
979 uint32_t reg32;
980
981 /*
982 * Unlocking the program memory is done by unlocking the PECR,
983 * then by writing the 2 PRGKEY to the PRGKEYR register
984 */
985
986 /* check flash is not already unlocked */
987 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
988 &reg32);
989 if (retval != ERROR_OK)
990 return retval;
991
992 if ((reg32 & FLASH_PECR__PRGLOCK) == 0)
993 return ERROR_OK;
994
995 /* To unlock the PECR write the 2 PEKEY to the PEKEYR register */
996 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR,
997 PEKEY1);
998 if (retval != ERROR_OK)
999 return retval;
1000
1001 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR,
1002 PEKEY2);
1003 if (retval != ERROR_OK)
1004 return retval;
1005
1006 /* Make sure it worked */
1007 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1008 &reg32);
1009 if (retval != ERROR_OK)
1010 return retval;
1011
1012 if (reg32 & FLASH_PECR__PELOCK) {
1013 LOG_ERROR("PELOCK is not cleared :(");
1014 return ERROR_FLASH_OPERATION_FAILED;
1015 }
1016
1017 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR,
1018 PRGKEY1);
1019 if (retval != ERROR_OK)
1020 return retval;
1021 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR,
1022 PRGKEY2);
1023 if (retval != ERROR_OK)
1024 return retval;
1025
1026 /* Make sure it worked */
1027 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1028 &reg32);
1029 if (retval != ERROR_OK)
1030 return retval;
1031
1032 if (reg32 & FLASH_PECR__PRGLOCK) {
1033 LOG_ERROR("PRGLOCK is not cleared :(");
1034 return ERROR_FLASH_OPERATION_FAILED;
1035 }
1036
1037 return ERROR_OK;
1038 }
1039
1040 static int stm32lx_enable_write_half_page(struct flash_bank *bank)
1041 {
1042 struct target *target = bank->target;
1043 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1044 int retval;
1045 uint32_t reg32;
1046
1047 /**
1048 * Unlock the program memory, then set the FPRG bit in the PECR register.
1049 */
1050 retval = stm32lx_unlock_program_memory(bank);
1051 if (retval != ERROR_OK)
1052 return retval;
1053
1054 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1055 &reg32);
1056 if (retval != ERROR_OK)
1057 return retval;
1058
1059 reg32 |= FLASH_PECR__FPRG;
1060 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1061 reg32);
1062 if (retval != ERROR_OK)
1063 return retval;
1064
1065 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1066 &reg32);
1067 if (retval != ERROR_OK)
1068 return retval;
1069
1070 reg32 |= FLASH_PECR__PROG;
1071 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1072 reg32);
1073
1074 return retval;
1075 }
1076
1077 static int stm32lx_lock_program_memory(struct flash_bank *bank)
1078 {
1079 struct target *target = bank->target;
1080 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1081 int retval;
1082 uint32_t reg32;
1083
1084 /* To lock the program memory, simply set the lock bit and lock PECR */
1085
1086 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1087 &reg32);
1088 if (retval != ERROR_OK)
1089 return retval;
1090
1091 reg32 |= FLASH_PECR__PRGLOCK;
1092 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1093 reg32);
1094 if (retval != ERROR_OK)
1095 return retval;
1096
1097 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1098 &reg32);
1099 if (retval != ERROR_OK)
1100 return retval;
1101
1102 reg32 |= FLASH_PECR__PELOCK;
1103 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1104 reg32);
1105 if (retval != ERROR_OK)
1106 return retval;
1107
1108 return ERROR_OK;
1109 }
1110
1111 static int stm32lx_erase_sector(struct flash_bank *bank, int sector)
1112 {
1113 struct target *target = bank->target;
1114 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1115 int retval;
1116 uint32_t reg32;
1117
1118 /*
1119 * To erase a sector (i.e. stm32lx_info->part_info.pages_per_sector pages),
1120 * first unlock the memory, loop over the pages of this sector
1121 * and write 0x0 to its first word.
1122 */
1123
1124 retval = stm32lx_unlock_program_memory(bank);
1125 if (retval != ERROR_OK)
1126 return retval;
1127
1128 for (int page = 0; page < (int)stm32lx_info->part_info.pages_per_sector;
1129 page++) {
1130 reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE;
1131 retval = target_write_u32(target,
1132 stm32lx_info->flash_base + FLASH_PECR, reg32);
1133 if (retval != ERROR_OK)
1134 return retval;
1135
1136 retval = stm32lx_wait_until_bsy_clear(bank);
1137 if (retval != ERROR_OK)
1138 return retval;
1139
1140 uint32_t addr = bank->base + bank->sectors[sector].offset + (page
1141 * stm32lx_info->part_info.page_size);
1142 retval = target_write_u32(target, addr, 0x0);
1143 if (retval != ERROR_OK)
1144 return retval;
1145
1146 retval = stm32lx_wait_until_bsy_clear(bank);
1147 if (retval != ERROR_OK)
1148 return retval;
1149 }
1150
1151 retval = stm32lx_lock_program_memory(bank);
1152 if (retval != ERROR_OK)
1153 return retval;
1154
1155 return ERROR_OK;
1156 }
1157
1158 static inline int stm32lx_get_flash_status(struct flash_bank *bank, uint32_t *status)
1159 {
1160 struct target *target = bank->target;
1161 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1162
1163 return target_read_u32(target, stm32lx_info->flash_base + FLASH_SR, status);
1164 }
1165
1166 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank)
1167 {
1168 return stm32lx_wait_until_bsy_clear_timeout(bank, 100);
1169 }
1170
1171 static int stm32lx_unlock_options_bytes(struct flash_bank *bank)
1172 {
1173 struct target *target = bank->target;
1174 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1175 int retval;
1176 uint32_t reg32;
1177
1178 /*
1179 * Unlocking the options bytes is done by unlocking the PECR,
1180 * then by writing the 2 FLASH_PEKEYR to the FLASH_OPTKEYR register
1181 */
1182
1183 /* check flash is not already unlocked */
1184 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, &reg32);
1185 if (retval != ERROR_OK)
1186 return retval;
1187
1188 if ((reg32 & FLASH_PECR__OPTLOCK) == 0)
1189 return ERROR_OK;
1190
1191 if ((reg32 & FLASH_PECR__PELOCK) != 0) {
1192
1193 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY1);
1194 if (retval != ERROR_OK)
1195 return retval;
1196
1197 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY2);
1198 if (retval != ERROR_OK)
1199 return retval;
1200 }
1201
1202 /* To unlock the PECR write the 2 OPTKEY to the FLASH_OPTKEYR register */
1203 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY1);
1204 if (retval != ERROR_OK)
1205 return retval;
1206
1207 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY2);
1208 if (retval != ERROR_OK)
1209 return retval;
1210
1211 return ERROR_OK;
1212 }
1213
1214 static int stm32lx_wait_until_bsy_clear_timeout(struct flash_bank *bank, int timeout)
1215 {
1216 struct target *target = bank->target;
1217 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1218 uint32_t status;
1219 int retval = ERROR_OK;
1220
1221 /* wait for busy to clear */
1222 for (;;) {
1223 retval = stm32lx_get_flash_status(bank, &status);
1224 if (retval != ERROR_OK)
1225 return retval;
1226
1227 LOG_DEBUG("status: 0x%" PRIx32 "", status);
1228 if ((status & FLASH_SR__BSY) == 0)
1229 break;
1230
1231 if (timeout-- <= 0) {
1232 LOG_ERROR("timed out waiting for flash");
1233 return ERROR_FAIL;
1234 }
1235 alive_sleep(1);
1236 }
1237
1238 if (status & FLASH_SR__WRPERR) {
1239 LOG_ERROR("access denied / write protected");
1240 retval = ERROR_FAIL;
1241 }
1242
1243 if (status & FLASH_SR__PGAERR) {
1244 LOG_ERROR("invalid program address");
1245 retval = ERROR_FAIL;
1246 }
1247
1248 /* Clear but report errors */
1249 if (status & FLASH_SR__OPTVERR) {
1250 /* If this operation fails, we ignore it and report the original retval */
1251 target_write_u32(target, stm32lx_info->flash_base + FLASH_SR, status & FLASH_SR__OPTVERR);
1252 }
1253
1254 return retval;
1255 }
1256
1257 static int stm32lx_obl_launch(struct flash_bank *bank)
1258 {
1259 struct target *target = bank->target;
1260 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1261 int retval;
1262
1263 /* This will fail as the target gets immediately rebooted */
1264 target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1265 FLASH_PECR__OBL_LAUNCH);
1266
1267 size_t tries = 10;
1268 do {
1269 target_halt(target);
1270 retval = target_poll(target);
1271 } while (--tries > 0 &&
1272 (retval != ERROR_OK || target->state != TARGET_HALTED));
1273
1274 return tries ? ERROR_OK : ERROR_FAIL;
1275 }
1276
1277 static int stm32lx_lock(struct flash_bank *bank)
1278 {
1279 int retval;
1280 struct target *target = bank->target;
1281
1282 if (target->state != TARGET_HALTED) {
1283 LOG_ERROR("Target not halted");
1284 return ERROR_TARGET_NOT_HALTED;
1285 }
1286
1287 retval = stm32lx_unlock_options_bytes(bank);
1288 if (retval != ERROR_OK)
1289 return retval;
1290
1291 /* set the RDP protection level to 1 */
1292 retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR1);
1293 if (retval != ERROR_OK)
1294 return retval;
1295
1296 return ERROR_OK;
1297 }
1298
1299 static int stm32lx_unlock(struct flash_bank *bank)
1300 {
1301 int retval;
1302 struct target *target = bank->target;
1303
1304 if (target->state != TARGET_HALTED) {
1305 LOG_ERROR("Target not halted");
1306 return ERROR_TARGET_NOT_HALTED;
1307 }
1308
1309 retval = stm32lx_unlock_options_bytes(bank);
1310 if (retval != ERROR_OK)
1311 return retval;
1312
1313 /* set the RDP protection level to 0 */
1314 retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR0);
1315 if (retval != ERROR_OK)
1316 return retval;
1317
1318 retval = stm32lx_wait_until_bsy_clear_timeout(bank, 30000);
1319 if (retval != ERROR_OK)
1320 return retval;
1321
1322 return ERROR_OK;
1323 }
1324
1325 static int stm32lx_mass_erase(struct flash_bank *bank)
1326 {
1327 int retval;
1328 struct target *target = bank->target;
1329 struct stm32lx_flash_bank *stm32lx_info = NULL;
1330 uint32_t reg32;
1331
1332 if (target->state != TARGET_HALTED) {
1333 LOG_ERROR("Target not halted");
1334 return ERROR_TARGET_NOT_HALTED;
1335 }
1336
1337 stm32lx_info = bank->driver_priv;
1338
1339 retval = stm32lx_lock(bank);
1340 if (retval != ERROR_OK)
1341 return retval;
1342
1343 retval = stm32lx_obl_launch(bank);
1344 if (retval != ERROR_OK)
1345 return retval;
1346
1347 retval = stm32lx_unlock(bank);
1348 if (retval != ERROR_OK)
1349 return retval;
1350
1351 retval = stm32lx_obl_launch(bank);
1352 if (retval != ERROR_OK)
1353 return retval;
1354
1355 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, &reg32);
1356 if (retval != ERROR_OK)
1357 return retval;
1358
1359 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, reg32 | FLASH_PECR__OPTLOCK);
1360 if (retval != ERROR_OK)
1361 return retval;
1362
1363 return ERROR_OK;
1364 }
1365
1366 static int stm32lx_update_part_info(struct flash_bank *bank, uint16_t flash_size_in_kb)
1367 {
1368 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1369
1370 switch (stm32lx_info->part_info.id) {
1371 case 0x447: /* STM32L0xx (Cat.5) devices */
1372 if (flash_size_in_kb == 192 || flash_size_in_kb == 128) {
1373 stm32lx_info->part_info.first_bank_size_kb = flash_size_in_kb / 2;
1374 stm32lx_info->part_info.has_dual_banks = true;
1375 }
1376 break;
1377 case 0x437: /* STM32L1xx (Cat.5/Cat.6) */
1378 stm32lx_info->part_info.first_bank_size_kb = flash_size_in_kb / 2;
1379 break;
1380 }
1381
1382 return ERROR_OK;
1383 }