Remove FSF address from GPL notices
[openocd.git] / src / flash / nor / stm32l4x.c
1 /***************************************************************************
2 * Copyright (C) 2015 by Uwe Bonnes *
3 * bon@elektron.ikp.physik.tu-darmstadt.de *
4 *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
17 ***************************************************************************/
18
19 #ifdef HAVE_CONFIG_H
20 #include "config.h"
21 #endif
22
23 #include "imp.h"
24 #include <helper/binarybuffer.h>
25 #include <target/algorithm.h>
26 #include <target/armv7m.h>
27
28 /* STM32L4xxx series for reference.
29 *
30 * RM0351
31 * http://www.st.com/st-web-ui/static/active/en/resource/technical/document/reference_manual/DM00083560.pdf
32 *
33 * STM32L476RG Datasheet (for erase timing)
34 * http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/DM00108832.pdf
35 *
36 *
37 * The device has normally two banks, but on 512 and 256 kiB devices an
38 * option byte is available to map all sectors to the first bank.
39 * Both STM32 banks are treated as one OpenOCD bank, as other STM32 devices
40 * handlers do!
41 *
42 */
43
44 /* Erase time can be as high as 25ms, 10x this and assume it's toast... */
45
46 #define FLASH_ERASE_TIMEOUT 250
47
48 #define STM32_FLASH_BASE 0x40022000
49 #define STM32_FLASH_ACR 0x40022000
50 #define STM32_FLASH_KEYR 0x40022008
51 #define STM32_FLASH_OPTKEYR 0x4002200c
52 #define STM32_FLASH_SR 0x40022010
53 #define STM32_FLASH_CR 0x40022014
54 #define STM32_FLASH_OPTR 0x40022020
55 #define STM32_FLASH_WRP1AR 0x4002202c
56 #define STM32_FLASH_WRP2AR 0x40022030
57 #define STM32_FLASH_WRP1BR 0x4002204c
58 #define STM32_FLASH_WRP2BR 0x40022050
59
60 /* FLASH_CR register bits */
61
62 #define FLASH_PG (1 << 0)
63 #define FLASH_PER (1 << 1)
64 #define FLASH_MER1 (1 << 2)
65 #define FLASH_PAGE_SHIFT 3
66 #define FLASH_CR_BKER (1 << 11)
67 #define FLASH_MER2 (1 << 15)
68 #define FLASH_STRT (1 << 16)
69 #define FLASH_EOPIE (1 << 24)
70 #define FLASH_ERRIE (1 << 25)
71 #define FLASH_OPTLOCK (1 << 30)
72 #define FLASH_LOCK (1 << 31)
73
74 /* FLASH_SR register bits */
75
76 #define FLASH_BSY (1 << 16)
77 /* Fast programming not used => related errors not used*/
78 #define FLASH_PGSERR (1 << 7) /* Programming sequence error */
79 #define FLASH_SIZERR (1 << 6) /* Size error */
80 #define FLASH_PGAERR (1 << 5) /* Programming alignment error */
81 #define FLASH_WRPERR (1 << 4) /* Write protection error */
82 #define FLASH_PROGERR (1 << 3) /* Programming error */
83 #define FLASH_OPERR (1 << 1) /* Operation error */
84 #define FLASH_EOP (1 << 0) /* End of operation */
85
86 #define FLASH_ERROR (FLASH_PGSERR | FLASH_PGSERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
87
88 /* STM32_FLASH_OBR bit definitions (reading) */
89
90 #define OPT_DUALBANK 21 /* dual flash bank only */
91
92 /* register unlock keys */
93
94 #define KEY1 0x45670123
95 #define KEY2 0xCDEF89AB
96
97 /* option register unlock key */
98 #define OPTKEY1 0x08192A3B
99 #define OPTKEY2 0x4C5D6E7F
100
101
102 /* other registers */
103 #define DBGMCU_IDCODE 0xE0042000
104 #define FLASH_SIZE_REG 0x1FFF75E0
105
106 struct stm32l4_options {
107 uint8_t RDP;
108 uint16_t bank_b_start;
109 uint8_t user_options;
110 uint8_t wpr1a_start;
111 uint8_t wpr1a_end;
112 uint8_t wpr1b_start;
113 uint8_t wpr1b_end;
114 uint8_t wpr2a_start;
115 uint8_t wpr2a_end;
116 uint8_t wpr2b_start;
117 uint8_t wpr2b_end;
118 /* Fixme: Handle PCROP */
119 };
120
121 struct stm32l4_flash_bank {
122 struct stm32l4_options option_bytes;
123 int probed;
124 };
125
126 /* flash bank stm32l4x <base> <size> 0 0 <target#>
127 */
128 FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
129 {
130 struct stm32l4_flash_bank *stm32l4_info;
131
132 if (CMD_ARGC < 6)
133 return ERROR_COMMAND_SYNTAX_ERROR;
134
135 stm32l4_info = malloc(sizeof(struct stm32l4_flash_bank));
136 if (!stm32l4_info)
137 return ERROR_FAIL; /* Checkme: What better error to use?*/
138 bank->driver_priv = stm32l4_info;
139
140 stm32l4_info->probed = 0;
141
142 return ERROR_OK;
143 }
144
145 static inline int stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg)
146 {
147 return reg;
148 }
149
150 static inline int stm32l4_get_flash_status(struct flash_bank *bank, uint32_t *status)
151 {
152 struct target *target = bank->target;
153 return target_read_u32(
154 target, stm32l4_get_flash_reg(bank, STM32_FLASH_SR), status);
155 }
156
157 static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
158 {
159 struct target *target = bank->target;
160 uint32_t status;
161 int retval = ERROR_OK;
162
163 /* wait for busy to clear */
164 for (;;) {
165 retval = stm32l4_get_flash_status(bank, &status);
166 if (retval != ERROR_OK)
167 return retval;
168 LOG_DEBUG("status: 0x%" PRIx32 "", status);
169 if ((status & FLASH_BSY) == 0)
170 break;
171 if (timeout-- <= 0) {
172 LOG_ERROR("timed out waiting for flash");
173 return ERROR_FAIL;
174 }
175 alive_sleep(1);
176 }
177
178
179 if (status & FLASH_WRPERR) {
180 LOG_ERROR("stm32x device protected");
181 retval = ERROR_FAIL;
182 }
183
184 /* Clear but report errors */
185 if (status & FLASH_ERROR) {
186 /* If this operation fails, we ignore it and report the original
187 * retval
188 */
189 target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_SR),
190 status & FLASH_ERROR);
191 }
192 return retval;
193 }
194
195 static int stm32l4_unlock_reg(struct target *target)
196 {
197 uint32_t ctrl;
198
199 /* first check if not already unlocked
200 * otherwise writing on STM32_FLASH_KEYR will fail
201 */
202 int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
203 if (retval != ERROR_OK)
204 return retval;
205
206 if ((ctrl & FLASH_LOCK) == 0)
207 return ERROR_OK;
208
209 /* unlock flash registers */
210 retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
211 if (retval != ERROR_OK)
212 return retval;
213
214 retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
215 if (retval != ERROR_OK)
216 return retval;
217
218 retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
219 if (retval != ERROR_OK)
220 return retval;
221
222 if (ctrl & FLASH_LOCK) {
223 LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
224 return ERROR_TARGET_FAILURE;
225 }
226
227 return ERROR_OK;
228 }
229
230 static int stm32l4_unlock_option_reg(struct target *target)
231 {
232 uint32_t ctrl;
233
234 int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
235 if (retval != ERROR_OK)
236 return retval;
237
238 if ((ctrl & FLASH_OPTLOCK) == 0)
239 return ERROR_OK;
240
241 /* unlock option registers */
242 retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
243 if (retval != ERROR_OK)
244 return retval;
245
246 retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
247 if (retval != ERROR_OK)
248 return retval;
249
250 retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
251 if (retval != ERROR_OK)
252 return retval;
253
254 if (ctrl & FLASH_OPTLOCK) {
255 LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
256 return ERROR_TARGET_FAILURE;
257 }
258
259 return ERROR_OK;
260 }
261
262 static int stm32l4_read_options(struct flash_bank *bank)
263 {
264 uint32_t optiondata;
265 struct stm32l4_flash_bank *stm32l4_info = NULL;
266 struct target *target = bank->target;
267
268 stm32l4_info = bank->driver_priv;
269
270 /* read current option bytes */
271 int retval = target_read_u32(target, STM32_FLASH_OPTR, &optiondata);
272 if (retval != ERROR_OK)
273 return retval;
274
275 stm32l4_info->option_bytes.user_options = (optiondata >> 8) & 0x3ffff;
276 stm32l4_info->option_bytes.RDP = optiondata & 0xff;
277
278 retval = target_read_u32(target, STM32_FLASH_WRP1AR, &optiondata);
279 if (retval != ERROR_OK)
280 return retval;
281 stm32l4_info->option_bytes.wpr1a_start = optiondata & 0xff;
282 stm32l4_info->option_bytes.wpr1a_end = (optiondata >> 16) & 0xff;
283
284 retval = target_read_u32(target, STM32_FLASH_WRP2AR, &optiondata);
285 if (retval != ERROR_OK)
286 return retval;
287 stm32l4_info->option_bytes.wpr2a_start = optiondata & 0xff;
288 stm32l4_info->option_bytes.wpr2a_end = (optiondata >> 16) & 0xff;
289
290 retval = target_read_u32(target, STM32_FLASH_WRP1BR, &optiondata);
291 if (retval != ERROR_OK)
292 return retval;
293 stm32l4_info->option_bytes.wpr1b_start = optiondata & 0xff;
294 stm32l4_info->option_bytes.wpr1b_end = (optiondata >> 16) & 0xff;
295
296 retval = target_read_u32(target, STM32_FLASH_WRP2BR, &optiondata);
297 if (retval != ERROR_OK)
298 return retval;
299 stm32l4_info->option_bytes.wpr2b_start = optiondata & 0xff;
300 stm32l4_info->option_bytes.wpr2b_end = (optiondata >> 16) & 0xff;
301
302 if (stm32l4_info->option_bytes.RDP != 0xAA)
303 LOG_INFO("Device Security Bit Set");
304
305 return ERROR_OK;
306 }
307
308 static int stm32l4_write_options(struct flash_bank *bank)
309 {
310 struct stm32l4_flash_bank *stm32l4_info = NULL;
311 struct target *target = bank->target;
312 uint32_t optiondata;
313
314 stm32l4_info = bank->driver_priv;
315
316 (void) optiondata;
317 (void) stm32l4_info;
318
319 int retval = stm32l4_unlock_option_reg(target);
320 if (retval != ERROR_OK)
321 return retval;
322 /* FIXME: Implement Option writing!*/
323 return ERROR_OK;
324 }
325
326 static int stm32l4_protect_check(struct flash_bank *bank)
327 {
328 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
329
330 /* read write protection settings */
331 int retval = stm32l4_read_options(bank);
332 if (retval != ERROR_OK) {
333 LOG_DEBUG("unable to read option bytes");
334 return retval;
335 }
336
337 for (int i = 0; i < bank->num_sectors; i++) {
338 if (i < stm32l4_info->option_bytes.bank_b_start) {
339 if (((i >= stm32l4_info->option_bytes.wpr1a_start) &&
340 (i <= stm32l4_info->option_bytes.wpr1a_end)) ||
341 ((i >= stm32l4_info->option_bytes.wpr2a_start) &&
342 (i <= stm32l4_info->option_bytes.wpr2a_end)))
343 bank->sectors[i].is_protected = 1;
344 else
345 bank->sectors[i].is_protected = 0;
346 } else {
347 uint8_t snb;
348 snb = i - stm32l4_info->option_bytes.bank_b_start + 256;
349 if (((snb >= stm32l4_info->option_bytes.wpr1b_start) &&
350 (snb <= stm32l4_info->option_bytes.wpr1b_end)) ||
351 ((snb >= stm32l4_info->option_bytes.wpr2b_start) &&
352 (snb <= stm32l4_info->option_bytes.wpr2b_end)))
353 bank->sectors[i].is_protected = 1;
354 else
355 bank->sectors[i].is_protected = 0;
356 }
357 }
358 return ERROR_OK;
359 }
360
361 static int stm32l4_erase(struct flash_bank *bank, int first, int last)
362 {
363 struct target *target = bank->target;
364 int i;
365
366 assert(first < bank->num_sectors);
367 assert(last < bank->num_sectors);
368
369 if (bank->target->state != TARGET_HALTED) {
370 LOG_ERROR("Target not halted");
371 return ERROR_TARGET_NOT_HALTED;
372 }
373
374 int retval;
375 retval = stm32l4_unlock_reg(target);
376 if (retval != ERROR_OK)
377 return retval;
378
379 /*
380 Sector Erase
381 To erase a sector, follow the procedure below:
382 1. Check that no Flash memory operation is ongoing by
383 checking the BSY bit in the FLASH_SR register
384 2. Set the PER bit and select the page and bank
385 you wish to erase in the FLASH_CR register
386 3. Set the STRT bit in the FLASH_CR register
387 4. Wait for the BSY bit to be cleared
388 */
389 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
390
391 for (i = first; i <= last; i++) {
392 uint32_t erase_flags;
393 erase_flags = FLASH_PER | FLASH_STRT;
394
395 if (i >= stm32l4_info->option_bytes.bank_b_start) {
396 uint8_t snb;
397 snb = (i - stm32l4_info->option_bytes.bank_b_start) + 256;
398 erase_flags |= snb << FLASH_PAGE_SHIFT | FLASH_CR_BKER;
399 } else
400 erase_flags |= i << FLASH_PAGE_SHIFT;
401 retval = target_write_u32(target,
402 stm32l4_get_flash_reg(bank, STM32_FLASH_CR), erase_flags);
403 if (retval != ERROR_OK)
404 return retval;
405
406 retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
407 if (retval != ERROR_OK)
408 return retval;
409
410 bank->sectors[i].is_erased = 1;
411 }
412
413 retval = target_write_u32(
414 target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
415 if (retval != ERROR_OK)
416 return retval;
417
418 return ERROR_OK;
419 }
420
421 static int stm32l4_protect(struct flash_bank *bank, int set, int first, int last)
422 {
423 struct target *target = bank->target;
424 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
425
426 if (target->state != TARGET_HALTED) {
427 LOG_ERROR("Target not halted");
428 return ERROR_TARGET_NOT_HALTED;
429 }
430
431 /* read protection settings */
432 int retval = stm32l4_read_options(bank);
433 if (retval != ERROR_OK) {
434 LOG_DEBUG("unable to read option bytes");
435 return retval;
436 }
437
438 (void)stm32l4_info;
439 /* FIXME: Write First and last in a valid WRPxx_start/end combo*/
440 retval = stm32l4_write_options(bank);
441 if (retval != ERROR_OK)
442 return retval;
443
444 return ERROR_OK;
445 }
446
447 /* Count is in halfwords */
448 static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
449 uint32_t offset, uint32_t count)
450 {
451 struct target *target = bank->target;
452 uint32_t buffer_size = 16384;
453 struct working_area *write_algorithm;
454 struct working_area *source;
455 uint32_t address = bank->base + offset;
456 struct reg_param reg_params[5];
457 struct armv7m_algorithm armv7m_info;
458 int retval = ERROR_OK;
459
460 /* See contrib/loaders/flash/stm32l4x.S for source and
461 * hints how to generate the data!
462 */
463
464 static const uint8_t stm32l4_flash_write_code[] = {
465 0xd0, 0xf8, 0x00, 0x80, 0xb8, 0xf1, 0x00, 0x0f, 0x21, 0xd0, 0x45, 0x68,
466 0xb8, 0xeb, 0x05, 0x06, 0x44, 0xbf, 0x76, 0x18, 0x36, 0x1a, 0x08, 0x2e,
467 0xf2, 0xd3, 0xdf, 0xf8, 0x36, 0x60, 0x66, 0x61, 0xf5, 0xe8, 0x02, 0x67,
468 0xe2, 0xe8, 0x02, 0x67, 0xbf, 0xf3, 0x4f, 0x8f, 0x26, 0x69, 0x16, 0xf4,
469 0x80, 0x3f, 0xfb, 0xd1, 0x16, 0xf0, 0xfa, 0x0f, 0x07, 0xd1, 0x8d, 0x42,
470 0x28, 0xbf, 0x00, 0xf1, 0x08, 0x05, 0x45, 0x60, 0x01, 0x3b, 0x13, 0xb1,
471 0xda, 0xe7, 0x00, 0x21, 0x41, 0x60, 0x30, 0x46, 0x00, 0xbe, 0x01, 0x00,
472 0x00, 0x00
473 };
474
475 if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code),
476 &write_algorithm) != ERROR_OK) {
477 LOG_WARNING("no working area available, can't do block memory writes");
478 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
479 }
480
481 retval = target_write_buffer(target, write_algorithm->address,
482 sizeof(stm32l4_flash_write_code),
483 stm32l4_flash_write_code);
484 if (retval != ERROR_OK)
485 return retval;
486
487 /* memory buffer */
488 while (target_alloc_working_area_try(target, buffer_size, &source) !=
489 ERROR_OK) {
490 buffer_size /= 2;
491 if (buffer_size <= 256) {
492 /* we already allocated the writing code, but failed to get a
493 * buffer, free the algorithm */
494 target_free_working_area(target, write_algorithm);
495
496 LOG_WARNING("no large enough working area available, can't do block memory writes");
497 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
498 }
499 }
500
501 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
502 armv7m_info.core_mode = ARM_MODE_THREAD;
503
504 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
505 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer end */
506 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* target address */
507 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* count (double word-64bit) */
508 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT); /* flash base */
509
510 buf_set_u32(reg_params[0].value, 0, 32, source->address);
511 buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
512 buf_set_u32(reg_params[2].value, 0, 32, address);
513 buf_set_u32(reg_params[3].value, 0, 32, count / 4);
514 buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
515
516 retval = target_run_flash_async_algorithm(target, buffer, count, 2,
517 0, NULL,
518 5, reg_params,
519 source->address, source->size,
520 write_algorithm->address, 0,
521 &armv7m_info);
522
523 if (retval == ERROR_FLASH_OPERATION_FAILED) {
524 LOG_ERROR("error executing stm32l4 flash write algorithm");
525
526 uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
527
528 if (error & FLASH_WRPERR)
529 LOG_ERROR("flash memory write protected");
530
531 if (error != 0) {
532 LOG_ERROR("flash write failed = %08" PRIx32, error);
533 /* Clear but report errors */
534 target_write_u32(target, STM32_FLASH_SR, error);
535 retval = ERROR_FAIL;
536 }
537 }
538
539 target_free_working_area(target, source);
540 target_free_working_area(target, write_algorithm);
541
542 destroy_reg_param(&reg_params[0]);
543 destroy_reg_param(&reg_params[1]);
544 destroy_reg_param(&reg_params[2]);
545 destroy_reg_param(&reg_params[3]);
546 destroy_reg_param(&reg_params[4]);
547
548 return retval;
549 }
550
551 static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
552 uint32_t offset, uint32_t count)
553 {
554 struct target *target = bank->target;
555 int retval;
556
557 if (bank->target->state != TARGET_HALTED) {
558 LOG_ERROR("Target not halted");
559 return ERROR_TARGET_NOT_HALTED;
560 }
561
562 if (offset & 0x7) {
563 LOG_WARNING("offset 0x%" PRIx32 " breaks required 8-byte alignment",
564 offset);
565 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
566 }
567
568 if (count & 0x7) {
569 LOG_WARNING("Padding %d bytes to keep 8-byte write size",
570 count & 7);
571 count = (count + 7) & ~7;
572 /* This pads the write chunk with random bytes by overrunning the
573 * write buffer. Padding with the erased pattern 0xff is purely
574 * cosmetical, as 8-byte flash words are ECC secured and the first
575 * write will program the ECC bits. A second write would need
576 * to reprogramm these ECC bits.
577 * But this can only be done after erase!
578 */
579 }
580
581 retval = stm32l4_unlock_reg(target);
582 if (retval != ERROR_OK)
583 return retval;
584
585 /* Only full double words (8-byte) can be programmed*/
586 retval = stm32l4_write_block(bank, buffer, offset, count / 2);
587 if (retval != ERROR_OK) {
588 LOG_WARNING("block write failed");
589 return retval;
590 }
591
592 LOG_WARNING("block write succeeded");
593 return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
594 }
595
596 static int stm32l4_probe(struct flash_bank *bank)
597 {
598 struct target *target = bank->target;
599 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
600 int i;
601 uint16_t flash_size_in_kb = 0xffff;
602 uint32_t device_id;
603 uint32_t options;
604 uint32_t base_address = 0x08000000;
605
606 stm32l4_info->probed = 0;
607
608 /* read stm32 device id register */
609 int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
610 if (retval != ERROR_OK)
611 return retval;
612 LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
613
614 /* set max flash size depending on family */
615 switch (device_id & 0xfff) {
616 case 0x415:
617 break;
618 default:
619 LOG_WARNING("Cannot identify target as a STM32L4 family.");
620 return ERROR_FAIL;
621 }
622
623 /* get flash size from target. */
624 retval = target_read_u16(target, FLASH_SIZE_REG, &flash_size_in_kb);
625
626 /* get options to for DUAL BANK. */
627 retval = target_read_u32(target, STM32_FLASH_OPTR, &options);
628
629 /* only devices with < 1024 kiB may be set to single bank dual banks */
630 if ((flash_size_in_kb == 1024) || !(options & OPT_DUALBANK))
631 stm32l4_info->option_bytes.bank_b_start = 256;
632 else
633 stm32l4_info->option_bytes.bank_b_start = flash_size_in_kb << 9;
634
635 LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
636
637 /* did we assign flash size? */
638 assert((flash_size_in_kb != 0xffff) && flash_size_in_kb);
639
640 /* calculate numbers of pages */
641 int num_pages = flash_size_in_kb / 2;
642
643 /* check that calculation result makes sense */
644 assert(num_pages > 0);
645
646 if (bank->sectors) {
647 free(bank->sectors);
648 bank->sectors = NULL;
649 }
650
651 bank->base = base_address;
652 bank->size = num_pages * (1 << 11);
653 bank->num_sectors = num_pages;
654 bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
655 if (!bank->sectors)
656 return ERROR_FAIL; /* Checkme: What better error to use?*/
657
658 for (i = 0; i < num_pages; i++) {
659 bank->sectors[i].offset = i << 11;
660 bank->sectors[i].size = 1 << 11;
661 bank->sectors[i].is_erased = -1;
662 bank->sectors[i].is_protected = 1;
663 }
664
665 stm32l4_info->probed = 1;
666
667 return ERROR_OK;
668 }
669
670 static int stm32l4_auto_probe(struct flash_bank *bank)
671 {
672 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
673 if (stm32l4_info->probed)
674 return ERROR_OK;
675 return stm32l4_probe(bank);
676 }
677
678 static int get_stm32l4_info(struct flash_bank *bank, char *buf, int buf_size)
679 {
680 struct target *target = bank->target;
681 uint32_t dbgmcu_idcode;
682
683 /* read stm32 device id register */
684 int retval = target_read_u32(target, DBGMCU_IDCODE, &dbgmcu_idcode);
685 if (retval != ERROR_OK)
686 return retval;
687
688 uint16_t device_id = dbgmcu_idcode & 0xffff;
689 uint8_t rev_id = dbgmcu_idcode >> 28;
690 uint8_t rev_minor = 0;
691 int i;
692
693 for (i = 16; i < 28; i++) {
694 if (dbgmcu_idcode & (1 << i))
695 rev_minor++;
696 else
697 break;
698 }
699
700 const char *device_str;
701
702 switch (device_id) {
703 case 0x6415:
704 device_str = "STM32L4xx";
705 break;
706
707 default:
708 snprintf(buf, buf_size, "Cannot identify target as a STM32L4\n");
709 return ERROR_FAIL;
710 }
711
712 snprintf(buf, buf_size, "%s - Rev: %1d.%02d",
713 device_str, rev_id, rev_minor);
714
715 return ERROR_OK;
716 }
717
718 COMMAND_HANDLER(stm32l4_handle_lock_command)
719 {
720 struct target *target = NULL;
721 struct stm32l4_flash_bank *stm32l4_info = NULL;
722
723 if (CMD_ARGC < 1)
724 return ERROR_COMMAND_SYNTAX_ERROR;
725
726 struct flash_bank *bank;
727 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
728 if (ERROR_OK != retval)
729 return retval;
730
731 stm32l4_info = bank->driver_priv;
732 target = bank->target;
733
734 if (target->state != TARGET_HALTED) {
735 LOG_ERROR("Target not halted");
736 return ERROR_TARGET_NOT_HALTED;
737 }
738
739 if (stm32l4_read_options(bank) != ERROR_OK) {
740 command_print(CMD_CTX, "%s failed to read options",
741 bank->driver->name);
742 return ERROR_OK;
743 }
744
745 /* set readout protection */
746 stm32l4_info->option_bytes.RDP = 0;
747
748 if (stm32l4_write_options(bank) != ERROR_OK) {
749 command_print(CMD_CTX, "%s failed to lock device", bank->driver->name);
750 return ERROR_OK;
751 }
752
753 command_print(CMD_CTX, "%s locked", bank->driver->name);
754
755 return ERROR_OK;
756 }
757
758 COMMAND_HANDLER(stm32l4_handle_unlock_command)
759 {
760 struct target *target = NULL;
761 struct stm32l4_flash_bank *stm32l4_info = NULL;
762
763 if (CMD_ARGC < 1)
764 return ERROR_COMMAND_SYNTAX_ERROR;
765
766 struct flash_bank *bank;
767 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
768 if (ERROR_OK != retval)
769 return retval;
770
771 stm32l4_info = bank->driver_priv;
772 target = bank->target;
773
774 if (target->state != TARGET_HALTED) {
775 LOG_ERROR("Target not halted");
776 return ERROR_TARGET_NOT_HALTED;
777 }
778
779 if (stm32l4_read_options(bank) != ERROR_OK) {
780 command_print(CMD_CTX, "%s failed to read options", bank->driver->name);
781 return ERROR_OK;
782 }
783
784 /* clear readout protection and complementary option bytes
785 * this will also force a device unlock if set */
786 stm32l4_info->option_bytes.RDP = 0xAA;
787
788 if (stm32l4_write_options(bank) != ERROR_OK) {
789 command_print(CMD_CTX, "%s failed to unlock device",
790 bank->driver->name);
791 return ERROR_OK;
792 }
793
794 command_print(CMD_CTX, "%s unlocked.\n"
795 "INFO: a reset or power cycle is required "
796 "for the new settings to take effect.", bank->driver->name);
797
798 return ERROR_OK;
799 }
800
801 static int stm32l4_mass_erase(struct flash_bank *bank, uint32_t action)
802 {
803 int retval;
804 struct target *target = bank->target;
805
806 if (target->state != TARGET_HALTED) {
807 LOG_ERROR("Target not halted");
808 return ERROR_TARGET_NOT_HALTED;
809 }
810
811 retval = stm32l4_unlock_reg(target);
812 if (retval != ERROR_OK)
813 return retval;
814
815 /* mass erase flash memory */
816 retval = target_write_u32(
817 target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), action);
818 if (retval != ERROR_OK)
819 return retval;
820 retval = target_write_u32(
821 target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR),
822 action | FLASH_STRT);
823 if (retval != ERROR_OK)
824 return retval;
825
826 retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
827 if (retval != ERROR_OK)
828 return retval;
829
830 retval = target_write_u32(
831 target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
832 if (retval != ERROR_OK)
833 return retval;
834
835 return ERROR_OK;
836 }
837
838 COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
839 {
840 int i;
841 uint32_t action;
842
843 if (CMD_ARGC < 1) {
844 command_print(CMD_CTX, "stm32x mass_erase <STM32L4 bank>");
845 return ERROR_COMMAND_SYNTAX_ERROR;
846 }
847
848 struct flash_bank *bank;
849 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
850 if (ERROR_OK != retval)
851 return retval;
852
853 action = FLASH_MER1 | FLASH_MER2;
854 retval = stm32l4_mass_erase(bank, action);
855 if (retval == ERROR_OK) {
856 /* set all sectors as erased */
857 for (i = 0; i < bank->num_sectors; i++)
858 bank->sectors[i].is_erased = 1;
859
860 command_print(CMD_CTX, "stm32x mass erase complete");
861 } else {
862 command_print(CMD_CTX, "stm32x mass erase failed");
863 }
864
865 return retval;
866 }
867
868 static const struct command_registration stm32l4_exec_command_handlers[] = {
869 {
870 .name = "lock",
871 .handler = stm32l4_handle_lock_command,
872 .mode = COMMAND_EXEC,
873 .usage = "bank_id",
874 .help = "Lock entire flash device.",
875 },
876 {
877 .name = "unlock",
878 .handler = stm32l4_handle_unlock_command,
879 .mode = COMMAND_EXEC,
880 .usage = "bank_id",
881 .help = "Unlock entire protected flash device.",
882 },
883 {
884 .name = "mass_erase",
885 .handler = stm32l4_handle_mass_erase_command,
886 .mode = COMMAND_EXEC,
887 .usage = "bank_id",
888 .help = "Erase entire flash device.",
889 },
890 COMMAND_REGISTRATION_DONE
891 };
892
893 static const struct command_registration stm32l4_command_handlers[] = {
894 {
895 .name = "stm32l4x",
896 .mode = COMMAND_ANY,
897 .help = "stm32l4x flash command group",
898 .usage = "",
899 .chain = stm32l4_exec_command_handlers,
900 },
901 COMMAND_REGISTRATION_DONE
902 };
903
904 struct flash_driver stm32l4x_flash = {
905 .name = "stm32l4x",
906 .commands = stm32l4_command_handlers,
907 .flash_bank_command = stm32l4_flash_bank_command,
908 .erase = stm32l4_erase,
909 .protect = stm32l4_protect,
910 .write = stm32l4_write,
911 .read = default_flash_read,
912 .probe = stm32l4_probe,
913 .auto_probe = stm32l4_auto_probe,
914 .erase_check = default_flash_blank_check,
915 .protect_check = stm32l4_protect_check,
916 .info = get_stm32l4_info,
917 };