f6eb21b6585f4038c26df7db8dc68c5736909be9
[openocd.git] / src / flash / nor / stm32f1x.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 by Andreas Fritiofson *
9 * andreas.fritiofson@gmail.com *
10 *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/armv7m.h>
35
36 /* stm32x register locations */
37
38 #define FLASH_REG_BASE_B0 0x40022000
39 #define FLASH_REG_BASE_B1 0x40022040
40
41 #define STM32_FLASH_ACR 0x00
42 #define STM32_FLASH_KEYR 0x04
43 #define STM32_FLASH_OPTKEYR 0x08
44 #define STM32_FLASH_SR 0x0C
45 #define STM32_FLASH_CR 0x10
46 #define STM32_FLASH_AR 0x14
47 #define STM32_FLASH_OBR 0x1C
48 #define STM32_FLASH_WRPR 0x20
49
50 /* TODO: Check if code using these really should be hard coded to bank 0.
51 * There are valid cases, on dual flash devices the protection of the
52 * second bank is done on the bank0 reg's. */
53 #define STM32_FLASH_ACR_B0 0x40022000
54 #define STM32_FLASH_KEYR_B0 0x40022004
55 #define STM32_FLASH_OPTKEYR_B0 0x40022008
56 #define STM32_FLASH_SR_B0 0x4002200C
57 #define STM32_FLASH_CR_B0 0x40022010
58 #define STM32_FLASH_AR_B0 0x40022014
59 #define STM32_FLASH_OBR_B0 0x4002201C
60 #define STM32_FLASH_WRPR_B0 0x40022020
61
62 /* option byte location */
63
64 #define STM32_OB_RDP 0x1FFFF800
65 #define STM32_OB_USER 0x1FFFF802
66 #define STM32_OB_DATA0 0x1FFFF804
67 #define STM32_OB_DATA1 0x1FFFF806
68 #define STM32_OB_WRP0 0x1FFFF808
69 #define STM32_OB_WRP1 0x1FFFF80A
70 #define STM32_OB_WRP2 0x1FFFF80C
71 #define STM32_OB_WRP3 0x1FFFF80E
72
73 /* FLASH_CR register bits */
74
75 #define FLASH_PG (1 << 0)
76 #define FLASH_PER (1 << 1)
77 #define FLASH_MER (1 << 2)
78 #define FLASH_OPTPG (1 << 4)
79 #define FLASH_OPTER (1 << 5)
80 #define FLASH_STRT (1 << 6)
81 #define FLASH_LOCK (1 << 7)
82 #define FLASH_OPTWRE (1 << 9)
83
84 /* FLASH_SR register bits */
85
86 #define FLASH_BSY (1 << 0)
87 #define FLASH_PGERR (1 << 2)
88 #define FLASH_WRPRTERR (1 << 4)
89 #define FLASH_EOP (1 << 5)
90
91 /* STM32_FLASH_OBR bit definitions (reading) */
92
93 #define OPT_ERROR 0
94 #define OPT_READOUT 1
95 #define OPT_RDWDGSW 2
96 #define OPT_RDRSTSTOP 3
97 #define OPT_RDRSTSTDBY 4
98 #define OPT_BFB2 5 /* dual flash bank only */
99
100 /* register unlock keys */
101
102 #define KEY1 0x45670123
103 #define KEY2 0xCDEF89AB
104
105 struct stm32x_options {
106 uint16_t RDP;
107 uint16_t user_options;
108 uint16_t protection[4];
109 };
110
111 struct stm32x_flash_bank {
112 struct stm32x_options option_bytes;
113 struct working_area *write_algorithm;
114 int ppage_size;
115 int probed;
116
117 bool has_dual_banks;
118 /* used to access dual flash bank stm32xl */
119 uint32_t register_base;
120 };
121
122 static int stm32x_mass_erase(struct flash_bank *bank);
123 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id);
124
125 /* flash bank stm32x <base> <size> 0 0 <target#>
126 */
127 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
128 {
129 struct stm32x_flash_bank *stm32x_info;
130
131 if (CMD_ARGC < 6)
132 return ERROR_COMMAND_SYNTAX_ERROR;
133
134 stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
135
136 bank->driver_priv = stm32x_info;
137 stm32x_info->write_algorithm = NULL;
138 stm32x_info->probed = 0;
139 stm32x_info->has_dual_banks = false;
140 stm32x_info->register_base = FLASH_REG_BASE_B0;
141
142 return ERROR_OK;
143 }
144
145 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
146 {
147 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
148 return reg + stm32x_info->register_base;
149 }
150
151 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
152 {
153 struct target *target = bank->target;
154 return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
155 }
156
157 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
158 {
159 struct target *target = bank->target;
160 uint32_t status;
161 int retval = ERROR_OK;
162
163 /* wait for busy to clear */
164 for (;;) {
165 retval = stm32x_get_flash_status(bank, &status);
166 if (retval != ERROR_OK)
167 return retval;
168 LOG_DEBUG("status: 0x%" PRIx32 "", status);
169 if ((status & FLASH_BSY) == 0)
170 break;
171 if (timeout-- <= 0) {
172 LOG_ERROR("timed out waiting for flash");
173 return ERROR_FAIL;
174 }
175 alive_sleep(1);
176 }
177
178 if (status & FLASH_WRPRTERR) {
179 LOG_ERROR("stm32x device protected");
180 retval = ERROR_FAIL;
181 }
182
183 if (status & FLASH_PGERR) {
184 LOG_ERROR("stm32x device programming failed");
185 retval = ERROR_FAIL;
186 }
187
188 /* Clear but report errors */
189 if (status & (FLASH_WRPRTERR | FLASH_PGERR)) {
190 /* If this operation fails, we ignore it and report the original
191 * retval
192 */
193 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
194 FLASH_WRPRTERR | FLASH_PGERR);
195 }
196 return retval;
197 }
198
199 int stm32x_check_operation_supported(struct flash_bank *bank)
200 {
201 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
202
203 /* if we have a dual flash bank device then
204 * we need to perform option byte stuff on bank0 only */
205 if (stm32x_info->register_base != FLASH_REG_BASE_B0) {
206 LOG_ERROR("Option Byte Operation's must use bank0");
207 return ERROR_FLASH_OPERATION_FAILED;
208 }
209
210 return ERROR_OK;
211 }
212
213 static int stm32x_read_options(struct flash_bank *bank)
214 {
215 uint32_t optiondata;
216 struct stm32x_flash_bank *stm32x_info = NULL;
217 struct target *target = bank->target;
218
219 stm32x_info = bank->driver_priv;
220
221 /* read current option bytes */
222 int retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optiondata);
223 if (retval != ERROR_OK)
224 return retval;
225
226 stm32x_info->option_bytes.user_options = (uint16_t)0xFFF8 | ((optiondata >> 2) & 0x07);
227 stm32x_info->option_bytes.RDP = (optiondata & (1 << OPT_READOUT)) ? 0xFFFF : 0x5AA5;
228
229 if (optiondata & (1 << OPT_READOUT))
230 LOG_INFO("Device Security Bit Set");
231
232 /* each bit refers to a 4bank protection */
233 retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &optiondata);
234 if (retval != ERROR_OK)
235 return retval;
236
237 stm32x_info->option_bytes.protection[0] = (uint16_t)optiondata;
238 stm32x_info->option_bytes.protection[1] = (uint16_t)(optiondata >> 8);
239 stm32x_info->option_bytes.protection[2] = (uint16_t)(optiondata >> 16);
240 stm32x_info->option_bytes.protection[3] = (uint16_t)(optiondata >> 24);
241
242 return ERROR_OK;
243 }
244
245 static int stm32x_erase_options(struct flash_bank *bank)
246 {
247 struct stm32x_flash_bank *stm32x_info = NULL;
248 struct target *target = bank->target;
249
250 stm32x_info = bank->driver_priv;
251
252 /* stlink is currently does not support 16bit
253 * read/writes. so we cannot write option bytes */
254 struct armv7m_common *armv7m = target_to_armv7m(target);
255 if (armv7m && armv7m->stlink) {
256 LOG_ERROR("Option bytes currently unsupported for stlink");
257 return ERROR_FAIL;
258 }
259
260 /* read current options */
261 stm32x_read_options(bank);
262
263 /* unlock flash registers */
264 int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
265 if (retval != ERROR_OK)
266 return retval;
267
268 retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
269 if (retval != ERROR_OK)
270 return retval;
271
272 /* unlock option flash registers */
273 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
274 if (retval != ERROR_OK)
275 return retval;
276 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
277 if (retval != ERROR_OK)
278 return retval;
279
280 /* erase option bytes */
281 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
282 if (retval != ERROR_OK)
283 return retval;
284 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
285 if (retval != ERROR_OK)
286 return retval;
287
288 retval = stm32x_wait_status_busy(bank, 10);
289 if (retval != ERROR_OK)
290 return retval;
291
292 /* clear readout protection and complementary option bytes
293 * this will also force a device unlock if set */
294 stm32x_info->option_bytes.RDP = 0x5AA5;
295
296 return ERROR_OK;
297 }
298
299 static int stm32x_write_options(struct flash_bank *bank)
300 {
301 struct stm32x_flash_bank *stm32x_info = NULL;
302 struct target *target = bank->target;
303
304 stm32x_info = bank->driver_priv;
305
306 /* unlock flash registers */
307 int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
308 if (retval != ERROR_OK)
309 return retval;
310 retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
311 if (retval != ERROR_OK)
312 return retval;
313
314 /* unlock option flash registers */
315 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
316 if (retval != ERROR_OK)
317 return retval;
318 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
319 if (retval != ERROR_OK)
320 return retval;
321
322 /* program option bytes */
323 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
324 if (retval != ERROR_OK)
325 return retval;
326
327 /* write user option byte */
328 retval = target_write_u16(target, STM32_OB_USER, stm32x_info->option_bytes.user_options);
329 if (retval != ERROR_OK)
330 return retval;
331
332 retval = stm32x_wait_status_busy(bank, 10);
333 if (retval != ERROR_OK)
334 return retval;
335
336 /* write protection byte 1 */
337 retval = target_write_u16(target, STM32_OB_WRP0, stm32x_info->option_bytes.protection[0]);
338 if (retval != ERROR_OK)
339 return retval;
340
341 retval = stm32x_wait_status_busy(bank, 10);
342 if (retval != ERROR_OK)
343 return retval;
344
345 /* write protection byte 2 */
346 retval = target_write_u16(target, STM32_OB_WRP1, stm32x_info->option_bytes.protection[1]);
347 if (retval != ERROR_OK)
348 return retval;
349
350 retval = stm32x_wait_status_busy(bank, 10);
351 if (retval != ERROR_OK)
352 return retval;
353
354 /* write protection byte 3 */
355 retval = target_write_u16(target, STM32_OB_WRP2, stm32x_info->option_bytes.protection[2]);
356 if (retval != ERROR_OK)
357 return retval;
358
359 retval = stm32x_wait_status_busy(bank, 10);
360 if (retval != ERROR_OK)
361 return retval;
362
363 /* write protection byte 4 */
364 retval = target_write_u16(target, STM32_OB_WRP3, stm32x_info->option_bytes.protection[3]);
365 if (retval != ERROR_OK)
366 return retval;
367
368 retval = stm32x_wait_status_busy(bank, 10);
369 if (retval != ERROR_OK)
370 return retval;
371
372 /* write readout protection bit */
373 retval = target_write_u16(target, STM32_OB_RDP, stm32x_info->option_bytes.RDP);
374 if (retval != ERROR_OK)
375 return retval;
376
377 retval = stm32x_wait_status_busy(bank, 10);
378 if (retval != ERROR_OK)
379 return retval;
380
381 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
382 if (retval != ERROR_OK)
383 return retval;
384
385 return ERROR_OK;
386 }
387
388 static int stm32x_protect_check(struct flash_bank *bank)
389 {
390 struct target *target = bank->target;
391 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
392
393 uint32_t protection;
394 int i, s;
395 int num_bits;
396 int set;
397
398 if (target->state != TARGET_HALTED) {
399 LOG_ERROR("Target not halted");
400 return ERROR_TARGET_NOT_HALTED;
401 }
402
403 int retval = stm32x_check_operation_supported(bank);
404 if (ERROR_OK != retval)
405 return retval;
406
407 /* medium density - each bit refers to a 4bank protection
408 * high density - each bit refers to a 2bank protection */
409 retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
410 if (retval != ERROR_OK)
411 return retval;
412
413 /* medium density - each protection bit is for 4 * 1K pages
414 * high density - each protection bit is for 2 * 2K pages */
415 num_bits = (bank->num_sectors / stm32x_info->ppage_size);
416
417 if (stm32x_info->ppage_size == 2) {
418 /* high density flash/connectivity line protection */
419
420 set = 1;
421
422 if (protection & (1 << 31))
423 set = 0;
424
425 /* bit 31 controls sector 62 - 255 protection for high density
426 * bit 31 controls sector 62 - 127 protection for connectivity line */
427 for (s = 62; s < bank->num_sectors; s++)
428 bank->sectors[s].is_protected = set;
429
430 if (bank->num_sectors > 61)
431 num_bits = 31;
432
433 for (i = 0; i < num_bits; i++) {
434 set = 1;
435
436 if (protection & (1 << i))
437 set = 0;
438
439 for (s = 0; s < stm32x_info->ppage_size; s++)
440 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
441 }
442 } else {
443 /* low/medium density flash protection */
444 for (i = 0; i < num_bits; i++) {
445 set = 1;
446
447 if (protection & (1 << i))
448 set = 0;
449
450 for (s = 0; s < stm32x_info->ppage_size; s++)
451 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
452 }
453 }
454
455 return ERROR_OK;
456 }
457
458 static int stm32x_erase(struct flash_bank *bank, int first, int last)
459 {
460 struct target *target = bank->target;
461 int i;
462
463 if (bank->target->state != TARGET_HALTED) {
464 LOG_ERROR("Target not halted");
465 return ERROR_TARGET_NOT_HALTED;
466 }
467
468 if ((first == 0) && (last == (bank->num_sectors - 1)))
469 return stm32x_mass_erase(bank);
470
471 /* unlock flash registers */
472 int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
473 if (retval != ERROR_OK)
474 return retval;
475 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
476 if (retval != ERROR_OK)
477 return retval;
478
479 for (i = first; i <= last; i++) {
480 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
481 if (retval != ERROR_OK)
482 return retval;
483 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
484 bank->base + bank->sectors[i].offset);
485 if (retval != ERROR_OK)
486 return retval;
487 retval = target_write_u32(target,
488 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
489 if (retval != ERROR_OK)
490 return retval;
491
492 retval = stm32x_wait_status_busy(bank, 100);
493 if (retval != ERROR_OK)
494 return retval;
495
496 bank->sectors[i].is_erased = 1;
497 }
498
499 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
500 if (retval != ERROR_OK)
501 return retval;
502
503 return ERROR_OK;
504 }
505
506 static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
507 {
508 struct stm32x_flash_bank *stm32x_info = NULL;
509 struct target *target = bank->target;
510 uint16_t prot_reg[4] = {0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF};
511 int i, reg, bit;
512 int status;
513 uint32_t protection;
514
515 stm32x_info = bank->driver_priv;
516
517 if (target->state != TARGET_HALTED) {
518 LOG_ERROR("Target not halted");
519 return ERROR_TARGET_NOT_HALTED;
520 }
521
522 int retval = stm32x_check_operation_supported(bank);
523 if (ERROR_OK != retval)
524 return retval;
525
526 if ((first % stm32x_info->ppage_size) != 0) {
527 LOG_WARNING("aligned start protect sector to a %d sector boundary",
528 stm32x_info->ppage_size);
529 first = first - (first % stm32x_info->ppage_size);
530 }
531 if (((last + 1) % stm32x_info->ppage_size) != 0) {
532 LOG_WARNING("aligned end protect sector to a %d sector boundary",
533 stm32x_info->ppage_size);
534 last++;
535 last = last - (last % stm32x_info->ppage_size);
536 last--;
537 }
538
539 /* medium density - each bit refers to a 4bank protection
540 * high density - each bit refers to a 2bank protection */
541 retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
542 if (retval != ERROR_OK)
543 return retval;
544
545 prot_reg[0] = (uint16_t)protection;
546 prot_reg[1] = (uint16_t)(protection >> 8);
547 prot_reg[2] = (uint16_t)(protection >> 16);
548 prot_reg[3] = (uint16_t)(protection >> 24);
549
550 if (stm32x_info->ppage_size == 2) {
551 /* high density flash */
552
553 /* bit 7 controls sector 62 - 255 protection */
554 if (last > 61) {
555 if (set)
556 prot_reg[3] &= ~(1 << 7);
557 else
558 prot_reg[3] |= (1 << 7);
559 }
560
561 if (first > 61)
562 first = 62;
563 if (last > 61)
564 last = 61;
565
566 for (i = first; i <= last; i++) {
567 reg = (i / stm32x_info->ppage_size) / 8;
568 bit = (i / stm32x_info->ppage_size) - (reg * 8);
569
570 if (set)
571 prot_reg[reg] &= ~(1 << bit);
572 else
573 prot_reg[reg] |= (1 << bit);
574 }
575 } else {
576 /* medium density flash */
577 for (i = first; i <= last; i++) {
578 reg = (i / stm32x_info->ppage_size) / 8;
579 bit = (i / stm32x_info->ppage_size) - (reg * 8);
580
581 if (set)
582 prot_reg[reg] &= ~(1 << bit);
583 else
584 prot_reg[reg] |= (1 << bit);
585 }
586 }
587
588 status = stm32x_erase_options(bank);
589 if (status != ERROR_OK)
590 return status;
591
592 stm32x_info->option_bytes.protection[0] = prot_reg[0];
593 stm32x_info->option_bytes.protection[1] = prot_reg[1];
594 stm32x_info->option_bytes.protection[2] = prot_reg[2];
595 stm32x_info->option_bytes.protection[3] = prot_reg[3];
596
597 return stm32x_write_options(bank);
598 }
599
600 static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
601 uint32_t offset, uint32_t count)
602 {
603 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
604 struct target *target = bank->target;
605 uint32_t buffer_size = 16384;
606 struct working_area *source;
607 uint32_t address = bank->base + offset;
608 struct reg_param reg_params[5];
609 struct armv7m_algorithm armv7m_info;
610 int retval = ERROR_OK;
611
612 /* see contrib/loaders/flash/stm32f1x.S for src */
613
614 static const uint8_t stm32x_flash_write_code[] = {
615 /* #define STM32_FLASH_SR_OFFSET 0x0C */
616 /* wait_fifo: */
617 0x16, 0x68, /* ldr r6, [r2, #0] */
618 0x00, 0x2e, /* cmp r6, #0 */
619 0x18, 0xd0, /* beq exit */
620 0x55, 0x68, /* ldr r5, [r2, #4] */
621 0xb5, 0x42, /* cmp r5, r6 */
622 0xf9, 0xd0, /* beq wait_fifo */
623 0x2e, 0x88, /* ldrh r6, [r5, #0] */
624 0x26, 0x80, /* strh r6, [r4, #0] */
625 0x02, 0x35, /* adds r5, #2 */
626 0x02, 0x34, /* adds r4, #2 */
627 /* busy: */
628 0xc6, 0x68, /* ldr r6, [r0, #STM32_FLASH_SR_OFFSET] */
629 0x01, 0x27, /* movs r7, #1 */
630 0x3e, 0x42, /* tst r6, r7 */
631 0xfb, 0xd1, /* bne busy */
632 0x14, 0x27, /* movs r7, #0x14 */
633 0x3e, 0x42, /* tst r6, r7 */
634 0x08, 0xd1, /* bne error */
635 0x9d, 0x42, /* cmp r5, r3 */
636 0x01, 0xd3, /* bcc no_wrap */
637 0x15, 0x46, /* mov r5, r2 */
638 0x08, 0x35, /* adds r5, #8 */
639 /* no_wrap: */
640 0x55, 0x60, /* str r5, [r2, #4] */
641 0x01, 0x39, /* subs r1, r1, #1 */
642 0x00, 0x29, /* cmp r1, #0 */
643 0x02, 0xd0, /* beq exit */
644 0xe5, 0xe7, /* b wait_fifo */
645 /* error: */
646 0x00, 0x20, /* movs r0, #0 */
647 0x50, 0x60, /* str r0, [r2, #4] */
648 /* exit: */
649 0x30, 0x46, /* mov r0, r6 */
650 0x00, 0xbe, /* bkpt #0 */
651 };
652
653 /* flash write code */
654 if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
655 &stm32x_info->write_algorithm) != ERROR_OK) {
656 LOG_WARNING("no working area available, can't do block memory writes");
657 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
658 };
659
660 retval = target_write_buffer(target, stm32x_info->write_algorithm->address,
661 sizeof(stm32x_flash_write_code), (uint8_t *)stm32x_flash_write_code);
662 if (retval != ERROR_OK)
663 return retval;
664
665 /* memory buffer */
666 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
667 buffer_size /= 2;
668 buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
669 if (buffer_size <= 256) {
670 /* if we already allocated the writing code, but failed to get a
671 * buffer, free the algorithm */
672 if (stm32x_info->write_algorithm)
673 target_free_working_area(target, stm32x_info->write_algorithm);
674
675 LOG_WARNING("no large enough working area available, can't do block memory writes");
676 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
677 }
678 };
679
680 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
681 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* count (halfword-16bit) */
682 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* buffer start */
683 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* buffer end */
684 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
685
686 buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
687 buf_set_u32(reg_params[1].value, 0, 32, count);
688 buf_set_u32(reg_params[2].value, 0, 32, source->address);
689 buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
690 buf_set_u32(reg_params[4].value, 0, 32, address);
691
692 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
693 armv7m_info.core_mode = ARMV7M_MODE_ANY;
694
695 retval = target_run_flash_async_algorithm(target, buffer, count, 2,
696 0, NULL,
697 5, reg_params,
698 source->address, source->size,
699 stm32x_info->write_algorithm->address, 0,
700 &armv7m_info);
701
702 if (retval == ERROR_FLASH_OPERATION_FAILED) {
703 LOG_ERROR("flash write failed at address 0x%"PRIx32,
704 buf_get_u32(reg_params[4].value, 0, 32));
705
706 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_PGERR) {
707 LOG_ERROR("flash memory not erased before writing");
708 /* Clear but report errors */
709 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_PGERR);
710 }
711
712 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_WRPRTERR) {
713 LOG_ERROR("flash memory write protected");
714 /* Clear but report errors */
715 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_WRPRTERR);
716 }
717 }
718
719 target_free_working_area(target, source);
720 target_free_working_area(target, stm32x_info->write_algorithm);
721
722 destroy_reg_param(&reg_params[0]);
723 destroy_reg_param(&reg_params[1]);
724 destroy_reg_param(&reg_params[2]);
725 destroy_reg_param(&reg_params[3]);
726 destroy_reg_param(&reg_params[4]);
727
728 return retval;
729 }
730
731 static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
732 uint32_t offset, uint32_t count)
733 {
734 struct target *target = bank->target;
735 uint8_t *new_buffer = NULL;
736
737 if (bank->target->state != TARGET_HALTED) {
738 LOG_ERROR("Target not halted");
739 return ERROR_TARGET_NOT_HALTED;
740 }
741
742 if (offset & 0x1) {
743 LOG_ERROR("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
744 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
745 }
746
747 /* If there's an odd number of bytes, the data has to be padded. Duplicate
748 * the buffer and use the normal code path with a single block write since
749 * it's probably cheaper than to special case the last odd write using
750 * discrete accesses. */
751 if (count & 1) {
752 new_buffer = malloc(count + 1);
753 if (new_buffer == NULL) {
754 LOG_ERROR("odd number of bytes to write and no memory for padding buffer");
755 return ERROR_FAIL;
756 }
757 LOG_INFO("odd number of bytes to write, padding with 0xff");
758 buffer = memcpy(new_buffer, buffer, count);
759 buffer[count++] = 0xff;
760 }
761
762 uint32_t words_remaining = count / 2;
763 int retval, retval2;
764
765 /* unlock flash registers */
766 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
767 if (retval != ERROR_OK)
768 goto cleanup;
769 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
770 if (retval != ERROR_OK)
771 goto cleanup;
772
773 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
774 if (retval != ERROR_OK)
775 goto cleanup;
776
777 /* try using a block write */
778 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
779
780 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
781 /* if block write failed (no sufficient working area),
782 * we use normal (slow) single halfword accesses */
783 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
784
785 while (words_remaining > 0) {
786 uint16_t value;
787 memcpy(&value, buffer, sizeof(uint16_t));
788
789 retval = target_write_u16(target, bank->base + offset, value);
790 if (retval != ERROR_OK)
791 goto reset_pg_and_lock;
792
793 retval = stm32x_wait_status_busy(bank, 5);
794 if (retval != ERROR_OK)
795 goto reset_pg_and_lock;
796
797 words_remaining--;
798 buffer += 2;
799 offset += 2;
800 }
801 }
802
803 reset_pg_and_lock:
804 retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
805 if (retval == ERROR_OK)
806 retval = retval2;
807
808 cleanup:
809 if (new_buffer)
810 free(new_buffer);
811
812 return retval;
813 }
814
815 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
816 {
817 /* This check the device CPUID core register to detect
818 * the M0 from the M3 devices. */
819
820 struct target *target = bank->target;
821 uint32_t cpuid, device_id_register = 0;
822
823 /* Get the CPUID from the ARM Core
824 * http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf 4.2.1 */
825 int retval = target_read_u32(target, 0xE000ED00, &cpuid);
826 if (retval != ERROR_OK)
827 return retval;
828
829 if (((cpuid >> 4) & 0xFFF) == 0xC20) {
830 /* 0xC20 is M0 devices */
831 device_id_register = 0x40015800;
832 } else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
833 /* 0xC23 is M3 devices */
834 device_id_register = 0xE0042000;
835 } else if (((cpuid >> 4) & 0xFFF) == 0xC24) {
836 /* 0xC24 is M4 devices */
837 device_id_register = 0xE0042000;
838 } else {
839 LOG_ERROR("Cannot identify target as a stm32x");
840 return ERROR_FAIL;
841 }
842
843 /* read stm32 device id register */
844 retval = target_read_u32(target, device_id_register, device_id);
845 if (retval != ERROR_OK)
846 return retval;
847
848 return retval;
849 }
850
851 static int stm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_size_in_kb)
852 {
853 struct target *target = bank->target;
854 uint32_t cpuid, flash_size_reg;
855
856 int retval = target_read_u32(target, 0xE000ED00, &cpuid);
857 if (retval != ERROR_OK)
858 return retval;
859
860 if (((cpuid >> 4) & 0xFFF) == 0xC20) {
861 /* 0xC20 is M0 devices */
862 flash_size_reg = 0x1FFFF7CC;
863 } else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
864 /* 0xC23 is M3 devices */
865 flash_size_reg = 0x1FFFF7E0;
866 } else if (((cpuid >> 4) & 0xFFF) == 0xC24) {
867 /* 0xC24 is M4 devices */
868 flash_size_reg = 0x1FFFF7CC;
869 } else {
870 LOG_ERROR("Cannot identify target as a stm32x");
871 return ERROR_FAIL;
872 }
873
874 retval = target_read_u16(target, flash_size_reg, flash_size_in_kb);
875 if (retval != ERROR_OK)
876 return retval;
877
878 return retval;
879 }
880
881 static int stm32x_probe(struct flash_bank *bank)
882 {
883 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
884 int i;
885 uint16_t flash_size_in_kb;
886 uint16_t max_flash_size_in_kb;
887 uint32_t device_id;
888 int page_size;
889 uint32_t base_address = 0x08000000;
890
891 stm32x_info->probed = 0;
892 stm32x_info->register_base = FLASH_REG_BASE_B0;
893
894 /* read stm32 device id register */
895 int retval = stm32x_get_device_id(bank, &device_id);
896 if (retval != ERROR_OK)
897 return retval;
898
899 LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
900
901 /* set page size, protection granularity and max flash size depending on family */
902 switch (device_id & 0xfff) {
903 case 0x410: /* medium density */
904 page_size = 1024;
905 stm32x_info->ppage_size = 4;
906 max_flash_size_in_kb = 128;
907 break;
908 case 0x412: /* low density */
909 page_size = 1024;
910 stm32x_info->ppage_size = 4;
911 max_flash_size_in_kb = 32;
912 break;
913 case 0x414: /* high density */
914 page_size = 2048;
915 stm32x_info->ppage_size = 2;
916 max_flash_size_in_kb = 512;
917 break;
918 case 0x418: /* connectivity line density */
919 page_size = 2048;
920 stm32x_info->ppage_size = 2;
921 max_flash_size_in_kb = 256;
922 break;
923 case 0x420: /* value line density */
924 page_size = 1024;
925 stm32x_info->ppage_size = 4;
926 max_flash_size_in_kb = 128;
927 break;
928 case 0x422: /* stm32f30x */
929 page_size = 2048;
930 stm32x_info->ppage_size = 2;
931 max_flash_size_in_kb = 256;
932 break;
933 case 0x428: /* value line High density */
934 page_size = 2048;
935 stm32x_info->ppage_size = 4;
936 max_flash_size_in_kb = 128;
937 break;
938 case 0x430: /* xl line density (dual flash banks) */
939 page_size = 2048;
940 stm32x_info->ppage_size = 2;
941 max_flash_size_in_kb = 1024;
942 stm32x_info->has_dual_banks = true;
943 break;
944 case 0x432: /* stm32f37x */
945 page_size = 2048;
946 stm32x_info->ppage_size = 2;
947 max_flash_size_in_kb = 256;
948 break;
949 case 0x440: /* stm32f0x */
950 page_size = 1024;
951 stm32x_info->ppage_size = 4;
952 max_flash_size_in_kb = 64;
953 break;
954 default:
955 LOG_WARNING("Cannot identify target as a STM32 family.");
956 return ERROR_FAIL;
957 }
958
959 /* get flash size from target. */
960 retval = stm32x_get_flash_size(bank, &flash_size_in_kb);
961
962 /* failed reading flash size or flash size invalid (early silicon),
963 * default to max target family */
964 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
965 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
966 max_flash_size_in_kb);
967 flash_size_in_kb = max_flash_size_in_kb;
968 }
969
970 if (stm32x_info->has_dual_banks) {
971 /* split reported size into matching bank */
972 if (bank->base != 0x08080000) {
973 /* bank 0 will be fixed 512k */
974 flash_size_in_kb = 512;
975 } else {
976 flash_size_in_kb -= 512;
977 /* bank1 also uses a register offset */
978 stm32x_info->register_base = FLASH_REG_BASE_B1;
979 base_address = 0x08080000;
980 }
981 }
982
983 LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
984
985 /* did we assign flash size? */
986 assert(flash_size_in_kb != 0xffff);
987
988 /* calculate numbers of pages */
989 int num_pages = flash_size_in_kb * 1024 / page_size;
990
991 /* check that calculation result makes sense */
992 assert(num_pages > 0);
993
994 if (bank->sectors) {
995 free(bank->sectors);
996 bank->sectors = NULL;
997 }
998
999 bank->base = base_address;
1000 bank->size = (num_pages * page_size);
1001 bank->num_sectors = num_pages;
1002 bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
1003
1004 for (i = 0; i < num_pages; i++) {
1005 bank->sectors[i].offset = i * page_size;
1006 bank->sectors[i].size = page_size;
1007 bank->sectors[i].is_erased = -1;
1008 bank->sectors[i].is_protected = 1;
1009 }
1010
1011 stm32x_info->probed = 1;
1012
1013 return ERROR_OK;
1014 }
1015
1016 static int stm32x_auto_probe(struct flash_bank *bank)
1017 {
1018 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1019 if (stm32x_info->probed)
1020 return ERROR_OK;
1021 return stm32x_probe(bank);
1022 }
1023
1024 #if 0
1025 COMMAND_HANDLER(stm32x_handle_part_id_command)
1026 {
1027 return ERROR_OK;
1028 }
1029 #endif
1030
1031 static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
1032 {
1033 uint32_t device_id;
1034 int printed;
1035
1036 /* read stm32 device id register */
1037 int retval = stm32x_get_device_id(bank, &device_id);
1038 if (retval != ERROR_OK)
1039 return retval;
1040
1041 if ((device_id & 0xfff) == 0x410) {
1042 printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: ");
1043 buf += printed;
1044 buf_size -= printed;
1045
1046 switch (device_id >> 16) {
1047 case 0x0000:
1048 snprintf(buf, buf_size, "A");
1049 break;
1050
1051 case 0x2000:
1052 snprintf(buf, buf_size, "B");
1053 break;
1054
1055 case 0x2001:
1056 snprintf(buf, buf_size, "Z");
1057 break;
1058
1059 case 0x2003:
1060 snprintf(buf, buf_size, "Y");
1061 break;
1062
1063 default:
1064 snprintf(buf, buf_size, "unknown");
1065 break;
1066 }
1067 } else if ((device_id & 0xfff) == 0x412) {
1068 printed = snprintf(buf, buf_size, "stm32x (Low Density) - Rev: ");
1069 buf += printed;
1070 buf_size -= printed;
1071
1072 switch (device_id >> 16) {
1073 case 0x1000:
1074 snprintf(buf, buf_size, "A");
1075 break;
1076
1077 default:
1078 snprintf(buf, buf_size, "unknown");
1079 break;
1080 }
1081 } else if ((device_id & 0xfff) == 0x414) {
1082 printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: ");
1083 buf += printed;
1084 buf_size -= printed;
1085
1086 switch (device_id >> 16) {
1087 case 0x1000:
1088 snprintf(buf, buf_size, "A");
1089 break;
1090
1091 case 0x1001:
1092 snprintf(buf, buf_size, "Z");
1093 break;
1094
1095 default:
1096 snprintf(buf, buf_size, "unknown");
1097 break;
1098 }
1099 } else if ((device_id & 0xfff) == 0x418) {
1100 printed = snprintf(buf, buf_size, "stm32x (Connectivity) - Rev: ");
1101 buf += printed;
1102 buf_size -= printed;
1103
1104 switch (device_id >> 16) {
1105 case 0x1000:
1106 snprintf(buf, buf_size, "A");
1107 break;
1108
1109 case 0x1001:
1110 snprintf(buf, buf_size, "Z");
1111 break;
1112
1113 default:
1114 snprintf(buf, buf_size, "unknown");
1115 break;
1116 }
1117 } else if ((device_id & 0xfff) == 0x420) {
1118 printed = snprintf(buf, buf_size, "stm32x (Value) - Rev: ");
1119 buf += printed;
1120 buf_size -= printed;
1121
1122 switch (device_id >> 16) {
1123 case 0x1000:
1124 snprintf(buf, buf_size, "A");
1125 break;
1126
1127 case 0x1001:
1128 snprintf(buf, buf_size, "Z");
1129 break;
1130
1131 default:
1132 snprintf(buf, buf_size, "unknown");
1133 break;
1134 }
1135 } else if ((device_id & 0xfff) == 0x422) {
1136 printed = snprintf(buf, buf_size, "stm32f30x - Rev: ");
1137 buf += printed;
1138 buf_size -= printed;
1139
1140 switch (device_id >> 16) {
1141 case 0x1000:
1142 snprintf(buf, buf_size, "1.0");
1143 break;
1144
1145 case 0x2000:
1146 snprintf(buf, buf_size, "2.0");
1147 break;
1148
1149 default:
1150 snprintf(buf, buf_size, "unknown");
1151 break;
1152 }
1153 } else if ((device_id & 0xfff) == 0x428) {
1154 printed = snprintf(buf, buf_size, "stm32x (Value HD) - Rev: ");
1155 buf += printed;
1156 buf_size -= printed;
1157
1158 switch (device_id >> 16) {
1159 case 0x1000:
1160 snprintf(buf, buf_size, "A");
1161 break;
1162
1163 case 0x1001:
1164 snprintf(buf, buf_size, "Z");
1165 break;
1166
1167 default:
1168 snprintf(buf, buf_size, "unknown");
1169 break;
1170 }
1171 } else if ((device_id & 0xfff) == 0x430) {
1172 printed = snprintf(buf, buf_size, "stm32x (XL) - Rev: ");
1173 buf += printed;
1174 buf_size -= printed;
1175
1176 switch (device_id >> 16) {
1177 case 0x1000:
1178 snprintf(buf, buf_size, "A");
1179 break;
1180
1181 default:
1182 snprintf(buf, buf_size, "unknown");
1183 break;
1184 }
1185 } else if ((device_id & 0xfff) == 0x432) {
1186 printed = snprintf(buf, buf_size, "stm32f37x - Rev: ");
1187 buf += printed;
1188 buf_size -= printed;
1189
1190 switch (device_id >> 16) {
1191 case 0x1000:
1192 snprintf(buf, buf_size, "1.0");
1193 break;
1194
1195 case 0x2000:
1196 snprintf(buf, buf_size, "2.0");
1197 break;
1198
1199 default:
1200 snprintf(buf, buf_size, "unknown");
1201 break;
1202 }
1203 } else if ((device_id & 0xfff) == 0x440) {
1204 printed = snprintf(buf, buf_size, "stm32f0x - Rev: ");
1205 buf += printed;
1206 buf_size -= printed;
1207
1208 switch (device_id >> 16) {
1209 case 0x1000:
1210 snprintf(buf, buf_size, "1.0");
1211 break;
1212
1213 case 0x2000:
1214 snprintf(buf, buf_size, "2.0");
1215 break;
1216
1217 default:
1218 snprintf(buf, buf_size, "unknown");
1219 break;
1220 }
1221 } else {
1222 snprintf(buf, buf_size, "Cannot identify target as a stm32x\n");
1223 return ERROR_FAIL;
1224 }
1225
1226 return ERROR_OK;
1227 }
1228
1229 COMMAND_HANDLER(stm32x_handle_lock_command)
1230 {
1231 struct target *target = NULL;
1232 struct stm32x_flash_bank *stm32x_info = NULL;
1233
1234 if (CMD_ARGC < 1)
1235 return ERROR_COMMAND_SYNTAX_ERROR;
1236
1237 struct flash_bank *bank;
1238 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1239 if (ERROR_OK != retval)
1240 return retval;
1241
1242 stm32x_info = bank->driver_priv;
1243
1244 target = bank->target;
1245
1246 if (target->state != TARGET_HALTED) {
1247 LOG_ERROR("Target not halted");
1248 return ERROR_TARGET_NOT_HALTED;
1249 }
1250
1251 retval = stm32x_check_operation_supported(bank);
1252 if (ERROR_OK != retval)
1253 return retval;
1254
1255 if (stm32x_erase_options(bank) != ERROR_OK) {
1256 command_print(CMD_CTX, "stm32x failed to erase options");
1257 return ERROR_OK;
1258 }
1259
1260 /* set readout protection */
1261 stm32x_info->option_bytes.RDP = 0;
1262
1263 if (stm32x_write_options(bank) != ERROR_OK) {
1264 command_print(CMD_CTX, "stm32x failed to lock device");
1265 return ERROR_OK;
1266 }
1267
1268 command_print(CMD_CTX, "stm32x locked");
1269
1270 return ERROR_OK;
1271 }
1272
1273 COMMAND_HANDLER(stm32x_handle_unlock_command)
1274 {
1275 struct target *target = NULL;
1276
1277 if (CMD_ARGC < 1)
1278 return ERROR_COMMAND_SYNTAX_ERROR;
1279
1280 struct flash_bank *bank;
1281 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1282 if (ERROR_OK != retval)
1283 return retval;
1284
1285 target = bank->target;
1286
1287 if (target->state != TARGET_HALTED) {
1288 LOG_ERROR("Target not halted");
1289 return ERROR_TARGET_NOT_HALTED;
1290 }
1291
1292 retval = stm32x_check_operation_supported(bank);
1293 if (ERROR_OK != retval)
1294 return retval;
1295
1296 if (stm32x_erase_options(bank) != ERROR_OK) {
1297 command_print(CMD_CTX, "stm32x failed to unlock device");
1298 return ERROR_OK;
1299 }
1300
1301 if (stm32x_write_options(bank) != ERROR_OK) {
1302 command_print(CMD_CTX, "stm32x failed to lock device");
1303 return ERROR_OK;
1304 }
1305
1306 command_print(CMD_CTX, "stm32x unlocked.\n"
1307 "INFO: a reset or power cycle is required "
1308 "for the new settings to take effect.");
1309
1310 return ERROR_OK;
1311 }
1312
1313 COMMAND_HANDLER(stm32x_handle_options_read_command)
1314 {
1315 uint32_t optionbyte;
1316 struct target *target = NULL;
1317 struct stm32x_flash_bank *stm32x_info = NULL;
1318
1319 if (CMD_ARGC < 1)
1320 return ERROR_COMMAND_SYNTAX_ERROR;
1321
1322 struct flash_bank *bank;
1323 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1324 if (ERROR_OK != retval)
1325 return retval;
1326
1327 stm32x_info = bank->driver_priv;
1328
1329 target = bank->target;
1330
1331 if (target->state != TARGET_HALTED) {
1332 LOG_ERROR("Target not halted");
1333 return ERROR_TARGET_NOT_HALTED;
1334 }
1335
1336 retval = stm32x_check_operation_supported(bank);
1337 if (ERROR_OK != retval)
1338 return retval;
1339
1340 retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
1341 if (retval != ERROR_OK)
1342 return retval;
1343 command_print(CMD_CTX, "Option Byte: 0x%" PRIx32 "", optionbyte);
1344
1345 if (buf_get_u32((uint8_t *)&optionbyte, OPT_ERROR, 1))
1346 command_print(CMD_CTX, "Option Byte Complement Error");
1347
1348 if (buf_get_u32((uint8_t *)&optionbyte, OPT_READOUT, 1))
1349 command_print(CMD_CTX, "Readout Protection On");
1350 else
1351 command_print(CMD_CTX, "Readout Protection Off");
1352
1353 if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDWDGSW, 1))
1354 command_print(CMD_CTX, "Software Watchdog");
1355 else
1356 command_print(CMD_CTX, "Hardware Watchdog");
1357
1358 if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTOP, 1))
1359 command_print(CMD_CTX, "Stop: No reset generated");
1360 else
1361 command_print(CMD_CTX, "Stop: Reset generated");
1362
1363 if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTDBY, 1))
1364 command_print(CMD_CTX, "Standby: No reset generated");
1365 else
1366 command_print(CMD_CTX, "Standby: Reset generated");
1367
1368 if (stm32x_info->has_dual_banks) {
1369 if (buf_get_u32((uint8_t *)&optionbyte, OPT_BFB2, 1))
1370 command_print(CMD_CTX, "Boot: Bank 0");
1371 else
1372 command_print(CMD_CTX, "Boot: Bank 1");
1373 }
1374
1375 return ERROR_OK;
1376 }
1377
1378 COMMAND_HANDLER(stm32x_handle_options_write_command)
1379 {
1380 struct target *target = NULL;
1381 struct stm32x_flash_bank *stm32x_info = NULL;
1382 uint16_t optionbyte = 0xF8;
1383
1384 if (CMD_ARGC < 4)
1385 return ERROR_COMMAND_SYNTAX_ERROR;
1386
1387 struct flash_bank *bank;
1388 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1389 if (ERROR_OK != retval)
1390 return retval;
1391
1392 stm32x_info = bank->driver_priv;
1393
1394 target = bank->target;
1395
1396 if (target->state != TARGET_HALTED) {
1397 LOG_ERROR("Target not halted");
1398 return ERROR_TARGET_NOT_HALTED;
1399 }
1400
1401 retval = stm32x_check_operation_supported(bank);
1402 if (ERROR_OK != retval)
1403 return retval;
1404
1405 /* REVISIT: ignores some options which we will display...
1406 * and doesn't insist on the specified syntax.
1407 */
1408
1409 /* OPT_RDWDGSW */
1410 if (strcmp(CMD_ARGV[1], "SWWDG") == 0)
1411 optionbyte |= (1 << 0);
1412 else /* REVISIT must be "HWWDG" then ... */
1413 optionbyte &= ~(1 << 0);
1414
1415 /* OPT_RDRSTSTOP */
1416 if (strcmp(CMD_ARGV[2], "NORSTSTOP") == 0)
1417 optionbyte |= (1 << 1);
1418 else /* REVISIT must be "RSTSTNDBY" then ... */
1419 optionbyte &= ~(1 << 1);
1420
1421 /* OPT_RDRSTSTDBY */
1422 if (strcmp(CMD_ARGV[3], "NORSTSTNDBY") == 0)
1423 optionbyte |= (1 << 2);
1424 else /* REVISIT must be "RSTSTOP" then ... */
1425 optionbyte &= ~(1 << 2);
1426
1427 if (CMD_ARGC > 4 && stm32x_info->has_dual_banks) {
1428 /* OPT_BFB2 */
1429 if (strcmp(CMD_ARGV[4], "BOOT0") == 0)
1430 optionbyte |= (1 << 3);
1431 else
1432 optionbyte &= ~(1 << 3);
1433 }
1434
1435 if (stm32x_erase_options(bank) != ERROR_OK) {
1436 command_print(CMD_CTX, "stm32x failed to erase options");
1437 return ERROR_OK;
1438 }
1439
1440 stm32x_info->option_bytes.user_options = optionbyte;
1441
1442 if (stm32x_write_options(bank) != ERROR_OK) {
1443 command_print(CMD_CTX, "stm32x failed to write options");
1444 return ERROR_OK;
1445 }
1446
1447 command_print(CMD_CTX, "stm32x write options complete.\n"
1448 "INFO: a reset or power cycle is required "
1449 "for the new settings to take effect.");
1450
1451 return ERROR_OK;
1452 }
1453
1454 static int stm32x_mass_erase(struct flash_bank *bank)
1455 {
1456 struct target *target = bank->target;
1457
1458 if (target->state != TARGET_HALTED) {
1459 LOG_ERROR("Target not halted");
1460 return ERROR_TARGET_NOT_HALTED;
1461 }
1462
1463 /* unlock option flash registers */
1464 int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
1465 if (retval != ERROR_OK)
1466 return retval;
1467 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
1468 if (retval != ERROR_OK)
1469 return retval;
1470
1471 /* mass erase flash memory */
1472 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
1473 if (retval != ERROR_OK)
1474 return retval;
1475 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1476 FLASH_MER | FLASH_STRT);
1477 if (retval != ERROR_OK)
1478 return retval;
1479
1480 retval = stm32x_wait_status_busy(bank, 100);
1481 if (retval != ERROR_OK)
1482 return retval;
1483
1484 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1485 if (retval != ERROR_OK)
1486 return retval;
1487
1488 return ERROR_OK;
1489 }
1490
1491 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1492 {
1493 int i;
1494
1495 if (CMD_ARGC < 1)
1496 return ERROR_COMMAND_SYNTAX_ERROR;
1497
1498 struct flash_bank *bank;
1499 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1500 if (ERROR_OK != retval)
1501 return retval;
1502
1503 retval = stm32x_mass_erase(bank);
1504 if (retval == ERROR_OK) {
1505 /* set all sectors as erased */
1506 for (i = 0; i < bank->num_sectors; i++)
1507 bank->sectors[i].is_erased = 1;
1508
1509 command_print(CMD_CTX, "stm32x mass erase complete");
1510 } else
1511 command_print(CMD_CTX, "stm32x mass erase failed");
1512
1513 return retval;
1514 }
1515
1516 static const struct command_registration stm32x_exec_command_handlers[] = {
1517 {
1518 .name = "lock",
1519 .handler = stm32x_handle_lock_command,
1520 .mode = COMMAND_EXEC,
1521 .usage = "bank_id",
1522 .help = "Lock entire flash device.",
1523 },
1524 {
1525 .name = "unlock",
1526 .handler = stm32x_handle_unlock_command,
1527 .mode = COMMAND_EXEC,
1528 .usage = "bank_id",
1529 .help = "Unlock entire protected flash device.",
1530 },
1531 {
1532 .name = "mass_erase",
1533 .handler = stm32x_handle_mass_erase_command,
1534 .mode = COMMAND_EXEC,
1535 .usage = "bank_id",
1536 .help = "Erase entire flash device.",
1537 },
1538 {
1539 .name = "options_read",
1540 .handler = stm32x_handle_options_read_command,
1541 .mode = COMMAND_EXEC,
1542 .usage = "bank_id",
1543 .help = "Read and display device option byte.",
1544 },
1545 {
1546 .name = "options_write",
1547 .handler = stm32x_handle_options_write_command,
1548 .mode = COMMAND_EXEC,
1549 .usage = "bank_id ('SWWDG'|'HWWDG') "
1550 "('RSTSTNDBY'|'NORSTSTNDBY') "
1551 "('RSTSTOP'|'NORSTSTOP')",
1552 .help = "Replace bits in device option byte.",
1553 },
1554 COMMAND_REGISTRATION_DONE
1555 };
1556
1557 static const struct command_registration stm32x_command_handlers[] = {
1558 {
1559 .name = "stm32f1x",
1560 .mode = COMMAND_ANY,
1561 .help = "stm32f1x flash command group",
1562 .usage = "",
1563 .chain = stm32x_exec_command_handlers,
1564 },
1565 COMMAND_REGISTRATION_DONE
1566 };
1567
1568 struct flash_driver stm32f1x_flash = {
1569 .name = "stm32f1x",
1570 .commands = stm32x_command_handlers,
1571 .flash_bank_command = stm32x_flash_bank_command,
1572 .erase = stm32x_erase,
1573 .protect = stm32x_protect,
1574 .write = stm32x_write,
1575 .read = default_flash_read,
1576 .probe = stm32x_probe,
1577 .auto_probe = stm32x_auto_probe,
1578 .erase_check = default_flash_blank_check,
1579 .protect_check = stm32x_protect_check,
1580 .info = get_stm32x_info,
1581 };