e7e795d322b4fea52565f7fe3178b323ce2a1168
[openocd.git] / src / flash / nor / stm32f1x.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 by Andreas Fritiofson *
9 * andreas.fritiofson@gmail.com *
10 *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/armv7m.h>
35
36 /* stm32x register locations */
37
38 #define FLASH_REG_BASE_B0 0x40022000
39 #define FLASH_REG_BASE_B1 0x40022040
40
41 #define STM32_FLASH_ACR 0x00
42 #define STM32_FLASH_KEYR 0x04
43 #define STM32_FLASH_OPTKEYR 0x08
44 #define STM32_FLASH_SR 0x0C
45 #define STM32_FLASH_CR 0x10
46 #define STM32_FLASH_AR 0x14
47 #define STM32_FLASH_OBR 0x1C
48 #define STM32_FLASH_WRPR 0x20
49
50 /* TODO: Check if code using these really should be hard coded to bank 0.
51 * There are valid cases, on dual flash devices the protection of the
52 * second bank is done on the bank0 reg's. */
53 #define STM32_FLASH_ACR_B0 0x40022000
54 #define STM32_FLASH_KEYR_B0 0x40022004
55 #define STM32_FLASH_OPTKEYR_B0 0x40022008
56 #define STM32_FLASH_SR_B0 0x4002200C
57 #define STM32_FLASH_CR_B0 0x40022010
58 #define STM32_FLASH_AR_B0 0x40022014
59 #define STM32_FLASH_OBR_B0 0x4002201C
60 #define STM32_FLASH_WRPR_B0 0x40022020
61
62 /* option byte location */
63
64 #define STM32_OB_RDP 0x1FFFF800
65 #define STM32_OB_USER 0x1FFFF802
66 #define STM32_OB_DATA0 0x1FFFF804
67 #define STM32_OB_DATA1 0x1FFFF806
68 #define STM32_OB_WRP0 0x1FFFF808
69 #define STM32_OB_WRP1 0x1FFFF80A
70 #define STM32_OB_WRP2 0x1FFFF80C
71 #define STM32_OB_WRP3 0x1FFFF80E
72
73 /* FLASH_CR register bits */
74
75 #define FLASH_PG (1 << 0)
76 #define FLASH_PER (1 << 1)
77 #define FLASH_MER (1 << 2)
78 #define FLASH_OPTPG (1 << 4)
79 #define FLASH_OPTER (1 << 5)
80 #define FLASH_STRT (1 << 6)
81 #define FLASH_LOCK (1 << 7)
82 #define FLASH_OPTWRE (1 << 9)
83
84 /* FLASH_SR register bits */
85
86 #define FLASH_BSY (1 << 0)
87 #define FLASH_PGERR (1 << 2)
88 #define FLASH_WRPRTERR (1 << 4)
89 #define FLASH_EOP (1 << 5)
90
91 /* STM32_FLASH_OBR bit definitions (reading) */
92
93 #define OPT_ERROR 0
94 #define OPT_READOUT 1
95 #define OPT_RDWDGSW 2
96 #define OPT_RDRSTSTOP 3
97 #define OPT_RDRSTSTDBY 4
98 #define OPT_BFB2 5 /* dual flash bank only */
99
100 /* register unlock keys */
101
102 #define KEY1 0x45670123
103 #define KEY2 0xCDEF89AB
104
105 struct stm32x_options {
106 uint16_t RDP;
107 uint16_t user_options;
108 uint16_t protection[4];
109 };
110
111 struct stm32x_flash_bank {
112 struct stm32x_options option_bytes;
113 struct working_area *write_algorithm;
114 int ppage_size;
115 int probed;
116
117 bool has_dual_banks;
118 /* used to access dual flash bank stm32xl */
119 uint32_t register_base;
120 };
121
122 static int stm32x_mass_erase(struct flash_bank *bank);
123 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id);
124
125 /* flash bank stm32x <base> <size> 0 0 <target#>
126 */
127 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
128 {
129 struct stm32x_flash_bank *stm32x_info;
130
131 if (CMD_ARGC < 6)
132 return ERROR_COMMAND_SYNTAX_ERROR;
133
134 stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
135
136 bank->driver_priv = stm32x_info;
137 stm32x_info->write_algorithm = NULL;
138 stm32x_info->probed = 0;
139 stm32x_info->has_dual_banks = false;
140 stm32x_info->register_base = FLASH_REG_BASE_B0;
141
142 return ERROR_OK;
143 }
144
145 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
146 {
147 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
148 return reg + stm32x_info->register_base;
149 }
150
151 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
152 {
153 struct target *target = bank->target;
154 return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
155 }
156
157 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
158 {
159 struct target *target = bank->target;
160 uint32_t status;
161 int retval = ERROR_OK;
162
163 /* wait for busy to clear */
164 for (;;) {
165 retval = stm32x_get_flash_status(bank, &status);
166 if (retval != ERROR_OK)
167 return retval;
168 LOG_DEBUG("status: 0x%" PRIx32 "", status);
169 if ((status & FLASH_BSY) == 0)
170 break;
171 if (timeout-- <= 0) {
172 LOG_ERROR("timed out waiting for flash");
173 return ERROR_FAIL;
174 }
175 alive_sleep(1);
176 }
177
178 if (status & FLASH_WRPRTERR) {
179 LOG_ERROR("stm32x device protected");
180 retval = ERROR_FAIL;
181 }
182
183 if (status & FLASH_PGERR) {
184 LOG_ERROR("stm32x device programming failed");
185 retval = ERROR_FAIL;
186 }
187
188 /* Clear but report errors */
189 if (status & (FLASH_WRPRTERR | FLASH_PGERR)) {
190 /* If this operation fails, we ignore it and report the original
191 * retval
192 */
193 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
194 FLASH_WRPRTERR | FLASH_PGERR);
195 }
196 return retval;
197 }
198
199 int stm32x_check_operation_supported(struct flash_bank *bank)
200 {
201 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
202
203 /* if we have a dual flash bank device then
204 * we need to perform option byte stuff on bank0 only */
205 if (stm32x_info->register_base != FLASH_REG_BASE_B0) {
206 LOG_ERROR("Option Byte Operation's must use bank0");
207 return ERROR_FLASH_OPERATION_FAILED;
208 }
209
210 return ERROR_OK;
211 }
212
213 static int stm32x_read_options(struct flash_bank *bank)
214 {
215 uint32_t optiondata;
216 struct stm32x_flash_bank *stm32x_info = NULL;
217 struct target *target = bank->target;
218
219 stm32x_info = bank->driver_priv;
220
221 /* read current option bytes */
222 int retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optiondata);
223 if (retval != ERROR_OK)
224 return retval;
225
226 stm32x_info->option_bytes.user_options = (uint16_t)0xFFF8 | ((optiondata >> 2) & 0x07);
227 stm32x_info->option_bytes.RDP = (optiondata & (1 << OPT_READOUT)) ? 0xFFFF : 0x5AA5;
228
229 if (optiondata & (1 << OPT_READOUT))
230 LOG_INFO("Device Security Bit Set");
231
232 /* each bit refers to a 4bank protection */
233 retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &optiondata);
234 if (retval != ERROR_OK)
235 return retval;
236
237 stm32x_info->option_bytes.protection[0] = (uint16_t)optiondata;
238 stm32x_info->option_bytes.protection[1] = (uint16_t)(optiondata >> 8);
239 stm32x_info->option_bytes.protection[2] = (uint16_t)(optiondata >> 16);
240 stm32x_info->option_bytes.protection[3] = (uint16_t)(optiondata >> 24);
241
242 return ERROR_OK;
243 }
244
245 static int stm32x_erase_options(struct flash_bank *bank)
246 {
247 struct stm32x_flash_bank *stm32x_info = NULL;
248 struct target *target = bank->target;
249
250 stm32x_info = bank->driver_priv;
251
252 /* read current options */
253 stm32x_read_options(bank);
254
255 /* unlock flash registers */
256 int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
257 if (retval != ERROR_OK)
258 return retval;
259
260 retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
261 if (retval != ERROR_OK)
262 return retval;
263
264 /* unlock option flash registers */
265 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
266 if (retval != ERROR_OK)
267 return retval;
268 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
269 if (retval != ERROR_OK)
270 return retval;
271
272 /* erase option bytes */
273 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
274 if (retval != ERROR_OK)
275 return retval;
276 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
277 if (retval != ERROR_OK)
278 return retval;
279
280 retval = stm32x_wait_status_busy(bank, 10);
281 if (retval != ERROR_OK)
282 return retval;
283
284 /* clear readout protection and complementary option bytes
285 * this will also force a device unlock if set */
286 stm32x_info->option_bytes.RDP = 0x5AA5;
287
288 return ERROR_OK;
289 }
290
291 static int stm32x_write_options(struct flash_bank *bank)
292 {
293 struct stm32x_flash_bank *stm32x_info = NULL;
294 struct target *target = bank->target;
295
296 stm32x_info = bank->driver_priv;
297
298 /* unlock flash registers */
299 int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
300 if (retval != ERROR_OK)
301 return retval;
302 retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
303 if (retval != ERROR_OK)
304 return retval;
305
306 /* unlock option flash registers */
307 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
308 if (retval != ERROR_OK)
309 return retval;
310 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
311 if (retval != ERROR_OK)
312 return retval;
313
314 /* program option bytes */
315 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
316 if (retval != ERROR_OK)
317 return retval;
318
319 /* write user option byte */
320 retval = target_write_u16(target, STM32_OB_USER, stm32x_info->option_bytes.user_options);
321 if (retval != ERROR_OK)
322 return retval;
323
324 retval = stm32x_wait_status_busy(bank, 10);
325 if (retval != ERROR_OK)
326 return retval;
327
328 /* write protection byte 1 */
329 retval = target_write_u16(target, STM32_OB_WRP0, stm32x_info->option_bytes.protection[0]);
330 if (retval != ERROR_OK)
331 return retval;
332
333 retval = stm32x_wait_status_busy(bank, 10);
334 if (retval != ERROR_OK)
335 return retval;
336
337 /* write protection byte 2 */
338 retval = target_write_u16(target, STM32_OB_WRP1, stm32x_info->option_bytes.protection[1]);
339 if (retval != ERROR_OK)
340 return retval;
341
342 retval = stm32x_wait_status_busy(bank, 10);
343 if (retval != ERROR_OK)
344 return retval;
345
346 /* write protection byte 3 */
347 retval = target_write_u16(target, STM32_OB_WRP2, stm32x_info->option_bytes.protection[2]);
348 if (retval != ERROR_OK)
349 return retval;
350
351 retval = stm32x_wait_status_busy(bank, 10);
352 if (retval != ERROR_OK)
353 return retval;
354
355 /* write protection byte 4 */
356 retval = target_write_u16(target, STM32_OB_WRP3, stm32x_info->option_bytes.protection[3]);
357 if (retval != ERROR_OK)
358 return retval;
359
360 retval = stm32x_wait_status_busy(bank, 10);
361 if (retval != ERROR_OK)
362 return retval;
363
364 /* write readout protection bit */
365 retval = target_write_u16(target, STM32_OB_RDP, stm32x_info->option_bytes.RDP);
366 if (retval != ERROR_OK)
367 return retval;
368
369 retval = stm32x_wait_status_busy(bank, 10);
370 if (retval != ERROR_OK)
371 return retval;
372
373 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
374 if (retval != ERROR_OK)
375 return retval;
376
377 return ERROR_OK;
378 }
379
380 static int stm32x_protect_check(struct flash_bank *bank)
381 {
382 struct target *target = bank->target;
383 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
384
385 uint32_t protection;
386 int i, s;
387 int num_bits;
388 int set;
389
390 if (target->state != TARGET_HALTED) {
391 LOG_ERROR("Target not halted");
392 return ERROR_TARGET_NOT_HALTED;
393 }
394
395 int retval = stm32x_check_operation_supported(bank);
396 if (ERROR_OK != retval)
397 return retval;
398
399 /* medium density - each bit refers to a 4bank protection
400 * high density - each bit refers to a 2bank protection */
401 retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
402 if (retval != ERROR_OK)
403 return retval;
404
405 /* medium density - each protection bit is for 4 * 1K pages
406 * high density - each protection bit is for 2 * 2K pages */
407 num_bits = (bank->num_sectors / stm32x_info->ppage_size);
408
409 if (stm32x_info->ppage_size == 2) {
410 /* high density flash/connectivity line protection */
411
412 set = 1;
413
414 if (protection & (1 << 31))
415 set = 0;
416
417 /* bit 31 controls sector 62 - 255 protection for high density
418 * bit 31 controls sector 62 - 127 protection for connectivity line */
419 for (s = 62; s < bank->num_sectors; s++)
420 bank->sectors[s].is_protected = set;
421
422 if (bank->num_sectors > 61)
423 num_bits = 31;
424
425 for (i = 0; i < num_bits; i++) {
426 set = 1;
427
428 if (protection & (1 << i))
429 set = 0;
430
431 for (s = 0; s < stm32x_info->ppage_size; s++)
432 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
433 }
434 } else {
435 /* low/medium density flash protection */
436 for (i = 0; i < num_bits; i++) {
437 set = 1;
438
439 if (protection & (1 << i))
440 set = 0;
441
442 for (s = 0; s < stm32x_info->ppage_size; s++)
443 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
444 }
445 }
446
447 return ERROR_OK;
448 }
449
450 static int stm32x_erase(struct flash_bank *bank, int first, int last)
451 {
452 struct target *target = bank->target;
453 int i;
454
455 if (bank->target->state != TARGET_HALTED) {
456 LOG_ERROR("Target not halted");
457 return ERROR_TARGET_NOT_HALTED;
458 }
459
460 if ((first == 0) && (last == (bank->num_sectors - 1)))
461 return stm32x_mass_erase(bank);
462
463 /* unlock flash registers */
464 int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
465 if (retval != ERROR_OK)
466 return retval;
467 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
468 if (retval != ERROR_OK)
469 return retval;
470
471 for (i = first; i <= last; i++) {
472 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
473 if (retval != ERROR_OK)
474 return retval;
475 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
476 bank->base + bank->sectors[i].offset);
477 if (retval != ERROR_OK)
478 return retval;
479 retval = target_write_u32(target,
480 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
481 if (retval != ERROR_OK)
482 return retval;
483
484 retval = stm32x_wait_status_busy(bank, 100);
485 if (retval != ERROR_OK)
486 return retval;
487
488 bank->sectors[i].is_erased = 1;
489 }
490
491 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
492 if (retval != ERROR_OK)
493 return retval;
494
495 return ERROR_OK;
496 }
497
498 static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
499 {
500 struct stm32x_flash_bank *stm32x_info = NULL;
501 struct target *target = bank->target;
502 uint16_t prot_reg[4] = {0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF};
503 int i, reg, bit;
504 int status;
505 uint32_t protection;
506
507 stm32x_info = bank->driver_priv;
508
509 if (target->state != TARGET_HALTED) {
510 LOG_ERROR("Target not halted");
511 return ERROR_TARGET_NOT_HALTED;
512 }
513
514 int retval = stm32x_check_operation_supported(bank);
515 if (ERROR_OK != retval)
516 return retval;
517
518 if ((first % stm32x_info->ppage_size) != 0) {
519 LOG_WARNING("aligned start protect sector to a %d sector boundary",
520 stm32x_info->ppage_size);
521 first = first - (first % stm32x_info->ppage_size);
522 }
523 if (((last + 1) % stm32x_info->ppage_size) != 0) {
524 LOG_WARNING("aligned end protect sector to a %d sector boundary",
525 stm32x_info->ppage_size);
526 last++;
527 last = last - (last % stm32x_info->ppage_size);
528 last--;
529 }
530
531 /* medium density - each bit refers to a 4bank protection
532 * high density - each bit refers to a 2bank protection */
533 retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
534 if (retval != ERROR_OK)
535 return retval;
536
537 prot_reg[0] = (uint16_t)protection;
538 prot_reg[1] = (uint16_t)(protection >> 8);
539 prot_reg[2] = (uint16_t)(protection >> 16);
540 prot_reg[3] = (uint16_t)(protection >> 24);
541
542 if (stm32x_info->ppage_size == 2) {
543 /* high density flash */
544
545 /* bit 7 controls sector 62 - 255 protection */
546 if (last > 61) {
547 if (set)
548 prot_reg[3] &= ~(1 << 7);
549 else
550 prot_reg[3] |= (1 << 7);
551 }
552
553 if (first > 61)
554 first = 62;
555 if (last > 61)
556 last = 61;
557
558 for (i = first; i <= last; i++) {
559 reg = (i / stm32x_info->ppage_size) / 8;
560 bit = (i / stm32x_info->ppage_size) - (reg * 8);
561
562 if (set)
563 prot_reg[reg] &= ~(1 << bit);
564 else
565 prot_reg[reg] |= (1 << bit);
566 }
567 } else {
568 /* medium density flash */
569 for (i = first; i <= last; i++) {
570 reg = (i / stm32x_info->ppage_size) / 8;
571 bit = (i / stm32x_info->ppage_size) - (reg * 8);
572
573 if (set)
574 prot_reg[reg] &= ~(1 << bit);
575 else
576 prot_reg[reg] |= (1 << bit);
577 }
578 }
579
580 status = stm32x_erase_options(bank);
581 if (status != ERROR_OK)
582 return status;
583
584 stm32x_info->option_bytes.protection[0] = prot_reg[0];
585 stm32x_info->option_bytes.protection[1] = prot_reg[1];
586 stm32x_info->option_bytes.protection[2] = prot_reg[2];
587 stm32x_info->option_bytes.protection[3] = prot_reg[3];
588
589 return stm32x_write_options(bank);
590 }
591
592 static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
593 uint32_t offset, uint32_t count)
594 {
595 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
596 struct target *target = bank->target;
597 uint32_t buffer_size = 16384;
598 struct working_area *source;
599 uint32_t address = bank->base + offset;
600 struct reg_param reg_params[5];
601 struct armv7m_algorithm armv7m_info;
602 int retval = ERROR_OK;
603
604 /* see contrib/loaders/flash/stm32f1x.S for src */
605
606 static const uint8_t stm32x_flash_write_code[] = {
607 /* #define STM32_FLASH_CR_OFFSET 0x10 */
608 /* #define STM32_FLASH_SR_OFFSET 0x0C */
609 /* wait_fifo: */
610 0x16, 0x68, /* ldr r6, [r2, #0] */
611 0x00, 0x2e, /* cmp r6, #0 */
612 0x1a, 0xd0, /* beq exit */
613 0x55, 0x68, /* ldr r5, [r2, #4] */
614 0xb5, 0x42, /* cmp r5, r6 */
615 0xf9, 0xd0, /* beq wait_fifo */
616 0x01, 0x26, /* movs r6, #1 */
617 0x06, 0x61, /* str r6, [r0, #STM32_FLASH_CR_OFFSET] */
618 0x2e, 0x88, /* ldrh r6, [r5, #0] */
619 0x26, 0x80, /* strh r6, [r4, #0] */
620 0x02, 0x35, /* adds r5, #2 */
621 0x02, 0x34, /* adds r4, #2 */
622 /* busy: */
623 0xc6, 0x68, /* ldr r6, [r0, #STM32_FLASH_SR_OFFSET] */
624 0x01, 0x27, /* movs r7, #1 */
625 0x3e, 0x42, /* tst r6, r7 */
626 0xfb, 0xd1, /* bne busy */
627 0x14, 0x27, /* movs r7, #0x14 */
628 0x3e, 0x42, /* tst r6, r7 */
629 0x08, 0xd1, /* bne error */
630 0x9d, 0x42, /* cmp r5, r3 */
631 0x01, 0xd3, /* bcc no_wrap */
632 0x15, 0x46, /* mov r5, r2 */
633 0x08, 0x35, /* adds r5, #8 */
634 /* no_wrap: */
635 0x55, 0x60, /* str r5, [r2, #4] */
636 0x01, 0x39, /* subs r1, r1, #1 */
637 0x00, 0x29, /* cmp r1, #0 */
638 0x02, 0xd0, /* beq exit */
639 0xe3, 0xe7, /* b wait_fifo */
640 /* error: */
641 0x00, 0x20, /* movs r0, #0 */
642 0x50, 0x60, /* str r0, [r2, #4] */
643 /* exit: */
644 0x30, 0x46, /* mov r0, r6 */
645 0x00, 0xbe, /* bkpt #0 */
646 };
647
648 /* flash write code */
649 if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
650 &stm32x_info->write_algorithm) != ERROR_OK) {
651 LOG_WARNING("no working area available, can't do block memory writes");
652 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
653 };
654
655 retval = target_write_buffer(target, stm32x_info->write_algorithm->address,
656 sizeof(stm32x_flash_write_code), (uint8_t *)stm32x_flash_write_code);
657 if (retval != ERROR_OK)
658 return retval;
659
660 /* memory buffer */
661 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
662 buffer_size /= 2;
663 buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
664 if (buffer_size <= 256) {
665 /* if we already allocated the writing code, but failed to get a
666 * buffer, free the algorithm */
667 if (stm32x_info->write_algorithm)
668 target_free_working_area(target, stm32x_info->write_algorithm);
669
670 LOG_WARNING("no large enough working area available, can't do block memory writes");
671 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
672 }
673 };
674
675 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
676 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* count (halfword-16bit) */
677 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* buffer start */
678 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* buffer end */
679 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
680
681 buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
682 buf_set_u32(reg_params[1].value, 0, 32, count);
683 buf_set_u32(reg_params[2].value, 0, 32, source->address);
684 buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
685 buf_set_u32(reg_params[4].value, 0, 32, address);
686
687 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
688 armv7m_info.core_mode = ARMV7M_MODE_ANY;
689
690 retval = target_run_flash_async_algorithm(target, buffer, count, 2,
691 0, NULL,
692 5, reg_params,
693 source->address, source->size,
694 stm32x_info->write_algorithm->address, 0,
695 &armv7m_info);
696
697 if (retval == ERROR_FLASH_OPERATION_FAILED) {
698 LOG_ERROR("flash write failed at address 0x%"PRIx32,
699 buf_get_u32(reg_params[4].value, 0, 32));
700
701 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_PGERR) {
702 LOG_ERROR("flash memory not erased before writing");
703 /* Clear but report errors */
704 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_PGERR);
705 }
706
707 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_WRPRTERR) {
708 LOG_ERROR("flash memory write protected");
709 /* Clear but report errors */
710 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_WRPRTERR);
711 }
712 }
713
714 target_free_working_area(target, source);
715 target_free_working_area(target, stm32x_info->write_algorithm);
716
717 destroy_reg_param(&reg_params[0]);
718 destroy_reg_param(&reg_params[1]);
719 destroy_reg_param(&reg_params[2]);
720 destroy_reg_param(&reg_params[3]);
721 destroy_reg_param(&reg_params[4]);
722
723 return retval;
724 }
725
726 static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
727 uint32_t offset, uint32_t count)
728 {
729 struct target *target = bank->target;
730 uint32_t words_remaining = (count / 2);
731 uint32_t bytes_remaining = (count & 0x00000001);
732 uint32_t address = bank->base + offset;
733 uint32_t bytes_written = 0;
734 int retval;
735
736 if (bank->target->state != TARGET_HALTED) {
737 LOG_ERROR("Target not halted");
738 return ERROR_TARGET_NOT_HALTED;
739 }
740
741 if (offset & 0x1) {
742 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
743 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
744 }
745
746 /* unlock flash registers */
747 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
748 if (retval != ERROR_OK)
749 return retval;
750 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
751 if (retval != ERROR_OK)
752 return retval;
753
754 /* multiple half words (2-byte) to be programmed? */
755 if (words_remaining > 0) {
756 /* try using a block write */
757 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
758 if (retval != ERROR_OK) {
759 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
760 /* if block write failed (no sufficient working area),
761 * we use normal (slow) single dword accesses */
762 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
763 }
764 } else {
765 buffer += words_remaining * 2;
766 address += words_remaining * 2;
767 words_remaining = 0;
768 }
769 }
770
771 if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
772 return retval;
773
774 while (words_remaining > 0) {
775 uint16_t value;
776 memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
777
778 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
779 if (retval != ERROR_OK)
780 return retval;
781 retval = target_write_u16(target, address, value);
782 if (retval != ERROR_OK)
783 return retval;
784
785 retval = stm32x_wait_status_busy(bank, 5);
786 if (retval != ERROR_OK)
787 return retval;
788
789 bytes_written += 2;
790 words_remaining--;
791 address += 2;
792 }
793
794 if (bytes_remaining) {
795 uint16_t value = 0xffff;
796 memcpy(&value, buffer + bytes_written, bytes_remaining);
797
798 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
799 if (retval != ERROR_OK)
800 return retval;
801 retval = target_write_u16(target, address, value);
802 if (retval != ERROR_OK)
803 return retval;
804
805 retval = stm32x_wait_status_busy(bank, 5);
806 if (retval != ERROR_OK)
807 return retval;
808 }
809
810 return target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
811 }
812
813 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
814 {
815 /* This check the device CPUID core register to detect
816 * the M0 from the M3 devices. */
817
818 struct target *target = bank->target;
819 uint32_t cpuid, device_id_register = 0;
820
821 /* Get the CPUID from the ARM Core
822 * http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf 4.2.1 */
823 int retval = target_read_u32(target, 0xE000ED00, &cpuid);
824 if (retval != ERROR_OK)
825 return retval;
826
827 if (((cpuid >> 4) & 0xFFF) == 0xC20) {
828 /* 0xC20 is M0 devices */
829 device_id_register = 0x40015800;
830 } else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
831 /* 0xC23 is M3 devices */
832 device_id_register = 0xE0042000;
833 } else if (((cpuid >> 4) & 0xFFF) == 0xC24) {
834 /* 0xC24 is M4 devices */
835 device_id_register = 0xE0042000;
836 } else {
837 LOG_ERROR("Cannot identify target as a stm32x");
838 return ERROR_FAIL;
839 }
840
841 /* read stm32 device id register */
842 retval = target_read_u32(target, device_id_register, device_id);
843 if (retval != ERROR_OK)
844 return retval;
845
846 return retval;
847 }
848
849 static int stm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_size_in_kb)
850 {
851 struct target *target = bank->target;
852 uint32_t cpuid, flash_size_reg;
853
854 int retval = target_read_u32(target, 0xE000ED00, &cpuid);
855 if (retval != ERROR_OK)
856 return retval;
857
858 if (((cpuid >> 4) & 0xFFF) == 0xC20) {
859 /* 0xC20 is M0 devices */
860 flash_size_reg = 0x1FFFF7CC;
861 } else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
862 /* 0xC23 is M3 devices */
863 flash_size_reg = 0x1FFFF7E0;
864 } else if (((cpuid >> 4) & 0xFFF) == 0xC24) {
865 /* 0xC24 is M4 devices */
866 flash_size_reg = 0x1FFFF7CC;
867 } else {
868 LOG_ERROR("Cannot identify target as a stm32x");
869 return ERROR_FAIL;
870 }
871
872 retval = target_read_u16(target, flash_size_reg, flash_size_in_kb);
873 if (retval != ERROR_OK)
874 return retval;
875
876 return retval;
877 }
878
879 static int stm32x_probe(struct flash_bank *bank)
880 {
881 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
882 int i;
883 uint16_t flash_size_in_kb;
884 uint32_t device_id;
885 int page_size;
886 uint32_t base_address = 0x08000000;
887
888 stm32x_info->probed = 0;
889 stm32x_info->register_base = FLASH_REG_BASE_B0;
890
891 /* read stm32 device id register */
892 int retval = stm32x_get_device_id(bank, &device_id);
893 if (retval != ERROR_OK)
894 return retval;
895
896 LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
897
898 /* get flash size from target. */
899 retval = stm32x_get_flash_size(bank, &flash_size_in_kb);
900 if (retval != ERROR_OK) {
901 LOG_WARNING("failed reading flash size, default to max target family");
902 /* failed reading flash size, default to max target family */
903 flash_size_in_kb = 0xffff;
904 }
905
906 if ((device_id & 0xfff) == 0x410) {
907 /* medium density - we have 1k pages
908 * 4 pages for a protection area */
909 page_size = 1024;
910 stm32x_info->ppage_size = 4;
911
912 /* check for early silicon */
913 if (flash_size_in_kb == 0xffff) {
914 /* number of sectors incorrect on revA */
915 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
916 flash_size_in_kb = 128;
917 }
918 } else if ((device_id & 0xfff) == 0x412) {
919 /* low density - we have 1k pages
920 * 4 pages for a protection area */
921 page_size = 1024;
922 stm32x_info->ppage_size = 4;
923
924 /* check for early silicon */
925 if (flash_size_in_kb == 0xffff) {
926 /* number of sectors incorrect on revA */
927 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 32k flash");
928 flash_size_in_kb = 32;
929 }
930 } else if ((device_id & 0xfff) == 0x414) {
931 /* high density - we have 2k pages
932 * 2 pages for a protection area */
933 page_size = 2048;
934 stm32x_info->ppage_size = 2;
935
936 /* check for early silicon */
937 if (flash_size_in_kb == 0xffff) {
938 /* number of sectors incorrect on revZ */
939 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 512k flash");
940 flash_size_in_kb = 512;
941 }
942 } else if ((device_id & 0xfff) == 0x418) {
943 /* connectivity line density - we have 2k pages
944 * 2 pages for a protection area */
945 page_size = 2048;
946 stm32x_info->ppage_size = 2;
947
948 /* check for early silicon */
949 if (flash_size_in_kb == 0xffff) {
950 /* number of sectors incorrect on revZ */
951 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 256k flash");
952 flash_size_in_kb = 256;
953 }
954 } else if ((device_id & 0xfff) == 0x420) {
955 /* value line density - we have 1k pages
956 * 4 pages for a protection area */
957 page_size = 1024;
958 stm32x_info->ppage_size = 4;
959
960 /* check for early silicon */
961 if (flash_size_in_kb == 0xffff) {
962 /* number of sectors may be incorrrect on early silicon */
963 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
964 flash_size_in_kb = 128;
965 }
966 } else if ((device_id & 0xfff) == 0x422) {
967 /* stm32f30x - we have 2k pages
968 * 2 pages for a protection area */
969 page_size = 2048;
970 stm32x_info->ppage_size = 2;
971
972 /* check for early silicon */
973 if (flash_size_in_kb == 0xffff) {
974 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 256k flash");
975 flash_size_in_kb = 256;
976 }
977 } else if ((device_id & 0xfff) == 0x428) {
978 /* value line High density - we have 2k pages
979 * 4 pages for a protection area */
980 page_size = 2048;
981 stm32x_info->ppage_size = 4;
982
983 /* check for early silicon */
984 if (flash_size_in_kb == 0xffff) {
985 /* number of sectors may be incorrrect on early silicon */
986 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
987 flash_size_in_kb = 128;
988 }
989 } else if ((device_id & 0xfff) == 0x430) {
990 /* xl line density - we have 2k pages
991 * 2 pages for a protection area */
992 page_size = 2048;
993 stm32x_info->ppage_size = 2;
994 stm32x_info->has_dual_banks = true;
995
996 /* check for early silicon */
997 if (flash_size_in_kb == 0xffff) {
998 /* number of sectors may be incorrrect on early silicon */
999 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 1024k flash");
1000 flash_size_in_kb = 1024;
1001 }
1002
1003 /* split reported size into matching bank */
1004 if (bank->base != 0x08080000) {
1005 /* bank 0 will be fixed 512k */
1006 flash_size_in_kb = 512;
1007 } else {
1008 flash_size_in_kb -= 512;
1009 /* bank1 also uses a register offset */
1010 stm32x_info->register_base = FLASH_REG_BASE_B1;
1011 base_address = 0x08080000;
1012 }
1013 } else if ((device_id & 0xfff) == 0x432) {
1014 /* stm32f37x - we have 2k pages
1015 * 2 pages for a protection area */
1016 page_size = 2048;
1017 stm32x_info->ppage_size = 2;
1018
1019 /* check for early silicon */
1020 if (flash_size_in_kb == 0xffff) {
1021 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 256k flash");
1022 flash_size_in_kb = 256;
1023 }
1024 } else if ((device_id & 0xfff) == 0x440) {
1025 /* stm32f0x - we have 1k pages
1026 * 4 pages for a protection area */
1027 page_size = 1024;
1028 stm32x_info->ppage_size = 4;
1029
1030 /* check for early silicon */
1031 if (flash_size_in_kb == 0xffff) {
1032 /* number of sectors incorrect on revZ */
1033 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 64k flash");
1034 flash_size_in_kb = 64;
1035 }
1036 } else {
1037 LOG_WARNING("Cannot identify target as a STM32 family.");
1038 return ERROR_FAIL;
1039 }
1040
1041 LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
1042
1043 /* did we assign flash size? */
1044 assert(flash_size_in_kb != 0xffff);
1045
1046 /* calculate numbers of pages */
1047 int num_pages = flash_size_in_kb * 1024 / page_size;
1048
1049 /* check that calculation result makes sense */
1050 assert(num_pages > 0);
1051
1052 if (bank->sectors) {
1053 free(bank->sectors);
1054 bank->sectors = NULL;
1055 }
1056
1057 bank->base = base_address;
1058 bank->size = (num_pages * page_size);
1059 bank->num_sectors = num_pages;
1060 bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
1061
1062 for (i = 0; i < num_pages; i++) {
1063 bank->sectors[i].offset = i * page_size;
1064 bank->sectors[i].size = page_size;
1065 bank->sectors[i].is_erased = -1;
1066 bank->sectors[i].is_protected = 1;
1067 }
1068
1069 stm32x_info->probed = 1;
1070
1071 return ERROR_OK;
1072 }
1073
1074 static int stm32x_auto_probe(struct flash_bank *bank)
1075 {
1076 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1077 if (stm32x_info->probed)
1078 return ERROR_OK;
1079 return stm32x_probe(bank);
1080 }
1081
1082 #if 0
1083 COMMAND_HANDLER(stm32x_handle_part_id_command)
1084 {
1085 return ERROR_OK;
1086 }
1087 #endif
1088
1089 static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
1090 {
1091 uint32_t device_id;
1092 int printed;
1093
1094 /* read stm32 device id register */
1095 int retval = stm32x_get_device_id(bank, &device_id);
1096 if (retval != ERROR_OK)
1097 return retval;
1098
1099 if ((device_id & 0xfff) == 0x410) {
1100 printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: ");
1101 buf += printed;
1102 buf_size -= printed;
1103
1104 switch (device_id >> 16) {
1105 case 0x0000:
1106 snprintf(buf, buf_size, "A");
1107 break;
1108
1109 case 0x2000:
1110 snprintf(buf, buf_size, "B");
1111 break;
1112
1113 case 0x2001:
1114 snprintf(buf, buf_size, "Z");
1115 break;
1116
1117 case 0x2003:
1118 snprintf(buf, buf_size, "Y");
1119 break;
1120
1121 default:
1122 snprintf(buf, buf_size, "unknown");
1123 break;
1124 }
1125 } else if ((device_id & 0xfff) == 0x412) {
1126 printed = snprintf(buf, buf_size, "stm32x (Low Density) - Rev: ");
1127 buf += printed;
1128 buf_size -= printed;
1129
1130 switch (device_id >> 16) {
1131 case 0x1000:
1132 snprintf(buf, buf_size, "A");
1133 break;
1134
1135 default:
1136 snprintf(buf, buf_size, "unknown");
1137 break;
1138 }
1139 } else if ((device_id & 0xfff) == 0x414) {
1140 printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: ");
1141 buf += printed;
1142 buf_size -= printed;
1143
1144 switch (device_id >> 16) {
1145 case 0x1000:
1146 snprintf(buf, buf_size, "A");
1147 break;
1148
1149 case 0x1001:
1150 snprintf(buf, buf_size, "Z");
1151 break;
1152
1153 default:
1154 snprintf(buf, buf_size, "unknown");
1155 break;
1156 }
1157 } else if ((device_id & 0xfff) == 0x418) {
1158 printed = snprintf(buf, buf_size, "stm32x (Connectivity) - Rev: ");
1159 buf += printed;
1160 buf_size -= printed;
1161
1162 switch (device_id >> 16) {
1163 case 0x1000:
1164 snprintf(buf, buf_size, "A");
1165 break;
1166
1167 case 0x1001:
1168 snprintf(buf, buf_size, "Z");
1169 break;
1170
1171 default:
1172 snprintf(buf, buf_size, "unknown");
1173 break;
1174 }
1175 } else if ((device_id & 0xfff) == 0x420) {
1176 printed = snprintf(buf, buf_size, "stm32x (Value) - Rev: ");
1177 buf += printed;
1178 buf_size -= printed;
1179
1180 switch (device_id >> 16) {
1181 case 0x1000:
1182 snprintf(buf, buf_size, "A");
1183 break;
1184
1185 case 0x1001:
1186 snprintf(buf, buf_size, "Z");
1187 break;
1188
1189 default:
1190 snprintf(buf, buf_size, "unknown");
1191 break;
1192 }
1193 } else if ((device_id & 0xfff) == 0x422) {
1194 printed = snprintf(buf, buf_size, "stm32f30x - Rev: ");
1195 buf += printed;
1196 buf_size -= printed;
1197
1198 switch (device_id >> 16) {
1199 case 0x1000:
1200 snprintf(buf, buf_size, "1.0");
1201 break;
1202
1203 default:
1204 snprintf(buf, buf_size, "unknown");
1205 break;
1206 }
1207 } else if ((device_id & 0xfff) == 0x428) {
1208 printed = snprintf(buf, buf_size, "stm32x (Value HD) - Rev: ");
1209 buf += printed;
1210 buf_size -= printed;
1211
1212 switch (device_id >> 16) {
1213 case 0x1000:
1214 snprintf(buf, buf_size, "A");
1215 break;
1216
1217 case 0x1001:
1218 snprintf(buf, buf_size, "Z");
1219 break;
1220
1221 default:
1222 snprintf(buf, buf_size, "unknown");
1223 break;
1224 }
1225 } else if ((device_id & 0xfff) == 0x430) {
1226 printed = snprintf(buf, buf_size, "stm32x (XL) - Rev: ");
1227 buf += printed;
1228 buf_size -= printed;
1229
1230 switch (device_id >> 16) {
1231 case 0x1000:
1232 snprintf(buf, buf_size, "A");
1233 break;
1234
1235 default:
1236 snprintf(buf, buf_size, "unknown");
1237 break;
1238 }
1239 } else if ((device_id & 0xfff) == 0x432) {
1240 printed = snprintf(buf, buf_size, "stm32f37x - Rev: ");
1241 buf += printed;
1242 buf_size -= printed;
1243
1244 switch (device_id >> 16) {
1245 case 0x1000:
1246 snprintf(buf, buf_size, "1.0");
1247 break;
1248
1249 default:
1250 snprintf(buf, buf_size, "unknown");
1251 break;
1252 }
1253 } else if ((device_id & 0xfff) == 0x440) {
1254 printed = snprintf(buf, buf_size, "stm32f0x - Rev: ");
1255 buf += printed;
1256 buf_size -= printed;
1257
1258 switch (device_id >> 16) {
1259 case 0x1000:
1260 snprintf(buf, buf_size, "1.0");
1261 break;
1262
1263 case 0x2000:
1264 snprintf(buf, buf_size, "2.0");
1265 break;
1266
1267 default:
1268 snprintf(buf, buf_size, "unknown");
1269 break;
1270 }
1271 } else {
1272 snprintf(buf, buf_size, "Cannot identify target as a stm32x\n");
1273 return ERROR_FAIL;
1274 }
1275
1276 return ERROR_OK;
1277 }
1278
1279 COMMAND_HANDLER(stm32x_handle_lock_command)
1280 {
1281 struct target *target = NULL;
1282 struct stm32x_flash_bank *stm32x_info = NULL;
1283
1284 if (CMD_ARGC < 1)
1285 return ERROR_COMMAND_SYNTAX_ERROR;
1286
1287 struct flash_bank *bank;
1288 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1289 if (ERROR_OK != retval)
1290 return retval;
1291
1292 stm32x_info = bank->driver_priv;
1293
1294 target = bank->target;
1295
1296 if (target->state != TARGET_HALTED) {
1297 LOG_ERROR("Target not halted");
1298 return ERROR_TARGET_NOT_HALTED;
1299 }
1300
1301 retval = stm32x_check_operation_supported(bank);
1302 if (ERROR_OK != retval)
1303 return retval;
1304
1305 if (stm32x_erase_options(bank) != ERROR_OK) {
1306 command_print(CMD_CTX, "stm32x failed to erase options");
1307 return ERROR_OK;
1308 }
1309
1310 /* set readout protection */
1311 stm32x_info->option_bytes.RDP = 0;
1312
1313 if (stm32x_write_options(bank) != ERROR_OK) {
1314 command_print(CMD_CTX, "stm32x failed to lock device");
1315 return ERROR_OK;
1316 }
1317
1318 command_print(CMD_CTX, "stm32x locked");
1319
1320 return ERROR_OK;
1321 }
1322
1323 COMMAND_HANDLER(stm32x_handle_unlock_command)
1324 {
1325 struct target *target = NULL;
1326
1327 if (CMD_ARGC < 1)
1328 return ERROR_COMMAND_SYNTAX_ERROR;
1329
1330 struct flash_bank *bank;
1331 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1332 if (ERROR_OK != retval)
1333 return retval;
1334
1335 target = bank->target;
1336
1337 if (target->state != TARGET_HALTED) {
1338 LOG_ERROR("Target not halted");
1339 return ERROR_TARGET_NOT_HALTED;
1340 }
1341
1342 retval = stm32x_check_operation_supported(bank);
1343 if (ERROR_OK != retval)
1344 return retval;
1345
1346 if (stm32x_erase_options(bank) != ERROR_OK) {
1347 command_print(CMD_CTX, "stm32x failed to unlock device");
1348 return ERROR_OK;
1349 }
1350
1351 if (stm32x_write_options(bank) != ERROR_OK) {
1352 command_print(CMD_CTX, "stm32x failed to lock device");
1353 return ERROR_OK;
1354 }
1355
1356 command_print(CMD_CTX, "stm32x unlocked.\n"
1357 "INFO: a reset or power cycle is required "
1358 "for the new settings to take effect.");
1359
1360 return ERROR_OK;
1361 }
1362
1363 COMMAND_HANDLER(stm32x_handle_options_read_command)
1364 {
1365 uint32_t optionbyte;
1366 struct target *target = NULL;
1367 struct stm32x_flash_bank *stm32x_info = NULL;
1368
1369 if (CMD_ARGC < 1)
1370 return ERROR_COMMAND_SYNTAX_ERROR;
1371
1372 struct flash_bank *bank;
1373 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1374 if (ERROR_OK != retval)
1375 return retval;
1376
1377 stm32x_info = bank->driver_priv;
1378
1379 target = bank->target;
1380
1381 if (target->state != TARGET_HALTED) {
1382 LOG_ERROR("Target not halted");
1383 return ERROR_TARGET_NOT_HALTED;
1384 }
1385
1386 retval = stm32x_check_operation_supported(bank);
1387 if (ERROR_OK != retval)
1388 return retval;
1389
1390 retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
1391 if (retval != ERROR_OK)
1392 return retval;
1393 command_print(CMD_CTX, "Option Byte: 0x%" PRIx32 "", optionbyte);
1394
1395 if (buf_get_u32((uint8_t *)&optionbyte, OPT_ERROR, 1))
1396 command_print(CMD_CTX, "Option Byte Complement Error");
1397
1398 if (buf_get_u32((uint8_t *)&optionbyte, OPT_READOUT, 1))
1399 command_print(CMD_CTX, "Readout Protection On");
1400 else
1401 command_print(CMD_CTX, "Readout Protection Off");
1402
1403 if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDWDGSW, 1))
1404 command_print(CMD_CTX, "Software Watchdog");
1405 else
1406 command_print(CMD_CTX, "Hardware Watchdog");
1407
1408 if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTOP, 1))
1409 command_print(CMD_CTX, "Stop: No reset generated");
1410 else
1411 command_print(CMD_CTX, "Stop: Reset generated");
1412
1413 if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTDBY, 1))
1414 command_print(CMD_CTX, "Standby: No reset generated");
1415 else
1416 command_print(CMD_CTX, "Standby: Reset generated");
1417
1418 if (stm32x_info->has_dual_banks) {
1419 if (buf_get_u32((uint8_t *)&optionbyte, OPT_BFB2, 1))
1420 command_print(CMD_CTX, "Boot: Bank 0");
1421 else
1422 command_print(CMD_CTX, "Boot: Bank 1");
1423 }
1424
1425 return ERROR_OK;
1426 }
1427
1428 COMMAND_HANDLER(stm32x_handle_options_write_command)
1429 {
1430 struct target *target = NULL;
1431 struct stm32x_flash_bank *stm32x_info = NULL;
1432 uint16_t optionbyte = 0xF8;
1433
1434 if (CMD_ARGC < 4)
1435 return ERROR_COMMAND_SYNTAX_ERROR;
1436
1437 struct flash_bank *bank;
1438 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1439 if (ERROR_OK != retval)
1440 return retval;
1441
1442 stm32x_info = bank->driver_priv;
1443
1444 target = bank->target;
1445
1446 if (target->state != TARGET_HALTED) {
1447 LOG_ERROR("Target not halted");
1448 return ERROR_TARGET_NOT_HALTED;
1449 }
1450
1451 retval = stm32x_check_operation_supported(bank);
1452 if (ERROR_OK != retval)
1453 return retval;
1454
1455 /* REVISIT: ignores some options which we will display...
1456 * and doesn't insist on the specified syntax.
1457 */
1458
1459 /* OPT_RDWDGSW */
1460 if (strcmp(CMD_ARGV[1], "SWWDG") == 0)
1461 optionbyte |= (1 << 0);
1462 else /* REVISIT must be "HWWDG" then ... */
1463 optionbyte &= ~(1 << 0);
1464
1465 /* OPT_RDRSTSTOP */
1466 if (strcmp(CMD_ARGV[2], "NORSTSTOP") == 0)
1467 optionbyte |= (1 << 1);
1468 else /* REVISIT must be "RSTSTNDBY" then ... */
1469 optionbyte &= ~(1 << 1);
1470
1471 /* OPT_RDRSTSTDBY */
1472 if (strcmp(CMD_ARGV[3], "NORSTSTNDBY") == 0)
1473 optionbyte |= (1 << 2);
1474 else /* REVISIT must be "RSTSTOP" then ... */
1475 optionbyte &= ~(1 << 2);
1476
1477 if (CMD_ARGC > 4 && stm32x_info->has_dual_banks) {
1478 /* OPT_BFB2 */
1479 if (strcmp(CMD_ARGV[4], "BOOT0") == 0)
1480 optionbyte |= (1 << 3);
1481 else
1482 optionbyte &= ~(1 << 3);
1483 }
1484
1485 if (stm32x_erase_options(bank) != ERROR_OK) {
1486 command_print(CMD_CTX, "stm32x failed to erase options");
1487 return ERROR_OK;
1488 }
1489
1490 stm32x_info->option_bytes.user_options = optionbyte;
1491
1492 if (stm32x_write_options(bank) != ERROR_OK) {
1493 command_print(CMD_CTX, "stm32x failed to write options");
1494 return ERROR_OK;
1495 }
1496
1497 command_print(CMD_CTX, "stm32x write options complete.\n"
1498 "INFO: a reset or power cycle is required "
1499 "for the new settings to take effect.");
1500
1501 return ERROR_OK;
1502 }
1503
1504 static int stm32x_mass_erase(struct flash_bank *bank)
1505 {
1506 struct target *target = bank->target;
1507
1508 if (target->state != TARGET_HALTED) {
1509 LOG_ERROR("Target not halted");
1510 return ERROR_TARGET_NOT_HALTED;
1511 }
1512
1513 /* unlock option flash registers */
1514 int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
1515 if (retval != ERROR_OK)
1516 return retval;
1517 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
1518 if (retval != ERROR_OK)
1519 return retval;
1520
1521 /* mass erase flash memory */
1522 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
1523 if (retval != ERROR_OK)
1524 return retval;
1525 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1526 FLASH_MER | FLASH_STRT);
1527 if (retval != ERROR_OK)
1528 return retval;
1529
1530 retval = stm32x_wait_status_busy(bank, 100);
1531 if (retval != ERROR_OK)
1532 return retval;
1533
1534 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1535 if (retval != ERROR_OK)
1536 return retval;
1537
1538 return ERROR_OK;
1539 }
1540
1541 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1542 {
1543 int i;
1544
1545 if (CMD_ARGC < 1)
1546 return ERROR_COMMAND_SYNTAX_ERROR;
1547
1548 struct flash_bank *bank;
1549 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1550 if (ERROR_OK != retval)
1551 return retval;
1552
1553 retval = stm32x_mass_erase(bank);
1554 if (retval == ERROR_OK) {
1555 /* set all sectors as erased */
1556 for (i = 0; i < bank->num_sectors; i++)
1557 bank->sectors[i].is_erased = 1;
1558
1559 command_print(CMD_CTX, "stm32x mass erase complete");
1560 } else
1561 command_print(CMD_CTX, "stm32x mass erase failed");
1562
1563 return retval;
1564 }
1565
1566 static const struct command_registration stm32x_exec_command_handlers[] = {
1567 {
1568 .name = "lock",
1569 .handler = stm32x_handle_lock_command,
1570 .mode = COMMAND_EXEC,
1571 .usage = "bank_id",
1572 .help = "Lock entire flash device.",
1573 },
1574 {
1575 .name = "unlock",
1576 .handler = stm32x_handle_unlock_command,
1577 .mode = COMMAND_EXEC,
1578 .usage = "bank_id",
1579 .help = "Unlock entire protected flash device.",
1580 },
1581 {
1582 .name = "mass_erase",
1583 .handler = stm32x_handle_mass_erase_command,
1584 .mode = COMMAND_EXEC,
1585 .usage = "bank_id",
1586 .help = "Erase entire flash device.",
1587 },
1588 {
1589 .name = "options_read",
1590 .handler = stm32x_handle_options_read_command,
1591 .mode = COMMAND_EXEC,
1592 .usage = "bank_id",
1593 .help = "Read and display device option byte.",
1594 },
1595 {
1596 .name = "options_write",
1597 .handler = stm32x_handle_options_write_command,
1598 .mode = COMMAND_EXEC,
1599 .usage = "bank_id ('SWWDG'|'HWWDG') "
1600 "('RSTSTNDBY'|'NORSTSTNDBY') "
1601 "('RSTSTOP'|'NORSTSTOP')",
1602 .help = "Replace bits in device option byte.",
1603 },
1604 COMMAND_REGISTRATION_DONE
1605 };
1606
1607 static const struct command_registration stm32x_command_handlers[] = {
1608 {
1609 .name = "stm32f1x",
1610 .mode = COMMAND_ANY,
1611 .help = "stm32f1x flash command group",
1612 .usage = "",
1613 .chain = stm32x_exec_command_handlers,
1614 },
1615 COMMAND_REGISTRATION_DONE
1616 };
1617
1618 struct flash_driver stm32f1x_flash = {
1619 .name = "stm32f1x",
1620 .commands = stm32x_command_handlers,
1621 .flash_bank_command = stm32x_flash_bank_command,
1622 .erase = stm32x_erase,
1623 .protect = stm32x_protect,
1624 .write = stm32x_write,
1625 .read = default_flash_read,
1626 .probe = stm32x_probe,
1627 .auto_probe = stm32x_auto_probe,
1628 .erase_check = default_flash_blank_check,
1629 .protect_check = stm32x_protect_check,
1630 .info = get_stm32x_info,
1631 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)