stm32f1x: Increase options erase timeout
[openocd.git] / src / flash / nor / stm32f1x.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 by Andreas Fritiofson *
9 * andreas.fritiofson@gmail.com *
10 *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/armv7m.h>
35
36 /* stm32x register locations */
37
38 #define FLASH_REG_BASE_B0 0x40022000
39 #define FLASH_REG_BASE_B1 0x40022040
40
41 #define STM32_FLASH_ACR 0x00
42 #define STM32_FLASH_KEYR 0x04
43 #define STM32_FLASH_OPTKEYR 0x08
44 #define STM32_FLASH_SR 0x0C
45 #define STM32_FLASH_CR 0x10
46 #define STM32_FLASH_AR 0x14
47 #define STM32_FLASH_OBR 0x1C
48 #define STM32_FLASH_WRPR 0x20
49
50 /* TODO: Check if code using these really should be hard coded to bank 0.
51 * There are valid cases, on dual flash devices the protection of the
52 * second bank is done on the bank0 reg's. */
53 #define STM32_FLASH_ACR_B0 0x40022000
54 #define STM32_FLASH_KEYR_B0 0x40022004
55 #define STM32_FLASH_OPTKEYR_B0 0x40022008
56 #define STM32_FLASH_SR_B0 0x4002200C
57 #define STM32_FLASH_CR_B0 0x40022010
58 #define STM32_FLASH_AR_B0 0x40022014
59 #define STM32_FLASH_OBR_B0 0x4002201C
60 #define STM32_FLASH_WRPR_B0 0x40022020
61
62 /* option byte location */
63
64 #define STM32_OB_RDP 0x1FFFF800
65 #define STM32_OB_USER 0x1FFFF802
66 #define STM32_OB_DATA0 0x1FFFF804
67 #define STM32_OB_DATA1 0x1FFFF806
68 #define STM32_OB_WRP0 0x1FFFF808
69 #define STM32_OB_WRP1 0x1FFFF80A
70 #define STM32_OB_WRP2 0x1FFFF80C
71 #define STM32_OB_WRP3 0x1FFFF80E
72
73 /* FLASH_CR register bits */
74
75 #define FLASH_PG (1 << 0)
76 #define FLASH_PER (1 << 1)
77 #define FLASH_MER (1 << 2)
78 #define FLASH_OPTPG (1 << 4)
79 #define FLASH_OPTER (1 << 5)
80 #define FLASH_STRT (1 << 6)
81 #define FLASH_LOCK (1 << 7)
82 #define FLASH_OPTWRE (1 << 9)
83
84 /* FLASH_SR register bits */
85
86 #define FLASH_BSY (1 << 0)
87 #define FLASH_PGERR (1 << 2)
88 #define FLASH_WRPRTERR (1 << 4)
89 #define FLASH_EOP (1 << 5)
90
91 /* STM32_FLASH_OBR bit definitions (reading) */
92
93 #define OPT_ERROR 0
94 #define OPT_READOUT 1
95 #define OPT_RDWDGSW 2
96 #define OPT_RDRSTSTOP 3
97 #define OPT_RDRSTSTDBY 4
98 #define OPT_BFB2 5 /* dual flash bank only */
99
100 /* register unlock keys */
101
102 #define KEY1 0x45670123
103 #define KEY2 0xCDEF89AB
104
105 /* timeout values */
106
107 #define FLASH_WRITE_TIMEOUT 10
108 #define FLASH_ERASE_TIMEOUT 100
109
110 struct stm32x_options {
111 uint16_t RDP;
112 uint16_t user_options;
113 uint16_t protection[4];
114 };
115
116 struct stm32x_flash_bank {
117 struct stm32x_options option_bytes;
118 int ppage_size;
119 int probed;
120
121 bool has_dual_banks;
122 /* used to access dual flash bank stm32xl */
123 uint32_t register_base;
124 };
125
126 static int stm32x_mass_erase(struct flash_bank *bank);
127 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id);
128
129 /* flash bank stm32x <base> <size> 0 0 <target#>
130 */
131 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
132 {
133 struct stm32x_flash_bank *stm32x_info;
134
135 if (CMD_ARGC < 6)
136 return ERROR_COMMAND_SYNTAX_ERROR;
137
138 stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
139
140 bank->driver_priv = stm32x_info;
141 stm32x_info->probed = 0;
142 stm32x_info->has_dual_banks = false;
143 stm32x_info->register_base = FLASH_REG_BASE_B0;
144
145 return ERROR_OK;
146 }
147
148 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
149 {
150 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
151 return reg + stm32x_info->register_base;
152 }
153
154 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
155 {
156 struct target *target = bank->target;
157 return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
158 }
159
160 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
161 {
162 struct target *target = bank->target;
163 uint32_t status;
164 int retval = ERROR_OK;
165
166 /* wait for busy to clear */
167 for (;;) {
168 retval = stm32x_get_flash_status(bank, &status);
169 if (retval != ERROR_OK)
170 return retval;
171 LOG_DEBUG("status: 0x%" PRIx32 "", status);
172 if ((status & FLASH_BSY) == 0)
173 break;
174 if (timeout-- <= 0) {
175 LOG_ERROR("timed out waiting for flash");
176 return ERROR_FAIL;
177 }
178 alive_sleep(1);
179 }
180
181 if (status & FLASH_WRPRTERR) {
182 LOG_ERROR("stm32x device protected");
183 retval = ERROR_FAIL;
184 }
185
186 if (status & FLASH_PGERR) {
187 LOG_ERROR("stm32x device programming failed");
188 retval = ERROR_FAIL;
189 }
190
191 /* Clear but report errors */
192 if (status & (FLASH_WRPRTERR | FLASH_PGERR)) {
193 /* If this operation fails, we ignore it and report the original
194 * retval
195 */
196 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
197 FLASH_WRPRTERR | FLASH_PGERR);
198 }
199 return retval;
200 }
201
202 int stm32x_check_operation_supported(struct flash_bank *bank)
203 {
204 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
205
206 /* if we have a dual flash bank device then
207 * we need to perform option byte stuff on bank0 only */
208 if (stm32x_info->register_base != FLASH_REG_BASE_B0) {
209 LOG_ERROR("Option Byte Operation's must use bank0");
210 return ERROR_FLASH_OPERATION_FAILED;
211 }
212
213 return ERROR_OK;
214 }
215
216 static int stm32x_read_options(struct flash_bank *bank)
217 {
218 uint32_t optiondata;
219 struct stm32x_flash_bank *stm32x_info = NULL;
220 struct target *target = bank->target;
221
222 stm32x_info = bank->driver_priv;
223
224 /* read current option bytes */
225 int retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optiondata);
226 if (retval != ERROR_OK)
227 return retval;
228
229 stm32x_info->option_bytes.user_options = (uint16_t)0xFFF8 | ((optiondata >> 2) & 0x07);
230 stm32x_info->option_bytes.RDP = (optiondata & (1 << OPT_READOUT)) ? 0xFFFF : 0x5AA5;
231
232 if (optiondata & (1 << OPT_READOUT))
233 LOG_INFO("Device Security Bit Set");
234
235 /* each bit refers to a 4bank protection */
236 retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &optiondata);
237 if (retval != ERROR_OK)
238 return retval;
239
240 stm32x_info->option_bytes.protection[0] = (uint16_t)optiondata;
241 stm32x_info->option_bytes.protection[1] = (uint16_t)(optiondata >> 8);
242 stm32x_info->option_bytes.protection[2] = (uint16_t)(optiondata >> 16);
243 stm32x_info->option_bytes.protection[3] = (uint16_t)(optiondata >> 24);
244
245 return ERROR_OK;
246 }
247
248 static int stm32x_erase_options(struct flash_bank *bank)
249 {
250 struct stm32x_flash_bank *stm32x_info = NULL;
251 struct target *target = bank->target;
252
253 stm32x_info = bank->driver_priv;
254
255 /* stlink is currently does not support 16bit
256 * read/writes. so we cannot write option bytes */
257 struct armv7m_common *armv7m = target_to_armv7m(target);
258 if (armv7m && armv7m->stlink) {
259 LOG_ERROR("Option bytes currently unsupported for stlink");
260 return ERROR_FAIL;
261 }
262
263 /* read current options */
264 stm32x_read_options(bank);
265
266 /* unlock flash registers */
267 int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
268 if (retval != ERROR_OK)
269 return retval;
270
271 retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
272 if (retval != ERROR_OK)
273 return retval;
274
275 /* unlock option flash registers */
276 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
277 if (retval != ERROR_OK)
278 return retval;
279 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
280 if (retval != ERROR_OK)
281 return retval;
282
283 /* erase option bytes */
284 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
285 if (retval != ERROR_OK)
286 return retval;
287 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
288 if (retval != ERROR_OK)
289 return retval;
290
291 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
292 if (retval != ERROR_OK)
293 return retval;
294
295 /* clear readout protection and complementary option bytes
296 * this will also force a device unlock if set */
297 stm32x_info->option_bytes.RDP = 0x5AA5;
298
299 return ERROR_OK;
300 }
301
302 static int stm32x_write_options(struct flash_bank *bank)
303 {
304 struct stm32x_flash_bank *stm32x_info = NULL;
305 struct target *target = bank->target;
306
307 stm32x_info = bank->driver_priv;
308
309 /* unlock flash registers */
310 int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
311 if (retval != ERROR_OK)
312 return retval;
313 retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
314 if (retval != ERROR_OK)
315 return retval;
316
317 /* unlock option flash registers */
318 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
319 if (retval != ERROR_OK)
320 return retval;
321 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
322 if (retval != ERROR_OK)
323 return retval;
324
325 /* program option bytes */
326 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
327 if (retval != ERROR_OK)
328 return retval;
329
330 /* write user option byte */
331 retval = target_write_u16(target, STM32_OB_USER, stm32x_info->option_bytes.user_options);
332 if (retval != ERROR_OK)
333 return retval;
334
335 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
336 if (retval != ERROR_OK)
337 return retval;
338
339 /* write protection byte 1 */
340 retval = target_write_u16(target, STM32_OB_WRP0, stm32x_info->option_bytes.protection[0]);
341 if (retval != ERROR_OK)
342 return retval;
343
344 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
345 if (retval != ERROR_OK)
346 return retval;
347
348 /* write protection byte 2 */
349 retval = target_write_u16(target, STM32_OB_WRP1, stm32x_info->option_bytes.protection[1]);
350 if (retval != ERROR_OK)
351 return retval;
352
353 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
354 if (retval != ERROR_OK)
355 return retval;
356
357 /* write protection byte 3 */
358 retval = target_write_u16(target, STM32_OB_WRP2, stm32x_info->option_bytes.protection[2]);
359 if (retval != ERROR_OK)
360 return retval;
361
362 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
363 if (retval != ERROR_OK)
364 return retval;
365
366 /* write protection byte 4 */
367 retval = target_write_u16(target, STM32_OB_WRP3, stm32x_info->option_bytes.protection[3]);
368 if (retval != ERROR_OK)
369 return retval;
370
371 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
372 if (retval != ERROR_OK)
373 return retval;
374
375 /* write readout protection bit */
376 retval = target_write_u16(target, STM32_OB_RDP, stm32x_info->option_bytes.RDP);
377 if (retval != ERROR_OK)
378 return retval;
379
380 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
381 if (retval != ERROR_OK)
382 return retval;
383
384 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
385 if (retval != ERROR_OK)
386 return retval;
387
388 return ERROR_OK;
389 }
390
391 static int stm32x_protect_check(struct flash_bank *bank)
392 {
393 struct target *target = bank->target;
394 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
395
396 uint32_t protection;
397 int i, s;
398 int num_bits;
399 int set;
400
401 if (target->state != TARGET_HALTED) {
402 LOG_ERROR("Target not halted");
403 return ERROR_TARGET_NOT_HALTED;
404 }
405
406 int retval = stm32x_check_operation_supported(bank);
407 if (ERROR_OK != retval)
408 return retval;
409
410 /* medium density - each bit refers to a 4bank protection
411 * high density - each bit refers to a 2bank protection */
412 retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
413 if (retval != ERROR_OK)
414 return retval;
415
416 /* medium density - each protection bit is for 4 * 1K pages
417 * high density - each protection bit is for 2 * 2K pages */
418 num_bits = (bank->num_sectors / stm32x_info->ppage_size);
419
420 if (stm32x_info->ppage_size == 2) {
421 /* high density flash/connectivity line protection */
422
423 set = 1;
424
425 if (protection & (1 << 31))
426 set = 0;
427
428 /* bit 31 controls sector 62 - 255 protection for high density
429 * bit 31 controls sector 62 - 127 protection for connectivity line */
430 for (s = 62; s < bank->num_sectors; s++)
431 bank->sectors[s].is_protected = set;
432
433 if (bank->num_sectors > 61)
434 num_bits = 31;
435
436 for (i = 0; i < num_bits; i++) {
437 set = 1;
438
439 if (protection & (1 << i))
440 set = 0;
441
442 for (s = 0; s < stm32x_info->ppage_size; s++)
443 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
444 }
445 } else {
446 /* low/medium density flash protection */
447 for (i = 0; i < num_bits; i++) {
448 set = 1;
449
450 if (protection & (1 << i))
451 set = 0;
452
453 for (s = 0; s < stm32x_info->ppage_size; s++)
454 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
455 }
456 }
457
458 return ERROR_OK;
459 }
460
461 static int stm32x_erase(struct flash_bank *bank, int first, int last)
462 {
463 struct target *target = bank->target;
464 int i;
465
466 if (bank->target->state != TARGET_HALTED) {
467 LOG_ERROR("Target not halted");
468 return ERROR_TARGET_NOT_HALTED;
469 }
470
471 if ((first == 0) && (last == (bank->num_sectors - 1)))
472 return stm32x_mass_erase(bank);
473
474 /* unlock flash registers */
475 int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
476 if (retval != ERROR_OK)
477 return retval;
478 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
479 if (retval != ERROR_OK)
480 return retval;
481
482 for (i = first; i <= last; i++) {
483 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
484 if (retval != ERROR_OK)
485 return retval;
486 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
487 bank->base + bank->sectors[i].offset);
488 if (retval != ERROR_OK)
489 return retval;
490 retval = target_write_u32(target,
491 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
492 if (retval != ERROR_OK)
493 return retval;
494
495 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
496 if (retval != ERROR_OK)
497 return retval;
498
499 bank->sectors[i].is_erased = 1;
500 }
501
502 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
503 if (retval != ERROR_OK)
504 return retval;
505
506 return ERROR_OK;
507 }
508
509 static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
510 {
511 struct stm32x_flash_bank *stm32x_info = NULL;
512 struct target *target = bank->target;
513 uint16_t prot_reg[4] = {0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF};
514 int i, reg, bit;
515 int status;
516 uint32_t protection;
517
518 stm32x_info = bank->driver_priv;
519
520 if (target->state != TARGET_HALTED) {
521 LOG_ERROR("Target not halted");
522 return ERROR_TARGET_NOT_HALTED;
523 }
524
525 int retval = stm32x_check_operation_supported(bank);
526 if (ERROR_OK != retval)
527 return retval;
528
529 if ((first % stm32x_info->ppage_size) != 0) {
530 LOG_WARNING("aligned start protect sector to a %d sector boundary",
531 stm32x_info->ppage_size);
532 first = first - (first % stm32x_info->ppage_size);
533 }
534 if (((last + 1) % stm32x_info->ppage_size) != 0) {
535 LOG_WARNING("aligned end protect sector to a %d sector boundary",
536 stm32x_info->ppage_size);
537 last++;
538 last = last - (last % stm32x_info->ppage_size);
539 last--;
540 }
541
542 /* medium density - each bit refers to a 4bank protection
543 * high density - each bit refers to a 2bank protection */
544 retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
545 if (retval != ERROR_OK)
546 return retval;
547
548 prot_reg[0] = (uint16_t)protection;
549 prot_reg[1] = (uint16_t)(protection >> 8);
550 prot_reg[2] = (uint16_t)(protection >> 16);
551 prot_reg[3] = (uint16_t)(protection >> 24);
552
553 if (stm32x_info->ppage_size == 2) {
554 /* high density flash */
555
556 /* bit 7 controls sector 62 - 255 protection */
557 if (last > 61) {
558 if (set)
559 prot_reg[3] &= ~(1 << 7);
560 else
561 prot_reg[3] |= (1 << 7);
562 }
563
564 if (first > 61)
565 first = 62;
566 if (last > 61)
567 last = 61;
568
569 for (i = first; i <= last; i++) {
570 reg = (i / stm32x_info->ppage_size) / 8;
571 bit = (i / stm32x_info->ppage_size) - (reg * 8);
572
573 if (set)
574 prot_reg[reg] &= ~(1 << bit);
575 else
576 prot_reg[reg] |= (1 << bit);
577 }
578 } else {
579 /* medium density flash */
580 for (i = first; i <= last; i++) {
581 reg = (i / stm32x_info->ppage_size) / 8;
582 bit = (i / stm32x_info->ppage_size) - (reg * 8);
583
584 if (set)
585 prot_reg[reg] &= ~(1 << bit);
586 else
587 prot_reg[reg] |= (1 << bit);
588 }
589 }
590
591 status = stm32x_erase_options(bank);
592 if (status != ERROR_OK)
593 return status;
594
595 stm32x_info->option_bytes.protection[0] = prot_reg[0];
596 stm32x_info->option_bytes.protection[1] = prot_reg[1];
597 stm32x_info->option_bytes.protection[2] = prot_reg[2];
598 stm32x_info->option_bytes.protection[3] = prot_reg[3];
599
600 return stm32x_write_options(bank);
601 }
602
603 static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
604 uint32_t offset, uint32_t count)
605 {
606 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
607 struct target *target = bank->target;
608 uint32_t buffer_size = 16384;
609 struct working_area *write_algorithm;
610 struct working_area *source;
611 uint32_t address = bank->base + offset;
612 struct reg_param reg_params[5];
613 struct armv7m_algorithm armv7m_info;
614 int retval = ERROR_OK;
615
616 /* see contrib/loaders/flash/stm32f1x.S for src */
617
618 static const uint8_t stm32x_flash_write_code[] = {
619 /* #define STM32_FLASH_SR_OFFSET 0x0C */
620 /* wait_fifo: */
621 0x16, 0x68, /* ldr r6, [r2, #0] */
622 0x00, 0x2e, /* cmp r6, #0 */
623 0x18, 0xd0, /* beq exit */
624 0x55, 0x68, /* ldr r5, [r2, #4] */
625 0xb5, 0x42, /* cmp r5, r6 */
626 0xf9, 0xd0, /* beq wait_fifo */
627 0x2e, 0x88, /* ldrh r6, [r5, #0] */
628 0x26, 0x80, /* strh r6, [r4, #0] */
629 0x02, 0x35, /* adds r5, #2 */
630 0x02, 0x34, /* adds r4, #2 */
631 /* busy: */
632 0xc6, 0x68, /* ldr r6, [r0, #STM32_FLASH_SR_OFFSET] */
633 0x01, 0x27, /* movs r7, #1 */
634 0x3e, 0x42, /* tst r6, r7 */
635 0xfb, 0xd1, /* bne busy */
636 0x14, 0x27, /* movs r7, #0x14 */
637 0x3e, 0x42, /* tst r6, r7 */
638 0x08, 0xd1, /* bne error */
639 0x9d, 0x42, /* cmp r5, r3 */
640 0x01, 0xd3, /* bcc no_wrap */
641 0x15, 0x46, /* mov r5, r2 */
642 0x08, 0x35, /* adds r5, #8 */
643 /* no_wrap: */
644 0x55, 0x60, /* str r5, [r2, #4] */
645 0x01, 0x39, /* subs r1, r1, #1 */
646 0x00, 0x29, /* cmp r1, #0 */
647 0x02, 0xd0, /* beq exit */
648 0xe5, 0xe7, /* b wait_fifo */
649 /* error: */
650 0x00, 0x20, /* movs r0, #0 */
651 0x50, 0x60, /* str r0, [r2, #4] */
652 /* exit: */
653 0x30, 0x46, /* mov r0, r6 */
654 0x00, 0xbe, /* bkpt #0 */
655 };
656
657 /* flash write code */
658 if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
659 &write_algorithm) != ERROR_OK) {
660 LOG_WARNING("no working area available, can't do block memory writes");
661 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
662 };
663
664 retval = target_write_buffer(target, write_algorithm->address,
665 sizeof(stm32x_flash_write_code), (uint8_t *)stm32x_flash_write_code);
666 if (retval != ERROR_OK)
667 return retval;
668
669 /* memory buffer */
670 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
671 buffer_size /= 2;
672 buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
673 if (buffer_size <= 256) {
674 /* we already allocated the writing code, but failed to get a
675 * buffer, free the algorithm */
676 target_free_working_area(target, write_algorithm);
677
678 LOG_WARNING("no large enough working area available, can't do block memory writes");
679 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
680 }
681 };
682
683 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
684 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* count (halfword-16bit) */
685 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* buffer start */
686 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* buffer end */
687 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
688
689 buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
690 buf_set_u32(reg_params[1].value, 0, 32, count);
691 buf_set_u32(reg_params[2].value, 0, 32, source->address);
692 buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
693 buf_set_u32(reg_params[4].value, 0, 32, address);
694
695 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
696 armv7m_info.core_mode = ARMV7M_MODE_ANY;
697
698 retval = target_run_flash_async_algorithm(target, buffer, count, 2,
699 0, NULL,
700 5, reg_params,
701 source->address, source->size,
702 write_algorithm->address, 0,
703 &armv7m_info);
704
705 if (retval == ERROR_FLASH_OPERATION_FAILED) {
706 LOG_ERROR("flash write failed at address 0x%"PRIx32,
707 buf_get_u32(reg_params[4].value, 0, 32));
708
709 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_PGERR) {
710 LOG_ERROR("flash memory not erased before writing");
711 /* Clear but report errors */
712 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_PGERR);
713 }
714
715 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_WRPRTERR) {
716 LOG_ERROR("flash memory write protected");
717 /* Clear but report errors */
718 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_WRPRTERR);
719 }
720 }
721
722 target_free_working_area(target, source);
723 target_free_working_area(target, write_algorithm);
724
725 destroy_reg_param(&reg_params[0]);
726 destroy_reg_param(&reg_params[1]);
727 destroy_reg_param(&reg_params[2]);
728 destroy_reg_param(&reg_params[3]);
729 destroy_reg_param(&reg_params[4]);
730
731 return retval;
732 }
733
734 static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
735 uint32_t offset, uint32_t count)
736 {
737 struct target *target = bank->target;
738 uint8_t *new_buffer = NULL;
739
740 if (bank->target->state != TARGET_HALTED) {
741 LOG_ERROR("Target not halted");
742 return ERROR_TARGET_NOT_HALTED;
743 }
744
745 if (offset & 0x1) {
746 LOG_ERROR("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
747 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
748 }
749
750 /* If there's an odd number of bytes, the data has to be padded. Duplicate
751 * the buffer and use the normal code path with a single block write since
752 * it's probably cheaper than to special case the last odd write using
753 * discrete accesses. */
754 if (count & 1) {
755 new_buffer = malloc(count + 1);
756 if (new_buffer == NULL) {
757 LOG_ERROR("odd number of bytes to write and no memory for padding buffer");
758 return ERROR_FAIL;
759 }
760 LOG_INFO("odd number of bytes to write, padding with 0xff");
761 buffer = memcpy(new_buffer, buffer, count);
762 buffer[count++] = 0xff;
763 }
764
765 uint32_t words_remaining = count / 2;
766 int retval, retval2;
767
768 /* unlock flash registers */
769 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
770 if (retval != ERROR_OK)
771 goto cleanup;
772 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
773 if (retval != ERROR_OK)
774 goto cleanup;
775
776 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
777 if (retval != ERROR_OK)
778 goto cleanup;
779
780 /* try using a block write */
781 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
782
783 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
784 /* if block write failed (no sufficient working area),
785 * we use normal (slow) single halfword accesses */
786 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
787
788 while (words_remaining > 0) {
789 uint16_t value;
790 memcpy(&value, buffer, sizeof(uint16_t));
791
792 retval = target_write_u16(target, bank->base + offset, value);
793 if (retval != ERROR_OK)
794 goto reset_pg_and_lock;
795
796 retval = stm32x_wait_status_busy(bank, 5);
797 if (retval != ERROR_OK)
798 goto reset_pg_and_lock;
799
800 words_remaining--;
801 buffer += 2;
802 offset += 2;
803 }
804 }
805
806 reset_pg_and_lock:
807 retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
808 if (retval == ERROR_OK)
809 retval = retval2;
810
811 cleanup:
812 if (new_buffer)
813 free(new_buffer);
814
815 return retval;
816 }
817
818 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
819 {
820 /* This check the device CPUID core register to detect
821 * the M0 from the M3 devices. */
822
823 struct target *target = bank->target;
824 uint32_t cpuid, device_id_register = 0;
825
826 /* Get the CPUID from the ARM Core
827 * http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf 4.2.1 */
828 int retval = target_read_u32(target, 0xE000ED00, &cpuid);
829 if (retval != ERROR_OK)
830 return retval;
831
832 if (((cpuid >> 4) & 0xFFF) == 0xC20) {
833 /* 0xC20 is M0 devices */
834 device_id_register = 0x40015800;
835 } else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
836 /* 0xC23 is M3 devices */
837 device_id_register = 0xE0042000;
838 } else if (((cpuid >> 4) & 0xFFF) == 0xC24) {
839 /* 0xC24 is M4 devices */
840 device_id_register = 0xE0042000;
841 } else {
842 LOG_ERROR("Cannot identify target as a stm32x");
843 return ERROR_FAIL;
844 }
845
846 /* read stm32 device id register */
847 retval = target_read_u32(target, device_id_register, device_id);
848 if (retval != ERROR_OK)
849 return retval;
850
851 return retval;
852 }
853
854 static int stm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_size_in_kb)
855 {
856 struct target *target = bank->target;
857 uint32_t cpuid, flash_size_reg;
858
859 int retval = target_read_u32(target, 0xE000ED00, &cpuid);
860 if (retval != ERROR_OK)
861 return retval;
862
863 if (((cpuid >> 4) & 0xFFF) == 0xC20) {
864 /* 0xC20 is M0 devices */
865 flash_size_reg = 0x1FFFF7CC;
866 } else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
867 /* 0xC23 is M3 devices */
868 flash_size_reg = 0x1FFFF7E0;
869 } else if (((cpuid >> 4) & 0xFFF) == 0xC24) {
870 /* 0xC24 is M4 devices */
871 flash_size_reg = 0x1FFFF7CC;
872 } else {
873 LOG_ERROR("Cannot identify target as a stm32x");
874 return ERROR_FAIL;
875 }
876
877 retval = target_read_u16(target, flash_size_reg, flash_size_in_kb);
878 if (retval != ERROR_OK)
879 return retval;
880
881 return retval;
882 }
883
884 static int stm32x_probe(struct flash_bank *bank)
885 {
886 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
887 int i;
888 uint16_t flash_size_in_kb;
889 uint16_t max_flash_size_in_kb;
890 uint32_t device_id;
891 int page_size;
892 uint32_t base_address = 0x08000000;
893
894 stm32x_info->probed = 0;
895 stm32x_info->register_base = FLASH_REG_BASE_B0;
896
897 /* read stm32 device id register */
898 int retval = stm32x_get_device_id(bank, &device_id);
899 if (retval != ERROR_OK)
900 return retval;
901
902 LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
903
904 /* set page size, protection granularity and max flash size depending on family */
905 switch (device_id & 0xfff) {
906 case 0x410: /* medium density */
907 page_size = 1024;
908 stm32x_info->ppage_size = 4;
909 max_flash_size_in_kb = 128;
910 break;
911 case 0x412: /* low density */
912 page_size = 1024;
913 stm32x_info->ppage_size = 4;
914 max_flash_size_in_kb = 32;
915 break;
916 case 0x414: /* high density */
917 page_size = 2048;
918 stm32x_info->ppage_size = 2;
919 max_flash_size_in_kb = 512;
920 break;
921 case 0x418: /* connectivity line density */
922 page_size = 2048;
923 stm32x_info->ppage_size = 2;
924 max_flash_size_in_kb = 256;
925 break;
926 case 0x420: /* value line density */
927 page_size = 1024;
928 stm32x_info->ppage_size = 4;
929 max_flash_size_in_kb = 128;
930 break;
931 case 0x422: /* stm32f30x */
932 page_size = 2048;
933 stm32x_info->ppage_size = 2;
934 max_flash_size_in_kb = 256;
935 break;
936 case 0x428: /* value line High density */
937 page_size = 2048;
938 stm32x_info->ppage_size = 4;
939 max_flash_size_in_kb = 128;
940 break;
941 case 0x430: /* xl line density (dual flash banks) */
942 page_size = 2048;
943 stm32x_info->ppage_size = 2;
944 max_flash_size_in_kb = 1024;
945 stm32x_info->has_dual_banks = true;
946 break;
947 case 0x432: /* stm32f37x */
948 page_size = 2048;
949 stm32x_info->ppage_size = 2;
950 max_flash_size_in_kb = 256;
951 break;
952 case 0x440: /* stm32f0x */
953 page_size = 1024;
954 stm32x_info->ppage_size = 4;
955 max_flash_size_in_kb = 64;
956 break;
957 default:
958 LOG_WARNING("Cannot identify target as a STM32 family.");
959 return ERROR_FAIL;
960 }
961
962 /* get flash size from target. */
963 retval = stm32x_get_flash_size(bank, &flash_size_in_kb);
964
965 /* failed reading flash size or flash size invalid (early silicon),
966 * default to max target family */
967 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
968 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
969 max_flash_size_in_kb);
970 flash_size_in_kb = max_flash_size_in_kb;
971 }
972
973 if (stm32x_info->has_dual_banks) {
974 /* split reported size into matching bank */
975 if (bank->base != 0x08080000) {
976 /* bank 0 will be fixed 512k */
977 flash_size_in_kb = 512;
978 } else {
979 flash_size_in_kb -= 512;
980 /* bank1 also uses a register offset */
981 stm32x_info->register_base = FLASH_REG_BASE_B1;
982 base_address = 0x08080000;
983 }
984 }
985
986 LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
987
988 /* did we assign flash size? */
989 assert(flash_size_in_kb != 0xffff);
990
991 /* calculate numbers of pages */
992 int num_pages = flash_size_in_kb * 1024 / page_size;
993
994 /* check that calculation result makes sense */
995 assert(num_pages > 0);
996
997 if (bank->sectors) {
998 free(bank->sectors);
999 bank->sectors = NULL;
1000 }
1001
1002 bank->base = base_address;
1003 bank->size = (num_pages * page_size);
1004 bank->num_sectors = num_pages;
1005 bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
1006
1007 for (i = 0; i < num_pages; i++) {
1008 bank->sectors[i].offset = i * page_size;
1009 bank->sectors[i].size = page_size;
1010 bank->sectors[i].is_erased = -1;
1011 bank->sectors[i].is_protected = 1;
1012 }
1013
1014 stm32x_info->probed = 1;
1015
1016 return ERROR_OK;
1017 }
1018
1019 static int stm32x_auto_probe(struct flash_bank *bank)
1020 {
1021 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1022 if (stm32x_info->probed)
1023 return ERROR_OK;
1024 return stm32x_probe(bank);
1025 }
1026
1027 #if 0
1028 COMMAND_HANDLER(stm32x_handle_part_id_command)
1029 {
1030 return ERROR_OK;
1031 }
1032 #endif
1033
1034 static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
1035 {
1036 uint32_t device_id;
1037 int printed;
1038
1039 /* read stm32 device id register */
1040 int retval = stm32x_get_device_id(bank, &device_id);
1041 if (retval != ERROR_OK)
1042 return retval;
1043
1044 if ((device_id & 0xfff) == 0x410) {
1045 printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: ");
1046 buf += printed;
1047 buf_size -= printed;
1048
1049 switch (device_id >> 16) {
1050 case 0x0000:
1051 snprintf(buf, buf_size, "A");
1052 break;
1053
1054 case 0x2000:
1055 snprintf(buf, buf_size, "B");
1056 break;
1057
1058 case 0x2001:
1059 snprintf(buf, buf_size, "Z");
1060 break;
1061
1062 case 0x2003:
1063 snprintf(buf, buf_size, "Y");
1064 break;
1065
1066 default:
1067 snprintf(buf, buf_size, "unknown");
1068 break;
1069 }
1070 } else if ((device_id & 0xfff) == 0x412) {
1071 printed = snprintf(buf, buf_size, "stm32x (Low Density) - Rev: ");
1072 buf += printed;
1073 buf_size -= printed;
1074
1075 switch (device_id >> 16) {
1076 case 0x1000:
1077 snprintf(buf, buf_size, "A");
1078 break;
1079
1080 default:
1081 snprintf(buf, buf_size, "unknown");
1082 break;
1083 }
1084 } else if ((device_id & 0xfff) == 0x414) {
1085 printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: ");
1086 buf += printed;
1087 buf_size -= printed;
1088
1089 switch (device_id >> 16) {
1090 case 0x1000:
1091 snprintf(buf, buf_size, "A");
1092 break;
1093
1094 case 0x1001:
1095 snprintf(buf, buf_size, "Z");
1096 break;
1097
1098 default:
1099 snprintf(buf, buf_size, "unknown");
1100 break;
1101 }
1102 } else if ((device_id & 0xfff) == 0x418) {
1103 printed = snprintf(buf, buf_size, "stm32x (Connectivity) - Rev: ");
1104 buf += printed;
1105 buf_size -= printed;
1106
1107 switch (device_id >> 16) {
1108 case 0x1000:
1109 snprintf(buf, buf_size, "A");
1110 break;
1111
1112 case 0x1001:
1113 snprintf(buf, buf_size, "Z");
1114 break;
1115
1116 default:
1117 snprintf(buf, buf_size, "unknown");
1118 break;
1119 }
1120 } else if ((device_id & 0xfff) == 0x420) {
1121 printed = snprintf(buf, buf_size, "stm32x (Value) - Rev: ");
1122 buf += printed;
1123 buf_size -= printed;
1124
1125 switch (device_id >> 16) {
1126 case 0x1000:
1127 snprintf(buf, buf_size, "A");
1128 break;
1129
1130 case 0x1001:
1131 snprintf(buf, buf_size, "Z");
1132 break;
1133
1134 default:
1135 snprintf(buf, buf_size, "unknown");
1136 break;
1137 }
1138 } else if ((device_id & 0xfff) == 0x422) {
1139 printed = snprintf(buf, buf_size, "stm32f30x - Rev: ");
1140 buf += printed;
1141 buf_size -= printed;
1142
1143 switch (device_id >> 16) {
1144 case 0x1000:
1145 snprintf(buf, buf_size, "1.0");
1146 break;
1147
1148 case 0x2000:
1149 snprintf(buf, buf_size, "2.0");
1150 break;
1151
1152 default:
1153 snprintf(buf, buf_size, "unknown");
1154 break;
1155 }
1156 } else if ((device_id & 0xfff) == 0x428) {
1157 printed = snprintf(buf, buf_size, "stm32x (Value HD) - Rev: ");
1158 buf += printed;
1159 buf_size -= printed;
1160
1161 switch (device_id >> 16) {
1162 case 0x1000:
1163 snprintf(buf, buf_size, "A");
1164 break;
1165
1166 case 0x1001:
1167 snprintf(buf, buf_size, "Z");
1168 break;
1169
1170 default:
1171 snprintf(buf, buf_size, "unknown");
1172 break;
1173 }
1174 } else if ((device_id & 0xfff) == 0x430) {
1175 printed = snprintf(buf, buf_size, "stm32x (XL) - Rev: ");
1176 buf += printed;
1177 buf_size -= printed;
1178
1179 switch (device_id >> 16) {
1180 case 0x1000:
1181 snprintf(buf, buf_size, "A");
1182 break;
1183
1184 default:
1185 snprintf(buf, buf_size, "unknown");
1186 break;
1187 }
1188 } else if ((device_id & 0xfff) == 0x432) {
1189 printed = snprintf(buf, buf_size, "stm32f37x - Rev: ");
1190 buf += printed;
1191 buf_size -= printed;
1192
1193 switch (device_id >> 16) {
1194 case 0x1000:
1195 snprintf(buf, buf_size, "1.0");
1196 break;
1197
1198 case 0x2000:
1199 snprintf(buf, buf_size, "2.0");
1200 break;
1201
1202 default:
1203 snprintf(buf, buf_size, "unknown");
1204 break;
1205 }
1206 } else if ((device_id & 0xfff) == 0x440) {
1207 printed = snprintf(buf, buf_size, "stm32f0x - Rev: ");
1208 buf += printed;
1209 buf_size -= printed;
1210
1211 switch (device_id >> 16) {
1212 case 0x1000:
1213 snprintf(buf, buf_size, "1.0");
1214 break;
1215
1216 case 0x2000:
1217 snprintf(buf, buf_size, "2.0");
1218 break;
1219
1220 default:
1221 snprintf(buf, buf_size, "unknown");
1222 break;
1223 }
1224 } else {
1225 snprintf(buf, buf_size, "Cannot identify target as a stm32x\n");
1226 return ERROR_FAIL;
1227 }
1228
1229 return ERROR_OK;
1230 }
1231
1232 COMMAND_HANDLER(stm32x_handle_lock_command)
1233 {
1234 struct target *target = NULL;
1235 struct stm32x_flash_bank *stm32x_info = NULL;
1236
1237 if (CMD_ARGC < 1)
1238 return ERROR_COMMAND_SYNTAX_ERROR;
1239
1240 struct flash_bank *bank;
1241 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1242 if (ERROR_OK != retval)
1243 return retval;
1244
1245 stm32x_info = bank->driver_priv;
1246
1247 target = bank->target;
1248
1249 if (target->state != TARGET_HALTED) {
1250 LOG_ERROR("Target not halted");
1251 return ERROR_TARGET_NOT_HALTED;
1252 }
1253
1254 retval = stm32x_check_operation_supported(bank);
1255 if (ERROR_OK != retval)
1256 return retval;
1257
1258 if (stm32x_erase_options(bank) != ERROR_OK) {
1259 command_print(CMD_CTX, "stm32x failed to erase options");
1260 return ERROR_OK;
1261 }
1262
1263 /* set readout protection */
1264 stm32x_info->option_bytes.RDP = 0;
1265
1266 if (stm32x_write_options(bank) != ERROR_OK) {
1267 command_print(CMD_CTX, "stm32x failed to lock device");
1268 return ERROR_OK;
1269 }
1270
1271 command_print(CMD_CTX, "stm32x locked");
1272
1273 return ERROR_OK;
1274 }
1275
1276 COMMAND_HANDLER(stm32x_handle_unlock_command)
1277 {
1278 struct target *target = NULL;
1279
1280 if (CMD_ARGC < 1)
1281 return ERROR_COMMAND_SYNTAX_ERROR;
1282
1283 struct flash_bank *bank;
1284 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1285 if (ERROR_OK != retval)
1286 return retval;
1287
1288 target = bank->target;
1289
1290 if (target->state != TARGET_HALTED) {
1291 LOG_ERROR("Target not halted");
1292 return ERROR_TARGET_NOT_HALTED;
1293 }
1294
1295 retval = stm32x_check_operation_supported(bank);
1296 if (ERROR_OK != retval)
1297 return retval;
1298
1299 if (stm32x_erase_options(bank) != ERROR_OK) {
1300 command_print(CMD_CTX, "stm32x failed to unlock device");
1301 return ERROR_OK;
1302 }
1303
1304 if (stm32x_write_options(bank) != ERROR_OK) {
1305 command_print(CMD_CTX, "stm32x failed to lock device");
1306 return ERROR_OK;
1307 }
1308
1309 command_print(CMD_CTX, "stm32x unlocked.\n"
1310 "INFO: a reset or power cycle is required "
1311 "for the new settings to take effect.");
1312
1313 return ERROR_OK;
1314 }
1315
1316 COMMAND_HANDLER(stm32x_handle_options_read_command)
1317 {
1318 uint32_t optionbyte;
1319 struct target *target = NULL;
1320 struct stm32x_flash_bank *stm32x_info = NULL;
1321
1322 if (CMD_ARGC < 1)
1323 return ERROR_COMMAND_SYNTAX_ERROR;
1324
1325 struct flash_bank *bank;
1326 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1327 if (ERROR_OK != retval)
1328 return retval;
1329
1330 stm32x_info = bank->driver_priv;
1331
1332 target = bank->target;
1333
1334 if (target->state != TARGET_HALTED) {
1335 LOG_ERROR("Target not halted");
1336 return ERROR_TARGET_NOT_HALTED;
1337 }
1338
1339 retval = stm32x_check_operation_supported(bank);
1340 if (ERROR_OK != retval)
1341 return retval;
1342
1343 retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
1344 if (retval != ERROR_OK)
1345 return retval;
1346 command_print(CMD_CTX, "Option Byte: 0x%" PRIx32 "", optionbyte);
1347
1348 if (buf_get_u32((uint8_t *)&optionbyte, OPT_ERROR, 1))
1349 command_print(CMD_CTX, "Option Byte Complement Error");
1350
1351 if (buf_get_u32((uint8_t *)&optionbyte, OPT_READOUT, 1))
1352 command_print(CMD_CTX, "Readout Protection On");
1353 else
1354 command_print(CMD_CTX, "Readout Protection Off");
1355
1356 if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDWDGSW, 1))
1357 command_print(CMD_CTX, "Software Watchdog");
1358 else
1359 command_print(CMD_CTX, "Hardware Watchdog");
1360
1361 if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTOP, 1))
1362 command_print(CMD_CTX, "Stop: No reset generated");
1363 else
1364 command_print(CMD_CTX, "Stop: Reset generated");
1365
1366 if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTDBY, 1))
1367 command_print(CMD_CTX, "Standby: No reset generated");
1368 else
1369 command_print(CMD_CTX, "Standby: Reset generated");
1370
1371 if (stm32x_info->has_dual_banks) {
1372 if (buf_get_u32((uint8_t *)&optionbyte, OPT_BFB2, 1))
1373 command_print(CMD_CTX, "Boot: Bank 0");
1374 else
1375 command_print(CMD_CTX, "Boot: Bank 1");
1376 }
1377
1378 return ERROR_OK;
1379 }
1380
1381 COMMAND_HANDLER(stm32x_handle_options_write_command)
1382 {
1383 struct target *target = NULL;
1384 struct stm32x_flash_bank *stm32x_info = NULL;
1385 uint16_t optionbyte = 0xF8;
1386
1387 if (CMD_ARGC < 4)
1388 return ERROR_COMMAND_SYNTAX_ERROR;
1389
1390 struct flash_bank *bank;
1391 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1392 if (ERROR_OK != retval)
1393 return retval;
1394
1395 stm32x_info = bank->driver_priv;
1396
1397 target = bank->target;
1398
1399 if (target->state != TARGET_HALTED) {
1400 LOG_ERROR("Target not halted");
1401 return ERROR_TARGET_NOT_HALTED;
1402 }
1403
1404 retval = stm32x_check_operation_supported(bank);
1405 if (ERROR_OK != retval)
1406 return retval;
1407
1408 /* REVISIT: ignores some options which we will display...
1409 * and doesn't insist on the specified syntax.
1410 */
1411
1412 /* OPT_RDWDGSW */
1413 if (strcmp(CMD_ARGV[1], "SWWDG") == 0)
1414 optionbyte |= (1 << 0);
1415 else /* REVISIT must be "HWWDG" then ... */
1416 optionbyte &= ~(1 << 0);
1417
1418 /* OPT_RDRSTSTOP */
1419 if (strcmp(CMD_ARGV[2], "NORSTSTOP") == 0)
1420 optionbyte |= (1 << 1);
1421 else /* REVISIT must be "RSTSTNDBY" then ... */
1422 optionbyte &= ~(1 << 1);
1423
1424 /* OPT_RDRSTSTDBY */
1425 if (strcmp(CMD_ARGV[3], "NORSTSTNDBY") == 0)
1426 optionbyte |= (1 << 2);
1427 else /* REVISIT must be "RSTSTOP" then ... */
1428 optionbyte &= ~(1 << 2);
1429
1430 if (CMD_ARGC > 4 && stm32x_info->has_dual_banks) {
1431 /* OPT_BFB2 */
1432 if (strcmp(CMD_ARGV[4], "BOOT0") == 0)
1433 optionbyte |= (1 << 3);
1434 else
1435 optionbyte &= ~(1 << 3);
1436 }
1437
1438 if (stm32x_erase_options(bank) != ERROR_OK) {
1439 command_print(CMD_CTX, "stm32x failed to erase options");
1440 return ERROR_OK;
1441 }
1442
1443 stm32x_info->option_bytes.user_options = optionbyte;
1444
1445 if (stm32x_write_options(bank) != ERROR_OK) {
1446 command_print(CMD_CTX, "stm32x failed to write options");
1447 return ERROR_OK;
1448 }
1449
1450 command_print(CMD_CTX, "stm32x write options complete.\n"
1451 "INFO: a reset or power cycle is required "
1452 "for the new settings to take effect.");
1453
1454 return ERROR_OK;
1455 }
1456
1457 static int stm32x_mass_erase(struct flash_bank *bank)
1458 {
1459 struct target *target = bank->target;
1460
1461 if (target->state != TARGET_HALTED) {
1462 LOG_ERROR("Target not halted");
1463 return ERROR_TARGET_NOT_HALTED;
1464 }
1465
1466 /* unlock option flash registers */
1467 int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
1468 if (retval != ERROR_OK)
1469 return retval;
1470 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
1471 if (retval != ERROR_OK)
1472 return retval;
1473
1474 /* mass erase flash memory */
1475 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
1476 if (retval != ERROR_OK)
1477 return retval;
1478 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1479 FLASH_MER | FLASH_STRT);
1480 if (retval != ERROR_OK)
1481 return retval;
1482
1483 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
1484 if (retval != ERROR_OK)
1485 return retval;
1486
1487 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1488 if (retval != ERROR_OK)
1489 return retval;
1490
1491 return ERROR_OK;
1492 }
1493
1494 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1495 {
1496 int i;
1497
1498 if (CMD_ARGC < 1)
1499 return ERROR_COMMAND_SYNTAX_ERROR;
1500
1501 struct flash_bank *bank;
1502 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1503 if (ERROR_OK != retval)
1504 return retval;
1505
1506 retval = stm32x_mass_erase(bank);
1507 if (retval == ERROR_OK) {
1508 /* set all sectors as erased */
1509 for (i = 0; i < bank->num_sectors; i++)
1510 bank->sectors[i].is_erased = 1;
1511
1512 command_print(CMD_CTX, "stm32x mass erase complete");
1513 } else
1514 command_print(CMD_CTX, "stm32x mass erase failed");
1515
1516 return retval;
1517 }
1518
1519 static const struct command_registration stm32x_exec_command_handlers[] = {
1520 {
1521 .name = "lock",
1522 .handler = stm32x_handle_lock_command,
1523 .mode = COMMAND_EXEC,
1524 .usage = "bank_id",
1525 .help = "Lock entire flash device.",
1526 },
1527 {
1528 .name = "unlock",
1529 .handler = stm32x_handle_unlock_command,
1530 .mode = COMMAND_EXEC,
1531 .usage = "bank_id",
1532 .help = "Unlock entire protected flash device.",
1533 },
1534 {
1535 .name = "mass_erase",
1536 .handler = stm32x_handle_mass_erase_command,
1537 .mode = COMMAND_EXEC,
1538 .usage = "bank_id",
1539 .help = "Erase entire flash device.",
1540 },
1541 {
1542 .name = "options_read",
1543 .handler = stm32x_handle_options_read_command,
1544 .mode = COMMAND_EXEC,
1545 .usage = "bank_id",
1546 .help = "Read and display device option byte.",
1547 },
1548 {
1549 .name = "options_write",
1550 .handler = stm32x_handle_options_write_command,
1551 .mode = COMMAND_EXEC,
1552 .usage = "bank_id ('SWWDG'|'HWWDG') "
1553 "('RSTSTNDBY'|'NORSTSTNDBY') "
1554 "('RSTSTOP'|'NORSTSTOP')",
1555 .help = "Replace bits in device option byte.",
1556 },
1557 COMMAND_REGISTRATION_DONE
1558 };
1559
1560 static const struct command_registration stm32x_command_handlers[] = {
1561 {
1562 .name = "stm32f1x",
1563 .mode = COMMAND_ANY,
1564 .help = "stm32f1x flash command group",
1565 .usage = "",
1566 .chain = stm32x_exec_command_handlers,
1567 },
1568 COMMAND_REGISTRATION_DONE
1569 };
1570
1571 struct flash_driver stm32f1x_flash = {
1572 .name = "stm32f1x",
1573 .commands = stm32x_command_handlers,
1574 .flash_bank_command = stm32x_flash_bank_command,
1575 .erase = stm32x_erase,
1576 .protect = stm32x_protect,
1577 .write = stm32x_write,
1578 .read = default_flash_read,
1579 .probe = stm32x_probe,
1580 .auto_probe = stm32x_auto_probe,
1581 .erase_check = default_flash_blank_check,
1582 .protect_check = stm32x_protect_check,
1583 .info = get_stm32x_info,
1584 };