flash/nor: make all working area pointers local
[openocd.git] / src / flash / nor / stm32f1x.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 by Andreas Fritiofson *
9 * andreas.fritiofson@gmail.com *
10 *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/armv7m.h>
35
36 /* stm32x register locations */
37
38 #define FLASH_REG_BASE_B0 0x40022000
39 #define FLASH_REG_BASE_B1 0x40022040
40
41 #define STM32_FLASH_ACR 0x00
42 #define STM32_FLASH_KEYR 0x04
43 #define STM32_FLASH_OPTKEYR 0x08
44 #define STM32_FLASH_SR 0x0C
45 #define STM32_FLASH_CR 0x10
46 #define STM32_FLASH_AR 0x14
47 #define STM32_FLASH_OBR 0x1C
48 #define STM32_FLASH_WRPR 0x20
49
50 /* TODO: Check if code using these really should be hard coded to bank 0.
51 * There are valid cases, on dual flash devices the protection of the
52 * second bank is done on the bank0 reg's. */
53 #define STM32_FLASH_ACR_B0 0x40022000
54 #define STM32_FLASH_KEYR_B0 0x40022004
55 #define STM32_FLASH_OPTKEYR_B0 0x40022008
56 #define STM32_FLASH_SR_B0 0x4002200C
57 #define STM32_FLASH_CR_B0 0x40022010
58 #define STM32_FLASH_AR_B0 0x40022014
59 #define STM32_FLASH_OBR_B0 0x4002201C
60 #define STM32_FLASH_WRPR_B0 0x40022020
61
62 /* option byte location */
63
64 #define STM32_OB_RDP 0x1FFFF800
65 #define STM32_OB_USER 0x1FFFF802
66 #define STM32_OB_DATA0 0x1FFFF804
67 #define STM32_OB_DATA1 0x1FFFF806
68 #define STM32_OB_WRP0 0x1FFFF808
69 #define STM32_OB_WRP1 0x1FFFF80A
70 #define STM32_OB_WRP2 0x1FFFF80C
71 #define STM32_OB_WRP3 0x1FFFF80E
72
73 /* FLASH_CR register bits */
74
75 #define FLASH_PG (1 << 0)
76 #define FLASH_PER (1 << 1)
77 #define FLASH_MER (1 << 2)
78 #define FLASH_OPTPG (1 << 4)
79 #define FLASH_OPTER (1 << 5)
80 #define FLASH_STRT (1 << 6)
81 #define FLASH_LOCK (1 << 7)
82 #define FLASH_OPTWRE (1 << 9)
83
84 /* FLASH_SR register bits */
85
86 #define FLASH_BSY (1 << 0)
87 #define FLASH_PGERR (1 << 2)
88 #define FLASH_WRPRTERR (1 << 4)
89 #define FLASH_EOP (1 << 5)
90
91 /* STM32_FLASH_OBR bit definitions (reading) */
92
93 #define OPT_ERROR 0
94 #define OPT_READOUT 1
95 #define OPT_RDWDGSW 2
96 #define OPT_RDRSTSTOP 3
97 #define OPT_RDRSTSTDBY 4
98 #define OPT_BFB2 5 /* dual flash bank only */
99
100 /* register unlock keys */
101
102 #define KEY1 0x45670123
103 #define KEY2 0xCDEF89AB
104
105 struct stm32x_options {
106 uint16_t RDP;
107 uint16_t user_options;
108 uint16_t protection[4];
109 };
110
111 struct stm32x_flash_bank {
112 struct stm32x_options option_bytes;
113 int ppage_size;
114 int probed;
115
116 bool has_dual_banks;
117 /* used to access dual flash bank stm32xl */
118 uint32_t register_base;
119 };
120
121 static int stm32x_mass_erase(struct flash_bank *bank);
122 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id);
123
124 /* flash bank stm32x <base> <size> 0 0 <target#>
125 */
126 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
127 {
128 struct stm32x_flash_bank *stm32x_info;
129
130 if (CMD_ARGC < 6)
131 return ERROR_COMMAND_SYNTAX_ERROR;
132
133 stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
134
135 bank->driver_priv = stm32x_info;
136 stm32x_info->probed = 0;
137 stm32x_info->has_dual_banks = false;
138 stm32x_info->register_base = FLASH_REG_BASE_B0;
139
140 return ERROR_OK;
141 }
142
143 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
144 {
145 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
146 return reg + stm32x_info->register_base;
147 }
148
149 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
150 {
151 struct target *target = bank->target;
152 return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
153 }
154
155 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
156 {
157 struct target *target = bank->target;
158 uint32_t status;
159 int retval = ERROR_OK;
160
161 /* wait for busy to clear */
162 for (;;) {
163 retval = stm32x_get_flash_status(bank, &status);
164 if (retval != ERROR_OK)
165 return retval;
166 LOG_DEBUG("status: 0x%" PRIx32 "", status);
167 if ((status & FLASH_BSY) == 0)
168 break;
169 if (timeout-- <= 0) {
170 LOG_ERROR("timed out waiting for flash");
171 return ERROR_FAIL;
172 }
173 alive_sleep(1);
174 }
175
176 if (status & FLASH_WRPRTERR) {
177 LOG_ERROR("stm32x device protected");
178 retval = ERROR_FAIL;
179 }
180
181 if (status & FLASH_PGERR) {
182 LOG_ERROR("stm32x device programming failed");
183 retval = ERROR_FAIL;
184 }
185
186 /* Clear but report errors */
187 if (status & (FLASH_WRPRTERR | FLASH_PGERR)) {
188 /* If this operation fails, we ignore it and report the original
189 * retval
190 */
191 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
192 FLASH_WRPRTERR | FLASH_PGERR);
193 }
194 return retval;
195 }
196
197 int stm32x_check_operation_supported(struct flash_bank *bank)
198 {
199 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
200
201 /* if we have a dual flash bank device then
202 * we need to perform option byte stuff on bank0 only */
203 if (stm32x_info->register_base != FLASH_REG_BASE_B0) {
204 LOG_ERROR("Option Byte Operation's must use bank0");
205 return ERROR_FLASH_OPERATION_FAILED;
206 }
207
208 return ERROR_OK;
209 }
210
211 static int stm32x_read_options(struct flash_bank *bank)
212 {
213 uint32_t optiondata;
214 struct stm32x_flash_bank *stm32x_info = NULL;
215 struct target *target = bank->target;
216
217 stm32x_info = bank->driver_priv;
218
219 /* read current option bytes */
220 int retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optiondata);
221 if (retval != ERROR_OK)
222 return retval;
223
224 stm32x_info->option_bytes.user_options = (uint16_t)0xFFF8 | ((optiondata >> 2) & 0x07);
225 stm32x_info->option_bytes.RDP = (optiondata & (1 << OPT_READOUT)) ? 0xFFFF : 0x5AA5;
226
227 if (optiondata & (1 << OPT_READOUT))
228 LOG_INFO("Device Security Bit Set");
229
230 /* each bit refers to a 4bank protection */
231 retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &optiondata);
232 if (retval != ERROR_OK)
233 return retval;
234
235 stm32x_info->option_bytes.protection[0] = (uint16_t)optiondata;
236 stm32x_info->option_bytes.protection[1] = (uint16_t)(optiondata >> 8);
237 stm32x_info->option_bytes.protection[2] = (uint16_t)(optiondata >> 16);
238 stm32x_info->option_bytes.protection[3] = (uint16_t)(optiondata >> 24);
239
240 return ERROR_OK;
241 }
242
243 static int stm32x_erase_options(struct flash_bank *bank)
244 {
245 struct stm32x_flash_bank *stm32x_info = NULL;
246 struct target *target = bank->target;
247
248 stm32x_info = bank->driver_priv;
249
250 /* stlink is currently does not support 16bit
251 * read/writes. so we cannot write option bytes */
252 struct armv7m_common *armv7m = target_to_armv7m(target);
253 if (armv7m && armv7m->stlink) {
254 LOG_ERROR("Option bytes currently unsupported for stlink");
255 return ERROR_FAIL;
256 }
257
258 /* read current options */
259 stm32x_read_options(bank);
260
261 /* unlock flash registers */
262 int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
263 if (retval != ERROR_OK)
264 return retval;
265
266 retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
267 if (retval != ERROR_OK)
268 return retval;
269
270 /* unlock option flash registers */
271 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
272 if (retval != ERROR_OK)
273 return retval;
274 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
275 if (retval != ERROR_OK)
276 return retval;
277
278 /* erase option bytes */
279 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
280 if (retval != ERROR_OK)
281 return retval;
282 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
283 if (retval != ERROR_OK)
284 return retval;
285
286 retval = stm32x_wait_status_busy(bank, 10);
287 if (retval != ERROR_OK)
288 return retval;
289
290 /* clear readout protection and complementary option bytes
291 * this will also force a device unlock if set */
292 stm32x_info->option_bytes.RDP = 0x5AA5;
293
294 return ERROR_OK;
295 }
296
297 static int stm32x_write_options(struct flash_bank *bank)
298 {
299 struct stm32x_flash_bank *stm32x_info = NULL;
300 struct target *target = bank->target;
301
302 stm32x_info = bank->driver_priv;
303
304 /* unlock flash registers */
305 int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
306 if (retval != ERROR_OK)
307 return retval;
308 retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
309 if (retval != ERROR_OK)
310 return retval;
311
312 /* unlock option flash registers */
313 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
314 if (retval != ERROR_OK)
315 return retval;
316 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
317 if (retval != ERROR_OK)
318 return retval;
319
320 /* program option bytes */
321 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
322 if (retval != ERROR_OK)
323 return retval;
324
325 /* write user option byte */
326 retval = target_write_u16(target, STM32_OB_USER, stm32x_info->option_bytes.user_options);
327 if (retval != ERROR_OK)
328 return retval;
329
330 retval = stm32x_wait_status_busy(bank, 10);
331 if (retval != ERROR_OK)
332 return retval;
333
334 /* write protection byte 1 */
335 retval = target_write_u16(target, STM32_OB_WRP0, stm32x_info->option_bytes.protection[0]);
336 if (retval != ERROR_OK)
337 return retval;
338
339 retval = stm32x_wait_status_busy(bank, 10);
340 if (retval != ERROR_OK)
341 return retval;
342
343 /* write protection byte 2 */
344 retval = target_write_u16(target, STM32_OB_WRP1, stm32x_info->option_bytes.protection[1]);
345 if (retval != ERROR_OK)
346 return retval;
347
348 retval = stm32x_wait_status_busy(bank, 10);
349 if (retval != ERROR_OK)
350 return retval;
351
352 /* write protection byte 3 */
353 retval = target_write_u16(target, STM32_OB_WRP2, stm32x_info->option_bytes.protection[2]);
354 if (retval != ERROR_OK)
355 return retval;
356
357 retval = stm32x_wait_status_busy(bank, 10);
358 if (retval != ERROR_OK)
359 return retval;
360
361 /* write protection byte 4 */
362 retval = target_write_u16(target, STM32_OB_WRP3, stm32x_info->option_bytes.protection[3]);
363 if (retval != ERROR_OK)
364 return retval;
365
366 retval = stm32x_wait_status_busy(bank, 10);
367 if (retval != ERROR_OK)
368 return retval;
369
370 /* write readout protection bit */
371 retval = target_write_u16(target, STM32_OB_RDP, stm32x_info->option_bytes.RDP);
372 if (retval != ERROR_OK)
373 return retval;
374
375 retval = stm32x_wait_status_busy(bank, 10);
376 if (retval != ERROR_OK)
377 return retval;
378
379 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
380 if (retval != ERROR_OK)
381 return retval;
382
383 return ERROR_OK;
384 }
385
386 static int stm32x_protect_check(struct flash_bank *bank)
387 {
388 struct target *target = bank->target;
389 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
390
391 uint32_t protection;
392 int i, s;
393 int num_bits;
394 int set;
395
396 if (target->state != TARGET_HALTED) {
397 LOG_ERROR("Target not halted");
398 return ERROR_TARGET_NOT_HALTED;
399 }
400
401 int retval = stm32x_check_operation_supported(bank);
402 if (ERROR_OK != retval)
403 return retval;
404
405 /* medium density - each bit refers to a 4bank protection
406 * high density - each bit refers to a 2bank protection */
407 retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
408 if (retval != ERROR_OK)
409 return retval;
410
411 /* medium density - each protection bit is for 4 * 1K pages
412 * high density - each protection bit is for 2 * 2K pages */
413 num_bits = (bank->num_sectors / stm32x_info->ppage_size);
414
415 if (stm32x_info->ppage_size == 2) {
416 /* high density flash/connectivity line protection */
417
418 set = 1;
419
420 if (protection & (1 << 31))
421 set = 0;
422
423 /* bit 31 controls sector 62 - 255 protection for high density
424 * bit 31 controls sector 62 - 127 protection for connectivity line */
425 for (s = 62; s < bank->num_sectors; s++)
426 bank->sectors[s].is_protected = set;
427
428 if (bank->num_sectors > 61)
429 num_bits = 31;
430
431 for (i = 0; i < num_bits; i++) {
432 set = 1;
433
434 if (protection & (1 << i))
435 set = 0;
436
437 for (s = 0; s < stm32x_info->ppage_size; s++)
438 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
439 }
440 } else {
441 /* low/medium density flash protection */
442 for (i = 0; i < num_bits; i++) {
443 set = 1;
444
445 if (protection & (1 << i))
446 set = 0;
447
448 for (s = 0; s < stm32x_info->ppage_size; s++)
449 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
450 }
451 }
452
453 return ERROR_OK;
454 }
455
456 static int stm32x_erase(struct flash_bank *bank, int first, int last)
457 {
458 struct target *target = bank->target;
459 int i;
460
461 if (bank->target->state != TARGET_HALTED) {
462 LOG_ERROR("Target not halted");
463 return ERROR_TARGET_NOT_HALTED;
464 }
465
466 if ((first == 0) && (last == (bank->num_sectors - 1)))
467 return stm32x_mass_erase(bank);
468
469 /* unlock flash registers */
470 int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
471 if (retval != ERROR_OK)
472 return retval;
473 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
474 if (retval != ERROR_OK)
475 return retval;
476
477 for (i = first; i <= last; i++) {
478 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
479 if (retval != ERROR_OK)
480 return retval;
481 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
482 bank->base + bank->sectors[i].offset);
483 if (retval != ERROR_OK)
484 return retval;
485 retval = target_write_u32(target,
486 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
487 if (retval != ERROR_OK)
488 return retval;
489
490 retval = stm32x_wait_status_busy(bank, 100);
491 if (retval != ERROR_OK)
492 return retval;
493
494 bank->sectors[i].is_erased = 1;
495 }
496
497 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
498 if (retval != ERROR_OK)
499 return retval;
500
501 return ERROR_OK;
502 }
503
504 static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
505 {
506 struct stm32x_flash_bank *stm32x_info = NULL;
507 struct target *target = bank->target;
508 uint16_t prot_reg[4] = {0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF};
509 int i, reg, bit;
510 int status;
511 uint32_t protection;
512
513 stm32x_info = bank->driver_priv;
514
515 if (target->state != TARGET_HALTED) {
516 LOG_ERROR("Target not halted");
517 return ERROR_TARGET_NOT_HALTED;
518 }
519
520 int retval = stm32x_check_operation_supported(bank);
521 if (ERROR_OK != retval)
522 return retval;
523
524 if ((first % stm32x_info->ppage_size) != 0) {
525 LOG_WARNING("aligned start protect sector to a %d sector boundary",
526 stm32x_info->ppage_size);
527 first = first - (first % stm32x_info->ppage_size);
528 }
529 if (((last + 1) % stm32x_info->ppage_size) != 0) {
530 LOG_WARNING("aligned end protect sector to a %d sector boundary",
531 stm32x_info->ppage_size);
532 last++;
533 last = last - (last % stm32x_info->ppage_size);
534 last--;
535 }
536
537 /* medium density - each bit refers to a 4bank protection
538 * high density - each bit refers to a 2bank protection */
539 retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
540 if (retval != ERROR_OK)
541 return retval;
542
543 prot_reg[0] = (uint16_t)protection;
544 prot_reg[1] = (uint16_t)(protection >> 8);
545 prot_reg[2] = (uint16_t)(protection >> 16);
546 prot_reg[3] = (uint16_t)(protection >> 24);
547
548 if (stm32x_info->ppage_size == 2) {
549 /* high density flash */
550
551 /* bit 7 controls sector 62 - 255 protection */
552 if (last > 61) {
553 if (set)
554 prot_reg[3] &= ~(1 << 7);
555 else
556 prot_reg[3] |= (1 << 7);
557 }
558
559 if (first > 61)
560 first = 62;
561 if (last > 61)
562 last = 61;
563
564 for (i = first; i <= last; i++) {
565 reg = (i / stm32x_info->ppage_size) / 8;
566 bit = (i / stm32x_info->ppage_size) - (reg * 8);
567
568 if (set)
569 prot_reg[reg] &= ~(1 << bit);
570 else
571 prot_reg[reg] |= (1 << bit);
572 }
573 } else {
574 /* medium density flash */
575 for (i = first; i <= last; i++) {
576 reg = (i / stm32x_info->ppage_size) / 8;
577 bit = (i / stm32x_info->ppage_size) - (reg * 8);
578
579 if (set)
580 prot_reg[reg] &= ~(1 << bit);
581 else
582 prot_reg[reg] |= (1 << bit);
583 }
584 }
585
586 status = stm32x_erase_options(bank);
587 if (status != ERROR_OK)
588 return status;
589
590 stm32x_info->option_bytes.protection[0] = prot_reg[0];
591 stm32x_info->option_bytes.protection[1] = prot_reg[1];
592 stm32x_info->option_bytes.protection[2] = prot_reg[2];
593 stm32x_info->option_bytes.protection[3] = prot_reg[3];
594
595 return stm32x_write_options(bank);
596 }
597
598 static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
599 uint32_t offset, uint32_t count)
600 {
601 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
602 struct target *target = bank->target;
603 uint32_t buffer_size = 16384;
604 struct working_area *write_algorithm;
605 struct working_area *source;
606 uint32_t address = bank->base + offset;
607 struct reg_param reg_params[5];
608 struct armv7m_algorithm armv7m_info;
609 int retval = ERROR_OK;
610
611 /* see contrib/loaders/flash/stm32f1x.S for src */
612
613 static const uint8_t stm32x_flash_write_code[] = {
614 /* #define STM32_FLASH_SR_OFFSET 0x0C */
615 /* wait_fifo: */
616 0x16, 0x68, /* ldr r6, [r2, #0] */
617 0x00, 0x2e, /* cmp r6, #0 */
618 0x18, 0xd0, /* beq exit */
619 0x55, 0x68, /* ldr r5, [r2, #4] */
620 0xb5, 0x42, /* cmp r5, r6 */
621 0xf9, 0xd0, /* beq wait_fifo */
622 0x2e, 0x88, /* ldrh r6, [r5, #0] */
623 0x26, 0x80, /* strh r6, [r4, #0] */
624 0x02, 0x35, /* adds r5, #2 */
625 0x02, 0x34, /* adds r4, #2 */
626 /* busy: */
627 0xc6, 0x68, /* ldr r6, [r0, #STM32_FLASH_SR_OFFSET] */
628 0x01, 0x27, /* movs r7, #1 */
629 0x3e, 0x42, /* tst r6, r7 */
630 0xfb, 0xd1, /* bne busy */
631 0x14, 0x27, /* movs r7, #0x14 */
632 0x3e, 0x42, /* tst r6, r7 */
633 0x08, 0xd1, /* bne error */
634 0x9d, 0x42, /* cmp r5, r3 */
635 0x01, 0xd3, /* bcc no_wrap */
636 0x15, 0x46, /* mov r5, r2 */
637 0x08, 0x35, /* adds r5, #8 */
638 /* no_wrap: */
639 0x55, 0x60, /* str r5, [r2, #4] */
640 0x01, 0x39, /* subs r1, r1, #1 */
641 0x00, 0x29, /* cmp r1, #0 */
642 0x02, 0xd0, /* beq exit */
643 0xe5, 0xe7, /* b wait_fifo */
644 /* error: */
645 0x00, 0x20, /* movs r0, #0 */
646 0x50, 0x60, /* str r0, [r2, #4] */
647 /* exit: */
648 0x30, 0x46, /* mov r0, r6 */
649 0x00, 0xbe, /* bkpt #0 */
650 };
651
652 /* flash write code */
653 if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
654 &write_algorithm) != ERROR_OK) {
655 LOG_WARNING("no working area available, can't do block memory writes");
656 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
657 };
658
659 retval = target_write_buffer(target, write_algorithm->address,
660 sizeof(stm32x_flash_write_code), (uint8_t *)stm32x_flash_write_code);
661 if (retval != ERROR_OK)
662 return retval;
663
664 /* memory buffer */
665 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
666 buffer_size /= 2;
667 buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
668 if (buffer_size <= 256) {
669 /* we already allocated the writing code, but failed to get a
670 * buffer, free the algorithm */
671 target_free_working_area(target, write_algorithm);
672
673 LOG_WARNING("no large enough working area available, can't do block memory writes");
674 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
675 }
676 };
677
678 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
679 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* count (halfword-16bit) */
680 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* buffer start */
681 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* buffer end */
682 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
683
684 buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
685 buf_set_u32(reg_params[1].value, 0, 32, count);
686 buf_set_u32(reg_params[2].value, 0, 32, source->address);
687 buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
688 buf_set_u32(reg_params[4].value, 0, 32, address);
689
690 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
691 armv7m_info.core_mode = ARMV7M_MODE_ANY;
692
693 retval = target_run_flash_async_algorithm(target, buffer, count, 2,
694 0, NULL,
695 5, reg_params,
696 source->address, source->size,
697 write_algorithm->address, 0,
698 &armv7m_info);
699
700 if (retval == ERROR_FLASH_OPERATION_FAILED) {
701 LOG_ERROR("flash write failed at address 0x%"PRIx32,
702 buf_get_u32(reg_params[4].value, 0, 32));
703
704 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_PGERR) {
705 LOG_ERROR("flash memory not erased before writing");
706 /* Clear but report errors */
707 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_PGERR);
708 }
709
710 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_WRPRTERR) {
711 LOG_ERROR("flash memory write protected");
712 /* Clear but report errors */
713 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_WRPRTERR);
714 }
715 }
716
717 target_free_working_area(target, source);
718 target_free_working_area(target, write_algorithm);
719
720 destroy_reg_param(&reg_params[0]);
721 destroy_reg_param(&reg_params[1]);
722 destroy_reg_param(&reg_params[2]);
723 destroy_reg_param(&reg_params[3]);
724 destroy_reg_param(&reg_params[4]);
725
726 return retval;
727 }
728
729 static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
730 uint32_t offset, uint32_t count)
731 {
732 struct target *target = bank->target;
733 uint8_t *new_buffer = NULL;
734
735 if (bank->target->state != TARGET_HALTED) {
736 LOG_ERROR("Target not halted");
737 return ERROR_TARGET_NOT_HALTED;
738 }
739
740 if (offset & 0x1) {
741 LOG_ERROR("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
742 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
743 }
744
745 /* If there's an odd number of bytes, the data has to be padded. Duplicate
746 * the buffer and use the normal code path with a single block write since
747 * it's probably cheaper than to special case the last odd write using
748 * discrete accesses. */
749 if (count & 1) {
750 new_buffer = malloc(count + 1);
751 if (new_buffer == NULL) {
752 LOG_ERROR("odd number of bytes to write and no memory for padding buffer");
753 return ERROR_FAIL;
754 }
755 LOG_INFO("odd number of bytes to write, padding with 0xff");
756 buffer = memcpy(new_buffer, buffer, count);
757 buffer[count++] = 0xff;
758 }
759
760 uint32_t words_remaining = count / 2;
761 int retval, retval2;
762
763 /* unlock flash registers */
764 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
765 if (retval != ERROR_OK)
766 goto cleanup;
767 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
768 if (retval != ERROR_OK)
769 goto cleanup;
770
771 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
772 if (retval != ERROR_OK)
773 goto cleanup;
774
775 /* try using a block write */
776 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
777
778 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
779 /* if block write failed (no sufficient working area),
780 * we use normal (slow) single halfword accesses */
781 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
782
783 while (words_remaining > 0) {
784 uint16_t value;
785 memcpy(&value, buffer, sizeof(uint16_t));
786
787 retval = target_write_u16(target, bank->base + offset, value);
788 if (retval != ERROR_OK)
789 goto reset_pg_and_lock;
790
791 retval = stm32x_wait_status_busy(bank, 5);
792 if (retval != ERROR_OK)
793 goto reset_pg_and_lock;
794
795 words_remaining--;
796 buffer += 2;
797 offset += 2;
798 }
799 }
800
801 reset_pg_and_lock:
802 retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
803 if (retval == ERROR_OK)
804 retval = retval2;
805
806 cleanup:
807 if (new_buffer)
808 free(new_buffer);
809
810 return retval;
811 }
812
813 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
814 {
815 /* This check the device CPUID core register to detect
816 * the M0 from the M3 devices. */
817
818 struct target *target = bank->target;
819 uint32_t cpuid, device_id_register = 0;
820
821 /* Get the CPUID from the ARM Core
822 * http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf 4.2.1 */
823 int retval = target_read_u32(target, 0xE000ED00, &cpuid);
824 if (retval != ERROR_OK)
825 return retval;
826
827 if (((cpuid >> 4) & 0xFFF) == 0xC20) {
828 /* 0xC20 is M0 devices */
829 device_id_register = 0x40015800;
830 } else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
831 /* 0xC23 is M3 devices */
832 device_id_register = 0xE0042000;
833 } else if (((cpuid >> 4) & 0xFFF) == 0xC24) {
834 /* 0xC24 is M4 devices */
835 device_id_register = 0xE0042000;
836 } else {
837 LOG_ERROR("Cannot identify target as a stm32x");
838 return ERROR_FAIL;
839 }
840
841 /* read stm32 device id register */
842 retval = target_read_u32(target, device_id_register, device_id);
843 if (retval != ERROR_OK)
844 return retval;
845
846 return retval;
847 }
848
849 static int stm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_size_in_kb)
850 {
851 struct target *target = bank->target;
852 uint32_t cpuid, flash_size_reg;
853
854 int retval = target_read_u32(target, 0xE000ED00, &cpuid);
855 if (retval != ERROR_OK)
856 return retval;
857
858 if (((cpuid >> 4) & 0xFFF) == 0xC20) {
859 /* 0xC20 is M0 devices */
860 flash_size_reg = 0x1FFFF7CC;
861 } else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
862 /* 0xC23 is M3 devices */
863 flash_size_reg = 0x1FFFF7E0;
864 } else if (((cpuid >> 4) & 0xFFF) == 0xC24) {
865 /* 0xC24 is M4 devices */
866 flash_size_reg = 0x1FFFF7CC;
867 } else {
868 LOG_ERROR("Cannot identify target as a stm32x");
869 return ERROR_FAIL;
870 }
871
872 retval = target_read_u16(target, flash_size_reg, flash_size_in_kb);
873 if (retval != ERROR_OK)
874 return retval;
875
876 return retval;
877 }
878
879 static int stm32x_probe(struct flash_bank *bank)
880 {
881 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
882 int i;
883 uint16_t flash_size_in_kb;
884 uint16_t max_flash_size_in_kb;
885 uint32_t device_id;
886 int page_size;
887 uint32_t base_address = 0x08000000;
888
889 stm32x_info->probed = 0;
890 stm32x_info->register_base = FLASH_REG_BASE_B0;
891
892 /* read stm32 device id register */
893 int retval = stm32x_get_device_id(bank, &device_id);
894 if (retval != ERROR_OK)
895 return retval;
896
897 LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
898
899 /* set page size, protection granularity and max flash size depending on family */
900 switch (device_id & 0xfff) {
901 case 0x410: /* medium density */
902 page_size = 1024;
903 stm32x_info->ppage_size = 4;
904 max_flash_size_in_kb = 128;
905 break;
906 case 0x412: /* low density */
907 page_size = 1024;
908 stm32x_info->ppage_size = 4;
909 max_flash_size_in_kb = 32;
910 break;
911 case 0x414: /* high density */
912 page_size = 2048;
913 stm32x_info->ppage_size = 2;
914 max_flash_size_in_kb = 512;
915 break;
916 case 0x418: /* connectivity line density */
917 page_size = 2048;
918 stm32x_info->ppage_size = 2;
919 max_flash_size_in_kb = 256;
920 break;
921 case 0x420: /* value line density */
922 page_size = 1024;
923 stm32x_info->ppage_size = 4;
924 max_flash_size_in_kb = 128;
925 break;
926 case 0x422: /* stm32f30x */
927 page_size = 2048;
928 stm32x_info->ppage_size = 2;
929 max_flash_size_in_kb = 256;
930 break;
931 case 0x428: /* value line High density */
932 page_size = 2048;
933 stm32x_info->ppage_size = 4;
934 max_flash_size_in_kb = 128;
935 break;
936 case 0x430: /* xl line density (dual flash banks) */
937 page_size = 2048;
938 stm32x_info->ppage_size = 2;
939 max_flash_size_in_kb = 1024;
940 stm32x_info->has_dual_banks = true;
941 break;
942 case 0x432: /* stm32f37x */
943 page_size = 2048;
944 stm32x_info->ppage_size = 2;
945 max_flash_size_in_kb = 256;
946 break;
947 case 0x440: /* stm32f0x */
948 page_size = 1024;
949 stm32x_info->ppage_size = 4;
950 max_flash_size_in_kb = 64;
951 break;
952 default:
953 LOG_WARNING("Cannot identify target as a STM32 family.");
954 return ERROR_FAIL;
955 }
956
957 /* get flash size from target. */
958 retval = stm32x_get_flash_size(bank, &flash_size_in_kb);
959
960 /* failed reading flash size or flash size invalid (early silicon),
961 * default to max target family */
962 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
963 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
964 max_flash_size_in_kb);
965 flash_size_in_kb = max_flash_size_in_kb;
966 }
967
968 if (stm32x_info->has_dual_banks) {
969 /* split reported size into matching bank */
970 if (bank->base != 0x08080000) {
971 /* bank 0 will be fixed 512k */
972 flash_size_in_kb = 512;
973 } else {
974 flash_size_in_kb -= 512;
975 /* bank1 also uses a register offset */
976 stm32x_info->register_base = FLASH_REG_BASE_B1;
977 base_address = 0x08080000;
978 }
979 }
980
981 LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
982
983 /* did we assign flash size? */
984 assert(flash_size_in_kb != 0xffff);
985
986 /* calculate numbers of pages */
987 int num_pages = flash_size_in_kb * 1024 / page_size;
988
989 /* check that calculation result makes sense */
990 assert(num_pages > 0);
991
992 if (bank->sectors) {
993 free(bank->sectors);
994 bank->sectors = NULL;
995 }
996
997 bank->base = base_address;
998 bank->size = (num_pages * page_size);
999 bank->num_sectors = num_pages;
1000 bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
1001
1002 for (i = 0; i < num_pages; i++) {
1003 bank->sectors[i].offset = i * page_size;
1004 bank->sectors[i].size = page_size;
1005 bank->sectors[i].is_erased = -1;
1006 bank->sectors[i].is_protected = 1;
1007 }
1008
1009 stm32x_info->probed = 1;
1010
1011 return ERROR_OK;
1012 }
1013
1014 static int stm32x_auto_probe(struct flash_bank *bank)
1015 {
1016 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1017 if (stm32x_info->probed)
1018 return ERROR_OK;
1019 return stm32x_probe(bank);
1020 }
1021
1022 #if 0
1023 COMMAND_HANDLER(stm32x_handle_part_id_command)
1024 {
1025 return ERROR_OK;
1026 }
1027 #endif
1028
1029 static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
1030 {
1031 uint32_t device_id;
1032 int printed;
1033
1034 /* read stm32 device id register */
1035 int retval = stm32x_get_device_id(bank, &device_id);
1036 if (retval != ERROR_OK)
1037 return retval;
1038
1039 if ((device_id & 0xfff) == 0x410) {
1040 printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: ");
1041 buf += printed;
1042 buf_size -= printed;
1043
1044 switch (device_id >> 16) {
1045 case 0x0000:
1046 snprintf(buf, buf_size, "A");
1047 break;
1048
1049 case 0x2000:
1050 snprintf(buf, buf_size, "B");
1051 break;
1052
1053 case 0x2001:
1054 snprintf(buf, buf_size, "Z");
1055 break;
1056
1057 case 0x2003:
1058 snprintf(buf, buf_size, "Y");
1059 break;
1060
1061 default:
1062 snprintf(buf, buf_size, "unknown");
1063 break;
1064 }
1065 } else if ((device_id & 0xfff) == 0x412) {
1066 printed = snprintf(buf, buf_size, "stm32x (Low Density) - Rev: ");
1067 buf += printed;
1068 buf_size -= printed;
1069
1070 switch (device_id >> 16) {
1071 case 0x1000:
1072 snprintf(buf, buf_size, "A");
1073 break;
1074
1075 default:
1076 snprintf(buf, buf_size, "unknown");
1077 break;
1078 }
1079 } else if ((device_id & 0xfff) == 0x414) {
1080 printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: ");
1081 buf += printed;
1082 buf_size -= printed;
1083
1084 switch (device_id >> 16) {
1085 case 0x1000:
1086 snprintf(buf, buf_size, "A");
1087 break;
1088
1089 case 0x1001:
1090 snprintf(buf, buf_size, "Z");
1091 break;
1092
1093 default:
1094 snprintf(buf, buf_size, "unknown");
1095 break;
1096 }
1097 } else if ((device_id & 0xfff) == 0x418) {
1098 printed = snprintf(buf, buf_size, "stm32x (Connectivity) - Rev: ");
1099 buf += printed;
1100 buf_size -= printed;
1101
1102 switch (device_id >> 16) {
1103 case 0x1000:
1104 snprintf(buf, buf_size, "A");
1105 break;
1106
1107 case 0x1001:
1108 snprintf(buf, buf_size, "Z");
1109 break;
1110
1111 default:
1112 snprintf(buf, buf_size, "unknown");
1113 break;
1114 }
1115 } else if ((device_id & 0xfff) == 0x420) {
1116 printed = snprintf(buf, buf_size, "stm32x (Value) - Rev: ");
1117 buf += printed;
1118 buf_size -= printed;
1119
1120 switch (device_id >> 16) {
1121 case 0x1000:
1122 snprintf(buf, buf_size, "A");
1123 break;
1124
1125 case 0x1001:
1126 snprintf(buf, buf_size, "Z");
1127 break;
1128
1129 default:
1130 snprintf(buf, buf_size, "unknown");
1131 break;
1132 }
1133 } else if ((device_id & 0xfff) == 0x422) {
1134 printed = snprintf(buf, buf_size, "stm32f30x - Rev: ");
1135 buf += printed;
1136 buf_size -= printed;
1137
1138 switch (device_id >> 16) {
1139 case 0x1000:
1140 snprintf(buf, buf_size, "1.0");
1141 break;
1142
1143 case 0x2000:
1144 snprintf(buf, buf_size, "2.0");
1145 break;
1146
1147 default:
1148 snprintf(buf, buf_size, "unknown");
1149 break;
1150 }
1151 } else if ((device_id & 0xfff) == 0x428) {
1152 printed = snprintf(buf, buf_size, "stm32x (Value HD) - Rev: ");
1153 buf += printed;
1154 buf_size -= printed;
1155
1156 switch (device_id >> 16) {
1157 case 0x1000:
1158 snprintf(buf, buf_size, "A");
1159 break;
1160
1161 case 0x1001:
1162 snprintf(buf, buf_size, "Z");
1163 break;
1164
1165 default:
1166 snprintf(buf, buf_size, "unknown");
1167 break;
1168 }
1169 } else if ((device_id & 0xfff) == 0x430) {
1170 printed = snprintf(buf, buf_size, "stm32x (XL) - Rev: ");
1171 buf += printed;
1172 buf_size -= printed;
1173
1174 switch (device_id >> 16) {
1175 case 0x1000:
1176 snprintf(buf, buf_size, "A");
1177 break;
1178
1179 default:
1180 snprintf(buf, buf_size, "unknown");
1181 break;
1182 }
1183 } else if ((device_id & 0xfff) == 0x432) {
1184 printed = snprintf(buf, buf_size, "stm32f37x - Rev: ");
1185 buf += printed;
1186 buf_size -= printed;
1187
1188 switch (device_id >> 16) {
1189 case 0x1000:
1190 snprintf(buf, buf_size, "1.0");
1191 break;
1192
1193 case 0x2000:
1194 snprintf(buf, buf_size, "2.0");
1195 break;
1196
1197 default:
1198 snprintf(buf, buf_size, "unknown");
1199 break;
1200 }
1201 } else if ((device_id & 0xfff) == 0x440) {
1202 printed = snprintf(buf, buf_size, "stm32f0x - Rev: ");
1203 buf += printed;
1204 buf_size -= printed;
1205
1206 switch (device_id >> 16) {
1207 case 0x1000:
1208 snprintf(buf, buf_size, "1.0");
1209 break;
1210
1211 case 0x2000:
1212 snprintf(buf, buf_size, "2.0");
1213 break;
1214
1215 default:
1216 snprintf(buf, buf_size, "unknown");
1217 break;
1218 }
1219 } else {
1220 snprintf(buf, buf_size, "Cannot identify target as a stm32x\n");
1221 return ERROR_FAIL;
1222 }
1223
1224 return ERROR_OK;
1225 }
1226
1227 COMMAND_HANDLER(stm32x_handle_lock_command)
1228 {
1229 struct target *target = NULL;
1230 struct stm32x_flash_bank *stm32x_info = NULL;
1231
1232 if (CMD_ARGC < 1)
1233 return ERROR_COMMAND_SYNTAX_ERROR;
1234
1235 struct flash_bank *bank;
1236 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1237 if (ERROR_OK != retval)
1238 return retval;
1239
1240 stm32x_info = bank->driver_priv;
1241
1242 target = bank->target;
1243
1244 if (target->state != TARGET_HALTED) {
1245 LOG_ERROR("Target not halted");
1246 return ERROR_TARGET_NOT_HALTED;
1247 }
1248
1249 retval = stm32x_check_operation_supported(bank);
1250 if (ERROR_OK != retval)
1251 return retval;
1252
1253 if (stm32x_erase_options(bank) != ERROR_OK) {
1254 command_print(CMD_CTX, "stm32x failed to erase options");
1255 return ERROR_OK;
1256 }
1257
1258 /* set readout protection */
1259 stm32x_info->option_bytes.RDP = 0;
1260
1261 if (stm32x_write_options(bank) != ERROR_OK) {
1262 command_print(CMD_CTX, "stm32x failed to lock device");
1263 return ERROR_OK;
1264 }
1265
1266 command_print(CMD_CTX, "stm32x locked");
1267
1268 return ERROR_OK;
1269 }
1270
1271 COMMAND_HANDLER(stm32x_handle_unlock_command)
1272 {
1273 struct target *target = NULL;
1274
1275 if (CMD_ARGC < 1)
1276 return ERROR_COMMAND_SYNTAX_ERROR;
1277
1278 struct flash_bank *bank;
1279 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1280 if (ERROR_OK != retval)
1281 return retval;
1282
1283 target = bank->target;
1284
1285 if (target->state != TARGET_HALTED) {
1286 LOG_ERROR("Target not halted");
1287 return ERROR_TARGET_NOT_HALTED;
1288 }
1289
1290 retval = stm32x_check_operation_supported(bank);
1291 if (ERROR_OK != retval)
1292 return retval;
1293
1294 if (stm32x_erase_options(bank) != ERROR_OK) {
1295 command_print(CMD_CTX, "stm32x failed to unlock device");
1296 return ERROR_OK;
1297 }
1298
1299 if (stm32x_write_options(bank) != ERROR_OK) {
1300 command_print(CMD_CTX, "stm32x failed to lock device");
1301 return ERROR_OK;
1302 }
1303
1304 command_print(CMD_CTX, "stm32x unlocked.\n"
1305 "INFO: a reset or power cycle is required "
1306 "for the new settings to take effect.");
1307
1308 return ERROR_OK;
1309 }
1310
1311 COMMAND_HANDLER(stm32x_handle_options_read_command)
1312 {
1313 uint32_t optionbyte;
1314 struct target *target = NULL;
1315 struct stm32x_flash_bank *stm32x_info = NULL;
1316
1317 if (CMD_ARGC < 1)
1318 return ERROR_COMMAND_SYNTAX_ERROR;
1319
1320 struct flash_bank *bank;
1321 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1322 if (ERROR_OK != retval)
1323 return retval;
1324
1325 stm32x_info = bank->driver_priv;
1326
1327 target = bank->target;
1328
1329 if (target->state != TARGET_HALTED) {
1330 LOG_ERROR("Target not halted");
1331 return ERROR_TARGET_NOT_HALTED;
1332 }
1333
1334 retval = stm32x_check_operation_supported(bank);
1335 if (ERROR_OK != retval)
1336 return retval;
1337
1338 retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
1339 if (retval != ERROR_OK)
1340 return retval;
1341 command_print(CMD_CTX, "Option Byte: 0x%" PRIx32 "", optionbyte);
1342
1343 if (buf_get_u32((uint8_t *)&optionbyte, OPT_ERROR, 1))
1344 command_print(CMD_CTX, "Option Byte Complement Error");
1345
1346 if (buf_get_u32((uint8_t *)&optionbyte, OPT_READOUT, 1))
1347 command_print(CMD_CTX, "Readout Protection On");
1348 else
1349 command_print(CMD_CTX, "Readout Protection Off");
1350
1351 if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDWDGSW, 1))
1352 command_print(CMD_CTX, "Software Watchdog");
1353 else
1354 command_print(CMD_CTX, "Hardware Watchdog");
1355
1356 if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTOP, 1))
1357 command_print(CMD_CTX, "Stop: No reset generated");
1358 else
1359 command_print(CMD_CTX, "Stop: Reset generated");
1360
1361 if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTDBY, 1))
1362 command_print(CMD_CTX, "Standby: No reset generated");
1363 else
1364 command_print(CMD_CTX, "Standby: Reset generated");
1365
1366 if (stm32x_info->has_dual_banks) {
1367 if (buf_get_u32((uint8_t *)&optionbyte, OPT_BFB2, 1))
1368 command_print(CMD_CTX, "Boot: Bank 0");
1369 else
1370 command_print(CMD_CTX, "Boot: Bank 1");
1371 }
1372
1373 return ERROR_OK;
1374 }
1375
1376 COMMAND_HANDLER(stm32x_handle_options_write_command)
1377 {
1378 struct target *target = NULL;
1379 struct stm32x_flash_bank *stm32x_info = NULL;
1380 uint16_t optionbyte = 0xF8;
1381
1382 if (CMD_ARGC < 4)
1383 return ERROR_COMMAND_SYNTAX_ERROR;
1384
1385 struct flash_bank *bank;
1386 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1387 if (ERROR_OK != retval)
1388 return retval;
1389
1390 stm32x_info = bank->driver_priv;
1391
1392 target = bank->target;
1393
1394 if (target->state != TARGET_HALTED) {
1395 LOG_ERROR("Target not halted");
1396 return ERROR_TARGET_NOT_HALTED;
1397 }
1398
1399 retval = stm32x_check_operation_supported(bank);
1400 if (ERROR_OK != retval)
1401 return retval;
1402
1403 /* REVISIT: ignores some options which we will display...
1404 * and doesn't insist on the specified syntax.
1405 */
1406
1407 /* OPT_RDWDGSW */
1408 if (strcmp(CMD_ARGV[1], "SWWDG") == 0)
1409 optionbyte |= (1 << 0);
1410 else /* REVISIT must be "HWWDG" then ... */
1411 optionbyte &= ~(1 << 0);
1412
1413 /* OPT_RDRSTSTOP */
1414 if (strcmp(CMD_ARGV[2], "NORSTSTOP") == 0)
1415 optionbyte |= (1 << 1);
1416 else /* REVISIT must be "RSTSTNDBY" then ... */
1417 optionbyte &= ~(1 << 1);
1418
1419 /* OPT_RDRSTSTDBY */
1420 if (strcmp(CMD_ARGV[3], "NORSTSTNDBY") == 0)
1421 optionbyte |= (1 << 2);
1422 else /* REVISIT must be "RSTSTOP" then ... */
1423 optionbyte &= ~(1 << 2);
1424
1425 if (CMD_ARGC > 4 && stm32x_info->has_dual_banks) {
1426 /* OPT_BFB2 */
1427 if (strcmp(CMD_ARGV[4], "BOOT0") == 0)
1428 optionbyte |= (1 << 3);
1429 else
1430 optionbyte &= ~(1 << 3);
1431 }
1432
1433 if (stm32x_erase_options(bank) != ERROR_OK) {
1434 command_print(CMD_CTX, "stm32x failed to erase options");
1435 return ERROR_OK;
1436 }
1437
1438 stm32x_info->option_bytes.user_options = optionbyte;
1439
1440 if (stm32x_write_options(bank) != ERROR_OK) {
1441 command_print(CMD_CTX, "stm32x failed to write options");
1442 return ERROR_OK;
1443 }
1444
1445 command_print(CMD_CTX, "stm32x write options complete.\n"
1446 "INFO: a reset or power cycle is required "
1447 "for the new settings to take effect.");
1448
1449 return ERROR_OK;
1450 }
1451
1452 static int stm32x_mass_erase(struct flash_bank *bank)
1453 {
1454 struct target *target = bank->target;
1455
1456 if (target->state != TARGET_HALTED) {
1457 LOG_ERROR("Target not halted");
1458 return ERROR_TARGET_NOT_HALTED;
1459 }
1460
1461 /* unlock option flash registers */
1462 int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
1463 if (retval != ERROR_OK)
1464 return retval;
1465 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
1466 if (retval != ERROR_OK)
1467 return retval;
1468
1469 /* mass erase flash memory */
1470 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
1471 if (retval != ERROR_OK)
1472 return retval;
1473 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1474 FLASH_MER | FLASH_STRT);
1475 if (retval != ERROR_OK)
1476 return retval;
1477
1478 retval = stm32x_wait_status_busy(bank, 100);
1479 if (retval != ERROR_OK)
1480 return retval;
1481
1482 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1483 if (retval != ERROR_OK)
1484 return retval;
1485
1486 return ERROR_OK;
1487 }
1488
1489 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1490 {
1491 int i;
1492
1493 if (CMD_ARGC < 1)
1494 return ERROR_COMMAND_SYNTAX_ERROR;
1495
1496 struct flash_bank *bank;
1497 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1498 if (ERROR_OK != retval)
1499 return retval;
1500
1501 retval = stm32x_mass_erase(bank);
1502 if (retval == ERROR_OK) {
1503 /* set all sectors as erased */
1504 for (i = 0; i < bank->num_sectors; i++)
1505 bank->sectors[i].is_erased = 1;
1506
1507 command_print(CMD_CTX, "stm32x mass erase complete");
1508 } else
1509 command_print(CMD_CTX, "stm32x mass erase failed");
1510
1511 return retval;
1512 }
1513
1514 static const struct command_registration stm32x_exec_command_handlers[] = {
1515 {
1516 .name = "lock",
1517 .handler = stm32x_handle_lock_command,
1518 .mode = COMMAND_EXEC,
1519 .usage = "bank_id",
1520 .help = "Lock entire flash device.",
1521 },
1522 {
1523 .name = "unlock",
1524 .handler = stm32x_handle_unlock_command,
1525 .mode = COMMAND_EXEC,
1526 .usage = "bank_id",
1527 .help = "Unlock entire protected flash device.",
1528 },
1529 {
1530 .name = "mass_erase",
1531 .handler = stm32x_handle_mass_erase_command,
1532 .mode = COMMAND_EXEC,
1533 .usage = "bank_id",
1534 .help = "Erase entire flash device.",
1535 },
1536 {
1537 .name = "options_read",
1538 .handler = stm32x_handle_options_read_command,
1539 .mode = COMMAND_EXEC,
1540 .usage = "bank_id",
1541 .help = "Read and display device option byte.",
1542 },
1543 {
1544 .name = "options_write",
1545 .handler = stm32x_handle_options_write_command,
1546 .mode = COMMAND_EXEC,
1547 .usage = "bank_id ('SWWDG'|'HWWDG') "
1548 "('RSTSTNDBY'|'NORSTSTNDBY') "
1549 "('RSTSTOP'|'NORSTSTOP')",
1550 .help = "Replace bits in device option byte.",
1551 },
1552 COMMAND_REGISTRATION_DONE
1553 };
1554
1555 static const struct command_registration stm32x_command_handlers[] = {
1556 {
1557 .name = "stm32f1x",
1558 .mode = COMMAND_ANY,
1559 .help = "stm32f1x flash command group",
1560 .usage = "",
1561 .chain = stm32x_exec_command_handlers,
1562 },
1563 COMMAND_REGISTRATION_DONE
1564 };
1565
1566 struct flash_driver stm32f1x_flash = {
1567 .name = "stm32f1x",
1568 .commands = stm32x_command_handlers,
1569 .flash_bank_command = stm32x_flash_bank_command,
1570 .erase = stm32x_erase,
1571 .protect = stm32x_protect,
1572 .write = stm32x_write,
1573 .read = default_flash_read,
1574 .probe = stm32x_probe,
1575 .auto_probe = stm32x_auto_probe,
1576 .erase_check = default_flash_blank_check,
1577 .protect_check = stm32x_protect_check,
1578 .info = get_stm32x_info,
1579 };