Change return value on error.
[openocd.git] / src / flash / nor / stm32f1x.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 by Andreas Fritiofson *
9 * andreas.fritiofson@gmail.com *
10 *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26 #ifdef HAVE_CONFIG_H
27 #include "config.h"
28 #endif
29
30 #include "imp.h"
31 #include <helper/binarybuffer.h>
32 #include <target/algorithm.h>
33 #include <target/armv7m.h>
34
35 /* stm32x register locations */
36
37 #define FLASH_REG_BASE_B0 0x40022000
38 #define FLASH_REG_BASE_B1 0x40022040
39
40 #define STM32_FLASH_ACR 0x00
41 #define STM32_FLASH_KEYR 0x04
42 #define STM32_FLASH_OPTKEYR 0x08
43 #define STM32_FLASH_SR 0x0C
44 #define STM32_FLASH_CR 0x10
45 #define STM32_FLASH_AR 0x14
46 #define STM32_FLASH_OBR 0x1C
47 #define STM32_FLASH_WRPR 0x20
48
49 /* TODO: Check if code using these really should be hard coded to bank 0.
50 * There are valid cases, on dual flash devices the protection of the
51 * second bank is done on the bank0 reg's. */
52 #define STM32_FLASH_ACR_B0 0x40022000
53 #define STM32_FLASH_KEYR_B0 0x40022004
54 #define STM32_FLASH_OPTKEYR_B0 0x40022008
55 #define STM32_FLASH_SR_B0 0x4002200C
56 #define STM32_FLASH_CR_B0 0x40022010
57 #define STM32_FLASH_AR_B0 0x40022014
58 #define STM32_FLASH_OBR_B0 0x4002201C
59 #define STM32_FLASH_WRPR_B0 0x40022020
60
61 /* option byte location */
62
63 #define STM32_OB_RDP 0x1FFFF800
64 #define STM32_OB_USER 0x1FFFF802
65 #define STM32_OB_DATA0 0x1FFFF804
66 #define STM32_OB_DATA1 0x1FFFF806
67 #define STM32_OB_WRP0 0x1FFFF808
68 #define STM32_OB_WRP1 0x1FFFF80A
69 #define STM32_OB_WRP2 0x1FFFF80C
70 #define STM32_OB_WRP3 0x1FFFF80E
71
72 /* FLASH_CR register bits */
73
74 #define FLASH_PG (1 << 0)
75 #define FLASH_PER (1 << 1)
76 #define FLASH_MER (1 << 2)
77 #define FLASH_OPTPG (1 << 4)
78 #define FLASH_OPTER (1 << 5)
79 #define FLASH_STRT (1 << 6)
80 #define FLASH_LOCK (1 << 7)
81 #define FLASH_OPTWRE (1 << 9)
82
83 /* FLASH_SR register bits */
84
85 #define FLASH_BSY (1 << 0)
86 #define FLASH_PGERR (1 << 2)
87 #define FLASH_WRPRTERR (1 << 4)
88 #define FLASH_EOP (1 << 5)
89
90 /* STM32_FLASH_OBR bit definitions (reading) */
91
92 #define OPT_ERROR 0
93 #define OPT_READOUT 1
94 #define OPT_RDWDGSW 2
95 #define OPT_RDRSTSTOP 3
96 #define OPT_RDRSTSTDBY 4
97 #define OPT_BFB2 5 /* dual flash bank only */
98
99 /* register unlock keys */
100
101 #define KEY1 0x45670123
102 #define KEY2 0xCDEF89AB
103
104 struct stm32x_options
105 {
106 uint16_t RDP;
107 uint16_t user_options;
108 uint16_t protection[4];
109 };
110
111 struct stm32x_flash_bank
112 {
113 struct stm32x_options option_bytes;
114 struct working_area *write_algorithm;
115 int ppage_size;
116 int probed;
117
118 bool has_dual_banks;
119 /* used to access dual flash bank stm32xl */
120 uint32_t register_base;
121 };
122
123 static int stm32x_mass_erase(struct flash_bank *bank);
124
125 /* flash bank stm32x <base> <size> 0 0 <target#>
126 */
127 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
128 {
129 struct stm32x_flash_bank *stm32x_info;
130
131 if (CMD_ARGC < 6)
132 {
133 return ERROR_COMMAND_SYNTAX_ERROR;
134 }
135
136 stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
137 bank->driver_priv = stm32x_info;
138
139 stm32x_info->write_algorithm = NULL;
140 stm32x_info->probed = 0;
141 stm32x_info->has_dual_banks = false;
142 stm32x_info->register_base = FLASH_REG_BASE_B0;
143
144 return ERROR_OK;
145 }
146
147 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
148 {
149 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
150 return reg + stm32x_info->register_base;
151 }
152
153 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
154 {
155 struct target *target = bank->target;
156 return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
157 }
158
159 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
160 {
161 struct target *target = bank->target;
162 uint32_t status;
163 int retval = ERROR_OK;
164
165 /* wait for busy to clear */
166 for (;;)
167 {
168 retval = stm32x_get_flash_status(bank, &status);
169 if (retval != ERROR_OK)
170 return retval;
171 LOG_DEBUG("status: 0x%" PRIx32 "", status);
172 if ((status & FLASH_BSY) == 0)
173 break;
174 if (timeout-- <= 0)
175 {
176 LOG_ERROR("timed out waiting for flash");
177 return ERROR_FAIL;
178 }
179 alive_sleep(1);
180 }
181
182 if (status & FLASH_WRPRTERR)
183 {
184 LOG_ERROR("stm32x device protected");
185 retval = ERROR_FAIL;
186 }
187
188 if (status & FLASH_PGERR)
189 {
190 LOG_ERROR("stm32x device programming failed");
191 retval = ERROR_FAIL;
192 }
193
194 /* Clear but report errors */
195 if (status & (FLASH_WRPRTERR | FLASH_PGERR))
196 {
197 /* If this operation fails, we ignore it and report the original
198 * retval
199 */
200 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
201 FLASH_WRPRTERR | FLASH_PGERR);
202 }
203 return retval;
204 }
205
206 int stm32x_check_operation_supported(struct flash_bank *bank)
207 {
208 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
209
210 /* if we have a dual flash bank device then
211 * we need to perform option byte stuff on bank0 only */
212 if (stm32x_info->register_base != FLASH_REG_BASE_B0)
213 {
214 LOG_ERROR("Option Byte Operation's must use bank0");
215 return ERROR_FLASH_OPERATION_FAILED;
216 }
217
218 return ERROR_OK;
219 }
220
221 static int stm32x_read_options(struct flash_bank *bank)
222 {
223 uint32_t optiondata;
224 struct stm32x_flash_bank *stm32x_info = NULL;
225 struct target *target = bank->target;
226
227 stm32x_info = bank->driver_priv;
228
229 /* read current option bytes */
230 int retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optiondata);
231 if (retval != ERROR_OK)
232 return retval;
233
234 stm32x_info->option_bytes.user_options = (uint16_t)0xFFF8 | ((optiondata >> 2) & 0x07);
235 stm32x_info->option_bytes.RDP = (optiondata & (1 << OPT_READOUT)) ? 0xFFFF : 0x5AA5;
236
237 if (optiondata & (1 << OPT_READOUT))
238 LOG_INFO("Device Security Bit Set");
239
240 /* each bit refers to a 4bank protection */
241 retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &optiondata);
242 if (retval != ERROR_OK)
243 return retval;
244
245 stm32x_info->option_bytes.protection[0] = (uint16_t)optiondata;
246 stm32x_info->option_bytes.protection[1] = (uint16_t)(optiondata >> 8);
247 stm32x_info->option_bytes.protection[2] = (uint16_t)(optiondata >> 16);
248 stm32x_info->option_bytes.protection[3] = (uint16_t)(optiondata >> 24);
249
250 return ERROR_OK;
251 }
252
253 static int stm32x_erase_options(struct flash_bank *bank)
254 {
255 struct stm32x_flash_bank *stm32x_info = NULL;
256 struct target *target = bank->target;
257
258 stm32x_info = bank->driver_priv;
259
260 /* read current options */
261 stm32x_read_options(bank);
262
263 /* unlock flash registers */
264 int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
265 if (retval != ERROR_OK)
266 return retval;
267
268 retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
269 if (retval != ERROR_OK)
270 return retval;
271
272 /* unlock option flash registers */
273 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
274 if (retval != ERROR_OK)
275 return retval;
276 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
277 if (retval != ERROR_OK)
278 return retval;
279
280 /* erase option bytes */
281 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
282 if (retval != ERROR_OK)
283 return retval;
284 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
285 if (retval != ERROR_OK)
286 return retval;
287
288 retval = stm32x_wait_status_busy(bank, 10);
289 if (retval != ERROR_OK)
290 return retval;
291
292 /* clear readout protection and complementary option bytes
293 * this will also force a device unlock if set */
294 stm32x_info->option_bytes.RDP = 0x5AA5;
295
296 return ERROR_OK;
297 }
298
299 static int stm32x_write_options(struct flash_bank *bank)
300 {
301 struct stm32x_flash_bank *stm32x_info = NULL;
302 struct target *target = bank->target;
303
304 stm32x_info = bank->driver_priv;
305
306 /* unlock flash registers */
307 int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
308 if (retval != ERROR_OK)
309 return retval;
310 retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
311 if (retval != ERROR_OK)
312 return retval;
313
314 /* unlock option flash registers */
315 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
316 if (retval != ERROR_OK)
317 return retval;
318 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
319 if (retval != ERROR_OK)
320 return retval;
321
322 /* program option bytes */
323 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
324 if (retval != ERROR_OK)
325 return retval;
326
327 /* write user option byte */
328 retval = target_write_u16(target, STM32_OB_USER, stm32x_info->option_bytes.user_options);
329 if (retval != ERROR_OK)
330 return retval;
331
332 retval = stm32x_wait_status_busy(bank, 10);
333 if (retval != ERROR_OK)
334 return retval;
335
336 /* write protection byte 1 */
337 retval = target_write_u16(target, STM32_OB_WRP0, stm32x_info->option_bytes.protection[0]);
338 if (retval != ERROR_OK)
339 return retval;
340
341 retval = stm32x_wait_status_busy(bank, 10);
342 if (retval != ERROR_OK)
343 return retval;
344
345 /* write protection byte 2 */
346 retval = target_write_u16(target, STM32_OB_WRP1, stm32x_info->option_bytes.protection[1]);
347 if (retval != ERROR_OK)
348 return retval;
349
350 retval = stm32x_wait_status_busy(bank, 10);
351 if (retval != ERROR_OK)
352 return retval;
353
354 /* write protection byte 3 */
355 retval = target_write_u16(target, STM32_OB_WRP2, stm32x_info->option_bytes.protection[2]);
356 if (retval != ERROR_OK)
357 return retval;
358
359 retval = stm32x_wait_status_busy(bank, 10);
360 if (retval != ERROR_OK)
361 return retval;
362
363 /* write protection byte 4 */
364 retval = target_write_u16(target, STM32_OB_WRP3, stm32x_info->option_bytes.protection[3]);
365 if (retval != ERROR_OK)
366 return retval;
367
368 retval = stm32x_wait_status_busy(bank, 10);
369 if (retval != ERROR_OK)
370 return retval;
371
372 /* write readout protection bit */
373 retval = target_write_u16(target, STM32_OB_RDP, stm32x_info->option_bytes.RDP);
374 if (retval != ERROR_OK)
375 return retval;
376
377 retval = stm32x_wait_status_busy(bank, 10);
378 if (retval != ERROR_OK)
379 return retval;
380
381 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
382 if (retval != ERROR_OK)
383 return retval;
384
385 return ERROR_OK;
386 }
387
388 static int stm32x_protect_check(struct flash_bank *bank)
389 {
390 struct target *target = bank->target;
391 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
392
393 uint32_t protection;
394 int i, s;
395 int num_bits;
396 int set;
397
398 if (target->state != TARGET_HALTED)
399 {
400 LOG_ERROR("Target not halted");
401 return ERROR_TARGET_NOT_HALTED;
402 }
403
404 int retval = stm32x_check_operation_supported(bank);
405 if (ERROR_OK != retval)
406 return retval;
407
408 /* medium density - each bit refers to a 4bank protection
409 * high density - each bit refers to a 2bank protection */
410 retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
411 if (retval != ERROR_OK)
412 return retval;
413
414 /* medium density - each protection bit is for 4 * 1K pages
415 * high density - each protection bit is for 2 * 2K pages */
416 num_bits = (bank->num_sectors / stm32x_info->ppage_size);
417
418 if (stm32x_info->ppage_size == 2)
419 {
420 /* high density flash/connectivity line protection */
421
422 set = 1;
423
424 if (protection & (1 << 31))
425 set = 0;
426
427 /* bit 31 controls sector 62 - 255 protection for high density
428 * bit 31 controls sector 62 - 127 protection for connectivity line */
429 for (s = 62; s < bank->num_sectors; s++)
430 {
431 bank->sectors[s].is_protected = set;
432 }
433
434 if (bank->num_sectors > 61)
435 num_bits = 31;
436
437 for (i = 0; i < num_bits; i++)
438 {
439 set = 1;
440
441 if (protection & (1 << i))
442 set = 0;
443
444 for (s = 0; s < stm32x_info->ppage_size; s++)
445 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
446 }
447 }
448 else
449 {
450 /* low/medium density flash protection */
451 for (i = 0; i < num_bits; i++)
452 {
453 set = 1;
454
455 if (protection & (1 << i))
456 set = 0;
457
458 for (s = 0; s < stm32x_info->ppage_size; s++)
459 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
460 }
461 }
462
463 return ERROR_OK;
464 }
465
466 static int stm32x_erase(struct flash_bank *bank, int first, int last)
467 {
468 struct target *target = bank->target;
469 int i;
470
471 if (bank->target->state != TARGET_HALTED)
472 {
473 LOG_ERROR("Target not halted");
474 return ERROR_TARGET_NOT_HALTED;
475 }
476
477 if ((first == 0) && (last == (bank->num_sectors - 1)))
478 {
479 return stm32x_mass_erase(bank);
480 }
481
482 /* unlock flash registers */
483 int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
484 if (retval != ERROR_OK)
485 return retval;
486 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
487 if (retval != ERROR_OK)
488 return retval;
489
490 for (i = first; i <= last; i++)
491 {
492 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
493 if (retval != ERROR_OK)
494 return retval;
495 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
496 bank->base + bank->sectors[i].offset);
497 if (retval != ERROR_OK)
498 return retval;
499 retval = target_write_u32(target,
500 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
501 if (retval != ERROR_OK)
502 return retval;
503
504 retval = stm32x_wait_status_busy(bank, 100);
505 if (retval != ERROR_OK)
506 return retval;
507
508 bank->sectors[i].is_erased = 1;
509 }
510
511 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
512 if (retval != ERROR_OK)
513 return retval;
514
515 return ERROR_OK;
516 }
517
518 static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
519 {
520 struct stm32x_flash_bank *stm32x_info = NULL;
521 struct target *target = bank->target;
522 uint16_t prot_reg[4] = {0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF};
523 int i, reg, bit;
524 int status;
525 uint32_t protection;
526
527 stm32x_info = bank->driver_priv;
528
529 if (target->state != TARGET_HALTED)
530 {
531 LOG_ERROR("Target not halted");
532 return ERROR_TARGET_NOT_HALTED;
533 }
534
535 int retval = stm32x_check_operation_supported(bank);
536 if (ERROR_OK != retval)
537 return retval;
538
539 if ((first % stm32x_info->ppage_size) != 0)
540 {
541 LOG_WARNING("aligned start protect sector to a %d sector boundary",
542 stm32x_info->ppage_size);
543 first = first - (first % stm32x_info->ppage_size);
544 }
545 if (((last + 1) % stm32x_info->ppage_size) != 0)
546 {
547 LOG_WARNING("aligned end protect sector to a %d sector boundary",
548 stm32x_info->ppage_size);
549 last++;
550 last = last - (last % stm32x_info->ppage_size);
551 last--;
552 }
553
554 /* medium density - each bit refers to a 4bank protection
555 * high density - each bit refers to a 2bank protection */
556 retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
557 if (retval != ERROR_OK)
558 return retval;
559
560 prot_reg[0] = (uint16_t)protection;
561 prot_reg[1] = (uint16_t)(protection >> 8);
562 prot_reg[2] = (uint16_t)(protection >> 16);
563 prot_reg[3] = (uint16_t)(protection >> 24);
564
565 if (stm32x_info->ppage_size == 2)
566 {
567 /* high density flash */
568
569 /* bit 7 controls sector 62 - 255 protection */
570 if (last > 61)
571 {
572 if (set)
573 prot_reg[3] &= ~(1 << 7);
574 else
575 prot_reg[3] |= (1 << 7);
576 }
577
578 if (first > 61)
579 first = 62;
580 if (last > 61)
581 last = 61;
582
583 for (i = first; i <= last; i++)
584 {
585 reg = (i / stm32x_info->ppage_size) / 8;
586 bit = (i / stm32x_info->ppage_size) - (reg * 8);
587
588 if (set)
589 prot_reg[reg] &= ~(1 << bit);
590 else
591 prot_reg[reg] |= (1 << bit);
592 }
593 }
594 else
595 {
596 /* medium density flash */
597 for (i = first; i <= last; i++)
598 {
599 reg = (i / stm32x_info->ppage_size) / 8;
600 bit = (i / stm32x_info->ppage_size) - (reg * 8);
601
602 if (set)
603 prot_reg[reg] &= ~(1 << bit);
604 else
605 prot_reg[reg] |= (1 << bit);
606 }
607 }
608
609 if ((status = stm32x_erase_options(bank)) != ERROR_OK)
610 return status;
611
612 stm32x_info->option_bytes.protection[0] = prot_reg[0];
613 stm32x_info->option_bytes.protection[1] = prot_reg[1];
614 stm32x_info->option_bytes.protection[2] = prot_reg[2];
615 stm32x_info->option_bytes.protection[3] = prot_reg[3];
616
617 return stm32x_write_options(bank);
618 }
619
620 static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
621 uint32_t offset, uint32_t count)
622 {
623 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
624 struct target *target = bank->target;
625 uint32_t buffer_size = 16384;
626 struct working_area *source;
627 uint32_t address = bank->base + offset;
628 struct reg_param reg_params[5];
629 struct armv7m_algorithm armv7m_info;
630 int retval = ERROR_OK;
631
632 /* see contrib/loaders/flash/stm32f1x.S for src */
633
634 static const uint8_t stm32x_flash_write_code[] = {
635 /* #define STM32_FLASH_CR_OFFSET 0x10 */
636 /* #define STM32_FLASH_SR_OFFSET 0x0C */
637 /* wait_fifo: */
638 0x16, 0x68, /* ldr r6, [r2, #0] */
639 0x00, 0x2e, /* cmp r6, #0 */
640 0x1a, 0xd0, /* beq exit */
641 0x55, 0x68, /* ldr r5, [r2, #4] */
642 0xb5, 0x42, /* cmp r5, r6 */
643 0xf9, 0xd0, /* beq wait_fifo */
644 0x01, 0x26, /* movs r6, #1 */
645 0x06, 0x61, /* str r6, [r0, #STM32_FLASH_CR_OFFSET] */
646 0x35, 0xf8, 0x02, 0x6b, /* ldrh r6, [r5], #2 */
647 0x24, 0xf8, 0x02, 0x6b, /* strh r6, [r4], #2 */
648 /* busy: */
649 0xc6, 0x68, /* ldr r6, [r0, #STM32_FLASH_SR_OFFSET] */
650 0x16, 0xf0, 0x01, 0x0f, /* tst r6, #1 */
651 0xfb, 0xd1, /* bne busy */
652 0x16, 0xf0, 0x14, 0x0f, /* tst r6, #0x14 */
653 0x07, 0xd1, /* bne error */
654 0x9d, 0x42, /* cmp r5, r3 */
655 0x28, 0xbf, /* it cs */
656 0x02, 0xf1, 0x08, 0x05, /* addcs r5, r2, #8 */
657 0x55, 0x60, /* str r5, [r2, #4] */
658 0x01, 0x39, /* subs r1, r1, #1 */
659 0x19, 0xb1, /* cbz r1, exit */
660 0xe4, 0xe7, /* b wait_fifo */
661 /* error: */
662 0x00, 0x20, /* movs r0, #0 */
663 0xc2, 0xf8, 0x02, 0x00, /* str r0, [r2, #2] */
664 /* exit: */
665 0x30, 0x46, /* mov r0, r6 */
666 0x00, 0xbe, /* bkpt #0 */
667 };
668
669 /* flash write code */
670 if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
671 &stm32x_info->write_algorithm) != ERROR_OK)
672 {
673 LOG_WARNING("no working area available, can't do block memory writes");
674 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
675 };
676
677 if ((retval = target_write_buffer(target, stm32x_info->write_algorithm->address,
678 sizeof(stm32x_flash_write_code),
679 (uint8_t*)stm32x_flash_write_code)) != ERROR_OK)
680 return retval;
681
682 /* memory buffer */
683 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
684 {
685 buffer_size /= 2;
686 buffer_size &= ~3UL; // Make sure it's 4 byte aligned
687 if (buffer_size <= 256)
688 {
689 /* if we already allocated the writing code, but failed to get a
690 * buffer, free the algorithm */
691 if (stm32x_info->write_algorithm)
692 target_free_working_area(target, stm32x_info->write_algorithm);
693
694 LOG_WARNING("no large enough working area available, can't do block memory writes");
695 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
696 }
697 };
698
699 /* Set up working area. First word is write pointer, second word is read pointer,
700 * rest is fifo data area. */
701 uint32_t wp_addr = source->address;
702 uint32_t rp_addr = source->address + 4;
703 uint32_t fifo_start_addr = source->address + 8;
704 uint32_t fifo_end_addr = source->address + source->size;
705
706 uint32_t wp = fifo_start_addr;
707 uint32_t rp = fifo_start_addr;
708
709 retval = target_write_u32(target, wp_addr, wp);
710 if (retval != ERROR_OK)
711 return retval;
712 retval = target_write_u32(target, rp_addr, rp);
713 if (retval != ERROR_OK)
714 return retval;
715
716 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
717 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* count (halfword-16bit) */
718 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* buffer start */
719 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* buffer end */
720 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
721
722 buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
723 buf_set_u32(reg_params[1].value, 0, 32, count);
724 buf_set_u32(reg_params[2].value, 0, 32, source->address);
725 buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
726 buf_set_u32(reg_params[4].value, 0, 32, address);
727
728 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
729 armv7m_info.core_mode = ARMV7M_MODE_ANY;
730
731 /* Start up algorithm on target and let it idle while writing the first chunk */
732 if ((retval = target_start_algorithm(target, 0, NULL, 5, reg_params,
733 stm32x_info->write_algorithm->address,
734 0,
735 &armv7m_info)) != ERROR_OK)
736 {
737 LOG_ERROR("error starting stm32x flash write algorithm");
738 goto cleanup;
739 }
740
741 while (count > 0)
742 {
743 retval = target_read_u32(target, rp_addr, &rp);
744 if (retval != ERROR_OK)
745 {
746 LOG_ERROR("failed to get read pointer");
747 break;
748 }
749
750 LOG_DEBUG("count 0x%"PRIx32" wp 0x%"PRIx32" rp 0x%"PRIx32, count, wp, rp);
751
752 if (rp == 0)
753 {
754 LOG_ERROR("flash write algorithm aborted by target");
755 retval = ERROR_FLASH_OPERATION_FAILED;
756 break;
757 }
758
759 if ((rp & 1) || rp < fifo_start_addr || rp >= fifo_end_addr)
760 {
761 LOG_ERROR("corrupted fifo read pointer 0x%"PRIx32, rp);
762 break;
763 }
764
765 /* Count the number of bytes available in the fifo without
766 * crossing the wrap around. Make sure to not fill it completely,
767 * because that would make wp == rp and that's the empty condition. */
768 uint32_t thisrun_bytes;
769 if (rp > wp)
770 thisrun_bytes = rp - wp - 2;
771 else if (rp > fifo_start_addr)
772 thisrun_bytes = fifo_end_addr - wp;
773 else
774 thisrun_bytes = fifo_end_addr - wp - 2;
775
776 if (thisrun_bytes == 0)
777 {
778 /* Throttle polling a bit if transfer is (much) faster than flash
779 * programming. The exact delay shouldn't matter as long as it's
780 * less than buffer size / flash speed. This is very unlikely to
781 * run when using high latency connections such as USB. */
782 alive_sleep(10);
783 continue;
784 }
785
786 /* Limit to the amount of data we actually want to write */
787 if (thisrun_bytes > count * 2)
788 thisrun_bytes = count * 2;
789
790 /* Write data to fifo */
791 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
792 if (retval != ERROR_OK)
793 break;
794
795 /* Update counters and wrap write pointer */
796 buffer += thisrun_bytes;
797 count -= thisrun_bytes / 2;
798 wp += thisrun_bytes;
799 if (wp >= fifo_end_addr)
800 wp = fifo_start_addr;
801
802 /* Store updated write pointer to target */
803 retval = target_write_u32(target, wp_addr, wp);
804 if (retval != ERROR_OK)
805 break;
806 }
807
808 if (retval != ERROR_OK)
809 {
810 /* abort flash write algorithm on target */
811 target_write_u32(target, wp_addr, 0);
812 }
813
814 int retval2;
815 if ((retval2 = target_wait_algorithm(target, 0, NULL, 5, reg_params,
816 0,
817 10000,
818 &armv7m_info)) != ERROR_OK)
819 {
820 LOG_ERROR("error waiting for stm32x flash write algorithm");
821 retval = retval2;
822 }
823
824 if (retval == ERROR_FLASH_OPERATION_FAILED)
825 {
826 LOG_ERROR("flash write failed at address 0x%"PRIx32,
827 buf_get_u32(reg_params[4].value, 0, 32));
828
829 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_PGERR)
830 {
831 LOG_ERROR("flash memory not erased before writing");
832 /* Clear but report errors */
833 target_write_u32(target, STM32_FLASH_SR_B0, FLASH_PGERR);
834 }
835
836 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_WRPRTERR)
837 {
838 LOG_ERROR("flash memory write protected");
839 /* Clear but report errors */
840 target_write_u32(target, STM32_FLASH_SR_B0, FLASH_WRPRTERR);
841 }
842 }
843
844 cleanup:
845 target_free_working_area(target, source);
846 target_free_working_area(target, stm32x_info->write_algorithm);
847
848 destroy_reg_param(&reg_params[0]);
849 destroy_reg_param(&reg_params[1]);
850 destroy_reg_param(&reg_params[2]);
851 destroy_reg_param(&reg_params[3]);
852 destroy_reg_param(&reg_params[4]);
853
854 return retval;
855 }
856
857 static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
858 uint32_t offset, uint32_t count)
859 {
860 struct target *target = bank->target;
861 uint32_t words_remaining = (count / 2);
862 uint32_t bytes_remaining = (count & 0x00000001);
863 uint32_t address = bank->base + offset;
864 uint32_t bytes_written = 0;
865 int retval;
866
867 if (bank->target->state != TARGET_HALTED)
868 {
869 LOG_ERROR("Target not halted");
870 return ERROR_TARGET_NOT_HALTED;
871 }
872
873 if (offset & 0x1)
874 {
875 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
876 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
877 }
878
879 /* unlock flash registers */
880 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
881 if (retval != ERROR_OK)
882 return retval;
883 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
884 if (retval != ERROR_OK)
885 return retval;
886
887 /* multiple half words (2-byte) to be programmed? */
888 if (words_remaining > 0)
889 {
890 /* try using a block write */
891 if ((retval = stm32x_write_block(bank, buffer, offset, words_remaining)) != ERROR_OK)
892 {
893 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
894 {
895 /* if block write failed (no sufficient working area),
896 * we use normal (slow) single dword accesses */
897 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
898 }
899 }
900 else
901 {
902 buffer += words_remaining * 2;
903 address += words_remaining * 2;
904 words_remaining = 0;
905 }
906 }
907
908 if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
909 return retval;
910
911 while (words_remaining > 0)
912 {
913 uint16_t value;
914 memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
915
916 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
917 if (retval != ERROR_OK)
918 return retval;
919 retval = target_write_u16(target, address, value);
920 if (retval != ERROR_OK)
921 return retval;
922
923 retval = stm32x_wait_status_busy(bank, 5);
924 if (retval != ERROR_OK)
925 return retval;
926
927 bytes_written += 2;
928 words_remaining--;
929 address += 2;
930 }
931
932 if (bytes_remaining)
933 {
934 uint16_t value = 0xffff;
935 memcpy(&value, buffer + bytes_written, bytes_remaining);
936
937 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
938 if (retval != ERROR_OK)
939 return retval;
940 retval = target_write_u16(target, address, value);
941 if (retval != ERROR_OK)
942 return retval;
943
944 retval = stm32x_wait_status_busy(bank, 5);
945 if (retval != ERROR_OK)
946 return retval;
947 }
948
949 return target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
950 }
951
952 static int stm32x_probe(struct flash_bank *bank)
953 {
954 struct target *target = bank->target;
955 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
956 int i;
957 uint16_t flash_size_in_kb;
958 uint32_t device_id;
959 int page_size;
960 uint32_t base_address = 0x08000000;
961
962 stm32x_info->probed = 0;
963 stm32x_info->register_base = FLASH_REG_BASE_B0;
964
965 /* read stm32 device id register */
966 int retval = target_read_u32(target, 0xE0042000, &device_id);
967 if (retval != ERROR_OK)
968 return retval;
969 LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
970
971 /* get flash size from target. */
972 retval = target_read_u16(target, 0x1FFFF7E0, &flash_size_in_kb);
973 if (retval != ERROR_OK)
974 {
975 LOG_WARNING("failed reading flash size, default to max target family");
976 /* failed reading flash size, default to max target family */
977 flash_size_in_kb = 0xffff;
978 }
979
980 if ((device_id & 0x7ff) == 0x410)
981 {
982 /* medium density - we have 1k pages
983 * 4 pages for a protection area */
984 page_size = 1024;
985 stm32x_info->ppage_size = 4;
986
987 /* check for early silicon */
988 if (flash_size_in_kb == 0xffff)
989 {
990 /* number of sectors incorrect on revA */
991 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
992 flash_size_in_kb = 128;
993 }
994 }
995 else if ((device_id & 0x7ff) == 0x412)
996 {
997 /* low density - we have 1k pages
998 * 4 pages for a protection area */
999 page_size = 1024;
1000 stm32x_info->ppage_size = 4;
1001
1002 /* check for early silicon */
1003 if (flash_size_in_kb == 0xffff)
1004 {
1005 /* number of sectors incorrect on revA */
1006 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 32k flash");
1007 flash_size_in_kb = 32;
1008 }
1009 }
1010 else if ((device_id & 0x7ff) == 0x414)
1011 {
1012 /* high density - we have 2k pages
1013 * 2 pages for a protection area */
1014 page_size = 2048;
1015 stm32x_info->ppage_size = 2;
1016
1017 /* check for early silicon */
1018 if (flash_size_in_kb == 0xffff)
1019 {
1020 /* number of sectors incorrect on revZ */
1021 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 512k flash");
1022 flash_size_in_kb = 512;
1023 }
1024 }
1025 else if ((device_id & 0x7ff) == 0x418)
1026 {
1027 /* connectivity line density - we have 2k pages
1028 * 2 pages for a protection area */
1029 page_size = 2048;
1030 stm32x_info->ppage_size = 2;
1031
1032 /* check for early silicon */
1033 if (flash_size_in_kb == 0xffff)
1034 {
1035 /* number of sectors incorrect on revZ */
1036 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 256k flash");
1037 flash_size_in_kb = 256;
1038 }
1039 }
1040 else if ((device_id & 0x7ff) == 0x420)
1041 {
1042 /* value line density - we have 1k pages
1043 * 4 pages for a protection area */
1044 page_size = 1024;
1045 stm32x_info->ppage_size = 4;
1046
1047 /* check for early silicon */
1048 if (flash_size_in_kb == 0xffff)
1049 {
1050 /* number of sectors may be incorrrect on early silicon */
1051 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
1052 flash_size_in_kb = 128;
1053 }
1054 }
1055 else if ((device_id & 0x7ff) == 0x428)
1056 {
1057 /* value line High density - we have 2k pages
1058 * 4 pages for a protection area */
1059 page_size = 2048;
1060 stm32x_info->ppage_size = 4;
1061
1062 /* check for early silicon */
1063 if (flash_size_in_kb == 0xffff)
1064 {
1065 /* number of sectors may be incorrrect on early silicon */
1066 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
1067 flash_size_in_kb = 128;
1068 }
1069 }
1070
1071 else if ((device_id & 0x7ff) == 0x430)
1072 {
1073 /* xl line density - we have 2k pages
1074 * 2 pages for a protection area */
1075 page_size = 2048;
1076 stm32x_info->ppage_size = 2;
1077 stm32x_info->has_dual_banks = true;
1078
1079 /* check for early silicon */
1080 if (flash_size_in_kb == 0xffff)
1081 {
1082 /* number of sectors may be incorrrect on early silicon */
1083 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 1024k flash");
1084 flash_size_in_kb = 1024;
1085 }
1086
1087 /* split reported size into matching bank */
1088 if (bank->base != 0x08080000)
1089 {
1090 /* bank 0 will be fixed 512k */
1091 flash_size_in_kb = 512;
1092 }
1093 else
1094 {
1095 flash_size_in_kb -= 512;
1096 /* bank1 also uses a register offset */
1097 stm32x_info->register_base = FLASH_REG_BASE_B1;
1098 base_address = 0x08080000;
1099 }
1100 }
1101 else
1102 {
1103 LOG_WARNING("Cannot identify target as a STM32 family.");
1104 return ERROR_FAIL;
1105 }
1106
1107 LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
1108
1109 /* did we assign flash size? */
1110 assert(flash_size_in_kb != 0xffff);
1111
1112 /* calculate numbers of pages */
1113 int num_pages = flash_size_in_kb * 1024 / page_size;
1114
1115 /* check that calculation result makes sense */
1116 assert(num_pages > 0);
1117
1118 if (bank->sectors)
1119 {
1120 free(bank->sectors);
1121 bank->sectors = NULL;
1122 }
1123
1124 bank->base = base_address;
1125 bank->size = (num_pages * page_size);
1126 bank->num_sectors = num_pages;
1127 bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
1128
1129 for (i = 0; i < num_pages; i++)
1130 {
1131 bank->sectors[i].offset = i * page_size;
1132 bank->sectors[i].size = page_size;
1133 bank->sectors[i].is_erased = -1;
1134 bank->sectors[i].is_protected = 1;
1135 }
1136
1137 stm32x_info->probed = 1;
1138
1139 return ERROR_OK;
1140 }
1141
1142 static int stm32x_auto_probe(struct flash_bank *bank)
1143 {
1144 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1145 if (stm32x_info->probed)
1146 return ERROR_OK;
1147 return stm32x_probe(bank);
1148 }
1149
1150 #if 0
1151 COMMAND_HANDLER(stm32x_handle_part_id_command)
1152 {
1153 return ERROR_OK;
1154 }
1155 #endif
1156
1157 static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
1158 {
1159 struct target *target = bank->target;
1160 uint32_t device_id;
1161 int printed;
1162
1163 /* read stm32 device id register */
1164 int retval = target_read_u32(target, 0xE0042000, &device_id);
1165 if (retval != ERROR_OK)
1166 return retval;
1167
1168 if ((device_id & 0x7ff) == 0x410)
1169 {
1170 printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: ");
1171 buf += printed;
1172 buf_size -= printed;
1173
1174 switch (device_id >> 16)
1175 {
1176 case 0x0000:
1177 snprintf(buf, buf_size, "A");
1178 break;
1179
1180 case 0x2000:
1181 snprintf(buf, buf_size, "B");
1182 break;
1183
1184 case 0x2001:
1185 snprintf(buf, buf_size, "Z");
1186 break;
1187
1188 case 0x2003:
1189 snprintf(buf, buf_size, "Y");
1190 break;
1191
1192 default:
1193 snprintf(buf, buf_size, "unknown");
1194 break;
1195 }
1196 }
1197 else if ((device_id & 0x7ff) == 0x412)
1198 {
1199 printed = snprintf(buf, buf_size, "stm32x (Low Density) - Rev: ");
1200 buf += printed;
1201 buf_size -= printed;
1202
1203 switch (device_id >> 16)
1204 {
1205 case 0x1000:
1206 snprintf(buf, buf_size, "A");
1207 break;
1208
1209 default:
1210 snprintf(buf, buf_size, "unknown");
1211 break;
1212 }
1213 }
1214 else if ((device_id & 0x7ff) == 0x414)
1215 {
1216 printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: ");
1217 buf += printed;
1218 buf_size -= printed;
1219
1220 switch (device_id >> 16)
1221 {
1222 case 0x1000:
1223 snprintf(buf, buf_size, "A");
1224 break;
1225
1226 case 0x1001:
1227 snprintf(buf, buf_size, "Z");
1228 break;
1229
1230 default:
1231 snprintf(buf, buf_size, "unknown");
1232 break;
1233 }
1234 }
1235 else if ((device_id & 0x7ff) == 0x418)
1236 {
1237 printed = snprintf(buf, buf_size, "stm32x (Connectivity) - Rev: ");
1238 buf += printed;
1239 buf_size -= printed;
1240
1241 switch (device_id >> 16)
1242 {
1243 case 0x1000:
1244 snprintf(buf, buf_size, "A");
1245 break;
1246
1247 case 0x1001:
1248 snprintf(buf, buf_size, "Z");
1249 break;
1250
1251 default:
1252 snprintf(buf, buf_size, "unknown");
1253 break;
1254 }
1255 }
1256 else if ((device_id & 0x7ff) == 0x420)
1257 {
1258 printed = snprintf(buf, buf_size, "stm32x (Value) - Rev: ");
1259 buf += printed;
1260 buf_size -= printed;
1261
1262 switch (device_id >> 16)
1263 {
1264 case 0x1000:
1265 snprintf(buf, buf_size, "A");
1266 break;
1267
1268 case 0x1001:
1269 snprintf(buf, buf_size, "Z");
1270 break;
1271
1272 default:
1273 snprintf(buf, buf_size, "unknown");
1274 break;
1275 }
1276 }
1277 else if ((device_id & 0x7ff) == 0x428)
1278 {
1279 printed = snprintf(buf, buf_size, "stm32x (Value HD) - Rev: ");
1280 buf += printed;
1281 buf_size -= printed;
1282
1283 switch (device_id >> 16)
1284 {
1285 case 0x1000:
1286 snprintf(buf, buf_size, "A");
1287 break;
1288
1289 case 0x1001:
1290 snprintf(buf, buf_size, "Z");
1291 break;
1292
1293 default:
1294 snprintf(buf, buf_size, "unknown");
1295 break;
1296 }
1297 }
1298 else if ((device_id & 0x7ff) == 0x430)
1299 {
1300 printed = snprintf(buf, buf_size, "stm32x (XL) - Rev: ");
1301 buf += printed;
1302 buf_size -= printed;
1303
1304 switch (device_id >> 16)
1305 {
1306 case 0x1000:
1307 snprintf(buf, buf_size, "A");
1308 break;
1309
1310 default:
1311 snprintf(buf, buf_size, "unknown");
1312 break;
1313 }
1314 }
1315 else
1316 {
1317 snprintf(buf, buf_size, "Cannot identify target as a stm32x\n");
1318 return ERROR_FAIL;
1319 }
1320
1321 return ERROR_OK;
1322 }
1323
1324 COMMAND_HANDLER(stm32x_handle_lock_command)
1325 {
1326 struct target *target = NULL;
1327 struct stm32x_flash_bank *stm32x_info = NULL;
1328
1329 if (CMD_ARGC < 1)
1330 {
1331 return ERROR_COMMAND_SYNTAX_ERROR;
1332 }
1333
1334 struct flash_bank *bank;
1335 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1336 if (ERROR_OK != retval)
1337 return retval;
1338
1339 stm32x_info = bank->driver_priv;
1340
1341 target = bank->target;
1342
1343 if (target->state != TARGET_HALTED)
1344 {
1345 LOG_ERROR("Target not halted");
1346 return ERROR_TARGET_NOT_HALTED;
1347 }
1348
1349 retval = stm32x_check_operation_supported(bank);
1350 if (ERROR_OK != retval)
1351 return retval;
1352
1353 if (stm32x_erase_options(bank) != ERROR_OK)
1354 {
1355 command_print(CMD_CTX, "stm32x failed to erase options");
1356 return ERROR_OK;
1357 }
1358
1359 /* set readout protection */
1360 stm32x_info->option_bytes.RDP = 0;
1361
1362 if (stm32x_write_options(bank) != ERROR_OK)
1363 {
1364 command_print(CMD_CTX, "stm32x failed to lock device");
1365 return ERROR_OK;
1366 }
1367
1368 command_print(CMD_CTX, "stm32x locked");
1369
1370 return ERROR_OK;
1371 }
1372
1373 COMMAND_HANDLER(stm32x_handle_unlock_command)
1374 {
1375 struct target *target = NULL;
1376
1377 if (CMD_ARGC < 1)
1378 {
1379 return ERROR_COMMAND_SYNTAX_ERROR;
1380 }
1381
1382 struct flash_bank *bank;
1383 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1384 if (ERROR_OK != retval)
1385 return retval;
1386
1387 target = bank->target;
1388
1389 if (target->state != TARGET_HALTED)
1390 {
1391 LOG_ERROR("Target not halted");
1392 return ERROR_TARGET_NOT_HALTED;
1393 }
1394
1395 retval = stm32x_check_operation_supported(bank);
1396 if (ERROR_OK != retval)
1397 return retval;
1398
1399 if (stm32x_erase_options(bank) != ERROR_OK)
1400 {
1401 command_print(CMD_CTX, "stm32x failed to unlock device");
1402 return ERROR_OK;
1403 }
1404
1405 if (stm32x_write_options(bank) != ERROR_OK)
1406 {
1407 command_print(CMD_CTX, "stm32x failed to lock device");
1408 return ERROR_OK;
1409 }
1410
1411 command_print(CMD_CTX, "stm32x unlocked.\n"
1412 "INFO: a reset or power cycle is required "
1413 "for the new settings to take effect.");
1414
1415 return ERROR_OK;
1416 }
1417
1418 COMMAND_HANDLER(stm32x_handle_options_read_command)
1419 {
1420 uint32_t optionbyte;
1421 struct target *target = NULL;
1422 struct stm32x_flash_bank *stm32x_info = NULL;
1423
1424 if (CMD_ARGC < 1)
1425 {
1426 return ERROR_COMMAND_SYNTAX_ERROR;
1427 }
1428
1429 struct flash_bank *bank;
1430 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1431 if (ERROR_OK != retval)
1432 return retval;
1433
1434 stm32x_info = bank->driver_priv;
1435
1436 target = bank->target;
1437
1438 if (target->state != TARGET_HALTED)
1439 {
1440 LOG_ERROR("Target not halted");
1441 return ERROR_TARGET_NOT_HALTED;
1442 }
1443
1444 retval = stm32x_check_operation_supported(bank);
1445 if (ERROR_OK != retval)
1446 return retval;
1447
1448 retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
1449 if (retval != ERROR_OK)
1450 return retval;
1451 command_print(CMD_CTX, "Option Byte: 0x%" PRIx32 "", optionbyte);
1452
1453 if (buf_get_u32((uint8_t*)&optionbyte, OPT_ERROR, 1))
1454 command_print(CMD_CTX, "Option Byte Complement Error");
1455
1456 if (buf_get_u32((uint8_t*)&optionbyte, OPT_READOUT, 1))
1457 command_print(CMD_CTX, "Readout Protection On");
1458 else
1459 command_print(CMD_CTX, "Readout Protection Off");
1460
1461 if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDWDGSW, 1))
1462 command_print(CMD_CTX, "Software Watchdog");
1463 else
1464 command_print(CMD_CTX, "Hardware Watchdog");
1465
1466 if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDRSTSTOP, 1))
1467 command_print(CMD_CTX, "Stop: No reset generated");
1468 else
1469 command_print(CMD_CTX, "Stop: Reset generated");
1470
1471 if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDRSTSTDBY, 1))
1472 command_print(CMD_CTX, "Standby: No reset generated");
1473 else
1474 command_print(CMD_CTX, "Standby: Reset generated");
1475
1476 if (stm32x_info->has_dual_banks)
1477 {
1478 if (buf_get_u32((uint8_t*)&optionbyte, OPT_BFB2, 1))
1479 command_print(CMD_CTX, "Boot: Bank 0");
1480 else
1481 command_print(CMD_CTX, "Boot: Bank 1");
1482 }
1483
1484 return ERROR_OK;
1485 }
1486
1487 COMMAND_HANDLER(stm32x_handle_options_write_command)
1488 {
1489 struct target *target = NULL;
1490 struct stm32x_flash_bank *stm32x_info = NULL;
1491 uint16_t optionbyte = 0xF8;
1492
1493 if (CMD_ARGC < 4)
1494 {
1495 return ERROR_COMMAND_SYNTAX_ERROR;
1496 }
1497
1498 struct flash_bank *bank;
1499 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1500 if (ERROR_OK != retval)
1501 return retval;
1502
1503 stm32x_info = bank->driver_priv;
1504
1505 target = bank->target;
1506
1507 if (target->state != TARGET_HALTED)
1508 {
1509 LOG_ERROR("Target not halted");
1510 return ERROR_TARGET_NOT_HALTED;
1511 }
1512
1513 retval = stm32x_check_operation_supported(bank);
1514 if (ERROR_OK != retval)
1515 return retval;
1516
1517 /* REVISIT: ignores some options which we will display...
1518 * and doesn't insist on the specified syntax.
1519 */
1520
1521 /* OPT_RDWDGSW */
1522 if (strcmp(CMD_ARGV[1], "SWWDG") == 0)
1523 {
1524 optionbyte |= (1 << 0);
1525 }
1526 else /* REVISIT must be "HWWDG" then ... */
1527 {
1528 optionbyte &= ~(1 << 0);
1529 }
1530
1531 /* OPT_RDRSTSTOP */
1532 if (strcmp(CMD_ARGV[2], "NORSTSTOP") == 0)
1533 {
1534 optionbyte |= (1 << 1);
1535 }
1536 else /* REVISIT must be "RSTSTNDBY" then ... */
1537 {
1538 optionbyte &= ~(1 << 1);
1539 }
1540
1541 /* OPT_RDRSTSTDBY */
1542 if (strcmp(CMD_ARGV[3], "NORSTSTNDBY") == 0)
1543 {
1544 optionbyte |= (1 << 2);
1545 }
1546 else /* REVISIT must be "RSTSTOP" then ... */
1547 {
1548 optionbyte &= ~(1 << 2);
1549 }
1550
1551 if (CMD_ARGC > 4 && stm32x_info->has_dual_banks)
1552 {
1553 /* OPT_BFB2 */
1554 if (strcmp(CMD_ARGV[4], "BOOT0") == 0)
1555 {
1556 optionbyte |= (1 << 3);
1557 }
1558 else
1559 {
1560 optionbyte &= ~(1 << 3);
1561 }
1562 }
1563
1564 if (stm32x_erase_options(bank) != ERROR_OK)
1565 {
1566 command_print(CMD_CTX, "stm32x failed to erase options");
1567 return ERROR_OK;
1568 }
1569
1570 stm32x_info->option_bytes.user_options = optionbyte;
1571
1572 if (stm32x_write_options(bank) != ERROR_OK)
1573 {
1574 command_print(CMD_CTX, "stm32x failed to write options");
1575 return ERROR_OK;
1576 }
1577
1578 command_print(CMD_CTX, "stm32x write options complete.\n"
1579 "INFO: a reset or power cycle is required "
1580 "for the new settings to take effect.");
1581
1582 return ERROR_OK;
1583 }
1584
1585 static int stm32x_mass_erase(struct flash_bank *bank)
1586 {
1587 struct target *target = bank->target;
1588
1589 if (target->state != TARGET_HALTED)
1590 {
1591 LOG_ERROR("Target not halted");
1592 return ERROR_TARGET_NOT_HALTED;
1593 }
1594
1595 /* unlock option flash registers */
1596 int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
1597 if (retval != ERROR_OK)
1598 return retval;
1599 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
1600 if (retval != ERROR_OK)
1601 return retval;
1602
1603 /* mass erase flash memory */
1604 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
1605 if (retval != ERROR_OK)
1606 return retval;
1607 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER | FLASH_STRT);
1608 if (retval != ERROR_OK)
1609 return retval;
1610
1611 retval = stm32x_wait_status_busy(bank, 100);
1612 if (retval != ERROR_OK)
1613 return retval;
1614
1615 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1616 if (retval != ERROR_OK)
1617 return retval;
1618
1619 return ERROR_OK;
1620 }
1621
1622 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1623 {
1624 int i;
1625
1626 if (CMD_ARGC < 1)
1627 {
1628 return ERROR_COMMAND_SYNTAX_ERROR;
1629 }
1630
1631 struct flash_bank *bank;
1632 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1633 if (ERROR_OK != retval)
1634 return retval;
1635
1636 retval = stm32x_mass_erase(bank);
1637 if (retval == ERROR_OK)
1638 {
1639 /* set all sectors as erased */
1640 for (i = 0; i < bank->num_sectors; i++)
1641 {
1642 bank->sectors[i].is_erased = 1;
1643 }
1644
1645 command_print(CMD_CTX, "stm32x mass erase complete");
1646 }
1647 else
1648 {
1649 command_print(CMD_CTX, "stm32x mass erase failed");
1650 }
1651
1652 return retval;
1653 }
1654
1655 static const struct command_registration stm32x_exec_command_handlers[] = {
1656 {
1657 .name = "lock",
1658 .handler = stm32x_handle_lock_command,
1659 .mode = COMMAND_EXEC,
1660 .usage = "bank_id",
1661 .help = "Lock entire flash device.",
1662 },
1663 {
1664 .name = "unlock",
1665 .handler = stm32x_handle_unlock_command,
1666 .mode = COMMAND_EXEC,
1667 .usage = "bank_id",
1668 .help = "Unlock entire protected flash device.",
1669 },
1670 {
1671 .name = "mass_erase",
1672 .handler = stm32x_handle_mass_erase_command,
1673 .mode = COMMAND_EXEC,
1674 .usage = "bank_id",
1675 .help = "Erase entire flash device.",
1676 },
1677 {
1678 .name = "options_read",
1679 .handler = stm32x_handle_options_read_command,
1680 .mode = COMMAND_EXEC,
1681 .usage = "bank_id",
1682 .help = "Read and display device option byte.",
1683 },
1684 {
1685 .name = "options_write",
1686 .handler = stm32x_handle_options_write_command,
1687 .mode = COMMAND_EXEC,
1688 .usage = "bank_id ('SWWDG'|'HWWDG') "
1689 "('RSTSTNDBY'|'NORSTSTNDBY') "
1690 "('RSTSTOP'|'NORSTSTOP')",
1691 .help = "Replace bits in device option byte.",
1692 },
1693 COMMAND_REGISTRATION_DONE
1694 };
1695
1696 static const struct command_registration stm32x_command_handlers[] = {
1697 {
1698 .name = "stm32f1x",
1699 .mode = COMMAND_ANY,
1700 .help = "stm32f1x flash command group",
1701 .chain = stm32x_exec_command_handlers,
1702 },
1703 COMMAND_REGISTRATION_DONE
1704 };
1705
1706 struct flash_driver stm32f1x_flash = {
1707 .name = "stm32f1x",
1708 .commands = stm32x_command_handlers,
1709 .flash_bank_command = stm32x_flash_bank_command,
1710 .erase = stm32x_erase,
1711 .protect = stm32x_protect,
1712 .write = stm32x_write,
1713 .read = default_flash_read,
1714 .probe = stm32x_probe,
1715 .auto_probe = stm32x_auto_probe,
1716 .erase_check = default_flash_mem_blank_check,
1717 .protect_check = stm32x_protect_check,
1718 .info = get_stm32x_info,
1719 };