flash/nor/nrf5: rename registers by nRF series
[openocd.git] / src / flash / nor / nrf5.c
1 /***************************************************************************
2 * Copyright (C) 2013 Synapse Product Development *
3 * Andrey Smirnov <andrew.smironv@gmail.com> *
4 * Angus Gratton <gus@projectgus.com> *
5 * Erdem U. Altunyurt <spamjunkeater@gmail.com> *
6 * *
7 * This program is free software; you can redistribute it and/or modify *
8 * it under the terms of the GNU General Public License as published by *
9 * the Free Software Foundation; either version 2 of the License, or *
10 * (at your option) any later version. *
11 * *
12 * This program is distributed in the hope that it will be useful, *
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
15 * GNU General Public License for more details. *
16 * *
17 * You should have received a copy of the GNU General Public License *
18 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
19 ***************************************************************************/
20
21 #ifdef HAVE_CONFIG_H
22 #include "config.h"
23 #endif
24
25 #include "imp.h"
26 #include <target/algorithm.h>
27 #include <target/armv7m.h>
28 #include <helper/types.h>
29 #include <helper/time_support.h>
30
31 enum {
32 NRF5_FLASH_BASE = 0x00000000,
33 };
34
35 enum nrf5_ficr_registers {
36 NRF5_FICR_BASE = 0x10000000, /* Factory Information Configuration Registers */
37
38 #define NRF5_FICR_REG(offset) (NRF5_FICR_BASE + offset)
39
40 NRF5_FICR_CODEPAGESIZE = NRF5_FICR_REG(0x010),
41 NRF5_FICR_CODESIZE = NRF5_FICR_REG(0x014),
42
43 NRF51_FICR_CLENR0 = NRF5_FICR_REG(0x028),
44 NRF51_FICR_PPFC = NRF5_FICR_REG(0x02C),
45 NRF51_FICR_NUMRAMBLOCK = NRF5_FICR_REG(0x034),
46 NRF51_FICR_SIZERAMBLOCK0 = NRF5_FICR_REG(0x038),
47 NRF51_FICR_SIZERAMBLOCK1 = NRF5_FICR_REG(0x03C),
48 NRF51_FICR_SIZERAMBLOCK2 = NRF5_FICR_REG(0x040),
49 NRF51_FICR_SIZERAMBLOCK3 = NRF5_FICR_REG(0x044),
50
51 NRF5_FICR_CONFIGID = NRF5_FICR_REG(0x05C),
52 NRF5_FICR_DEVICEID0 = NRF5_FICR_REG(0x060),
53 NRF5_FICR_DEVICEID1 = NRF5_FICR_REG(0x064),
54 NRF5_FICR_ER0 = NRF5_FICR_REG(0x080),
55 NRF5_FICR_ER1 = NRF5_FICR_REG(0x084),
56 NRF5_FICR_ER2 = NRF5_FICR_REG(0x088),
57 NRF5_FICR_ER3 = NRF5_FICR_REG(0x08C),
58 NRF5_FICR_IR0 = NRF5_FICR_REG(0x090),
59 NRF5_FICR_IR1 = NRF5_FICR_REG(0x094),
60 NRF5_FICR_IR2 = NRF5_FICR_REG(0x098),
61 NRF5_FICR_IR3 = NRF5_FICR_REG(0x09C),
62 NRF5_FICR_DEVICEADDRTYPE = NRF5_FICR_REG(0x0A0),
63 NRF5_FICR_DEVICEADDR0 = NRF5_FICR_REG(0x0A4),
64 NRF5_FICR_DEVICEADDR1 = NRF5_FICR_REG(0x0A8),
65
66 NRF51_FICR_OVERRIDEN = NRF5_FICR_REG(0x0AC),
67 NRF51_FICR_NRF_1MBIT0 = NRF5_FICR_REG(0x0B0),
68 NRF51_FICR_NRF_1MBIT1 = NRF5_FICR_REG(0x0B4),
69 NRF51_FICR_NRF_1MBIT2 = NRF5_FICR_REG(0x0B8),
70 NRF51_FICR_NRF_1MBIT3 = NRF5_FICR_REG(0x0BC),
71 NRF51_FICR_NRF_1MBIT4 = NRF5_FICR_REG(0x0C0),
72 NRF51_FICR_BLE_1MBIT0 = NRF5_FICR_REG(0x0EC),
73 NRF51_FICR_BLE_1MBIT1 = NRF5_FICR_REG(0x0F0),
74 NRF51_FICR_BLE_1MBIT2 = NRF5_FICR_REG(0x0F4),
75 NRF51_FICR_BLE_1MBIT3 = NRF5_FICR_REG(0x0F8),
76 NRF51_FICR_BLE_1MBIT4 = NRF5_FICR_REG(0x0FC),
77
78 /* Following registers are available on nRF52 and on nRF51 since rev 3 */
79 NRF5_FICR_INFO_PART = NRF5_FICR_REG(0x100),
80 NRF5_FICR_INFO_VARIANT = NRF5_FICR_REG(0x104),
81 NRF5_FICR_INFO_PACKAGE = NRF5_FICR_REG(0x108),
82 NRF5_FICR_INFO_RAM = NRF5_FICR_REG(0x10C),
83 NRF5_FICR_INFO_FLASH = NRF5_FICR_REG(0x110),
84 };
85
86 enum nrf5_uicr_registers {
87 NRF5_UICR_BASE = 0x10001000, /* User Information
88 * Configuration Regsters */
89
90 #define NRF5_UICR_REG(offset) (NRF5_UICR_BASE + offset)
91
92 NRF51_UICR_CLENR0 = NRF5_UICR_REG(0x000),
93 NRF51_UICR_RBPCONF = NRF5_UICR_REG(0x004),
94 NRF51_UICR_XTALFREQ = NRF5_UICR_REG(0x008),
95 NRF51_UICR_FWID = NRF5_UICR_REG(0x010),
96 };
97
98 enum nrf5_nvmc_registers {
99 NRF5_NVMC_BASE = 0x4001E000, /* Non-Volatile Memory
100 * Controller Registers */
101
102 #define NRF5_NVMC_REG(offset) (NRF5_NVMC_BASE + offset)
103
104 NRF5_NVMC_READY = NRF5_NVMC_REG(0x400),
105 NRF5_NVMC_CONFIG = NRF5_NVMC_REG(0x504),
106 NRF5_NVMC_ERASEPAGE = NRF5_NVMC_REG(0x508),
107 NRF5_NVMC_ERASEALL = NRF5_NVMC_REG(0x50C),
108 NRF5_NVMC_ERASEUICR = NRF5_NVMC_REG(0x514),
109
110 NRF5_BPROT_BASE = 0x40000000,
111 };
112
113 enum nrf5_nvmc_config_bits {
114 NRF5_NVMC_CONFIG_REN = 0x00,
115 NRF5_NVMC_CONFIG_WEN = 0x01,
116 NRF5_NVMC_CONFIG_EEN = 0x02,
117
118 };
119
120 struct nrf52_ficr_info {
121 uint32_t part;
122 uint32_t variant;
123 uint32_t package;
124 uint32_t ram;
125 uint32_t flash;
126 };
127
128 enum nrf5_features {
129 NRF5_FEATURE_SERIES_51 = 1 << 0,
130 NRF5_FEATURE_SERIES_52 = 1 << 1,
131 NRF5_FEATURE_BPROT = 1 << 2,
132 NRF5_FEATURE_ACL_PROT = 1 << 3,
133 };
134
135 struct nrf5_device_spec {
136 uint16_t hwid;
137 const char *part;
138 const char *variant;
139 const char *build_code;
140 unsigned int flash_size_kb;
141 enum nrf5_features features;
142 };
143
144 struct nrf5_info {
145 uint32_t refcount;
146
147 struct nrf5_bank {
148 struct nrf5_info *chip;
149 bool probed;
150 } bank[2];
151 struct target *target;
152
153 /* chip identification stored in nrf5_probe() for use in nrf5_info() */
154 bool ficr_info_valid;
155 struct nrf52_ficr_info ficr_info;
156 const struct nrf5_device_spec *spec;
157 uint32_t hwid;
158 enum nrf5_features features;
159 unsigned int flash_size_kb;
160 };
161
162 #define NRF51_DEVICE_DEF(id, pt, var, bcode, fsize) \
163 { \
164 .hwid = (id), \
165 .part = pt, \
166 .variant = var, \
167 .build_code = bcode, \
168 .flash_size_kb = (fsize), \
169 .features = NRF5_FEATURE_SERIES_51, \
170 }
171
172 #define NRF5_DEVICE_DEF(id, pt, var, bcode, fsize, features) \
173 { \
174 .hwid = (id), \
175 .part = pt, \
176 .variant = var, \
177 .build_code = bcode, \
178 .flash_size_kb = (fsize), \
179 .features = features, \
180 }
181
182 /* The known devices table below is derived from the "nRF5x series
183 * compatibility matrix" documents, which can be found in the "DocLib" of
184 * nordic:
185 *
186 * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51422_ic_revision_overview
187 * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51822_ic_revision_overview
188 * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51824_ic_revision_overview
189 * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52810/latest/COMP/nrf52810/nRF52810_ic_revision_overview
190 * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52832/latest/COMP/nrf52832/ic_revision_overview
191 * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52840/latest/COMP/nrf52840/nRF52840_ic_revision_overview
192 *
193 * Up to date with Matrix v2.0, plus some additional HWIDs.
194 *
195 * The additional HWIDs apply where the build code in the matrix is
196 * shown as Gx0, Bx0, etc. In these cases the HWID in the matrix is
197 * for x==0, x!=0 means different (unspecified) HWIDs.
198 */
199 static const struct nrf5_device_spec nrf5_known_devices_table[] = {
200 /* nRF51822 Devices (IC rev 1). */
201 NRF51_DEVICE_DEF(0x001D, "51822", "QFAA", "CA/C0", 256),
202 NRF51_DEVICE_DEF(0x0026, "51822", "QFAB", "AA", 128),
203 NRF51_DEVICE_DEF(0x0027, "51822", "QFAB", "A0", 128),
204 NRF51_DEVICE_DEF(0x0020, "51822", "CEAA", "BA", 256),
205 NRF51_DEVICE_DEF(0x002F, "51822", "CEAA", "B0", 256),
206
207 /* Some early nRF51-DK (PCA10028) & nRF51-Dongle (PCA10031) boards
208 with built-in jlink seem to use engineering samples not listed
209 in the nRF51 Series Compatibility Matrix V1.0. */
210 NRF51_DEVICE_DEF(0x0071, "51822", "QFAC", "AB", 256),
211
212 /* nRF51822 Devices (IC rev 2). */
213 NRF51_DEVICE_DEF(0x002A, "51822", "QFAA", "FA0", 256),
214 NRF51_DEVICE_DEF(0x0044, "51822", "QFAA", "GC0", 256),
215 NRF51_DEVICE_DEF(0x003C, "51822", "QFAA", "G0", 256),
216 NRF51_DEVICE_DEF(0x0057, "51822", "QFAA", "G2", 256),
217 NRF51_DEVICE_DEF(0x0058, "51822", "QFAA", "G3", 256),
218 NRF51_DEVICE_DEF(0x004C, "51822", "QFAB", "B0", 128),
219 NRF51_DEVICE_DEF(0x0040, "51822", "CEAA", "CA0", 256),
220 NRF51_DEVICE_DEF(0x0047, "51822", "CEAA", "DA0", 256),
221 NRF51_DEVICE_DEF(0x004D, "51822", "CEAA", "D00", 256),
222
223 /* nRF51822 Devices (IC rev 3). */
224 NRF51_DEVICE_DEF(0x0072, "51822", "QFAA", "H0", 256),
225 NRF51_DEVICE_DEF(0x00D1, "51822", "QFAA", "H2", 256),
226 NRF51_DEVICE_DEF(0x007B, "51822", "QFAB", "C0", 128),
227 NRF51_DEVICE_DEF(0x0083, "51822", "QFAC", "A0", 256),
228 NRF51_DEVICE_DEF(0x0084, "51822", "QFAC", "A1", 256),
229 NRF51_DEVICE_DEF(0x007D, "51822", "CDAB", "A0", 128),
230 NRF51_DEVICE_DEF(0x0079, "51822", "CEAA", "E0", 256),
231 NRF51_DEVICE_DEF(0x0087, "51822", "CFAC", "A0", 256),
232 NRF51_DEVICE_DEF(0x008F, "51822", "QFAA", "H1", 256),
233
234 /* nRF51422 Devices (IC rev 1). */
235 NRF51_DEVICE_DEF(0x001E, "51422", "QFAA", "CA", 256),
236 NRF51_DEVICE_DEF(0x0024, "51422", "QFAA", "C0", 256),
237 NRF51_DEVICE_DEF(0x0031, "51422", "CEAA", "A0A", 256),
238
239 /* nRF51422 Devices (IC rev 2). */
240 NRF51_DEVICE_DEF(0x002D, "51422", "QFAA", "DAA", 256),
241 NRF51_DEVICE_DEF(0x002E, "51422", "QFAA", "E0", 256),
242 NRF51_DEVICE_DEF(0x0061, "51422", "QFAB", "A00", 128),
243 NRF51_DEVICE_DEF(0x0050, "51422", "CEAA", "B0", 256),
244
245 /* nRF51422 Devices (IC rev 3). */
246 NRF51_DEVICE_DEF(0x0073, "51422", "QFAA", "F0", 256),
247 NRF51_DEVICE_DEF(0x007C, "51422", "QFAB", "B0", 128),
248 NRF51_DEVICE_DEF(0x0085, "51422", "QFAC", "A0", 256),
249 NRF51_DEVICE_DEF(0x0086, "51422", "QFAC", "A1", 256),
250 NRF51_DEVICE_DEF(0x007E, "51422", "CDAB", "A0", 128),
251 NRF51_DEVICE_DEF(0x007A, "51422", "CEAA", "C0", 256),
252 NRF51_DEVICE_DEF(0x0088, "51422", "CFAC", "A0", 256),
253
254 /* The driver fully autodects nRF52 series devices by FICR INFO,
255 * no need for nRF52xxx HWIDs in this table */
256 #if 0
257 /* nRF52810 Devices */
258 NRF5_DEVICE_DEF(0x0142, "52810", "QFAA", "B0", 192, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
259 NRF5_DEVICE_DEF(0x0143, "52810", "QCAA", "C0", 192, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
260
261 /* nRF52832 Devices */
262 NRF5_DEVICE_DEF(0x00C7, "52832", "QFAA", "B0", 512, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
263 NRF5_DEVICE_DEF(0x0139, "52832", "QFAA", "E0", 512, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
264 NRF5_DEVICE_DEF(0x00E3, "52832", "CIAA", "B0", 512, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
265
266 /* nRF52840 Devices */
267 NRF5_DEVICE_DEF(0x0150, "52840", "QIAA", "C0", 1024, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_ACL_PROT),
268 #endif
269 };
270
271 struct nrf5_device_package {
272 uint32_t package;
273 const char *code;
274 };
275
276 /* Newer devices have FICR INFO.PACKAGE.
277 * This table converts its value to two character code */
278 static const struct nrf5_device_package nrf5_packages_table[] = {
279 { 0x2000, "QF" },
280 { 0x2001, "CH" },
281 { 0x2002, "CI" },
282 { 0x2005, "CK" },
283 };
284
285 static int nrf5_bank_is_probed(struct flash_bank *bank)
286 {
287 struct nrf5_bank *nbank = bank->driver_priv;
288
289 assert(nbank != NULL);
290
291 return nbank->probed;
292 }
293 static int nrf5_probe(struct flash_bank *bank);
294
295 static int nrf5_get_probed_chip_if_halted(struct flash_bank *bank, struct nrf5_info **chip)
296 {
297 if (bank->target->state != TARGET_HALTED) {
298 LOG_ERROR("Target not halted");
299 return ERROR_TARGET_NOT_HALTED;
300 }
301
302 struct nrf5_bank *nbank = bank->driver_priv;
303 *chip = nbank->chip;
304
305 int probed = nrf5_bank_is_probed(bank);
306 if (probed < 0)
307 return probed;
308 else if (!probed)
309 return nrf5_probe(bank);
310 else
311 return ERROR_OK;
312 }
313
314 static int nrf5_wait_for_nvmc(struct nrf5_info *chip)
315 {
316 uint32_t ready;
317 int res;
318 int timeout_ms = 340;
319 int64_t ts_start = timeval_ms();
320
321 do {
322 res = target_read_u32(chip->target, NRF5_NVMC_READY, &ready);
323 if (res != ERROR_OK) {
324 LOG_ERROR("Couldn't read NVMC_READY register");
325 return res;
326 }
327
328 if (ready == 0x00000001)
329 return ERROR_OK;
330
331 keep_alive();
332
333 } while ((timeval_ms()-ts_start) < timeout_ms);
334
335 LOG_DEBUG("Timed out waiting for NVMC_READY");
336 return ERROR_FLASH_BUSY;
337 }
338
339 static int nrf5_nvmc_erase_enable(struct nrf5_info *chip)
340 {
341 int res;
342 res = target_write_u32(chip->target,
343 NRF5_NVMC_CONFIG,
344 NRF5_NVMC_CONFIG_EEN);
345
346 if (res != ERROR_OK) {
347 LOG_ERROR("Failed to enable erase operation");
348 return res;
349 }
350
351 /*
352 According to NVMC examples in Nordic SDK busy status must be
353 checked after writing to NVMC_CONFIG
354 */
355 res = nrf5_wait_for_nvmc(chip);
356 if (res != ERROR_OK)
357 LOG_ERROR("Erase enable did not complete");
358
359 return res;
360 }
361
362 static int nrf5_nvmc_write_enable(struct nrf5_info *chip)
363 {
364 int res;
365 res = target_write_u32(chip->target,
366 NRF5_NVMC_CONFIG,
367 NRF5_NVMC_CONFIG_WEN);
368
369 if (res != ERROR_OK) {
370 LOG_ERROR("Failed to enable write operation");
371 return res;
372 }
373
374 /*
375 According to NVMC examples in Nordic SDK busy status must be
376 checked after writing to NVMC_CONFIG
377 */
378 res = nrf5_wait_for_nvmc(chip);
379 if (res != ERROR_OK)
380 LOG_ERROR("Write enable did not complete");
381
382 return res;
383 }
384
385 static int nrf5_nvmc_read_only(struct nrf5_info *chip)
386 {
387 int res;
388 res = target_write_u32(chip->target,
389 NRF5_NVMC_CONFIG,
390 NRF5_NVMC_CONFIG_REN);
391
392 if (res != ERROR_OK) {
393 LOG_ERROR("Failed to enable read-only operation");
394 return res;
395 }
396 /*
397 According to NVMC examples in Nordic SDK busy status must be
398 checked after writing to NVMC_CONFIG
399 */
400 res = nrf5_wait_for_nvmc(chip);
401 if (res != ERROR_OK)
402 LOG_ERROR("Read only enable did not complete");
403
404 return res;
405 }
406
407 static int nrf5_nvmc_generic_erase(struct nrf5_info *chip,
408 uint32_t erase_register, uint32_t erase_value)
409 {
410 int res;
411
412 res = nrf5_nvmc_erase_enable(chip);
413 if (res != ERROR_OK)
414 goto error;
415
416 res = target_write_u32(chip->target,
417 erase_register,
418 erase_value);
419 if (res != ERROR_OK)
420 goto set_read_only;
421
422 res = nrf5_wait_for_nvmc(chip);
423 if (res != ERROR_OK)
424 goto set_read_only;
425
426 return nrf5_nvmc_read_only(chip);
427
428 set_read_only:
429 nrf5_nvmc_read_only(chip);
430 error:
431 LOG_ERROR("Failed to erase reg: 0x%08"PRIx32" val: 0x%08"PRIx32,
432 erase_register, erase_value);
433 return ERROR_FAIL;
434 }
435
436 static int nrf5_protect_check_bprot(struct flash_bank *bank)
437 {
438 struct nrf5_bank *nbank = bank->driver_priv;
439 struct nrf5_info *chip = nbank->chip;
440
441 assert(chip != NULL);
442
443 static uint32_t nrf5_bprot_offsets[4] = { 0x600, 0x604, 0x610, 0x614 };
444 uint32_t bprot_reg = 0;
445 int res;
446
447 for (int i = 0; i < bank->num_sectors; i++) {
448 unsigned int bit = i % 32;
449 if (bit == 0) {
450 unsigned int n_reg = i / 32;
451 if (n_reg >= ARRAY_SIZE(nrf5_bprot_offsets))
452 break;
453
454 res = target_read_u32(chip->target, NRF5_BPROT_BASE + nrf5_bprot_offsets[n_reg], &bprot_reg);
455 if (res != ERROR_OK)
456 return res;
457 }
458 bank->sectors[i].is_protected = (bprot_reg & (1 << bit)) ? 1 : 0;
459 }
460 return ERROR_OK;
461 }
462
463 static int nrf5_protect_check(struct flash_bank *bank)
464 {
465 int res;
466 uint32_t clenr0;
467
468 /* UICR cannot be write protected so just return early */
469 if (bank->base == NRF5_UICR_BASE)
470 return ERROR_OK;
471
472 struct nrf5_bank *nbank = bank->driver_priv;
473 struct nrf5_info *chip = nbank->chip;
474
475 assert(chip != NULL);
476
477 if (chip->features & NRF5_FEATURE_BPROT)
478 return nrf5_protect_check_bprot(bank);
479
480 if (!(chip->features & NRF5_FEATURE_SERIES_51)) {
481 LOG_WARNING("Flash protection of this nRF device is not supported");
482 return ERROR_FLASH_OPER_UNSUPPORTED;
483 }
484
485 res = target_read_u32(chip->target, NRF51_FICR_CLENR0,
486 &clenr0);
487 if (res != ERROR_OK) {
488 LOG_ERROR("Couldn't read code region 0 size[FICR]");
489 return res;
490 }
491
492 if (clenr0 == 0xFFFFFFFF) {
493 res = target_read_u32(chip->target, NRF51_UICR_CLENR0,
494 &clenr0);
495 if (res != ERROR_OK) {
496 LOG_ERROR("Couldn't read code region 0 size[UICR]");
497 return res;
498 }
499 }
500
501 for (int i = 0; i < bank->num_sectors; i++)
502 bank->sectors[i].is_protected =
503 clenr0 != 0xFFFFFFFF && bank->sectors[i].offset < clenr0;
504
505 return ERROR_OK;
506 }
507
508 static int nrf5_protect(struct flash_bank *bank, int set, int first, int last)
509 {
510 int res;
511 uint32_t clenr0, ppfc;
512 struct nrf5_info *chip;
513
514 /* UICR cannot be write protected so just bail out early */
515 if (bank->base == NRF5_UICR_BASE)
516 return ERROR_FAIL;
517
518 res = nrf5_get_probed_chip_if_halted(bank, &chip);
519 if (res != ERROR_OK)
520 return res;
521
522 if (!(chip->features & NRF5_FEATURE_SERIES_51)) {
523 LOG_ERROR("Flash protection setting of this nRF device is not supported");
524 return ERROR_FLASH_OPER_UNSUPPORTED;
525 }
526
527 if (first != 0) {
528 LOG_ERROR("Code region 0 must start at the begining of the bank");
529 return ERROR_FAIL;
530 }
531
532 res = target_read_u32(chip->target, NRF51_FICR_PPFC,
533 &ppfc);
534 if (res != ERROR_OK) {
535 LOG_ERROR("Couldn't read PPFC register");
536 return res;
537 }
538
539 if ((ppfc & 0xFF) == 0x00) {
540 LOG_ERROR("Code region 0 size was pre-programmed at the factory, can't change flash protection settings");
541 return ERROR_FAIL;
542 }
543
544 res = target_read_u32(chip->target, NRF51_UICR_CLENR0,
545 &clenr0);
546 if (res != ERROR_OK) {
547 LOG_ERROR("Couldn't read code region 0 size[UICR]");
548 return res;
549 }
550
551 if (clenr0 == 0xFFFFFFFF) {
552 res = target_write_u32(chip->target, NRF51_UICR_CLENR0,
553 clenr0);
554 if (res != ERROR_OK) {
555 LOG_ERROR("Couldn't write code region 0 size[UICR]");
556 return res;
557 }
558
559 } else {
560 LOG_ERROR("You need to perform chip erase before changing the protection settings");
561 }
562
563 nrf5_protect_check(bank);
564
565 return ERROR_OK;
566 }
567
568 static bool nrf5_info_variant_to_str(uint32_t variant, char *bf)
569 {
570 h_u32_to_be((uint8_t *)bf, variant);
571 bf[4] = '\0';
572 if (isalnum(bf[0]) && isalnum(bf[1]) && isalnum(bf[2]) && isalnum(bf[3]))
573 return true;
574
575 strcpy(bf, "xxxx");
576 return false;
577 }
578
579 static const char *nrf5_decode_info_package(uint32_t package)
580 {
581 for (size_t i = 0; i < ARRAY_SIZE(nrf5_packages_table); i++) {
582 if (nrf5_packages_table[i].package == package)
583 return nrf5_packages_table[i].code;
584 }
585 return "xx";
586 }
587
588 static int nrf5_info(struct flash_bank *bank, char *buf, int buf_size)
589 {
590 struct nrf5_bank *nbank = bank->driver_priv;
591 struct nrf5_info *chip = nbank->chip;
592
593 if (chip->spec) {
594 snprintf(buf, buf_size,
595 "nRF%s-%s(build code: %s) %ukB Flash",
596 chip->spec->part, chip->spec->variant, chip->spec->build_code,
597 chip->flash_size_kb);
598
599 } else if (chip->ficr_info_valid) {
600 char variant[5];
601 nrf5_info_variant_to_str(chip->ficr_info.variant, variant);
602 snprintf(buf, buf_size,
603 "nRF%" PRIx32 "-%s%.2s(build code: %s) %" PRIu32
604 "kB Flash, %" PRIu32 "kB RAM",
605 chip->ficr_info.part,
606 nrf5_decode_info_package(chip->ficr_info.package),
607 variant, &variant[2],
608 chip->flash_size_kb,
609 chip->ficr_info.ram);
610
611 } else {
612 snprintf(buf, buf_size, "nRF51xxx (HWID 0x%04" PRIx16 ") %ukB Flash",
613 chip->hwid, chip->flash_size_kb);
614 }
615 return ERROR_OK;
616 }
617
618 static int nrf5_read_ficr_info(struct nrf5_info *chip)
619 {
620 int res;
621 struct target *target = chip->target;
622
623 chip->ficr_info_valid = false;
624
625 res = target_read_u32(target, NRF5_FICR_INFO_PART, &chip->ficr_info.part);
626 if (res != ERROR_OK) {
627 LOG_DEBUG("Couldn't read FICR INFO.PART register");
628 return res;
629 }
630
631 uint32_t series = chip->ficr_info.part & 0xfffff000;
632 switch (series) {
633 case 0x51000:
634 chip->features = NRF5_FEATURE_SERIES_51;
635 break;
636
637 case 0x52000:
638 chip->features = NRF5_FEATURE_SERIES_52;
639
640 switch (chip->ficr_info.part) {
641 case 0x52810:
642 case 0x52832:
643 chip->features |= NRF5_FEATURE_BPROT;
644 break;
645
646 case 0x52840:
647 chip->features |= NRF5_FEATURE_ACL_PROT;
648 break;
649 }
650 break;
651
652 default:
653 LOG_DEBUG("FICR INFO likely not implemented. Invalid PART value 0x%08"
654 PRIx32, chip->ficr_info.part);
655 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
656 }
657
658 /* Now we know the device has FICR INFO filled by something relevant:
659 * Although it is not documented, the tested nRF51 rev 3 devices
660 * have FICR INFO.PART, RAM and FLASH of the same format as nRF52.
661 * VARIANT and PACKAGE coding is unknown for a nRF51 device.
662 * nRF52 devices have FICR INFO documented and always filled. */
663
664 res = target_read_u32(target, NRF5_FICR_INFO_VARIANT, &chip->ficr_info.variant);
665 if (res != ERROR_OK)
666 return res;
667
668 res = target_read_u32(target, NRF5_FICR_INFO_PACKAGE, &chip->ficr_info.package);
669 if (res != ERROR_OK)
670 return res;
671
672 res = target_read_u32(target, NRF5_FICR_INFO_RAM, &chip->ficr_info.ram);
673 if (res != ERROR_OK)
674 return res;
675
676 res = target_read_u32(target, NRF5_FICR_INFO_FLASH, &chip->ficr_info.flash);
677 if (res != ERROR_OK)
678 return res;
679
680 chip->ficr_info_valid = true;
681 return ERROR_OK;
682 }
683
684 static int nrf5_probe(struct flash_bank *bank)
685 {
686 int res;
687 struct nrf5_bank *nbank = bank->driver_priv;
688 struct nrf5_info *chip = nbank->chip;
689 struct target *target = chip->target;
690
691 res = target_read_u32(target, NRF5_FICR_CONFIGID, &chip->hwid);
692 if (res != ERROR_OK) {
693 LOG_ERROR("Couldn't read CONFIGID register");
694 return res;
695 }
696
697 chip->hwid &= 0xFFFF; /* HWID is stored in the lower two
698 * bytes of the CONFIGID register */
699
700 /* guess a nRF51 series if the device has no FICR INFO and we don't know HWID */
701 chip->features = NRF5_FEATURE_SERIES_51;
702
703 /* Don't bail out on error for the case that some old engineering
704 * sample has FICR INFO registers unreadable. We can proceed anyway. */
705 (void)nrf5_read_ficr_info(chip);
706
707 chip->spec = NULL;
708 for (size_t i = 0; i < ARRAY_SIZE(nrf5_known_devices_table); i++) {
709 if (chip->hwid == nrf5_known_devices_table[i].hwid) {
710 chip->spec = &nrf5_known_devices_table[i];
711 chip->features = chip->spec->features;
712 break;
713 }
714 }
715
716 if (chip->spec && chip->ficr_info_valid) {
717 /* check if HWID table gives the same part as FICR INFO */
718 if (chip->ficr_info.part != strtoul(chip->spec->part, NULL, 16))
719 LOG_WARNING("HWID 0x%04" PRIx32 " mismatch: FICR INFO.PART %"
720 PRIx32, chip->hwid, chip->ficr_info.part);
721 }
722
723 /* The value stored in NRF5_FICR_CODEPAGESIZE is the number of bytes in one page of FLASH. */
724 uint32_t flash_page_size;
725 res = target_read_u32(chip->target, NRF5_FICR_CODEPAGESIZE,
726 &flash_page_size);
727 if (res != ERROR_OK) {
728 LOG_ERROR("Couldn't read code page size");
729 return res;
730 }
731
732 /* Note the register name is misleading,
733 * NRF5_FICR_CODESIZE is the number of pages in flash memory, not the number of bytes! */
734 uint32_t num_sectors;
735 res = target_read_u32(chip->target, NRF5_FICR_CODESIZE, &num_sectors);
736 if (res != ERROR_OK) {
737 LOG_ERROR("Couldn't read code memory size");
738 return res;
739 }
740
741 chip->flash_size_kb = num_sectors * flash_page_size / 1024;
742
743 if (!chip->bank[0].probed && !chip->bank[1].probed) {
744 char buf[80];
745 nrf5_info(bank, buf, sizeof(buf));
746 if (!chip->spec && !chip->ficr_info_valid) {
747 LOG_INFO("Unknown device: %s", buf);
748 } else {
749 LOG_INFO("%s", buf);
750 }
751 }
752
753 if (bank->base == NRF5_FLASH_BASE) {
754 /* Sanity check */
755 if (chip->spec && chip->flash_size_kb != chip->spec->flash_size_kb)
756 LOG_WARNING("Chip's reported Flash capacity does not match expected one");
757 if (chip->ficr_info_valid && chip->flash_size_kb != chip->ficr_info.flash)
758 LOG_WARNING("Chip's reported Flash capacity does not match FICR INFO.FLASH");
759
760 bank->num_sectors = num_sectors;
761 bank->size = num_sectors * flash_page_size;
762
763 bank->sectors = alloc_block_array(0, flash_page_size, num_sectors);
764 if (!bank->sectors)
765 return ERROR_FAIL;
766
767 nrf5_protect_check(bank);
768
769 chip->bank[0].probed = true;
770
771 } else {
772 bank->num_sectors = 1;
773 bank->size = flash_page_size;
774
775 bank->sectors = alloc_block_array(0, flash_page_size, num_sectors);
776 if (!bank->sectors)
777 return ERROR_FAIL;
778
779 bank->sectors[0].is_protected = 0;
780
781 chip->bank[1].probed = true;
782 }
783
784 return ERROR_OK;
785 }
786
787 static int nrf5_auto_probe(struct flash_bank *bank)
788 {
789 int probed = nrf5_bank_is_probed(bank);
790
791 if (probed < 0)
792 return probed;
793 else if (probed)
794 return ERROR_OK;
795 else
796 return nrf5_probe(bank);
797 }
798
799 static int nrf5_erase_all(struct nrf5_info *chip)
800 {
801 LOG_DEBUG("Erasing all non-volatile memory");
802 return nrf5_nvmc_generic_erase(chip,
803 NRF5_NVMC_ERASEALL,
804 0x00000001);
805 }
806
807 static int nrf5_erase_page(struct flash_bank *bank,
808 struct nrf5_info *chip,
809 struct flash_sector *sector)
810 {
811 int res;
812
813 LOG_DEBUG("Erasing page at 0x%"PRIx32, sector->offset);
814 if (sector->is_protected) {
815 LOG_ERROR("Cannot erase protected sector at 0x%" PRIx32, sector->offset);
816 return ERROR_FAIL;
817 }
818
819 if (bank->base == NRF5_UICR_BASE) {
820 uint32_t ppfc;
821 res = target_read_u32(chip->target, NRF51_FICR_PPFC,
822 &ppfc);
823 if (res != ERROR_OK) {
824 LOG_ERROR("Couldn't read PPFC register");
825 return res;
826 }
827
828 if ((ppfc & 0xFF) == 0xFF) {
829 /* We can't erase the UICR. Double-check to
830 see if it's already erased before complaining. */
831 default_flash_blank_check(bank);
832 if (sector->is_erased == 1)
833 return ERROR_OK;
834
835 LOG_ERROR("The chip was not pre-programmed with SoftDevice stack and UICR cannot be erased separately. Please issue mass erase before trying to write to this region");
836 return ERROR_FAIL;
837 }
838
839 res = nrf5_nvmc_generic_erase(chip,
840 NRF5_NVMC_ERASEUICR,
841 0x00000001);
842
843
844 } else {
845 res = nrf5_nvmc_generic_erase(chip,
846 NRF5_NVMC_ERASEPAGE,
847 sector->offset);
848 }
849
850 return res;
851 }
852
853 static const uint8_t nrf5_flash_write_code[] = {
854 /* See contrib/loaders/flash/cortex-m0.S */
855 /* <wait_fifo>: */
856 0x0d, 0x68, /* ldr r5, [r1, #0] */
857 0x00, 0x2d, /* cmp r5, #0 */
858 0x0b, 0xd0, /* beq.n 1e <exit> */
859 0x4c, 0x68, /* ldr r4, [r1, #4] */
860 0xac, 0x42, /* cmp r4, r5 */
861 0xf9, 0xd0, /* beq.n 0 <wait_fifo> */
862 0x20, 0xcc, /* ldmia r4!, {r5} */
863 0x20, 0xc3, /* stmia r3!, {r5} */
864 0x94, 0x42, /* cmp r4, r2 */
865 0x01, 0xd3, /* bcc.n 18 <no_wrap> */
866 0x0c, 0x46, /* mov r4, r1 */
867 0x08, 0x34, /* adds r4, #8 */
868 /* <no_wrap>: */
869 0x4c, 0x60, /* str r4, [r1, #4] */
870 0x04, 0x38, /* subs r0, #4 */
871 0xf0, 0xd1, /* bne.n 0 <wait_fifo> */
872 /* <exit>: */
873 0x00, 0xbe /* bkpt 0x0000 */
874 };
875
876
877 /* Start a low level flash write for the specified region */
878 static int nrf5_ll_flash_write(struct nrf5_info *chip, uint32_t address, const uint8_t *buffer, uint32_t bytes)
879 {
880 struct target *target = chip->target;
881 uint32_t buffer_size = 8192;
882 struct working_area *write_algorithm;
883 struct working_area *source;
884 struct reg_param reg_params[4];
885 struct armv7m_algorithm armv7m_info;
886 int retval = ERROR_OK;
887
888 LOG_DEBUG("Writing buffer to flash address=0x%"PRIx32" bytes=0x%"PRIx32, address, bytes);
889 assert(bytes % 4 == 0);
890
891 /* allocate working area with flash programming code */
892 if (target_alloc_working_area(target, sizeof(nrf5_flash_write_code),
893 &write_algorithm) != ERROR_OK) {
894 LOG_WARNING("no working area available, falling back to slow memory writes");
895
896 for (; bytes > 0; bytes -= 4) {
897 retval = target_write_memory(target, address, 4, 1, buffer);
898 if (retval != ERROR_OK)
899 return retval;
900
901 retval = nrf5_wait_for_nvmc(chip);
902 if (retval != ERROR_OK)
903 return retval;
904
905 address += 4;
906 buffer += 4;
907 }
908
909 return ERROR_OK;
910 }
911
912 retval = target_write_buffer(target, write_algorithm->address,
913 sizeof(nrf5_flash_write_code),
914 nrf5_flash_write_code);
915 if (retval != ERROR_OK)
916 return retval;
917
918 /* memory buffer */
919 while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
920 buffer_size /= 2;
921 buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
922 if (buffer_size <= 256) {
923 /* free working area, write algorithm already allocated */
924 target_free_working_area(target, write_algorithm);
925
926 LOG_WARNING("No large enough working area available, can't do block memory writes");
927 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
928 }
929 }
930
931 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
932 armv7m_info.core_mode = ARM_MODE_THREAD;
933
934 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* byte count */
935 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer start */
936 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* buffer end */
937 init_reg_param(&reg_params[3], "r3", 32, PARAM_IN_OUT); /* target address */
938
939 buf_set_u32(reg_params[0].value, 0, 32, bytes);
940 buf_set_u32(reg_params[1].value, 0, 32, source->address);
941 buf_set_u32(reg_params[2].value, 0, 32, source->address + source->size);
942 buf_set_u32(reg_params[3].value, 0, 32, address);
943
944 retval = target_run_flash_async_algorithm(target, buffer, bytes/4, 4,
945 0, NULL,
946 4, reg_params,
947 source->address, source->size,
948 write_algorithm->address, 0,
949 &armv7m_info);
950
951 target_free_working_area(target, source);
952 target_free_working_area(target, write_algorithm);
953
954 destroy_reg_param(&reg_params[0]);
955 destroy_reg_param(&reg_params[1]);
956 destroy_reg_param(&reg_params[2]);
957 destroy_reg_param(&reg_params[3]);
958
959 return retval;
960 }
961
962 static int nrf5_write(struct flash_bank *bank, const uint8_t *buffer,
963 uint32_t offset, uint32_t count)
964 {
965 struct nrf5_info *chip;
966
967 int res = nrf5_get_probed_chip_if_halted(bank, &chip);
968 if (res != ERROR_OK)
969 return res;
970
971 assert(offset % 4 == 0);
972 assert(count % 4 == 0);
973
974 res = nrf5_nvmc_write_enable(chip);
975 if (res != ERROR_OK)
976 goto error;
977
978 res = nrf5_ll_flash_write(chip, bank->base + offset, buffer, count);
979 if (res != ERROR_OK)
980 goto error;
981
982 return nrf5_nvmc_read_only(chip);
983
984 error:
985 nrf5_nvmc_read_only(chip);
986 LOG_ERROR("Failed to write to nrf5 flash");
987 return res;
988 }
989
990 static int nrf5_erase(struct flash_bank *bank, int first, int last)
991 {
992 int res;
993 struct nrf5_info *chip;
994
995 res = nrf5_get_probed_chip_if_halted(bank, &chip);
996 if (res != ERROR_OK)
997 return res;
998
999 /* For each sector to be erased */
1000 for (int s = first; s <= last && res == ERROR_OK; s++)
1001 res = nrf5_erase_page(bank, chip, &bank->sectors[s]);
1002
1003 return res;
1004 }
1005
1006 static void nrf5_free_driver_priv(struct flash_bank *bank)
1007 {
1008 struct nrf5_bank *nbank = bank->driver_priv;
1009 struct nrf5_info *chip = nbank->chip;
1010 if (chip == NULL)
1011 return;
1012
1013 chip->refcount--;
1014 if (chip->refcount == 0) {
1015 free(chip);
1016 bank->driver_priv = NULL;
1017 }
1018 }
1019
1020 FLASH_BANK_COMMAND_HANDLER(nrf5_flash_bank_command)
1021 {
1022 static struct nrf5_info *chip;
1023 struct nrf5_bank *nbank = NULL;
1024
1025 switch (bank->base) {
1026 case NRF5_FLASH_BASE:
1027 case NRF5_UICR_BASE:
1028 break;
1029 default:
1030 LOG_ERROR("Invalid bank address " TARGET_ADDR_FMT, bank->base);
1031 return ERROR_FAIL;
1032 }
1033
1034 if (!chip) {
1035 /* Create a new chip */
1036 chip = calloc(1, sizeof(*chip));
1037 if (!chip)
1038 return ERROR_FAIL;
1039
1040 chip->target = bank->target;
1041 }
1042
1043 switch (bank->base) {
1044 case NRF5_FLASH_BASE:
1045 nbank = &chip->bank[0];
1046 break;
1047 case NRF5_UICR_BASE:
1048 nbank = &chip->bank[1];
1049 break;
1050 }
1051 assert(nbank != NULL);
1052
1053 chip->refcount++;
1054 nbank->chip = chip;
1055 nbank->probed = false;
1056 bank->driver_priv = nbank;
1057 bank->write_start_alignment = bank->write_end_alignment = 4;
1058
1059 return ERROR_OK;
1060 }
1061
1062 COMMAND_HANDLER(nrf5_handle_mass_erase_command)
1063 {
1064 int res;
1065 struct flash_bank *bank = NULL;
1066 struct target *target = get_current_target(CMD_CTX);
1067
1068 res = get_flash_bank_by_addr(target, NRF5_FLASH_BASE, true, &bank);
1069 if (res != ERROR_OK)
1070 return res;
1071
1072 assert(bank != NULL);
1073
1074 struct nrf5_info *chip;
1075
1076 res = nrf5_get_probed_chip_if_halted(bank, &chip);
1077 if (res != ERROR_OK)
1078 return res;
1079
1080 uint32_t ppfc;
1081
1082 res = target_read_u32(target, NRF51_FICR_PPFC,
1083 &ppfc);
1084 if (res != ERROR_OK) {
1085 LOG_ERROR("Couldn't read PPFC register");
1086 return res;
1087 }
1088
1089 if ((ppfc & 0xFF) == 0x00) {
1090 LOG_ERROR("Code region 0 size was pre-programmed at the factory, "
1091 "mass erase command won't work.");
1092 return ERROR_FAIL;
1093 }
1094
1095 res = nrf5_erase_all(chip);
1096 if (res != ERROR_OK) {
1097 LOG_ERROR("Failed to erase the chip");
1098 nrf5_protect_check(bank);
1099 return res;
1100 }
1101
1102 res = nrf5_protect_check(bank);
1103 if (res != ERROR_OK) {
1104 LOG_ERROR("Failed to check chip's write protection");
1105 return res;
1106 }
1107
1108 res = get_flash_bank_by_addr(target, NRF5_UICR_BASE, true, &bank);
1109 if (res != ERROR_OK)
1110 return res;
1111
1112 return ERROR_OK;
1113 }
1114
1115 COMMAND_HANDLER(nrf5_handle_info_command)
1116 {
1117 int res;
1118 struct flash_bank *bank = NULL;
1119 struct target *target = get_current_target(CMD_CTX);
1120
1121 res = get_flash_bank_by_addr(target, NRF5_FLASH_BASE, true, &bank);
1122 if (res != ERROR_OK)
1123 return res;
1124
1125 assert(bank != NULL);
1126
1127 struct nrf5_info *chip;
1128
1129 res = nrf5_get_probed_chip_if_halted(bank, &chip);
1130 if (res != ERROR_OK)
1131 return res;
1132
1133 static struct {
1134 const uint32_t address;
1135 uint32_t value;
1136 } ficr[] = {
1137 { .address = NRF5_FICR_CODEPAGESIZE },
1138 { .address = NRF5_FICR_CODESIZE },
1139 { .address = NRF51_FICR_CLENR0 },
1140 { .address = NRF51_FICR_PPFC },
1141 { .address = NRF51_FICR_NUMRAMBLOCK },
1142 { .address = NRF51_FICR_SIZERAMBLOCK0 },
1143 { .address = NRF51_FICR_SIZERAMBLOCK1 },
1144 { .address = NRF51_FICR_SIZERAMBLOCK2 },
1145 { .address = NRF51_FICR_SIZERAMBLOCK3 },
1146 { .address = NRF5_FICR_CONFIGID },
1147 { .address = NRF5_FICR_DEVICEID0 },
1148 { .address = NRF5_FICR_DEVICEID1 },
1149 { .address = NRF5_FICR_ER0 },
1150 { .address = NRF5_FICR_ER1 },
1151 { .address = NRF5_FICR_ER2 },
1152 { .address = NRF5_FICR_ER3 },
1153 { .address = NRF5_FICR_IR0 },
1154 { .address = NRF5_FICR_IR1 },
1155 { .address = NRF5_FICR_IR2 },
1156 { .address = NRF5_FICR_IR3 },
1157 { .address = NRF5_FICR_DEVICEADDRTYPE },
1158 { .address = NRF5_FICR_DEVICEADDR0 },
1159 { .address = NRF5_FICR_DEVICEADDR1 },
1160 { .address = NRF51_FICR_OVERRIDEN },
1161 { .address = NRF51_FICR_NRF_1MBIT0 },
1162 { .address = NRF51_FICR_NRF_1MBIT1 },
1163 { .address = NRF51_FICR_NRF_1MBIT2 },
1164 { .address = NRF51_FICR_NRF_1MBIT3 },
1165 { .address = NRF51_FICR_NRF_1MBIT4 },
1166 { .address = NRF51_FICR_BLE_1MBIT0 },
1167 { .address = NRF51_FICR_BLE_1MBIT1 },
1168 { .address = NRF51_FICR_BLE_1MBIT2 },
1169 { .address = NRF51_FICR_BLE_1MBIT3 },
1170 { .address = NRF51_FICR_BLE_1MBIT4 },
1171 }, uicr[] = {
1172 { .address = NRF51_UICR_CLENR0, },
1173 { .address = NRF51_UICR_RBPCONF },
1174 { .address = NRF51_UICR_XTALFREQ },
1175 { .address = NRF51_UICR_FWID },
1176 };
1177
1178 for (size_t i = 0; i < ARRAY_SIZE(ficr); i++) {
1179 res = target_read_u32(chip->target, ficr[i].address,
1180 &ficr[i].value);
1181 if (res != ERROR_OK) {
1182 LOG_ERROR("Couldn't read %" PRIx32, ficr[i].address);
1183 return res;
1184 }
1185 }
1186
1187 for (size_t i = 0; i < ARRAY_SIZE(uicr); i++) {
1188 res = target_read_u32(chip->target, uicr[i].address,
1189 &uicr[i].value);
1190 if (res != ERROR_OK) {
1191 LOG_ERROR("Couldn't read %" PRIx32, uicr[i].address);
1192 return res;
1193 }
1194 }
1195
1196 command_print(CMD,
1197 "\n[factory information control block]\n\n"
1198 "code page size: %"PRIu32"B\n"
1199 "code memory size: %"PRIu32"kB\n"
1200 "code region 0 size: %"PRIu32"kB\n"
1201 "pre-programmed code: %s\n"
1202 "number of ram blocks: %"PRIu32"\n"
1203 "ram block 0 size: %"PRIu32"B\n"
1204 "ram block 1 size: %"PRIu32"B\n"
1205 "ram block 2 size: %"PRIu32"B\n"
1206 "ram block 3 size: %"PRIu32 "B\n"
1207 "config id: %" PRIx32 "\n"
1208 "device id: 0x%"PRIx32"%08"PRIx32"\n"
1209 "encryption root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
1210 "identity root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
1211 "device address type: 0x%"PRIx32"\n"
1212 "device address: 0x%"PRIx32"%08"PRIx32"\n"
1213 "override enable: %"PRIx32"\n"
1214 "NRF_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
1215 "BLE_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
1216 "\n[user information control block]\n\n"
1217 "code region 0 size: %"PRIu32"kB\n"
1218 "read back protection configuration: %"PRIx32"\n"
1219 "reset value for XTALFREQ: %"PRIx32"\n"
1220 "firmware id: 0x%04"PRIx32,
1221 ficr[0].value,
1222 (ficr[1].value * ficr[0].value) / 1024,
1223 (ficr[2].value == 0xFFFFFFFF) ? 0 : ficr[2].value / 1024,
1224 ((ficr[3].value & 0xFF) == 0x00) ? "present" : "not present",
1225 ficr[4].value,
1226 ficr[5].value,
1227 (ficr[6].value == 0xFFFFFFFF) ? 0 : ficr[6].value,
1228 (ficr[7].value == 0xFFFFFFFF) ? 0 : ficr[7].value,
1229 (ficr[8].value == 0xFFFFFFFF) ? 0 : ficr[8].value,
1230 ficr[9].value,
1231 ficr[10].value, ficr[11].value,
1232 ficr[12].value, ficr[13].value, ficr[14].value, ficr[15].value,
1233 ficr[16].value, ficr[17].value, ficr[18].value, ficr[19].value,
1234 ficr[20].value,
1235 ficr[21].value, ficr[22].value,
1236 ficr[23].value,
1237 ficr[24].value, ficr[25].value, ficr[26].value, ficr[27].value, ficr[28].value,
1238 ficr[29].value, ficr[30].value, ficr[31].value, ficr[32].value, ficr[33].value,
1239 (uicr[0].value == 0xFFFFFFFF) ? 0 : uicr[0].value / 1024,
1240 uicr[1].value & 0xFFFF,
1241 uicr[2].value & 0xFF,
1242 uicr[3].value & 0xFFFF);
1243
1244 return ERROR_OK;
1245 }
1246
1247 static const struct command_registration nrf5_exec_command_handlers[] = {
1248 {
1249 .name = "mass_erase",
1250 .handler = nrf5_handle_mass_erase_command,
1251 .mode = COMMAND_EXEC,
1252 .help = "Erase all flash contents of the chip.",
1253 .usage = "",
1254 },
1255 {
1256 .name = "info",
1257 .handler = nrf5_handle_info_command,
1258 .mode = COMMAND_EXEC,
1259 .help = "Show FICR and UICR info.",
1260 .usage = "",
1261 },
1262 COMMAND_REGISTRATION_DONE
1263 };
1264
1265 static const struct command_registration nrf5_command_handlers[] = {
1266 {
1267 .name = "nrf5",
1268 .mode = COMMAND_ANY,
1269 .help = "nrf5 flash command group",
1270 .usage = "",
1271 .chain = nrf5_exec_command_handlers,
1272 },
1273 {
1274 .name = "nrf51",
1275 .mode = COMMAND_ANY,
1276 .help = "nrf51 flash command group",
1277 .usage = "",
1278 .chain = nrf5_exec_command_handlers,
1279 },
1280 COMMAND_REGISTRATION_DONE
1281 };
1282
1283 const struct flash_driver nrf5_flash = {
1284 .name = "nrf5",
1285 .commands = nrf5_command_handlers,
1286 .flash_bank_command = nrf5_flash_bank_command,
1287 .info = nrf5_info,
1288 .erase = nrf5_erase,
1289 .protect = nrf5_protect,
1290 .write = nrf5_write,
1291 .read = default_flash_read,
1292 .probe = nrf5_probe,
1293 .auto_probe = nrf5_auto_probe,
1294 .erase_check = default_flash_blank_check,
1295 .protect_check = nrf5_protect_check,
1296 .free_driver_priv = nrf5_free_driver_priv,
1297 };
1298
1299 /* We need to retain the flash-driver name as well as the commands
1300 * for backwards compatability */
1301 const struct flash_driver nrf51_flash = {
1302 .name = "nrf51",
1303 .commands = nrf5_command_handlers,
1304 .flash_bank_command = nrf5_flash_bank_command,
1305 .info = nrf5_info,
1306 .erase = nrf5_erase,
1307 .protect = nrf5_protect,
1308 .write = nrf5_write,
1309 .read = default_flash_read,
1310 .probe = nrf5_probe,
1311 .auto_probe = nrf5_auto_probe,
1312 .erase_check = default_flash_blank_check,
1313 .protect_check = nrf5_protect_check,
1314 .free_driver_priv = nrf5_free_driver_priv,
1315 };