71722c645fef6120155a95e0646a48ec0ae56d14
[openocd.git] / src / flash / nor / kinetis.c
1 /***************************************************************************
2 * Copyright (C) 2011 by Mathias Kuester *
3 * kesmtp@freenet.de *
4 * *
5 * Copyright (C) 2011 sleep(5) ltd *
6 * tomas@sleepfive.com *
7 * *
8 * Copyright (C) 2012 by Christopher D. Kilgour *
9 * techie at whiterocker.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "imp.h"
32 #include "helper/binarybuffer.h"
33
34 /*
35 * Implementation Notes
36 *
37 * The persistent memories in the Kinetis chip families K10 through
38 * K70 are all manipulated with the Flash Memory Module. Some
39 * variants call this module the FTFE, others call it the FTFL. To
40 * indicate that both are considered here, we use FTFX.
41 *
42 * Within the module, according to the chip variant, the persistent
43 * memory is divided into what Freescale terms Program Flash, FlexNVM,
44 * and FlexRAM. All chip variants have Program Flash. Some chip
45 * variants also have FlexNVM and FlexRAM, which always appear
46 * together.
47 *
48 * A given Kinetis chip may have 2 or 4 blocks of flash. Here we map
49 * each block to a separate bank. Each block size varies by chip and
50 * may be determined by the read-only SIM_FCFG1 register. The sector
51 * size within each bank/block varies by the chip granularity as
52 * described below.
53 *
54 * Kinetis offers four different of flash granularities applicable
55 * across the chip families. The granularity is apparently reflected
56 * by at least the reference manual suffix. For example, for chip
57 * MK60FN1M0VLQ12, reference manual K60P144M150SF3RM ends in "SF3RM",
58 * where the "3" indicates there are four flash blocks with 4kiB
59 * sectors. All possible granularities are indicated below.
60 *
61 * The first half of the flash (1 or 2 blocks, depending on the
62 * granularity) is always Program Flash and always starts at address
63 * 0x00000000. The "PFLSH" flag, bit 23 of the read-only SIM_FCFG2
64 * register, determines whether the second half of the flash is also
65 * Program Flash or FlexNVM+FlexRAM. When PFLSH is set, the second
66 * half of flash is Program Flash and is contiguous in the memory map
67 * from the first half. When PFLSH is clear, the second half of flash
68 * is FlexNVM and always starts at address 0x10000000. FlexRAM, which
69 * is also present when PFLSH is clear, always starts at address
70 * 0x14000000.
71 *
72 * The Flash Memory Module provides a register set where flash
73 * commands are loaded to perform flash operations like erase and
74 * program. Different commands are available depending on whether
75 * Program Flash or FlexNVM/FlexRAM is being manipulated. Although
76 * the commands used are quite consistent between flash blocks, the
77 * parameters they accept differ according to the flash granularity.
78 * Some Kinetis chips have different granularity between Program Flash
79 * and FlexNVM/FlexRAM, so flash command arguments may differ between
80 * blocks in the same chip.
81 *
82 * Although not documented as such by Freescale, it appears that bits
83 * 8:7 of the read-only SIM_SDID register reflect the granularity
84 * settings 0..3, so sector sizes and block counts are applicable
85 * according to the following table.
86 */
87 const struct {
88 unsigned pflash_sector_size_bytes;
89 unsigned nvm_sector_size_bytes;
90 unsigned num_blocks;
91 } kinetis_flash_params[4] = {
92 { 1<<10, 1<<10, 2 },
93 { 2<<10, 1<<10, 2 },
94 { 2<<10, 2<<10, 2 },
95 { 4<<10, 4<<10, 4 }
96 };
97
98 struct kinetis_flash_bank {
99 unsigned granularity;
100 unsigned bank_ordinal;
101 uint32_t sector_size;
102 uint32_t protection_size;
103
104 uint32_t sim_sdid;
105 uint32_t sim_fcfg1;
106 uint32_t sim_fcfg2;
107
108 enum {
109 FC_AUTO = 0,
110 FC_PFLASH,
111 FC_FLEX_NVM,
112 FC_FLEX_RAM,
113 } flash_class;
114 };
115
116 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
117 {
118 struct kinetis_flash_bank *bank_info;
119
120 if (CMD_ARGC < 6)
121 return ERROR_COMMAND_SYNTAX_ERROR;
122
123 LOG_INFO("add flash_bank kinetis %s", bank->name);
124
125 bank_info = malloc(sizeof(struct kinetis_flash_bank));
126
127 memset(bank_info, 0, sizeof(struct kinetis_flash_bank));
128
129 bank->driver_priv = bank_info;
130
131 return ERROR_OK;
132 }
133
134 static int kinetis_protect(struct flash_bank *bank, int set, int first,
135 int last)
136 {
137 LOG_WARNING("kinetis_protect not supported yet");
138 /* FIXME: TODO */
139
140 if (bank->target->state != TARGET_HALTED) {
141 LOG_ERROR("Target not halted");
142 return ERROR_TARGET_NOT_HALTED;
143 }
144
145 return ERROR_FLASH_BANK_INVALID;
146 }
147
148 static int kinetis_protect_check(struct flash_bank *bank)
149 {
150 struct kinetis_flash_bank *kinfo = bank->driver_priv;
151
152 if (bank->target->state != TARGET_HALTED) {
153 LOG_ERROR("Target not halted");
154 return ERROR_TARGET_NOT_HALTED;
155 }
156
157 if (kinfo->flash_class == FC_PFLASH) {
158 int result;
159 uint8_t buffer[4];
160 uint32_t fprot, psec;
161 int i, b;
162
163 /* read protection register FTFx_FPROT */
164 result = target_read_memory(bank->target, 0x40020010, 1, 4, buffer);
165
166 if (result != ERROR_OK)
167 return result;
168
169 fprot = target_buffer_get_u32(bank->target, buffer);
170
171 /*
172 * Every bit protects 1/32 of the full flash (not necessarily
173 * just this bank), but we enforce the bank ordinals for
174 * PFlash to start at zero.
175 */
176 b = kinfo->bank_ordinal * (bank->size / kinfo->protection_size);
177 for (psec = 0, i = 0; i < bank->num_sectors; i++) {
178 if ((fprot >> b) & 1)
179 bank->sectors[i].is_protected = 0;
180 else
181 bank->sectors[i].is_protected = 1;
182
183 psec += bank->sectors[i].size;
184
185 if (psec >= kinfo->protection_size) {
186 psec = 0;
187 b++;
188 }
189 }
190 } else {
191 LOG_ERROR("Protection checks for FlexNVM not yet supported");
192 return ERROR_FLASH_BANK_INVALID;
193 }
194
195 return ERROR_OK;
196 }
197
198 static int kinetis_ftfx_command(struct flash_bank *bank, uint32_t w0,
199 uint32_t w1, uint32_t w2, uint8_t *ftfx_fstat)
200 {
201 uint8_t buffer[12];
202 int result, i;
203
204 /* wait for done */
205 for (i = 0; i < 50; i++) {
206 result =
207 target_read_memory(bank->target, 0x40020000, 1, 1, buffer);
208
209 if (result != ERROR_OK)
210 return result;
211
212 if (buffer[0] & 0x80)
213 break;
214
215 buffer[0] = 0x00;
216 }
217
218 if (buffer[0] != 0x80) {
219 /* reset error flags */
220 buffer[0] = 0x30;
221 result =
222 target_write_memory(bank->target, 0x40020000, 1, 1, buffer);
223 if (result != ERROR_OK)
224 return result;
225 }
226
227 target_buffer_set_u32(bank->target, buffer, w0);
228 target_buffer_set_u32(bank->target, buffer + 4, w1);
229 target_buffer_set_u32(bank->target, buffer + 8, w2);
230
231 result = target_write_memory(bank->target, 0x40020004, 4, 3, buffer);
232
233 if (result != ERROR_OK)
234 return result;
235
236 /* start command */
237 buffer[0] = 0x80;
238 result = target_write_memory(bank->target, 0x40020000, 1, 1, buffer);
239 if (result != ERROR_OK)
240 return result;
241
242 /* wait for done */
243 for (i = 0; i < 50; i++) {
244 result =
245 target_read_memory(bank->target, 0x40020000, 1, 1, ftfx_fstat);
246
247 if (result != ERROR_OK)
248 return result;
249
250 if (*ftfx_fstat & 0x80)
251 break;
252 }
253
254 if ((*ftfx_fstat & 0xf0) != 0x80) {
255 LOG_ERROR
256 ("ftfx command failed FSTAT: %02X W0: %08X W1: %08X W2: %08X",
257 *ftfx_fstat, w0, w1, w2);
258
259 return ERROR_FLASH_OPERATION_FAILED;
260 }
261
262 return ERROR_OK;
263 }
264
265 static int kinetis_erase(struct flash_bank *bank, int first, int last)
266 {
267 int result, i;
268 uint32_t w0 = 0, w1 = 0, w2 = 0;
269
270 if (bank->target->state != TARGET_HALTED) {
271 LOG_ERROR("Target not halted");
272 return ERROR_TARGET_NOT_HALTED;
273 }
274
275 if ((first > bank->num_sectors) || (last > bank->num_sectors))
276 return ERROR_FLASH_OPERATION_FAILED;
277
278 /*
279 * FIXME: TODO: use the 'Erase Flash Block' command if the
280 * requested erase is PFlash or NVM and encompasses the entire
281 * block. Should be quicker.
282 */
283 for (i = first; i <= last; i++) {
284 uint8_t ftfx_fstat;
285 /* set command and sector address */
286 w0 = (0x09 << 24) | (bank->base + bank->sectors[i].offset);
287
288 result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat);
289
290 if (result != ERROR_OK) {
291 LOG_WARNING("erase sector %d failed", i);
292 return ERROR_FLASH_OPERATION_FAILED;
293 }
294
295 bank->sectors[i].is_erased = 1;
296 }
297
298 if (first == 0) {
299 LOG_WARNING
300 ("flash configuration field erased, please reset the device");
301 }
302
303 return ERROR_OK;
304 }
305
306 static int kinetis_write(struct flash_bank *bank, uint8_t *buffer,
307 uint32_t offset, uint32_t count)
308 {
309 unsigned int i, result, fallback = 0;
310 uint8_t buf[8];
311 uint32_t wc, w0 = 0, w1 = 0, w2 = 0;
312 struct kinetis_flash_bank *kinfo = bank->driver_priv;
313
314 if (bank->target->state != TARGET_HALTED) {
315 LOG_ERROR("Target not halted");
316 return ERROR_TARGET_NOT_HALTED;
317 }
318
319 if (kinfo->flash_class == FC_FLEX_NVM) {
320 uint8_t ftfx_fstat;
321
322 LOG_DEBUG("flash write into FlexNVM @%08X", offset);
323
324 /* make flex ram available */
325 w0 = (0x81 << 24) | 0x00ff0000;
326
327 result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat);
328
329 if (result != ERROR_OK)
330 return ERROR_FLASH_OPERATION_FAILED;
331
332 /* check if ram ready */
333 result = target_read_memory(bank->target, 0x40020001, 1, 1, buf);
334
335 if (result != ERROR_OK)
336 return result;
337
338 if (!(buf[0] & (1 << 1))) {
339 /* fallback to longword write */
340 fallback = 1;
341
342 LOG_WARNING("ram not ready, fallback to slow longword write (FCNFG: %02X)",
343 buf[0]);
344 }
345 } else {
346 LOG_DEBUG("flash write into PFLASH @08%X", offset);
347 }
348
349
350 /* program section command */
351 if (fallback == 0) {
352 unsigned prog_section_bytes = kinfo->sector_size >> 8;
353 for (i = 0; i < count; i += kinfo->sector_size) {
354 /*
355 * The largest possible Kinetis "section" is
356 * 16 bytes. A full Kinetis sector is always
357 * 256 "section"s.
358 */
359 uint8_t residual_buffer[16];
360 uint8_t ftfx_fstat;
361 uint32_t section_count = 256;
362 uint32_t residual_wc = 0;
363
364 /*
365 * Assume the word count covers an entire
366 * sector.
367 */
368 wc = kinfo->sector_size / 4;
369
370 /*
371 * If bytes to be programmed are less than the
372 * full sector, then determine the number of
373 * full-words to program, and put together the
374 * residual buffer so that a full "section"
375 * may always be programmed.
376 */
377 if ((count - i) < kinfo->sector_size) {
378 /* number of bytes to program beyond full section */
379 unsigned residual_bc = (count-i) % prog_section_bytes;
380
381 /* number of complete words to copy directly from buffer */
382 wc = (count - i) / 4;
383
384 /* number of total sections to write, including residual */
385 section_count = DIV_ROUND_UP((count-i), prog_section_bytes);
386
387 /* any residual bytes delivers a whole residual section */
388 residual_wc = (residual_bc ? prog_section_bytes : 0)/4;
389
390 /* clear residual buffer then populate residual bytes */
391 (void) memset(residual_buffer, 0xff, prog_section_bytes);
392 (void) memcpy(residual_buffer, &buffer[i+4*wc], residual_bc);
393 }
394
395 LOG_DEBUG("write section @ %08X with length %d bytes",
396 offset + i, (count - i));
397
398 /* write data to flexram as whole-words */
399 result = target_write_memory(bank->target, 0x14000000, 4, wc,
400 buffer + i);
401
402 if (result != ERROR_OK) {
403 LOG_ERROR("target_write_memory failed");
404 return result;
405 }
406
407 /* write the residual words to the flexram */
408 if (residual_wc) {
409 result = target_write_memory(bank->target,
410 0x14000000+4*wc,
411 4, residual_wc,
412 residual_buffer);
413
414 if (result != ERROR_OK) {
415 LOG_ERROR("target_write_memory failed");
416 return result;
417 }
418 }
419
420 /* execute section-write command */
421 w0 = (0x0b << 24) | (bank->base + offset + i);
422 w1 = section_count << 16;
423
424 result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat);
425
426 if (result != ERROR_OK)
427 return ERROR_FLASH_OPERATION_FAILED;
428 }
429 }
430 /* program longword command, not supported in "SF3" devices */
431 else if (kinfo->granularity != 3) {
432 for (i = 0; i < count; i += 4) {
433 uint8_t ftfx_fstat;
434
435 LOG_DEBUG("write longword @ %08X", offset + i);
436
437 w0 = (0x06 << 24) | (bank->base + offset + i);
438 w1 = buf_get_u32(buffer + offset + i, 0, 32);
439
440 result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat);
441
442 if (result != ERROR_OK)
443 return ERROR_FLASH_OPERATION_FAILED;
444 }
445 } else {
446 LOG_ERROR("Flash write strategy not implemented");
447 return ERROR_FLASH_OPERATION_FAILED;
448 }
449
450 return ERROR_OK;
451 }
452
453 static int kinetis_read_part_info(struct flash_bank *bank)
454 {
455 int result, i;
456 uint8_t buf[4];
457 uint32_t offset = 0;
458 uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg2_pflsh;
459 uint32_t nvm_size = 0, pf_size = 0, ee_size = 0;
460 unsigned granularity, num_blocks = 0, num_pflash_blocks = 0, num_nvm_blocks = 0,
461 first_nvm_bank = 0, reassign = 0;
462 struct kinetis_flash_bank *kinfo = bank->driver_priv;
463
464 result = target_read_memory(bank->target, 0x40048024, 1, 4, buf);
465 if (result != ERROR_OK)
466 return result;
467 kinfo->sim_sdid = target_buffer_get_u32(bank->target, buf);
468 granularity = (kinfo->sim_sdid >> 7) & 0x03;
469 result = target_read_memory(bank->target, 0x4004804c, 1, 4, buf);
470 if (result != ERROR_OK)
471 return result;
472 kinfo->sim_fcfg1 = target_buffer_get_u32(bank->target, buf);
473 result = target_read_memory(bank->target, 0x40048050, 1, 4, buf);
474 if (result != ERROR_OK)
475 return result;
476 kinfo->sim_fcfg2 = target_buffer_get_u32(bank->target, buf);
477 fcfg2_pflsh = (kinfo->sim_fcfg2 >> 23) & 0x01;
478
479 LOG_DEBUG("SDID: %08X FCFG1: %08X FCFG2: %08X", kinfo->sim_sdid,
480 kinfo->sim_fcfg1, kinfo->sim_fcfg2);
481
482 fcfg1_nvmsize = (uint8_t)((kinfo->sim_fcfg1 >> 28) & 0x0f);
483 fcfg1_pfsize = (uint8_t)((kinfo->sim_fcfg1 >> 24) & 0x0f);
484 fcfg1_eesize = (uint8_t)((kinfo->sim_fcfg1 >> 16) & 0x0f);
485
486 /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
487 if (!fcfg2_pflsh) {
488 switch (fcfg1_nvmsize) {
489 case 0x03:
490 case 0x07:
491 case 0x09:
492 case 0x0b:
493 nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
494 break;
495 case 0x0f:
496 if (granularity == 3)
497 nvm_size = 512<<10;
498 else
499 nvm_size = 256<<10;
500 break;
501 default:
502 nvm_size = 0;
503 break;
504 }
505
506 switch (fcfg1_eesize) {
507 case 0x00:
508 case 0x01:
509 case 0x02:
510 case 0x03:
511 case 0x04:
512 case 0x05:
513 case 0x06:
514 case 0x07:
515 case 0x08:
516 case 0x09:
517 ee_size = (16 << (10 - fcfg1_eesize));
518 break;
519 default:
520 ee_size = 0;
521 break;
522 }
523 }
524
525 switch (fcfg1_pfsize) {
526 case 0x03:
527 case 0x05:
528 case 0x07:
529 case 0x09:
530 case 0x0b:
531 case 0x0d:
532 pf_size = 1 << (14 + (fcfg1_pfsize >> 1));
533 break;
534 case 0x0f:
535 if (granularity == 3)
536 pf_size = 1024<<10;
537 else if (fcfg2_pflsh)
538 pf_size = 512<<10;
539 else
540 pf_size = 256<<10;
541 break;
542 default:
543 pf_size = 0;
544 break;
545 }
546
547 LOG_DEBUG("FlexNVM: %d PFlash: %d FlexRAM: %d PFLSH: %d",
548 nvm_size, pf_size, ee_size, fcfg2_pflsh);
549
550 num_blocks = kinetis_flash_params[granularity].num_blocks;
551 num_pflash_blocks = num_blocks / (2 - fcfg2_pflsh);
552 first_nvm_bank = num_pflash_blocks;
553 num_nvm_blocks = num_blocks - num_pflash_blocks;
554
555 LOG_DEBUG("%d blocks total: %d PFlash, %d FlexNVM",
556 num_blocks, num_pflash_blocks, num_nvm_blocks);
557
558 /*
559 * If the flash class is already assigned, verify the
560 * parameters.
561 */
562 if (kinfo->flash_class != FC_AUTO) {
563 if (kinfo->bank_ordinal != (unsigned) bank->bank_number) {
564 LOG_WARNING("Flash ordinal/bank number mismatch");
565 reassign = 1;
566 } else if (kinfo->granularity != granularity) {
567 LOG_WARNING("Flash granularity mismatch");
568 reassign = 1;
569 } else {
570 switch (kinfo->flash_class) {
571 case FC_PFLASH:
572 if (kinfo->bank_ordinal >= first_nvm_bank) {
573 LOG_WARNING("Class mismatch, bank %d is not PFlash",
574 bank->bank_number);
575 reassign = 1;
576 } else if (bank->size != (pf_size / num_pflash_blocks)) {
577 LOG_WARNING("PFlash size mismatch");
578 reassign = 1;
579 } else if (bank->base !=
580 (0x00000000 + bank->size * kinfo->bank_ordinal)) {
581 LOG_WARNING("PFlash address range mismatch");
582 reassign = 1;
583 } else if (kinfo->sector_size !=
584 kinetis_flash_params[granularity].pflash_sector_size_bytes) {
585 LOG_WARNING("PFlash sector size mismatch");
586 reassign = 1;
587 } else {
588 LOG_DEBUG("PFlash bank %d already configured okay",
589 kinfo->bank_ordinal);
590 }
591 break;
592 case FC_FLEX_NVM:
593 if ((kinfo->bank_ordinal >= num_blocks) ||
594 (kinfo->bank_ordinal < first_nvm_bank)) {
595 LOG_WARNING("Class mismatch, bank %d is not FlexNVM",
596 bank->bank_number);
597 reassign = 1;
598 } else if (bank->size != (nvm_size / num_nvm_blocks)) {
599 LOG_WARNING("FlexNVM size mismatch");
600 reassign = 1;
601 } else if (bank->base !=
602 (0x10000000 + bank->size * kinfo->bank_ordinal)) {
603 LOG_WARNING("FlexNVM address range mismatch");
604 reassign = 1;
605 } else if (kinfo->sector_size !=
606 kinetis_flash_params[granularity].nvm_sector_size_bytes) {
607 LOG_WARNING("FlexNVM sector size mismatch");
608 reassign = 1;
609 } else {
610 LOG_DEBUG("FlexNVM bank %d already configured okay",
611 kinfo->bank_ordinal);
612 }
613 break;
614 case FC_FLEX_RAM:
615 if (kinfo->bank_ordinal != num_blocks) {
616 LOG_WARNING("Class mismatch, bank %d is not FlexRAM",
617 bank->bank_number);
618 reassign = 1;
619 } else if (bank->size != ee_size) {
620 LOG_WARNING("FlexRAM size mismatch");
621 reassign = 1;
622 } else if (bank->base != 0x14000000) {
623 LOG_WARNING("FlexRAM address mismatch");
624 reassign = 1;
625 } else if (kinfo->sector_size !=
626 kinetis_flash_params[granularity].nvm_sector_size_bytes) {
627 LOG_WARNING("FlexRAM sector size mismatch");
628 reassign = 1;
629 } else {
630 LOG_DEBUG("FlexRAM bank %d already configured okay",
631 kinfo->bank_ordinal);
632 }
633 break;
634
635 default:
636 LOG_WARNING("Unknown or inconsistent flash class");
637 reassign = 1;
638 break;
639 }
640 }
641 } else {
642 LOG_INFO("Probing flash info for bank %d", bank->bank_number);
643 reassign = 1;
644 }
645
646 if (!reassign)
647 return ERROR_OK;
648
649 kinfo->granularity = granularity;
650
651 if ((unsigned)bank->bank_number < num_pflash_blocks) {
652 /* pflash, banks start at address zero */
653 kinfo->flash_class = FC_PFLASH;
654 bank->size = (pf_size / num_pflash_blocks);
655 bank->base = 0x00000000 + bank->size * bank->bank_number;
656 kinfo->sector_size = kinetis_flash_params[granularity].pflash_sector_size_bytes;
657 kinfo->protection_size = pf_size / 32;
658 } else if ((unsigned)bank->bank_number < num_blocks) {
659 /* nvm, banks start at address 0x10000000 */
660 kinfo->flash_class = FC_FLEX_NVM;
661 bank->size = (nvm_size / num_nvm_blocks);
662 bank->base = 0x10000000 + bank->size * (bank->bank_number - first_nvm_bank);
663 kinfo->sector_size = kinetis_flash_params[granularity].nvm_sector_size_bytes;
664 kinfo->protection_size = 0; /* FIXME: TODO: depends on DEPART bits, chip */
665 } else if ((unsigned)bank->bank_number == num_blocks) {
666 LOG_ERROR("FlexRAM support not yet implemented");
667 return ERROR_FLASH_OPER_UNSUPPORTED;
668 } else {
669 LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
670 bank->bank_number, num_blocks);
671 return ERROR_FLASH_BANK_INVALID;
672 }
673
674 if (bank->sectors) {
675 free(bank->sectors);
676 bank->sectors = NULL;
677 }
678
679 bank->num_sectors = bank->size / kinfo->sector_size;
680 assert(bank->num_sectors > 0);
681 bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
682
683 for (i = 0; i < bank->num_sectors; i++) {
684 bank->sectors[i].offset = offset;
685 bank->sectors[i].size = kinfo->sector_size;
686 offset += kinfo->sector_size;
687 bank->sectors[i].is_erased = -1;
688 bank->sectors[i].is_protected = 1;
689 }
690
691 return ERROR_OK;
692 }
693
694 static int kinetis_probe(struct flash_bank *bank)
695 {
696 if (bank->target->state != TARGET_HALTED) {
697 LOG_WARNING("Cannot communicate... target not halted.");
698 return ERROR_TARGET_NOT_HALTED;
699 }
700
701 return kinetis_read_part_info(bank);
702 }
703
704 static int kinetis_auto_probe(struct flash_bank *bank)
705 {
706 struct kinetis_flash_bank *kinfo = bank->driver_priv;
707
708 if (kinfo->sim_sdid)
709 return ERROR_OK;
710
711 return kinetis_probe(bank);
712 }
713
714 static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
715 {
716 const char *bank_class_names[] = {
717 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
718 };
719
720 struct kinetis_flash_bank *kinfo = bank->driver_priv;
721
722 (void) snprintf(buf, buf_size,
723 "%s driver for %s flash bank %s at 0x%8.8" PRIx32 "",
724 bank->driver->name, bank_class_names[kinfo->flash_class],
725 bank->name, bank->base);
726
727 return ERROR_OK;
728 }
729
730 static int kinetis_blank_check(struct flash_bank *bank)
731 {
732 struct kinetis_flash_bank *kinfo = bank->driver_priv;
733
734 if (bank->target->state != TARGET_HALTED) {
735 LOG_ERROR("Target not halted");
736 return ERROR_TARGET_NOT_HALTED;
737 }
738
739 if (kinfo->flash_class == FC_PFLASH) {
740 int result;
741 uint32_t w0 = 0, w1 = 0, w2 = 0;
742 uint8_t ftfx_fstat;
743
744 /* check if whole bank is blank */
745 w0 = (0x00 << 24) | bank->base;
746 w1 = 0; /* "normal margin" */
747
748 result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat);
749
750 if (result != ERROR_OK)
751 return result;
752
753 if (ftfx_fstat & 0x01) {
754 /* the whole bank is not erased, check sector-by-sector */
755 int i;
756 for (i = 0; i < bank->num_sectors; i++) {
757 w0 = (0x01 << 24) | (bank->base + bank->sectors[i].offset);
758 w1 = (0x100 << 16) | 0; /* normal margin */
759
760 result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat);
761
762 if (result == ERROR_OK) {
763 bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
764 } else {
765 LOG_DEBUG("Ignoring errored PFlash sector blank-check");
766 bank->sectors[i].is_erased = -1;
767 }
768 }
769 } else {
770 /* the whole bank is erased, update all sectors */
771 int i;
772 for (i = 0; i < bank->num_sectors; i++)
773 bank->sectors[i].is_erased = 1;
774 }
775 } else {
776 LOG_WARNING("kinetis_blank_check not supported yet for FlexNVM");
777 return ERROR_FLASH_OPERATION_FAILED;
778 }
779
780 return ERROR_OK;
781 }
782
783 static int kinetis_flash_read(struct flash_bank *bank,
784 uint8_t *buffer, uint32_t offset, uint32_t count)
785 {
786 LOG_WARNING("kinetis_flash_read not supported yet");
787
788 if (bank->target->state != TARGET_HALTED) {
789 LOG_ERROR("Target not halted");
790 return ERROR_TARGET_NOT_HALTED;
791 }
792
793 return ERROR_FLASH_OPERATION_FAILED;
794 }
795
796 struct flash_driver kinetis_flash = {
797 .name = "kinetis",
798 .flash_bank_command = kinetis_flash_bank_command,
799 .erase = kinetis_erase,
800 .protect = kinetis_protect,
801 .write = kinetis_write,
802 .read = kinetis_flash_read,
803 .probe = kinetis_probe,
804 .auto_probe = kinetis_auto_probe,
805 .erase_check = kinetis_blank_check,
806 .protect_check = kinetis_protect_check,
807 .info = kinetis_info,
808 };