Kinetis: Flash command function matches datasheet
[openocd.git] / src / flash / nor / kinetis.c
1 /***************************************************************************
2 * Copyright (C) 2011 by Mathias Kuester *
3 * kesmtp@freenet.de *
4 * *
5 * Copyright (C) 2011 sleep(5) ltd *
6 * tomas@sleepfive.com *
7 * *
8 * Copyright (C) 2012 by Christopher D. Kilgour *
9 * techie at whiterocker.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "imp.h"
32 #include "helper/binarybuffer.h"
33
34 /*
35 * Implementation Notes
36 *
37 * The persistent memories in the Kinetis chip families K10 through
38 * K70 are all manipulated with the Flash Memory Module. Some
39 * variants call this module the FTFE, others call it the FTFL. To
40 * indicate that both are considered here, we use FTFX.
41 *
42 * Within the module, according to the chip variant, the persistent
43 * memory is divided into what Freescale terms Program Flash, FlexNVM,
44 * and FlexRAM. All chip variants have Program Flash. Some chip
45 * variants also have FlexNVM and FlexRAM, which always appear
46 * together.
47 *
48 * A given Kinetis chip may have 2 or 4 blocks of flash. Here we map
49 * each block to a separate bank. Each block size varies by chip and
50 * may be determined by the read-only SIM_FCFG1 register. The sector
51 * size within each bank/block varies by the chip granularity as
52 * described below.
53 *
54 * Kinetis offers four different of flash granularities applicable
55 * across the chip families. The granularity is apparently reflected
56 * by at least the reference manual suffix. For example, for chip
57 * MK60FN1M0VLQ12, reference manual K60P144M150SF3RM ends in "SF3RM",
58 * where the "3" indicates there are four flash blocks with 4kiB
59 * sectors. All possible granularities are indicated below.
60 *
61 * The first half of the flash (1 or 2 blocks, depending on the
62 * granularity) is always Program Flash and always starts at address
63 * 0x00000000. The "PFLSH" flag, bit 23 of the read-only SIM_FCFG2
64 * register, determines whether the second half of the flash is also
65 * Program Flash or FlexNVM+FlexRAM. When PFLSH is set, the second
66 * half of flash is Program Flash and is contiguous in the memory map
67 * from the first half. When PFLSH is clear, the second half of flash
68 * is FlexNVM and always starts at address 0x10000000. FlexRAM, which
69 * is also present when PFLSH is clear, always starts at address
70 * 0x14000000.
71 *
72 * The Flash Memory Module provides a register set where flash
73 * commands are loaded to perform flash operations like erase and
74 * program. Different commands are available depending on whether
75 * Program Flash or FlexNVM/FlexRAM is being manipulated. Although
76 * the commands used are quite consistent between flash blocks, the
77 * parameters they accept differ according to the flash granularity.
78 * Some Kinetis chips have different granularity between Program Flash
79 * and FlexNVM/FlexRAM, so flash command arguments may differ between
80 * blocks in the same chip.
81 *
82 * Although not documented as such by Freescale, it appears that bits
83 * 8:7 of the read-only SIM_SDID register reflect the granularity
84 * settings 0..3, so sector sizes and block counts are applicable
85 * according to the following table.
86 */
87 const struct {
88 unsigned pflash_sector_size_bytes;
89 unsigned nvm_sector_size_bytes;
90 unsigned num_blocks;
91 } kinetis_flash_params[4] = {
92 { 1<<10, 1<<10, 2 },
93 { 2<<10, 1<<10, 2 },
94 { 2<<10, 2<<10, 2 },
95 { 4<<10, 4<<10, 4 }
96 };
97
98 /* Addressess */
99 #define FLEXRAM 0x14000000
100 #define FTFx_FSTAT 0x40020000
101 #define FTFx_FCNFG 0x40020001
102 #define FTFx_FCCOB3 0x40020004
103 #define FTFx_FPROT3 0x40020010
104 #define SIM_SDID 0x40048024
105 #define SIM_FCFG1 0x4004804c
106 #define SIM_FCFG2 0x40048050
107
108 /* Commands */
109 #define FTFx_CMD_BLOCKSTAT 0x00
110 #define FTFx_CMD_SECTSTAT 0x01
111 #define FTFx_CMD_LWORDPROG 0x06
112 #define FTFx_CMD_SECTERASE 0x09
113 #define FTFx_CMD_SECTWRITE 0x0b
114 #define FTFx_CMD_SETFLEXRAM 0x81
115
116 struct kinetis_flash_bank {
117 unsigned granularity;
118 unsigned bank_ordinal;
119 uint32_t sector_size;
120 uint32_t protection_size;
121
122 uint32_t sim_sdid;
123 uint32_t sim_fcfg1;
124 uint32_t sim_fcfg2;
125
126 enum {
127 FC_AUTO = 0,
128 FC_PFLASH,
129 FC_FLEX_NVM,
130 FC_FLEX_RAM,
131 } flash_class;
132 };
133
134 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
135 {
136 struct kinetis_flash_bank *bank_info;
137
138 if (CMD_ARGC < 6)
139 return ERROR_COMMAND_SYNTAX_ERROR;
140
141 LOG_INFO("add flash_bank kinetis %s", bank->name);
142
143 bank_info = malloc(sizeof(struct kinetis_flash_bank));
144
145 memset(bank_info, 0, sizeof(struct kinetis_flash_bank));
146
147 bank->driver_priv = bank_info;
148
149 return ERROR_OK;
150 }
151
152 static int kinetis_protect(struct flash_bank *bank, int set, int first,
153 int last)
154 {
155 LOG_WARNING("kinetis_protect not supported yet");
156 /* FIXME: TODO */
157
158 if (bank->target->state != TARGET_HALTED) {
159 LOG_ERROR("Target not halted");
160 return ERROR_TARGET_NOT_HALTED;
161 }
162
163 return ERROR_FLASH_BANK_INVALID;
164 }
165
166 static int kinetis_protect_check(struct flash_bank *bank)
167 {
168 struct kinetis_flash_bank *kinfo = bank->driver_priv;
169
170 if (bank->target->state != TARGET_HALTED) {
171 LOG_ERROR("Target not halted");
172 return ERROR_TARGET_NOT_HALTED;
173 }
174
175 if (kinfo->flash_class == FC_PFLASH) {
176 int result;
177 uint8_t buffer[4];
178 uint32_t fprot, psec;
179 int i, b;
180
181 /* read protection register */
182 result = target_read_memory(bank->target, FTFx_FPROT3, 1, 4, buffer);
183
184 if (result != ERROR_OK)
185 return result;
186
187 fprot = target_buffer_get_u32(bank->target, buffer);
188
189 /*
190 * Every bit protects 1/32 of the full flash (not necessarily
191 * just this bank), but we enforce the bank ordinals for
192 * PFlash to start at zero.
193 */
194 b = kinfo->bank_ordinal * (bank->size / kinfo->protection_size);
195 for (psec = 0, i = 0; i < bank->num_sectors; i++) {
196 if ((fprot >> b) & 1)
197 bank->sectors[i].is_protected = 0;
198 else
199 bank->sectors[i].is_protected = 1;
200
201 psec += bank->sectors[i].size;
202
203 if (psec >= kinfo->protection_size) {
204 psec = 0;
205 b++;
206 }
207 }
208 } else {
209 LOG_ERROR("Protection checks for FlexNVM not yet supported");
210 return ERROR_FLASH_BANK_INVALID;
211 }
212
213 return ERROR_OK;
214 }
215
216 static int kinetis_ftfx_command(struct flash_bank *bank, uint8_t fcmd, uint32_t faddr,
217 uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
218 uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
219 uint8_t *ftfx_fstat)
220 {
221 uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
222 fccob7, fccob6, fccob5, fccob4,
223 fccobb, fccoba, fccob9, fccob8};
224 int result, i;
225 uint8_t buffer;
226
227 /* wait for done */
228 for (i = 0; i < 50; i++) {
229 result =
230 target_read_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
231
232 if (result != ERROR_OK)
233 return result;
234
235 if (buffer & 0x80)
236 break;
237
238 buffer = 0x00;
239 }
240
241 if (buffer != 0x80) {
242 /* reset error flags */
243 buffer = 0x30;
244 result =
245 target_write_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
246 if (result != ERROR_OK)
247 return result;
248 }
249
250 result = target_write_memory(bank->target, FTFx_FCCOB3, 4, 3, command);
251
252 if (result != ERROR_OK)
253 return result;
254
255 /* start command */
256 buffer = 0x80;
257 result = target_write_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
258 if (result != ERROR_OK)
259 return result;
260
261 /* wait for done */
262 for (i = 0; i < 50; i++) {
263 result =
264 target_read_memory(bank->target, FTFx_FSTAT, 1, 1, ftfx_fstat);
265
266 if (result != ERROR_OK)
267 return result;
268
269 if (*ftfx_fstat & 0x80)
270 break;
271 }
272
273 if ((*ftfx_fstat & 0xf0) != 0x80) {
274 LOG_ERROR
275 ("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
276 *ftfx_fstat, command[3], command[2], command[1], command[0],
277 command[7], command[6], command[5], command[4],
278 command[11], command[10], command[9], command[8]);
279 return ERROR_FLASH_OPERATION_FAILED;
280 }
281
282 return ERROR_OK;
283 }
284
285 static int kinetis_erase(struct flash_bank *bank, int first, int last)
286 {
287 int result, i;
288
289 if (bank->target->state != TARGET_HALTED) {
290 LOG_ERROR("Target not halted");
291 return ERROR_TARGET_NOT_HALTED;
292 }
293
294 if ((first > bank->num_sectors) || (last > bank->num_sectors))
295 return ERROR_FLASH_OPERATION_FAILED;
296
297 /*
298 * FIXME: TODO: use the 'Erase Flash Block' command if the
299 * requested erase is PFlash or NVM and encompasses the entire
300 * block. Should be quicker.
301 */
302 for (i = first; i <= last; i++) {
303 uint8_t ftfx_fstat;
304 /* set command and sector address */
305 result = kinetis_ftfx_command(bank, FTFx_CMD_SECTERASE, bank->base + bank->sectors[i].offset,
306 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
307
308 if (result != ERROR_OK) {
309 LOG_WARNING("erase sector %d failed", i);
310 return ERROR_FLASH_OPERATION_FAILED;
311 }
312
313 bank->sectors[i].is_erased = 1;
314 }
315
316 if (first == 0) {
317 LOG_WARNING
318 ("flash configuration field erased, please reset the device");
319 }
320
321 return ERROR_OK;
322 }
323
324 static int kinetis_write(struct flash_bank *bank, uint8_t *buffer,
325 uint32_t offset, uint32_t count)
326 {
327 unsigned int i, result, fallback = 0;
328 uint8_t buf[8];
329 uint32_t wc;
330 struct kinetis_flash_bank *kinfo = bank->driver_priv;
331
332 if (bank->target->state != TARGET_HALTED) {
333 LOG_ERROR("Target not halted");
334 return ERROR_TARGET_NOT_HALTED;
335 }
336
337 if (kinfo->flash_class == FC_FLEX_NVM) {
338 uint8_t ftfx_fstat;
339
340 LOG_DEBUG("flash write into FlexNVM @%08X", offset);
341
342 /* make flex ram available */
343 result = kinetis_ftfx_command(bank, FTFx_CMD_SETFLEXRAM, 0x00ff0000, 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
344
345 if (result != ERROR_OK)
346 return ERROR_FLASH_OPERATION_FAILED;
347
348 /* check if ram ready */
349 result = target_read_memory(bank->target, FTFx_FCNFG, 1, 1, buf);
350
351 if (result != ERROR_OK)
352 return result;
353
354 if (!(buf[0] & (1 << 1))) {
355 /* fallback to longword write */
356 fallback = 1;
357
358 LOG_WARNING("ram not ready, fallback to slow longword write (FCNFG: %02X)",
359 buf[0]);
360 }
361 } else {
362 LOG_DEBUG("flash write into PFLASH @08%X", offset);
363 }
364
365
366 /* program section command */
367 if (fallback == 0) {
368 unsigned prog_section_bytes = kinfo->sector_size >> 8;
369 for (i = 0; i < count; i += kinfo->sector_size) {
370 /*
371 * The largest possible Kinetis "section" is
372 * 16 bytes. A full Kinetis sector is always
373 * 256 "section"s.
374 */
375 uint8_t residual_buffer[16];
376 uint8_t ftfx_fstat;
377 uint32_t section_count = 256;
378 uint32_t residual_wc = 0;
379
380 /*
381 * Assume the word count covers an entire
382 * sector.
383 */
384 wc = kinfo->sector_size / 4;
385
386 /*
387 * If bytes to be programmed are less than the
388 * full sector, then determine the number of
389 * full-words to program, and put together the
390 * residual buffer so that a full "section"
391 * may always be programmed.
392 */
393 if ((count - i) < kinfo->sector_size) {
394 /* number of bytes to program beyond full section */
395 unsigned residual_bc = (count-i) % prog_section_bytes;
396
397 /* number of complete words to copy directly from buffer */
398 wc = (count - i) / 4;
399
400 /* number of total sections to write, including residual */
401 section_count = DIV_ROUND_UP((count-i), prog_section_bytes);
402
403 /* any residual bytes delivers a whole residual section */
404 residual_wc = (residual_bc ? prog_section_bytes : 0)/4;
405
406 /* clear residual buffer then populate residual bytes */
407 (void) memset(residual_buffer, 0xff, prog_section_bytes);
408 (void) memcpy(residual_buffer, &buffer[i+4*wc], residual_bc);
409 }
410
411 LOG_DEBUG("write section @ %08X with length %d bytes",
412 offset + i, wc*4);
413
414 /* write data to flexram as whole-words */
415 result = target_write_memory(bank->target, FLEXRAM, 4, wc,
416 buffer + i);
417
418 if (result != ERROR_OK) {
419 LOG_ERROR("target_write_memory failed");
420 return result;
421 }
422
423 /* write the residual words to the flexram */
424 if (residual_wc) {
425 result = target_write_memory(bank->target,
426 FLEXRAM+4*wc,
427 4, residual_wc,
428 residual_buffer);
429
430 if (result != ERROR_OK) {
431 LOG_ERROR("target_write_memory failed");
432 return result;
433 }
434 }
435
436 /* execute section-write command */
437 result = kinetis_ftfx_command(bank, FTFx_CMD_SECTWRITE, bank->base + offset + i,
438 section_count>>8, section_count, 0, 0,
439 0, 0, 0, 0, &ftfx_fstat);
440
441 if (result != ERROR_OK)
442 return ERROR_FLASH_OPERATION_FAILED;
443 }
444 }
445 /* program longword command, not supported in "SF3" devices */
446 else if (kinfo->granularity != 3) {
447 for (i = 0; i < count; i += 4) {
448 uint8_t ftfx_fstat;
449
450 LOG_DEBUG("write longword @ %08X", offset + i);
451
452 uint8_t padding[4] = {0xff, 0xff, 0xff, 0xff};
453 memcpy(padding, buffer + i, MIN(4, count-i));
454 result = kinetis_ftfx_command(bank, FTFx_CMD_LWORDPROG, bank->base + offset + i,
455 padding[3], padding[2], padding[1], padding[0],
456 0, 0, 0, 0, &ftfx_fstat);
457
458 if (result != ERROR_OK)
459 return ERROR_FLASH_OPERATION_FAILED;
460 }
461 } else {
462 LOG_ERROR("Flash write strategy not implemented");
463 return ERROR_FLASH_OPERATION_FAILED;
464 }
465
466 return ERROR_OK;
467 }
468
469 static int kinetis_read_part_info(struct flash_bank *bank)
470 {
471 int result, i;
472 uint8_t buf[4];
473 uint32_t offset = 0;
474 uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg2_pflsh;
475 uint32_t nvm_size = 0, pf_size = 0, ee_size = 0;
476 unsigned granularity, num_blocks = 0, num_pflash_blocks = 0, num_nvm_blocks = 0,
477 first_nvm_bank = 0, reassign = 0;
478 struct kinetis_flash_bank *kinfo = bank->driver_priv;
479
480 result = target_read_memory(bank->target, SIM_SDID, 1, 4, buf);
481 if (result != ERROR_OK)
482 return result;
483 kinfo->sim_sdid = target_buffer_get_u32(bank->target, buf);
484 granularity = (kinfo->sim_sdid >> 7) & 0x03;
485
486 result = target_read_memory(bank->target, SIM_FCFG1, 1, 4, buf);
487 if (result != ERROR_OK)
488 return result;
489 kinfo->sim_fcfg1 = target_buffer_get_u32(bank->target, buf);
490
491 result = target_read_memory(bank->target, SIM_FCFG2, 1, 4, buf);
492 if (result != ERROR_OK)
493 return result;
494 kinfo->sim_fcfg2 = target_buffer_get_u32(bank->target, buf);
495 fcfg2_pflsh = (kinfo->sim_fcfg2 >> 23) & 0x01;
496
497 LOG_DEBUG("SDID: %08X FCFG1: %08X FCFG2: %08X", kinfo->sim_sdid,
498 kinfo->sim_fcfg1, kinfo->sim_fcfg2);
499
500 fcfg1_nvmsize = (uint8_t)((kinfo->sim_fcfg1 >> 28) & 0x0f);
501 fcfg1_pfsize = (uint8_t)((kinfo->sim_fcfg1 >> 24) & 0x0f);
502 fcfg1_eesize = (uint8_t)((kinfo->sim_fcfg1 >> 16) & 0x0f);
503
504 /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
505 if (!fcfg2_pflsh) {
506 switch (fcfg1_nvmsize) {
507 case 0x03:
508 case 0x07:
509 case 0x09:
510 case 0x0b:
511 nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
512 break;
513 case 0x0f:
514 if (granularity == 3)
515 nvm_size = 512<<10;
516 else
517 nvm_size = 256<<10;
518 break;
519 default:
520 nvm_size = 0;
521 break;
522 }
523
524 switch (fcfg1_eesize) {
525 case 0x00:
526 case 0x01:
527 case 0x02:
528 case 0x03:
529 case 0x04:
530 case 0x05:
531 case 0x06:
532 case 0x07:
533 case 0x08:
534 case 0x09:
535 ee_size = (16 << (10 - fcfg1_eesize));
536 break;
537 default:
538 ee_size = 0;
539 break;
540 }
541 }
542
543 switch (fcfg1_pfsize) {
544 case 0x03:
545 case 0x05:
546 case 0x07:
547 case 0x09:
548 case 0x0b:
549 case 0x0d:
550 pf_size = 1 << (14 + (fcfg1_pfsize >> 1));
551 break;
552 case 0x0f:
553 if (granularity == 3)
554 pf_size = 1024<<10;
555 else if (fcfg2_pflsh)
556 pf_size = 512<<10;
557 else
558 pf_size = 256<<10;
559 break;
560 default:
561 pf_size = 0;
562 break;
563 }
564
565 LOG_DEBUG("FlexNVM: %d PFlash: %d FlexRAM: %d PFLSH: %d",
566 nvm_size, pf_size, ee_size, fcfg2_pflsh);
567
568 num_blocks = kinetis_flash_params[granularity].num_blocks;
569 num_pflash_blocks = num_blocks / (2 - fcfg2_pflsh);
570 first_nvm_bank = num_pflash_blocks;
571 num_nvm_blocks = num_blocks - num_pflash_blocks;
572
573 LOG_DEBUG("%d blocks total: %d PFlash, %d FlexNVM",
574 num_blocks, num_pflash_blocks, num_nvm_blocks);
575
576 /*
577 * If the flash class is already assigned, verify the
578 * parameters.
579 */
580 if (kinfo->flash_class != FC_AUTO) {
581 if (kinfo->bank_ordinal != (unsigned) bank->bank_number) {
582 LOG_WARNING("Flash ordinal/bank number mismatch");
583 reassign = 1;
584 } else if (kinfo->granularity != granularity) {
585 LOG_WARNING("Flash granularity mismatch");
586 reassign = 1;
587 } else {
588 switch (kinfo->flash_class) {
589 case FC_PFLASH:
590 if (kinfo->bank_ordinal >= first_nvm_bank) {
591 LOG_WARNING("Class mismatch, bank %d is not PFlash",
592 bank->bank_number);
593 reassign = 1;
594 } else if (bank->size != (pf_size / num_pflash_blocks)) {
595 LOG_WARNING("PFlash size mismatch");
596 reassign = 1;
597 } else if (bank->base !=
598 (0x00000000 + bank->size * kinfo->bank_ordinal)) {
599 LOG_WARNING("PFlash address range mismatch");
600 reassign = 1;
601 } else if (kinfo->sector_size !=
602 kinetis_flash_params[granularity].pflash_sector_size_bytes) {
603 LOG_WARNING("PFlash sector size mismatch");
604 reassign = 1;
605 } else {
606 LOG_DEBUG("PFlash bank %d already configured okay",
607 kinfo->bank_ordinal);
608 }
609 break;
610 case FC_FLEX_NVM:
611 if ((kinfo->bank_ordinal >= num_blocks) ||
612 (kinfo->bank_ordinal < first_nvm_bank)) {
613 LOG_WARNING("Class mismatch, bank %d is not FlexNVM",
614 bank->bank_number);
615 reassign = 1;
616 } else if (bank->size != (nvm_size / num_nvm_blocks)) {
617 LOG_WARNING("FlexNVM size mismatch");
618 reassign = 1;
619 } else if (bank->base !=
620 (0x10000000 + bank->size * kinfo->bank_ordinal)) {
621 LOG_WARNING("FlexNVM address range mismatch");
622 reassign = 1;
623 } else if (kinfo->sector_size !=
624 kinetis_flash_params[granularity].nvm_sector_size_bytes) {
625 LOG_WARNING("FlexNVM sector size mismatch");
626 reassign = 1;
627 } else {
628 LOG_DEBUG("FlexNVM bank %d already configured okay",
629 kinfo->bank_ordinal);
630 }
631 break;
632 case FC_FLEX_RAM:
633 if (kinfo->bank_ordinal != num_blocks) {
634 LOG_WARNING("Class mismatch, bank %d is not FlexRAM",
635 bank->bank_number);
636 reassign = 1;
637 } else if (bank->size != ee_size) {
638 LOG_WARNING("FlexRAM size mismatch");
639 reassign = 1;
640 } else if (bank->base != FLEXRAM) {
641 LOG_WARNING("FlexRAM address mismatch");
642 reassign = 1;
643 } else if (kinfo->sector_size !=
644 kinetis_flash_params[granularity].nvm_sector_size_bytes) {
645 LOG_WARNING("FlexRAM sector size mismatch");
646 reassign = 1;
647 } else {
648 LOG_DEBUG("FlexRAM bank %d already configured okay",
649 kinfo->bank_ordinal);
650 }
651 break;
652
653 default:
654 LOG_WARNING("Unknown or inconsistent flash class");
655 reassign = 1;
656 break;
657 }
658 }
659 } else {
660 LOG_INFO("Probing flash info for bank %d", bank->bank_number);
661 reassign = 1;
662 }
663
664 if (!reassign)
665 return ERROR_OK;
666
667 kinfo->granularity = granularity;
668
669 if ((unsigned)bank->bank_number < num_pflash_blocks) {
670 /* pflash, banks start at address zero */
671 kinfo->flash_class = FC_PFLASH;
672 bank->size = (pf_size / num_pflash_blocks);
673 bank->base = 0x00000000 + bank->size * bank->bank_number;
674 kinfo->sector_size = kinetis_flash_params[granularity].pflash_sector_size_bytes;
675 kinfo->protection_size = pf_size / 32;
676 } else if ((unsigned)bank->bank_number < num_blocks) {
677 /* nvm, banks start at address 0x10000000 */
678 kinfo->flash_class = FC_FLEX_NVM;
679 bank->size = (nvm_size / num_nvm_blocks);
680 bank->base = 0x10000000 + bank->size * (bank->bank_number - first_nvm_bank);
681 kinfo->sector_size = kinetis_flash_params[granularity].nvm_sector_size_bytes;
682 kinfo->protection_size = 0; /* FIXME: TODO: depends on DEPART bits, chip */
683 } else if ((unsigned)bank->bank_number == num_blocks) {
684 LOG_ERROR("FlexRAM support not yet implemented");
685 return ERROR_FLASH_OPER_UNSUPPORTED;
686 } else {
687 LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
688 bank->bank_number, num_blocks);
689 return ERROR_FLASH_BANK_INVALID;
690 }
691
692 if (bank->sectors) {
693 free(bank->sectors);
694 bank->sectors = NULL;
695 }
696
697 bank->num_sectors = bank->size / kinfo->sector_size;
698 assert(bank->num_sectors > 0);
699 bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
700
701 for (i = 0; i < bank->num_sectors; i++) {
702 bank->sectors[i].offset = offset;
703 bank->sectors[i].size = kinfo->sector_size;
704 offset += kinfo->sector_size;
705 bank->sectors[i].is_erased = -1;
706 bank->sectors[i].is_protected = 1;
707 }
708
709 return ERROR_OK;
710 }
711
712 static int kinetis_probe(struct flash_bank *bank)
713 {
714 if (bank->target->state != TARGET_HALTED) {
715 LOG_WARNING("Cannot communicate... target not halted.");
716 return ERROR_TARGET_NOT_HALTED;
717 }
718
719 return kinetis_read_part_info(bank);
720 }
721
722 static int kinetis_auto_probe(struct flash_bank *bank)
723 {
724 struct kinetis_flash_bank *kinfo = bank->driver_priv;
725
726 if (kinfo->sim_sdid)
727 return ERROR_OK;
728
729 return kinetis_probe(bank);
730 }
731
732 static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
733 {
734 const char *bank_class_names[] = {
735 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
736 };
737
738 struct kinetis_flash_bank *kinfo = bank->driver_priv;
739
740 (void) snprintf(buf, buf_size,
741 "%s driver for %s flash bank %s at 0x%8.8" PRIx32 "",
742 bank->driver->name, bank_class_names[kinfo->flash_class],
743 bank->name, bank->base);
744
745 return ERROR_OK;
746 }
747
748 static int kinetis_blank_check(struct flash_bank *bank)
749 {
750 struct kinetis_flash_bank *kinfo = bank->driver_priv;
751
752 if (bank->target->state != TARGET_HALTED) {
753 LOG_ERROR("Target not halted");
754 return ERROR_TARGET_NOT_HALTED;
755 }
756
757 if (kinfo->flash_class == FC_PFLASH) {
758 int result;
759 uint8_t ftfx_fstat;
760
761 /* check if whole bank is blank */
762 result = kinetis_ftfx_command(bank, FTFx_CMD_BLOCKSTAT, bank->base, 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
763
764 if (result != ERROR_OK)
765 return result;
766
767 if (ftfx_fstat & 0x01) {
768 /* the whole bank is not erased, check sector-by-sector */
769 int i;
770 for (i = 0; i < bank->num_sectors; i++) {
771 /* normal margin */
772 result = kinetis_ftfx_command(bank, FTFx_CMD_SECTSTAT, bank->base + bank->sectors[i].offset,
773 0, 0, 0, 1, 0, 0, 0, 0, &ftfx_fstat);
774
775 if (result == ERROR_OK) {
776 bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
777 } else {
778 LOG_DEBUG("Ignoring errored PFlash sector blank-check");
779 bank->sectors[i].is_erased = -1;
780 }
781 }
782 } else {
783 /* the whole bank is erased, update all sectors */
784 int i;
785 for (i = 0; i < bank->num_sectors; i++)
786 bank->sectors[i].is_erased = 1;
787 }
788 } else {
789 LOG_WARNING("kinetis_blank_check not supported yet for FlexNVM");
790 return ERROR_FLASH_OPERATION_FAILED;
791 }
792
793 return ERROR_OK;
794 }
795
796 static int kinetis_flash_read(struct flash_bank *bank,
797 uint8_t *buffer, uint32_t offset, uint32_t count)
798 {
799 LOG_WARNING("kinetis_flash_read not supported yet");
800
801 if (bank->target->state != TARGET_HALTED) {
802 LOG_ERROR("Target not halted");
803 return ERROR_TARGET_NOT_HALTED;
804 }
805
806 return ERROR_FLASH_OPERATION_FAILED;
807 }
808
809 struct flash_driver kinetis_flash = {
810 .name = "kinetis",
811 .flash_bank_command = kinetis_flash_bank_command,
812 .erase = kinetis_erase,
813 .protect = kinetis_protect,
814 .write = kinetis_write,
815 .read = kinetis_flash_read,
816 .probe = kinetis_probe,
817 .auto_probe = kinetis_auto_probe,
818 .erase_check = kinetis_blank_check,
819 .protect_check = kinetis_protect_check,
820 .info = kinetis_info,
821 };