flash/nor/kinetis: fix clang static analyzer warnings
[openocd.git] / src / flash / nor / kinetis.c
1 /***************************************************************************
2 * Copyright (C) 2011 by Mathias Kuester *
3 * kesmtp@freenet.de *
4 * *
5 * Copyright (C) 2011 sleep(5) ltd *
6 * tomas@sleepfive.com *
7 * *
8 * Copyright (C) 2012 by Christopher D. Kilgour *
9 * techie at whiterocker.com *
10 * *
11 * Copyright (C) 2013 Nemui Trinomius *
12 * nemuisan_kawausogasuki@live.jp *
13 * *
14 * Copyright (C) 2015 Tomas Vanek *
15 * vanekt@fbl.cz *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
29 ***************************************************************************/
30
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
34
35 #include "jtag/interface.h"
36 #include "imp.h"
37 #include <helper/binarybuffer.h>
38 #include <helper/time_support.h>
39 #include <target/target_type.h>
40 #include <target/algorithm.h>
41 #include <target/armv7m.h>
42 #include <target/cortex_m.h>
43
44 /*
45 * Implementation Notes
46 *
47 * The persistent memories in the Kinetis chip families K10 through
48 * K70 are all manipulated with the Flash Memory Module. Some
49 * variants call this module the FTFE, others call it the FTFL. To
50 * indicate that both are considered here, we use FTFX.
51 *
52 * Within the module, according to the chip variant, the persistent
53 * memory is divided into what Freescale terms Program Flash, FlexNVM,
54 * and FlexRAM. All chip variants have Program Flash. Some chip
55 * variants also have FlexNVM and FlexRAM, which always appear
56 * together.
57 *
58 * A given Kinetis chip may have 1, 2 or 4 blocks of flash. Here we map
59 * each block to a separate bank. Each block size varies by chip and
60 * may be determined by the read-only SIM_FCFG1 register. The sector
61 * size within each bank/block varies by chip, and may be 1, 2 or 4k.
62 * The sector size may be different for flash and FlexNVM.
63 *
64 * The first half of the flash (1 or 2 blocks) is always Program Flash
65 * and always starts at address 0x00000000. The "PFLSH" flag, bit 23
66 * of the read-only SIM_FCFG2 register, determines whether the second
67 * half of the flash is also Program Flash or FlexNVM+FlexRAM. When
68 * PFLSH is set, the second from the first half. When PFLSH is clear,
69 * the second half of flash is FlexNVM and always starts at address
70 * 0x10000000. FlexRAM, which is also present when PFLSH is clear,
71 * always starts at address 0x14000000.
72 *
73 * The Flash Memory Module provides a register set where flash
74 * commands are loaded to perform flash operations like erase and
75 * program. Different commands are available depending on whether
76 * Program Flash or FlexNVM/FlexRAM is being manipulated. Although
77 * the commands used are quite consistent between flash blocks, the
78 * parameters they accept differ according to the flash sector size.
79 *
80 */
81
82 /* Addressess */
83 #define FCF_ADDRESS 0x00000400
84 #define FCF_FPROT 0x8
85 #define FCF_FSEC 0xc
86 #define FCF_FOPT 0xd
87 #define FCF_FDPROT 0xf
88 #define FCF_SIZE 0x10
89
90 #define FLEXRAM 0x14000000
91
92 #define MSCM_OCMDR0 0x40001400
93 #define FMC_PFB01CR 0x4001f004
94 #define FTFx_FSTAT 0x40020000
95 #define FTFx_FCNFG 0x40020001
96 #define FTFx_FCCOB3 0x40020004
97 #define FTFx_FPROT3 0x40020010
98 #define FTFx_FDPROT 0x40020017
99 #define SIM_BASE 0x40047000
100 #define SIM_BASE_KL28 0x40074000
101 #define SIM_COPC 0x40048100
102 /* SIM_COPC does not exist on devices with changed SIM_BASE */
103 #define WDOG_BASE 0x40052000
104 #define WDOG32_KE1X 0x40052000
105 #define WDOG32_KL28 0x40076000
106 #define SMC_PMCTRL 0x4007E001
107 #define SMC_PMSTAT 0x4007E003
108 #define SMC32_PMCTRL 0x4007E00C
109 #define SMC32_PMSTAT 0x4007E014
110 #define MCM_PLACR 0xF000300C
111
112 /* Offsets */
113 #define SIM_SOPT1_OFFSET 0x0000
114 #define SIM_SDID_OFFSET 0x1024
115 #define SIM_FCFG1_OFFSET 0x104c
116 #define SIM_FCFG2_OFFSET 0x1050
117
118 #define WDOG_STCTRLH_OFFSET 0
119 #define WDOG32_CS_OFFSET 0
120
121 /* Values */
122 #define PM_STAT_RUN 0x01
123 #define PM_STAT_VLPR 0x04
124 #define PM_CTRL_RUNM_RUN 0x00
125
126 /* Commands */
127 #define FTFx_CMD_BLOCKSTAT 0x00
128 #define FTFx_CMD_SECTSTAT 0x01
129 #define FTFx_CMD_LWORDPROG 0x06
130 #define FTFx_CMD_SECTERASE 0x09
131 #define FTFx_CMD_SECTWRITE 0x0b
132 #define FTFx_CMD_MASSERASE 0x44
133 #define FTFx_CMD_PGMPART 0x80
134 #define FTFx_CMD_SETFLEXRAM 0x81
135
136 /* The older Kinetis K series uses the following SDID layout :
137 * Bit 31-16 : 0
138 * Bit 15-12 : REVID
139 * Bit 11-7 : DIEID
140 * Bit 6-4 : FAMID
141 * Bit 3-0 : PINID
142 *
143 * The newer Kinetis series uses the following SDID layout :
144 * Bit 31-28 : FAMID
145 * Bit 27-24 : SUBFAMID
146 * Bit 23-20 : SERIESID
147 * Bit 19-16 : SRAMSIZE
148 * Bit 15-12 : REVID
149 * Bit 6-4 : Reserved (0)
150 * Bit 3-0 : PINID
151 *
152 * We assume that if bits 31-16 are 0 then it's an older
153 * K-series MCU.
154 */
155
156 #define KINETIS_SOPT1_RAMSIZE_MASK 0x0000F000
157 #define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000
158
159 #define KINETIS_SDID_K_SERIES_MASK 0x0000FFFF
160
161 #define KINETIS_SDID_DIEID_MASK 0x00000F80
162
163 #define KINETIS_SDID_DIEID_K22FN128 0x00000680 /* smaller pflash with FTFA */
164 #define KINETIS_SDID_DIEID_K22FN256 0x00000A80
165 #define KINETIS_SDID_DIEID_K22FN512 0x00000E80
166 #define KINETIS_SDID_DIEID_K24FN256 0x00000700
167
168 #define KINETIS_SDID_DIEID_K24FN1M 0x00000300 /* Detect Errata 7534 */
169
170 /* We can't rely solely on the FAMID field to determine the MCU
171 * type since some FAMID values identify multiple MCUs with
172 * different flash sector sizes (K20 and K22 for instance).
173 * Therefore we combine it with the DIEID bits which may possibly
174 * break if Freescale bumps the DIEID for a particular MCU. */
175 #define KINETIS_K_SDID_TYPE_MASK 0x00000FF0
176 #define KINETIS_K_SDID_K10_M50 0x00000000
177 #define KINETIS_K_SDID_K10_M72 0x00000080
178 #define KINETIS_K_SDID_K10_M100 0x00000100
179 #define KINETIS_K_SDID_K10_M120 0x00000180
180 #define KINETIS_K_SDID_K11 0x00000220
181 #define KINETIS_K_SDID_K12 0x00000200
182 #define KINETIS_K_SDID_K20_M50 0x00000010
183 #define KINETIS_K_SDID_K20_M72 0x00000090
184 #define KINETIS_K_SDID_K20_M100 0x00000110
185 #define KINETIS_K_SDID_K20_M120 0x00000190
186 #define KINETIS_K_SDID_K21_M50 0x00000230
187 #define KINETIS_K_SDID_K21_M120 0x00000330
188 #define KINETIS_K_SDID_K22_M50 0x00000210
189 #define KINETIS_K_SDID_K22_M120 0x00000310
190 #define KINETIS_K_SDID_K30_M72 0x000000A0
191 #define KINETIS_K_SDID_K30_M100 0x00000120
192 #define KINETIS_K_SDID_K40_M72 0x000000B0
193 #define KINETIS_K_SDID_K40_M100 0x00000130
194 #define KINETIS_K_SDID_K50_M72 0x000000E0
195 #define KINETIS_K_SDID_K51_M72 0x000000F0
196 #define KINETIS_K_SDID_K53 0x00000170
197 #define KINETIS_K_SDID_K60_M100 0x00000140
198 #define KINETIS_K_SDID_K60_M150 0x000001C0
199 #define KINETIS_K_SDID_K70_M150 0x000001D0
200
201 #define KINETIS_SDID_SERIESID_MASK 0x00F00000
202 #define KINETIS_SDID_SERIESID_K 0x00000000
203 #define KINETIS_SDID_SERIESID_KL 0x00100000
204 #define KINETIS_SDID_SERIESID_KE 0x00200000
205 #define KINETIS_SDID_SERIESID_KW 0x00500000
206 #define KINETIS_SDID_SERIESID_KV 0x00600000
207
208 #define KINETIS_SDID_SUBFAMID_SHIFT 24
209 #define KINETIS_SDID_SUBFAMID_MASK 0x0F000000
210 #define KINETIS_SDID_SUBFAMID_KX0 0x00000000
211 #define KINETIS_SDID_SUBFAMID_KX1 0x01000000
212 #define KINETIS_SDID_SUBFAMID_KX2 0x02000000
213 #define KINETIS_SDID_SUBFAMID_KX3 0x03000000
214 #define KINETIS_SDID_SUBFAMID_KX4 0x04000000
215 #define KINETIS_SDID_SUBFAMID_KX5 0x05000000
216 #define KINETIS_SDID_SUBFAMID_KX6 0x06000000
217 #define KINETIS_SDID_SUBFAMID_KX7 0x07000000
218 #define KINETIS_SDID_SUBFAMID_KX8 0x08000000
219
220 #define KINETIS_SDID_FAMILYID_SHIFT 28
221 #define KINETIS_SDID_FAMILYID_MASK 0xF0000000
222 #define KINETIS_SDID_FAMILYID_K0X 0x00000000
223 #define KINETIS_SDID_FAMILYID_K1X 0x10000000
224 #define KINETIS_SDID_FAMILYID_K2X 0x20000000
225 #define KINETIS_SDID_FAMILYID_K3X 0x30000000
226 #define KINETIS_SDID_FAMILYID_K4X 0x40000000
227 #define KINETIS_SDID_FAMILYID_K5X 0x50000000
228 #define KINETIS_SDID_FAMILYID_K6X 0x60000000
229 #define KINETIS_SDID_FAMILYID_K7X 0x70000000
230 #define KINETIS_SDID_FAMILYID_K8X 0x80000000
231 #define KINETIS_SDID_FAMILYID_KL8X 0x90000000
232
233 /* The field originally named DIEID has new name/meaning on KE1x */
234 #define KINETIS_SDID_PROJECTID_MASK KINETIS_SDID_DIEID_MASK
235 #define KINETIS_SDID_PROJECTID_KE1xF 0x00000080
236 #define KINETIS_SDID_PROJECTID_KE1xZ 0x00000100
237
238 struct kinetis_flash_bank {
239 struct kinetis_chip *k_chip;
240 bool probed;
241 unsigned bank_number; /* bank number in particular chip */
242 struct flash_bank *bank;
243
244 uint32_t sector_size;
245 uint32_t protection_size;
246 uint32_t prog_base; /* base address for FTFx operations */
247 /* usually same as bank->base for pflash, differs for FlexNVM */
248 uint32_t protection_block; /* number of first protection block in this bank */
249
250 enum {
251 FC_AUTO = 0,
252 FC_PFLASH,
253 FC_FLEX_NVM,
254 FC_FLEX_RAM,
255 } flash_class;
256 };
257
258 #define KINETIS_MAX_BANKS 4u
259
260 struct kinetis_chip {
261 struct target *target;
262 bool probed;
263
264 uint32_t sim_sdid;
265 uint32_t sim_fcfg1;
266 uint32_t sim_fcfg2;
267 uint32_t fcfg2_maxaddr0_shifted;
268 uint32_t fcfg2_maxaddr1_shifted;
269
270 unsigned num_pflash_blocks, num_nvm_blocks;
271 unsigned pflash_sector_size, nvm_sector_size;
272 unsigned max_flash_prog_size;
273
274 uint32_t pflash_base;
275 uint32_t pflash_size;
276 uint32_t nvm_base;
277 uint32_t nvm_size; /* whole FlexNVM */
278 uint32_t dflash_size; /* accessible rest of FlexNVM if EEPROM backup uses part of FlexNVM */
279
280 uint32_t progr_accel_ram;
281 uint32_t sim_base;
282
283 enum {
284 FS_PROGRAM_SECTOR = 1,
285 FS_PROGRAM_LONGWORD = 2,
286 FS_PROGRAM_PHRASE = 4, /* Unsupported */
287
288 FS_NO_CMD_BLOCKSTAT = 0x40,
289 FS_WIDTH_256BIT = 0x80,
290 FS_ECC = 0x100,
291 } flash_support;
292
293 enum {
294 KINETIS_CACHE_NONE,
295 KINETIS_CACHE_K, /* invalidate using FMC->PFB0CR/PFB01CR */
296 KINETIS_CACHE_L, /* invalidate using MCM->PLACR */
297 KINETIS_CACHE_MSCM, /* devices like KE1xF, invalidate MSCM->OCMDR0 */
298 } cache_type;
299
300 enum {
301 KINETIS_WDOG_NONE,
302 KINETIS_WDOG_K,
303 KINETIS_WDOG_COP,
304 KINETIS_WDOG32_KE1X,
305 KINETIS_WDOG32_KL28,
306 } watchdog_type;
307
308 enum {
309 KINETIS_SMC,
310 KINETIS_SMC32,
311 } sysmodectrlr_type;
312
313 char name[40];
314
315 unsigned num_banks;
316 struct kinetis_flash_bank banks[KINETIS_MAX_BANKS];
317 };
318
319 struct kinetis_type {
320 uint32_t sdid;
321 char *name;
322 };
323
324 static const struct kinetis_type kinetis_types_old[] = {
325 { KINETIS_K_SDID_K10_M50, "MK10D%s5" },
326 { KINETIS_K_SDID_K10_M72, "MK10D%s7" },
327 { KINETIS_K_SDID_K10_M100, "MK10D%s10" },
328 { KINETIS_K_SDID_K10_M120, "MK10F%s12" },
329 { KINETIS_K_SDID_K11, "MK11D%s5" },
330 { KINETIS_K_SDID_K12, "MK12D%s5" },
331
332 { KINETIS_K_SDID_K20_M50, "MK20D%s5" },
333 { KINETIS_K_SDID_K20_M72, "MK20D%s7" },
334 { KINETIS_K_SDID_K20_M100, "MK20D%s10" },
335 { KINETIS_K_SDID_K20_M120, "MK20F%s12" },
336 { KINETIS_K_SDID_K21_M50, "MK21D%s5" },
337 { KINETIS_K_SDID_K21_M120, "MK21F%s12" },
338 { KINETIS_K_SDID_K22_M50, "MK22D%s5" },
339 { KINETIS_K_SDID_K22_M120, "MK22F%s12" },
340
341 { KINETIS_K_SDID_K30_M72, "MK30D%s7" },
342 { KINETIS_K_SDID_K30_M100, "MK30D%s10" },
343
344 { KINETIS_K_SDID_K40_M72, "MK40D%s7" },
345 { KINETIS_K_SDID_K40_M100, "MK40D%s10" },
346
347 { KINETIS_K_SDID_K50_M72, "MK50D%s7" },
348 { KINETIS_K_SDID_K51_M72, "MK51D%s7" },
349 { KINETIS_K_SDID_K53, "MK53D%s10" },
350
351 { KINETIS_K_SDID_K60_M100, "MK60D%s10" },
352 { KINETIS_K_SDID_K60_M150, "MK60F%s15" },
353
354 { KINETIS_K_SDID_K70_M150, "MK70F%s15" },
355 };
356
357
358 #define MDM_AP 1
359
360 #define MDM_REG_STAT 0x00
361 #define MDM_REG_CTRL 0x04
362 #define MDM_REG_ID 0xfc
363
364 #define MDM_STAT_FMEACK (1<<0)
365 #define MDM_STAT_FREADY (1<<1)
366 #define MDM_STAT_SYSSEC (1<<2)
367 #define MDM_STAT_SYSRES (1<<3)
368 #define MDM_STAT_FMEEN (1<<5)
369 #define MDM_STAT_BACKDOOREN (1<<6)
370 #define MDM_STAT_LPEN (1<<7)
371 #define MDM_STAT_VLPEN (1<<8)
372 #define MDM_STAT_LLSMODEXIT (1<<9)
373 #define MDM_STAT_VLLSXMODEXIT (1<<10)
374 #define MDM_STAT_CORE_HALTED (1<<16)
375 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
376 #define MDM_STAT_CORESLEEPING (1<<18)
377
378 #define MDM_CTRL_FMEIP (1<<0)
379 #define MDM_CTRL_DBG_DIS (1<<1)
380 #define MDM_CTRL_DBG_REQ (1<<2)
381 #define MDM_CTRL_SYS_RES_REQ (1<<3)
382 #define MDM_CTRL_CORE_HOLD_RES (1<<4)
383 #define MDM_CTRL_VLLSX_DBG_REQ (1<<5)
384 #define MDM_CTRL_VLLSX_DBG_ACK (1<<6)
385 #define MDM_CTRL_VLLSX_STAT_ACK (1<<7)
386
387 #define MDM_ACCESS_TIMEOUT 500 /* msec */
388
389
390 static bool allow_fcf_writes;
391 static uint8_t fcf_fopt = 0xff;
392 static bool fcf_fopt_configured;
393 static bool create_banks;
394
395
396 const struct flash_driver kinetis_flash;
397 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
398 uint32_t offset, uint32_t count);
399 static int kinetis_probe_chip(struct kinetis_chip *k_chip);
400 static int kinetis_auto_probe(struct flash_bank *bank);
401
402
403 static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value)
404 {
405 int retval;
406 LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value);
407
408 retval = dap_queue_ap_write(dap_ap(dap, MDM_AP), reg, value);
409 if (retval != ERROR_OK) {
410 LOG_DEBUG("MDM: failed to queue a write request");
411 return retval;
412 }
413
414 retval = dap_run(dap);
415 if (retval != ERROR_OK) {
416 LOG_DEBUG("MDM: dap_run failed");
417 return retval;
418 }
419
420
421 return ERROR_OK;
422 }
423
424 static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result)
425 {
426 int retval;
427
428 retval = dap_queue_ap_read(dap_ap(dap, MDM_AP), reg, result);
429 if (retval != ERROR_OK) {
430 LOG_DEBUG("MDM: failed to queue a read request");
431 return retval;
432 }
433
434 retval = dap_run(dap);
435 if (retval != ERROR_OK) {
436 LOG_DEBUG("MDM: dap_run failed");
437 return retval;
438 }
439
440 LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result);
441 return ERROR_OK;
442 }
443
444 static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg,
445 uint32_t mask, uint32_t value, uint32_t timeout_ms)
446 {
447 uint32_t val;
448 int retval;
449 int64_t ms_timeout = timeval_ms() + timeout_ms;
450
451 do {
452 retval = kinetis_mdm_read_register(dap, reg, &val);
453 if (retval != ERROR_OK || (val & mask) == value)
454 return retval;
455
456 alive_sleep(1);
457 } while (timeval_ms() < ms_timeout);
458
459 LOG_DEBUG("MDM: polling timed out");
460 return ERROR_FAIL;
461 }
462
463 /*
464 * This command can be used to break a watchdog reset loop when
465 * connecting to an unsecured target. Unlike other commands, halt will
466 * automatically retry as it does not know how far into the boot process
467 * it is when the command is called.
468 */
469 COMMAND_HANDLER(kinetis_mdm_halt)
470 {
471 struct target *target = get_current_target(CMD_CTX);
472 struct cortex_m_common *cortex_m = target_to_cm(target);
473 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
474 int retval;
475 int tries = 0;
476 uint32_t stat;
477 int64_t ms_timeout = timeval_ms() + MDM_ACCESS_TIMEOUT;
478
479 if (!dap) {
480 LOG_ERROR("Cannot perform halt with a high-level adapter");
481 return ERROR_FAIL;
482 }
483
484 while (true) {
485 tries++;
486
487 kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_CORE_HOLD_RES);
488
489 alive_sleep(1);
490
491 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
492 if (retval != ERROR_OK) {
493 LOG_DEBUG("MDM: failed to read MDM_REG_STAT");
494 continue;
495 }
496
497 /* Repeat setting MDM_CTRL_CORE_HOLD_RES until system is out of
498 * reset with flash ready and without security
499 */
500 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSSEC | MDM_STAT_SYSRES))
501 == (MDM_STAT_FREADY | MDM_STAT_SYSRES))
502 break;
503
504 if (timeval_ms() >= ms_timeout) {
505 LOG_ERROR("MDM: halt timed out");
506 return ERROR_FAIL;
507 }
508 }
509
510 LOG_DEBUG("MDM: halt succeded after %d attempts.", tries);
511
512 target_poll(target);
513 /* enable polling in case kinetis_check_flash_security_status disabled it */
514 jtag_poll_set_enabled(true);
515
516 alive_sleep(100);
517
518 target->reset_halt = true;
519 target->type->assert_reset(target);
520
521 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
522 if (retval != ERROR_OK) {
523 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
524 return retval;
525 }
526
527 target->type->deassert_reset(target);
528
529 return ERROR_OK;
530 }
531
532 COMMAND_HANDLER(kinetis_mdm_reset)
533 {
534 struct target *target = get_current_target(CMD_CTX);
535 struct cortex_m_common *cortex_m = target_to_cm(target);
536 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
537 int retval;
538
539 if (!dap) {
540 LOG_ERROR("Cannot perform reset with a high-level adapter");
541 return ERROR_FAIL;
542 }
543
544 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
545 if (retval != ERROR_OK) {
546 LOG_ERROR("MDM: failed to write MDM_REG_CTRL");
547 return retval;
548 }
549
550 retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, MDM_STAT_SYSRES, 0, 500);
551 if (retval != ERROR_OK) {
552 LOG_ERROR("MDM: failed to assert reset");
553 return retval;
554 }
555
556 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
557 if (retval != ERROR_OK) {
558 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
559 return retval;
560 }
561
562 return ERROR_OK;
563 }
564
565 /*
566 * This function implements the procedure to mass erase the flash via
567 * SWD/JTAG on Kinetis K and L series of devices as it is described in
568 * AN4835 "Production Flash Programming Best Practices for Kinetis K-
569 * and L-series MCUs" Section 4.2.1. To prevent a watchdog reset loop,
570 * the core remains halted after this function completes as suggested
571 * by the application note.
572 */
573 COMMAND_HANDLER(kinetis_mdm_mass_erase)
574 {
575 struct target *target = get_current_target(CMD_CTX);
576 struct cortex_m_common *cortex_m = target_to_cm(target);
577 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
578
579 if (!dap) {
580 LOG_ERROR("Cannot perform mass erase with a high-level adapter");
581 return ERROR_FAIL;
582 }
583
584 int retval;
585
586 /*
587 * ... Power on the processor, or if power has already been
588 * applied, assert the RESET pin to reset the processor. For
589 * devices that do not have a RESET pin, write the System
590 * Reset Request bit in the MDM-AP control register after
591 * establishing communication...
592 */
593
594 /* assert SRST if configured */
595 bool has_srst = jtag_get_reset_config() & RESET_HAS_SRST;
596 if (has_srst)
597 adapter_assert_reset();
598
599 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
600 if (retval != ERROR_OK && !has_srst) {
601 LOG_ERROR("MDM: failed to assert reset");
602 goto deassert_reset_and_exit;
603 }
604
605 /*
606 * ... Read the MDM-AP status register repeatedly and wait for
607 * stable conditions suitable for mass erase:
608 * - mass erase is enabled
609 * - flash is ready
610 * - reset is finished
611 *
612 * Mass erase is started as soon as all conditions are met in 32
613 * subsequent status reads.
614 *
615 * In case of not stable conditions (RESET/WDOG loop in secured device)
616 * the user is asked for manual pressing of RESET button
617 * as a last resort.
618 */
619 int cnt_mass_erase_disabled = 0;
620 int cnt_ready = 0;
621 int64_t ms_start = timeval_ms();
622 bool man_reset_requested = false;
623
624 do {
625 uint32_t stat = 0;
626 int64_t ms_elapsed = timeval_ms() - ms_start;
627
628 if (!man_reset_requested && ms_elapsed > 100) {
629 LOG_INFO("MDM: Press RESET button now if possible.");
630 man_reset_requested = true;
631 }
632
633 if (ms_elapsed > 3000) {
634 LOG_ERROR("MDM: waiting for mass erase conditions timed out.");
635 LOG_INFO("Mass erase of a secured MCU is not possible without hardware reset.");
636 LOG_INFO("Connect SRST, use 'reset_config srst_only' and retry.");
637 goto deassert_reset_and_exit;
638 }
639 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
640 if (retval != ERROR_OK) {
641 cnt_ready = 0;
642 continue;
643 }
644
645 if (!(stat & MDM_STAT_FMEEN)) {
646 cnt_ready = 0;
647 cnt_mass_erase_disabled++;
648 if (cnt_mass_erase_disabled > 10) {
649 LOG_ERROR("MDM: mass erase is disabled");
650 goto deassert_reset_and_exit;
651 }
652 continue;
653 }
654
655 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSRES)) == MDM_STAT_FREADY)
656 cnt_ready++;
657 else
658 cnt_ready = 0;
659
660 } while (cnt_ready < 32);
661
662 /*
663 * ... Write the MDM-AP control register to set the Flash Mass
664 * Erase in Progress bit. This will start the mass erase
665 * process...
666 */
667 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ | MDM_CTRL_FMEIP);
668 if (retval != ERROR_OK) {
669 LOG_ERROR("MDM: failed to start mass erase");
670 goto deassert_reset_and_exit;
671 }
672
673 /*
674 * ... Read the MDM-AP control register until the Flash Mass
675 * Erase in Progress bit clears...
676 * Data sheed defines erase time <3.6 sec/512kB flash block.
677 * The biggest device has 4 pflash blocks => timeout 16 sec.
678 */
679 retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL, MDM_CTRL_FMEIP, 0, 16000);
680 if (retval != ERROR_OK) {
681 LOG_ERROR("MDM: mass erase timeout");
682 goto deassert_reset_and_exit;
683 }
684
685 target_poll(target);
686 /* enable polling in case kinetis_check_flash_security_status disabled it */
687 jtag_poll_set_enabled(true);
688
689 alive_sleep(100);
690
691 target->reset_halt = true;
692 target->type->assert_reset(target);
693
694 /*
695 * ... Negate the RESET signal or clear the System Reset Request
696 * bit in the MDM-AP control register.
697 */
698 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
699 if (retval != ERROR_OK)
700 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
701
702 target->type->deassert_reset(target);
703
704 return retval;
705
706 deassert_reset_and_exit:
707 kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
708 if (has_srst)
709 adapter_deassert_reset();
710 return retval;
711 }
712
713 static const uint32_t kinetis_known_mdm_ids[] = {
714 0x001C0000, /* Kinetis-K Series */
715 0x001C0020, /* Kinetis-L/M/V/E Series */
716 0x001C0030, /* Kinetis with a Cortex-M7, in time of writing KV58 */
717 };
718
719 /*
720 * This function implements the procedure to connect to
721 * SWD/JTAG on Kinetis K and L series of devices as it is described in
722 * AN4835 "Production Flash Programming Best Practices for Kinetis K-
723 * and L-series MCUs" Section 4.1.1
724 */
725 COMMAND_HANDLER(kinetis_check_flash_security_status)
726 {
727 struct target *target = get_current_target(CMD_CTX);
728 struct cortex_m_common *cortex_m = target_to_cm(target);
729 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
730
731 if (!dap) {
732 LOG_WARNING("Cannot check flash security status with a high-level adapter");
733 return ERROR_OK;
734 }
735
736 if (!dap->ops)
737 return ERROR_OK; /* too early to check, in JTAG mode ops may not be initialised */
738
739 uint32_t val;
740 int retval;
741
742 /*
743 * ... The MDM-AP ID register can be read to verify that the
744 * connection is working correctly...
745 */
746 retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val);
747 if (retval != ERROR_OK) {
748 LOG_ERROR("MDM: failed to read ID register");
749 return ERROR_OK;
750 }
751
752 if (val == 0)
753 return ERROR_OK; /* dap not yet initialised */
754
755 bool found = false;
756 for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) {
757 if (val == kinetis_known_mdm_ids[i]) {
758 found = true;
759 break;
760 }
761 }
762
763 if (!found)
764 LOG_WARNING("MDM: unknown ID %08" PRIX32, val);
765
766 /*
767 * ... Read the System Security bit to determine if security is enabled.
768 * If System Security = 0, then proceed. If System Security = 1, then
769 * communication with the internals of the processor, including the
770 * flash, will not be possible without issuing a mass erase command or
771 * unsecuring the part through other means (backdoor key unlock)...
772 */
773 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val);
774 if (retval != ERROR_OK) {
775 LOG_ERROR("MDM: failed to read MDM_REG_STAT");
776 return ERROR_OK;
777 }
778
779 /*
780 * System Security bit is also active for short time during reset.
781 * If a MCU has blank flash and runs in RESET/WDOG loop,
782 * System Security bit is active most of time!
783 * We should observe Flash Ready bit and read status several times
784 * to avoid false detection of secured MCU
785 */
786 int secured_score = 0, flash_not_ready_score = 0;
787
788 if ((val & (MDM_STAT_SYSSEC | MDM_STAT_FREADY)) != MDM_STAT_FREADY) {
789 uint32_t stats[32];
790 int i;
791
792 for (i = 0; i < 32; i++) {
793 stats[i] = MDM_STAT_FREADY;
794 dap_queue_ap_read(dap_ap(dap, MDM_AP), MDM_REG_STAT, &stats[i]);
795 }
796 retval = dap_run(dap);
797 if (retval != ERROR_OK) {
798 LOG_DEBUG("MDM: dap_run failed when validating secured state");
799 return ERROR_OK;
800 }
801 for (i = 0; i < 32; i++) {
802 if (stats[i] & MDM_STAT_SYSSEC)
803 secured_score++;
804 if (!(stats[i] & MDM_STAT_FREADY))
805 flash_not_ready_score++;
806 }
807 }
808
809 if (flash_not_ready_score <= 8 && secured_score > 24) {
810 jtag_poll_set_enabled(false);
811
812 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
813 LOG_WARNING("**** ****");
814 LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that, ****");
815 LOG_WARNING("**** with exception for very basic communication, JTAG/SWD ****");
816 LOG_WARNING("**** interface will NOT work. In order to restore its ****");
817 LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase' ****");
818 LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD. ****");
819 LOG_WARNING("**** ****");
820 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
821
822 } else if (flash_not_ready_score > 24) {
823 jtag_poll_set_enabled(false);
824 LOG_WARNING("**** Your Kinetis MCU is probably locked-up in RESET/WDOG loop. ****");
825 LOG_WARNING("**** Common reason is a blank flash (at least a reset vector). ****");
826 LOG_WARNING("**** Issue 'kinetis mdm halt' command or if SRST is connected ****");
827 LOG_WARNING("**** and configured, use 'reset halt' ****");
828 LOG_WARNING("**** If MCU cannot be halted, it is likely secured and running ****");
829 LOG_WARNING("**** in RESET/WDOG loop. Issue 'kinetis mdm mass_erase' ****");
830
831 } else {
832 LOG_INFO("MDM: Chip is unsecured. Continuing.");
833 jtag_poll_set_enabled(true);
834 }
835
836 return ERROR_OK;
837 }
838
839
840 static struct kinetis_chip *kinetis_get_chip(struct target *target)
841 {
842 struct flash_bank *bank_iter;
843 struct kinetis_flash_bank *k_bank;
844
845 /* iterate over all kinetis banks */
846 for (bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
847 if (bank_iter->driver != &kinetis_flash
848 || bank_iter->target != target)
849 continue;
850
851 k_bank = bank_iter->driver_priv;
852 if (!k_bank)
853 continue;
854
855 if (k_bank->k_chip)
856 return k_bank->k_chip;
857 }
858 return NULL;
859 }
860
861 static int kinetis_chip_options(struct kinetis_chip *k_chip, int argc, const char *argv[])
862 {
863 int i;
864 for (i = 0; i < argc; i++) {
865 if (strcmp(argv[i], "-sim-base") == 0) {
866 if (i + 1 < argc)
867 k_chip->sim_base = strtoul(argv[++i], NULL, 0);
868 } else
869 LOG_ERROR("Unsupported flash bank option %s", argv[i]);
870 }
871 return ERROR_OK;
872 }
873
874 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
875 {
876 struct target *target = bank->target;
877 struct kinetis_chip *k_chip;
878 struct kinetis_flash_bank *k_bank;
879 int retval;
880
881 if (CMD_ARGC < 6)
882 return ERROR_COMMAND_SYNTAX_ERROR;
883
884 LOG_INFO("add flash_bank kinetis %s", bank->name);
885
886 k_chip = kinetis_get_chip(target);
887
888 if (k_chip == NULL) {
889 k_chip = calloc(sizeof(struct kinetis_chip), 1);
890 if (k_chip == NULL) {
891 LOG_ERROR("No memory");
892 return ERROR_FAIL;
893 }
894
895 k_chip->target = target;
896
897 /* only the first defined bank can define chip options */
898 retval = kinetis_chip_options(k_chip, CMD_ARGC - 6, CMD_ARGV + 6);
899 if (retval != ERROR_OK)
900 return retval;
901 }
902
903 if (k_chip->num_banks >= KINETIS_MAX_BANKS) {
904 LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
905 return ERROR_FAIL;
906 }
907
908 bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
909 k_bank->k_chip = k_chip;
910 k_bank->bank_number = k_chip->num_banks;
911 k_bank->bank = bank;
912 k_chip->num_banks++;
913
914 return ERROR_OK;
915 }
916
917
918 static void kinetis_free_driver_priv(struct flash_bank *bank)
919 {
920 struct kinetis_flash_bank *k_bank = bank->driver_priv;
921 if (k_bank == NULL)
922 return;
923
924 struct kinetis_chip *k_chip = k_bank->k_chip;
925 if (k_chip == NULL)
926 return;
927
928 k_chip->num_banks--;
929 if (k_chip->num_banks == 0)
930 free(k_chip);
931 }
932
933
934 static int kinetis_create_missing_banks(struct kinetis_chip *k_chip)
935 {
936 unsigned bank_idx;
937 unsigned num_blocks;
938 struct kinetis_flash_bank *k_bank;
939 struct flash_bank *bank;
940 char base_name[69], name[80], num[4];
941 char *class, *p;
942
943 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
944 if (num_blocks > KINETIS_MAX_BANKS) {
945 LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
946 return ERROR_FAIL;
947 }
948
949 bank = k_chip->banks[0].bank;
950 if (bank && bank->name) {
951 strncpy(base_name, bank->name, sizeof(base_name) - 1);
952 base_name[sizeof(base_name) - 1] = '\0';
953 p = strstr(base_name, ".pflash");
954 if (p) {
955 *p = '\0';
956 if (k_chip->num_pflash_blocks > 1) {
957 /* rename first bank if numbering is needed */
958 snprintf(name, sizeof(name), "%s.pflash0", base_name);
959 free(bank->name);
960 bank->name = strdup(name);
961 }
962 }
963 } else {
964 strncpy(base_name, target_name(k_chip->target), sizeof(base_name) - 1);
965 base_name[sizeof(base_name) - 1] = '\0';
966 p = strstr(base_name, ".cpu");
967 if (p)
968 *p = '\0';
969 }
970
971 for (bank_idx = 1; bank_idx < num_blocks; bank_idx++) {
972 k_bank = &(k_chip->banks[bank_idx]);
973 bank = k_bank->bank;
974
975 if (bank)
976 continue;
977
978 num[0] = '\0';
979
980 if (bank_idx < k_chip->num_pflash_blocks) {
981 class = "pflash";
982 if (k_chip->num_pflash_blocks > 1)
983 snprintf(num, sizeof(num), "%u", bank_idx);
984 } else {
985 class = "flexnvm";
986 if (k_chip->num_nvm_blocks > 1)
987 snprintf(num, sizeof(num), "%u",
988 bank_idx - k_chip->num_pflash_blocks);
989 }
990
991 bank = calloc(sizeof(struct flash_bank), 1);
992 if (bank == NULL)
993 return ERROR_FAIL;
994
995 bank->target = k_chip->target;
996 bank->driver = &kinetis_flash;
997 bank->default_padded_value = bank->erased_value = 0xff;
998
999 snprintf(name, sizeof(name), "%s.%s%s",
1000 base_name, class, num);
1001 bank->name = strdup(name);
1002
1003 bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
1004 k_bank->k_chip = k_chip;
1005 k_bank->bank_number = bank_idx;
1006 k_bank->bank = bank;
1007 if (k_chip->num_banks <= bank_idx)
1008 k_chip->num_banks = bank_idx + 1;
1009
1010 flash_bank_add(bank);
1011 }
1012 return ERROR_OK;
1013 }
1014
1015
1016 static int kinetis_disable_wdog_algo(struct target *target, size_t code_size, const uint8_t *code, uint32_t wdog_base)
1017 {
1018 struct working_area *wdog_algorithm;
1019 struct armv7m_algorithm armv7m_info;
1020 struct reg_param reg_params[1];
1021 int retval;
1022
1023 if (target->state != TARGET_HALTED) {
1024 LOG_ERROR("Target not halted");
1025 return ERROR_TARGET_NOT_HALTED;
1026 }
1027
1028 retval = target_alloc_working_area(target, code_size, &wdog_algorithm);
1029 if (retval != ERROR_OK)
1030 return retval;
1031
1032 retval = target_write_buffer(target, wdog_algorithm->address,
1033 code_size, code);
1034 if (retval == ERROR_OK) {
1035 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1036 armv7m_info.core_mode = ARM_MODE_THREAD;
1037
1038 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1039 buf_set_u32(reg_params[0].value, 0, 32, wdog_base);
1040
1041 retval = target_run_algorithm(target, 0, NULL, 1, reg_params,
1042 wdog_algorithm->address,
1043 wdog_algorithm->address + code_size - 2,
1044 500, &armv7m_info);
1045
1046 destroy_reg_param(&reg_params[0]);
1047
1048 if (retval != ERROR_OK)
1049 LOG_ERROR("Error executing Kinetis WDOG unlock algorithm");
1050 }
1051
1052 target_free_working_area(target, wdog_algorithm);
1053
1054 return retval;
1055 }
1056
1057 /* Disable the watchdog on Kinetis devices
1058 * Standard Kx WDOG peripheral checks timing and therefore requires to run algo.
1059 */
1060 static int kinetis_disable_wdog_kx(struct target *target)
1061 {
1062 const uint32_t wdog_base = WDOG_BASE;
1063 uint16_t wdog;
1064 int retval;
1065
1066 static const uint8_t kinetis_unlock_wdog_code[] = {
1067 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog.inc"
1068 };
1069
1070 retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
1071 if (retval != ERROR_OK)
1072 return retval;
1073
1074 if ((wdog & 0x1) == 0) {
1075 /* watchdog already disabled */
1076 return ERROR_OK;
1077 }
1078 LOG_INFO("Disabling Kinetis watchdog (initial WDOG_STCTRLH = 0x%04" PRIx16 ")", wdog);
1079
1080 retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
1081 if (retval != ERROR_OK)
1082 return retval;
1083
1084 retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
1085 if (retval != ERROR_OK)
1086 return retval;
1087
1088 LOG_INFO("WDOG_STCTRLH = 0x%04" PRIx16, wdog);
1089 return (wdog & 0x1) ? ERROR_FAIL : ERROR_OK;
1090 }
1091
1092 static int kinetis_disable_wdog32(struct target *target, uint32_t wdog_base)
1093 {
1094 uint32_t wdog_cs;
1095 int retval;
1096
1097 static const uint8_t kinetis_unlock_wdog_code[] = {
1098 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog32.inc"
1099 };
1100
1101 retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
1102 if (retval != ERROR_OK)
1103 return retval;
1104
1105 if ((wdog_cs & 0x80) == 0)
1106 return ERROR_OK; /* watchdog already disabled */
1107
1108 LOG_INFO("Disabling Kinetis watchdog (initial WDOG_CS 0x%08" PRIx32 ")", wdog_cs);
1109
1110 retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
1111 if (retval != ERROR_OK)
1112 return retval;
1113
1114 retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
1115 if (retval != ERROR_OK)
1116 return retval;
1117
1118 if ((wdog_cs & 0x80) == 0)
1119 return ERROR_OK; /* watchdog disabled successfully */
1120
1121 LOG_ERROR("Cannot disable Kinetis watchdog (WDOG_CS 0x%08" PRIx32 "), issue 'reset init'", wdog_cs);
1122 return ERROR_FAIL;
1123 }
1124
1125 static int kinetis_disable_wdog(struct kinetis_chip *k_chip)
1126 {
1127 struct target *target = k_chip->target;
1128 uint8_t sim_copc;
1129 int retval;
1130
1131 if (!k_chip->probed) {
1132 retval = kinetis_probe_chip(k_chip);
1133 if (retval != ERROR_OK)
1134 return retval;
1135 }
1136
1137 switch (k_chip->watchdog_type) {
1138 case KINETIS_WDOG_K:
1139 return kinetis_disable_wdog_kx(target);
1140
1141 case KINETIS_WDOG_COP:
1142 retval = target_read_u8(target, SIM_COPC, &sim_copc);
1143 if (retval != ERROR_OK)
1144 return retval;
1145
1146 if ((sim_copc & 0xc) == 0)
1147 return ERROR_OK; /* watchdog already disabled */
1148
1149 LOG_INFO("Disabling Kinetis watchdog (initial SIM_COPC 0x%02" PRIx8 ")", sim_copc);
1150 retval = target_write_u8(target, SIM_COPC, sim_copc & ~0xc);
1151 if (retval != ERROR_OK)
1152 return retval;
1153
1154 retval = target_read_u8(target, SIM_COPC, &sim_copc);
1155 if (retval != ERROR_OK)
1156 return retval;
1157
1158 if ((sim_copc & 0xc) == 0)
1159 return ERROR_OK; /* watchdog disabled successfully */
1160
1161 LOG_ERROR("Cannot disable Kinetis watchdog (SIM_COPC 0x%02" PRIx8 "), issue 'reset init'", sim_copc);
1162 return ERROR_FAIL;
1163
1164 case KINETIS_WDOG32_KE1X:
1165 return kinetis_disable_wdog32(target, WDOG32_KE1X);
1166
1167 case KINETIS_WDOG32_KL28:
1168 return kinetis_disable_wdog32(target, WDOG32_KL28);
1169
1170 default:
1171 return ERROR_OK;
1172 }
1173 }
1174
1175 COMMAND_HANDLER(kinetis_disable_wdog_handler)
1176 {
1177 int result;
1178 struct target *target = get_current_target(CMD_CTX);
1179 struct kinetis_chip *k_chip = kinetis_get_chip(target);
1180
1181 if (k_chip == NULL)
1182 return ERROR_FAIL;
1183
1184 if (CMD_ARGC > 0)
1185 return ERROR_COMMAND_SYNTAX_ERROR;
1186
1187 result = kinetis_disable_wdog(k_chip);
1188 return result;
1189 }
1190
1191
1192 static int kinetis_ftfx_decode_error(uint8_t fstat)
1193 {
1194 if (fstat & 0x20) {
1195 LOG_ERROR("Flash operation failed, illegal command");
1196 return ERROR_FLASH_OPER_UNSUPPORTED;
1197
1198 } else if (fstat & 0x10)
1199 LOG_ERROR("Flash operation failed, protection violated");
1200
1201 else if (fstat & 0x40)
1202 LOG_ERROR("Flash operation failed, read collision");
1203
1204 else if (fstat & 0x80)
1205 return ERROR_OK;
1206
1207 else
1208 LOG_ERROR("Flash operation timed out");
1209
1210 return ERROR_FLASH_OPERATION_FAILED;
1211 }
1212
1213 static int kinetis_ftfx_clear_error(struct target *target)
1214 {
1215 /* reset error flags */
1216 return target_write_u8(target, FTFx_FSTAT, 0x70);
1217 }
1218
1219
1220 static int kinetis_ftfx_prepare(struct target *target)
1221 {
1222 int result, i;
1223 uint8_t fstat;
1224
1225 /* wait until busy */
1226 for (i = 0; i < 50; i++) {
1227 result = target_read_u8(target, FTFx_FSTAT, &fstat);
1228 if (result != ERROR_OK)
1229 return result;
1230
1231 if (fstat & 0x80)
1232 break;
1233 }
1234
1235 if ((fstat & 0x80) == 0) {
1236 LOG_ERROR("Flash controller is busy");
1237 return ERROR_FLASH_OPERATION_FAILED;
1238 }
1239 if (fstat != 0x80) {
1240 /* reset error flags */
1241 result = kinetis_ftfx_clear_error(target);
1242 }
1243 return result;
1244 }
1245
1246 /* Kinetis Program-LongWord Microcodes */
1247 static const uint8_t kinetis_flash_write_code[] = {
1248 #include "../../../contrib/loaders/flash/kinetis/kinetis_flash.inc"
1249 };
1250
1251 /* Program LongWord Block Write */
1252 static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer,
1253 uint32_t offset, uint32_t wcount)
1254 {
1255 struct target *target = bank->target;
1256 uint32_t buffer_size = 2048; /* Default minimum value */
1257 struct working_area *write_algorithm;
1258 struct working_area *source;
1259 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1260 uint32_t address = k_bank->prog_base + offset;
1261 uint32_t end_address;
1262 struct reg_param reg_params[5];
1263 struct armv7m_algorithm armv7m_info;
1264 int retval;
1265 uint8_t fstat;
1266
1267 /* Increase buffer_size if needed */
1268 if (buffer_size < (target->working_area_size/2))
1269 buffer_size = (target->working_area_size/2);
1270
1271 /* allocate working area with flash programming code */
1272 if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
1273 &write_algorithm) != ERROR_OK) {
1274 LOG_WARNING("no working area available, can't do block memory writes");
1275 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1276 }
1277
1278 retval = target_write_buffer(target, write_algorithm->address,
1279 sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
1280 if (retval != ERROR_OK)
1281 return retval;
1282
1283 /* memory buffer */
1284 while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
1285 buffer_size /= 4;
1286 if (buffer_size <= 256) {
1287 /* free working area, write algorithm already allocated */
1288 target_free_working_area(target, write_algorithm);
1289
1290 LOG_WARNING("No large enough working area available, can't do block memory writes");
1291 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1292 }
1293 }
1294
1295 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1296 armv7m_info.core_mode = ARM_MODE_THREAD;
1297
1298 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* address */
1299 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* word count */
1300 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1301 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1302 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1303
1304 buf_set_u32(reg_params[0].value, 0, 32, address);
1305 buf_set_u32(reg_params[1].value, 0, 32, wcount);
1306 buf_set_u32(reg_params[2].value, 0, 32, source->address);
1307 buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
1308 buf_set_u32(reg_params[4].value, 0, 32, FTFx_FSTAT);
1309
1310 retval = target_run_flash_async_algorithm(target, buffer, wcount, 4,
1311 0, NULL,
1312 5, reg_params,
1313 source->address, source->size,
1314 write_algorithm->address, 0,
1315 &armv7m_info);
1316
1317 if (retval == ERROR_FLASH_OPERATION_FAILED) {
1318 end_address = buf_get_u32(reg_params[0].value, 0, 32);
1319
1320 LOG_ERROR("Error writing flash at %08" PRIx32, end_address);
1321
1322 retval = target_read_u8(target, FTFx_FSTAT, &fstat);
1323 if (retval == ERROR_OK) {
1324 retval = kinetis_ftfx_decode_error(fstat);
1325
1326 /* reset error flags */
1327 target_write_u8(target, FTFx_FSTAT, 0x70);
1328 }
1329 } else if (retval != ERROR_OK)
1330 LOG_ERROR("Error executing kinetis Flash programming algorithm");
1331
1332 target_free_working_area(target, source);
1333 target_free_working_area(target, write_algorithm);
1334
1335 destroy_reg_param(&reg_params[0]);
1336 destroy_reg_param(&reg_params[1]);
1337 destroy_reg_param(&reg_params[2]);
1338 destroy_reg_param(&reg_params[3]);
1339 destroy_reg_param(&reg_params[4]);
1340
1341 return retval;
1342 }
1343
1344 static int kinetis_protect(struct flash_bank *bank, int set, int first, int last)
1345 {
1346 int i;
1347
1348 if (allow_fcf_writes) {
1349 LOG_ERROR("Protection setting is possible with 'kinetis fcf_source protection' only!");
1350 return ERROR_FAIL;
1351 }
1352
1353 if (!bank->prot_blocks || bank->num_prot_blocks == 0) {
1354 LOG_ERROR("No protection possible for current bank!");
1355 return ERROR_FLASH_BANK_INVALID;
1356 }
1357
1358 for (i = first; i < bank->num_prot_blocks && i <= last; i++)
1359 bank->prot_blocks[i].is_protected = set;
1360
1361 LOG_INFO("Protection bits will be written at the next FCF sector erase or write.");
1362 LOG_INFO("Do not issue 'flash info' command until protection is written,");
1363 LOG_INFO("doing so would re-read protection status from MCU.");
1364
1365 return ERROR_OK;
1366 }
1367
1368 static int kinetis_protect_check(struct flash_bank *bank)
1369 {
1370 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1371 int result;
1372 int i, b;
1373 uint32_t fprot;
1374
1375 if (k_bank->flash_class == FC_PFLASH) {
1376
1377 /* read protection register */
1378 result = target_read_u32(bank->target, FTFx_FPROT3, &fprot);
1379 if (result != ERROR_OK)
1380 return result;
1381
1382 /* Every bit protects 1/32 of the full flash (not necessarily just this bank) */
1383
1384 } else if (k_bank->flash_class == FC_FLEX_NVM) {
1385 uint8_t fdprot;
1386
1387 /* read protection register */
1388 result = target_read_u8(bank->target, FTFx_FDPROT, &fdprot);
1389 if (result != ERROR_OK)
1390 return result;
1391
1392 fprot = fdprot;
1393
1394 } else {
1395 LOG_ERROR("Protection checks for FlexRAM not supported");
1396 return ERROR_FLASH_BANK_INVALID;
1397 }
1398
1399 b = k_bank->protection_block;
1400 for (i = 0; i < bank->num_prot_blocks; i++) {
1401 if ((fprot >> b) & 1)
1402 bank->prot_blocks[i].is_protected = 0;
1403 else
1404 bank->prot_blocks[i].is_protected = 1;
1405
1406 b++;
1407 }
1408
1409 return ERROR_OK;
1410 }
1411
1412
1413 static int kinetis_fill_fcf(struct flash_bank *bank, uint8_t *fcf)
1414 {
1415 uint32_t fprot = 0xffffffff;
1416 uint8_t fsec = 0xfe; /* set MCU unsecure */
1417 uint8_t fdprot = 0xff;
1418 int i;
1419 unsigned bank_idx;
1420 unsigned num_blocks;
1421 uint32_t pflash_bit;
1422 uint8_t dflash_bit;
1423 struct flash_bank *bank_iter;
1424 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1425 struct kinetis_chip *k_chip = k_bank->k_chip;
1426
1427 memset(fcf, 0xff, FCF_SIZE);
1428
1429 pflash_bit = 1;
1430 dflash_bit = 1;
1431
1432 /* iterate over all kinetis banks */
1433 /* current bank is bank 0, it contains FCF */
1434 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
1435 for (bank_idx = 0; bank_idx < num_blocks; bank_idx++) {
1436 k_bank = &(k_chip->banks[bank_idx]);
1437 bank_iter = k_bank->bank;
1438
1439 if (bank_iter == NULL) {
1440 LOG_WARNING("Missing bank %u configuration, FCF protection flags may be incomplette", bank_idx);
1441 continue;
1442 }
1443
1444 kinetis_auto_probe(bank_iter);
1445
1446 assert(bank_iter->prot_blocks);
1447
1448 if (k_bank->flash_class == FC_PFLASH) {
1449 for (i = 0; i < bank_iter->num_prot_blocks; i++) {
1450 if (bank_iter->prot_blocks[i].is_protected == 1)
1451 fprot &= ~pflash_bit;
1452
1453 pflash_bit <<= 1;
1454 }
1455
1456 } else if (k_bank->flash_class == FC_FLEX_NVM) {
1457 for (i = 0; i < bank_iter->num_prot_blocks; i++) {
1458 if (bank_iter->prot_blocks[i].is_protected == 1)
1459 fdprot &= ~dflash_bit;
1460
1461 dflash_bit <<= 1;
1462 }
1463
1464 }
1465 }
1466
1467 target_buffer_set_u32(bank->target, fcf + FCF_FPROT, fprot);
1468 fcf[FCF_FSEC] = fsec;
1469 fcf[FCF_FOPT] = fcf_fopt;
1470 fcf[FCF_FDPROT] = fdprot;
1471 return ERROR_OK;
1472 }
1473
1474 static int kinetis_ftfx_command(struct target *target, uint8_t fcmd, uint32_t faddr,
1475 uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
1476 uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
1477 uint8_t *ftfx_fstat)
1478 {
1479 uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
1480 fccob7, fccob6, fccob5, fccob4,
1481 fccobb, fccoba, fccob9, fccob8};
1482 int result;
1483 uint8_t fstat;
1484 int64_t ms_timeout = timeval_ms() + 250;
1485
1486 result = target_write_memory(target, FTFx_FCCOB3, 4, 3, command);
1487 if (result != ERROR_OK)
1488 return result;
1489
1490 /* start command */
1491 result = target_write_u8(target, FTFx_FSTAT, 0x80);
1492 if (result != ERROR_OK)
1493 return result;
1494
1495 /* wait for done */
1496 do {
1497 result = target_read_u8(target, FTFx_FSTAT, &fstat);
1498
1499 if (result != ERROR_OK)
1500 return result;
1501
1502 if (fstat & 0x80)
1503 break;
1504
1505 } while (timeval_ms() < ms_timeout);
1506
1507 if (ftfx_fstat)
1508 *ftfx_fstat = fstat;
1509
1510 if ((fstat & 0xf0) != 0x80) {
1511 LOG_DEBUG("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
1512 fstat, command[3], command[2], command[1], command[0],
1513 command[7], command[6], command[5], command[4],
1514 command[11], command[10], command[9], command[8]);
1515
1516 return kinetis_ftfx_decode_error(fstat);
1517 }
1518
1519 return ERROR_OK;
1520 }
1521
1522
1523 static int kinetis_read_pmstat(struct kinetis_chip *k_chip, uint8_t *pmstat)
1524 {
1525 int result;
1526 uint32_t stat32;
1527 struct target *target = k_chip->target;
1528
1529 switch (k_chip->sysmodectrlr_type) {
1530 case KINETIS_SMC:
1531 result = target_read_u8(target, SMC_PMSTAT, pmstat);
1532 return result;
1533
1534 case KINETIS_SMC32:
1535 result = target_read_u32(target, SMC32_PMSTAT, &stat32);
1536 if (result == ERROR_OK)
1537 *pmstat = stat32 & 0xff;
1538 return result;
1539 }
1540 return ERROR_FAIL;
1541 }
1542
1543 static int kinetis_check_run_mode(struct kinetis_chip *k_chip)
1544 {
1545 int result, i;
1546 uint8_t pmstat;
1547 struct target *target;
1548
1549 if (k_chip == NULL) {
1550 LOG_ERROR("Chip not probed.");
1551 return ERROR_FAIL;
1552 }
1553 target = k_chip->target;
1554
1555 if (target->state != TARGET_HALTED) {
1556 LOG_ERROR("Target not halted");
1557 return ERROR_TARGET_NOT_HALTED;
1558 }
1559
1560 result = kinetis_read_pmstat(k_chip, &pmstat);
1561 if (result != ERROR_OK)
1562 return result;
1563
1564 if (pmstat == PM_STAT_RUN)
1565 return ERROR_OK;
1566
1567 if (pmstat == PM_STAT_VLPR) {
1568 /* It is safe to switch from VLPR to RUN mode without changing clock */
1569 LOG_INFO("Switching from VLPR to RUN mode.");
1570
1571 switch (k_chip->sysmodectrlr_type) {
1572 case KINETIS_SMC:
1573 result = target_write_u8(target, SMC_PMCTRL, PM_CTRL_RUNM_RUN);
1574 break;
1575
1576 case KINETIS_SMC32:
1577 result = target_write_u32(target, SMC32_PMCTRL, PM_CTRL_RUNM_RUN);
1578 break;
1579 }
1580 if (result != ERROR_OK)
1581 return result;
1582
1583 for (i = 100; i; i--) {
1584 result = kinetis_read_pmstat(k_chip, &pmstat);
1585 if (result != ERROR_OK)
1586 return result;
1587
1588 if (pmstat == PM_STAT_RUN)
1589 return ERROR_OK;
1590 }
1591 }
1592
1593 LOG_ERROR("Flash operation not possible in current run mode: SMC_PMSTAT: 0x%x", pmstat);
1594 LOG_ERROR("Issue a 'reset init' command.");
1595 return ERROR_TARGET_NOT_HALTED;
1596 }
1597
1598
1599 static void kinetis_invalidate_flash_cache(struct kinetis_chip *k_chip)
1600 {
1601 struct target *target = k_chip->target;
1602
1603 switch (k_chip->cache_type) {
1604 case KINETIS_CACHE_K:
1605 target_write_u8(target, FMC_PFB01CR + 2, 0xf0);
1606 /* Set CINV_WAY bits - request invalidate of all cache ways */
1607 /* FMC_PFB0CR has same address and CINV_WAY bits as FMC_PFB01CR */
1608 break;
1609
1610 case KINETIS_CACHE_L:
1611 target_write_u8(target, MCM_PLACR + 1, 0x04);
1612 /* set bit CFCC - Clear Flash Controller Cache */
1613 break;
1614
1615 case KINETIS_CACHE_MSCM:
1616 target_write_u32(target, MSCM_OCMDR0, 0x30);
1617 /* disable data prefetch and flash speculate */
1618 break;
1619
1620 default:
1621 break;
1622 }
1623 }
1624
1625
1626 static int kinetis_erase(struct flash_bank *bank, int first, int last)
1627 {
1628 int result, i;
1629 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1630 struct kinetis_chip *k_chip = k_bank->k_chip;
1631
1632 result = kinetis_check_run_mode(k_chip);
1633 if (result != ERROR_OK)
1634 return result;
1635
1636 /* reset error flags */
1637 result = kinetis_ftfx_prepare(bank->target);
1638 if (result != ERROR_OK)
1639 return result;
1640
1641 if ((first > bank->num_sectors) || (last > bank->num_sectors))
1642 return ERROR_FLASH_OPERATION_FAILED;
1643
1644 /*
1645 * FIXME: TODO: use the 'Erase Flash Block' command if the
1646 * requested erase is PFlash or NVM and encompasses the entire
1647 * block. Should be quicker.
1648 */
1649 for (i = first; i <= last; i++) {
1650 /* set command and sector address */
1651 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTERASE, k_bank->prog_base + bank->sectors[i].offset,
1652 0, 0, 0, 0, 0, 0, 0, 0, NULL);
1653
1654 if (result != ERROR_OK) {
1655 LOG_WARNING("erase sector %d failed", i);
1656 return ERROR_FLASH_OPERATION_FAILED;
1657 }
1658
1659 bank->sectors[i].is_erased = 1;
1660
1661 if (k_bank->prog_base == 0
1662 && bank->sectors[i].offset <= FCF_ADDRESS
1663 && bank->sectors[i].offset + bank->sectors[i].size > FCF_ADDRESS + FCF_SIZE) {
1664 if (allow_fcf_writes) {
1665 LOG_WARNING("Flash Configuration Field erased, DO NOT reset or power off the device");
1666 LOG_WARNING("until correct FCF is programmed or MCU gets security lock.");
1667 } else {
1668 uint8_t fcf_buffer[FCF_SIZE];
1669
1670 kinetis_fill_fcf(bank, fcf_buffer);
1671 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1672 if (result != ERROR_OK)
1673 LOG_WARNING("Flash Configuration Field write failed");
1674 bank->sectors[i].is_erased = 0;
1675 }
1676 }
1677 }
1678
1679 kinetis_invalidate_flash_cache(k_bank->k_chip);
1680
1681 return ERROR_OK;
1682 }
1683
1684 static int kinetis_make_ram_ready(struct target *target)
1685 {
1686 int result;
1687 uint8_t ftfx_fcnfg;
1688
1689 /* check if ram ready */
1690 result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
1691 if (result != ERROR_OK)
1692 return result;
1693
1694 if (ftfx_fcnfg & (1 << 1))
1695 return ERROR_OK; /* ram ready */
1696
1697 /* make flex ram available */
1698 result = kinetis_ftfx_command(target, FTFx_CMD_SETFLEXRAM, 0x00ff0000,
1699 0, 0, 0, 0, 0, 0, 0, 0, NULL);
1700 if (result != ERROR_OK)
1701 return ERROR_FLASH_OPERATION_FAILED;
1702
1703 /* check again */
1704 result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
1705 if (result != ERROR_OK)
1706 return result;
1707
1708 if (ftfx_fcnfg & (1 << 1))
1709 return ERROR_OK; /* ram ready */
1710
1711 return ERROR_FLASH_OPERATION_FAILED;
1712 }
1713
1714
1715 static int kinetis_write_sections(struct flash_bank *bank, const uint8_t *buffer,
1716 uint32_t offset, uint32_t count)
1717 {
1718 int result = ERROR_OK;
1719 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1720 struct kinetis_chip *k_chip = k_bank->k_chip;
1721 uint8_t *buffer_aligned = NULL;
1722 /*
1723 * Kinetis uses different terms for the granularity of
1724 * sector writes, e.g. "phrase" or "128 bits". We use
1725 * the generic term "chunk". The largest possible
1726 * Kinetis "chunk" is 16 bytes (128 bits).
1727 */
1728 uint32_t prog_section_chunk_bytes = k_bank->sector_size >> 8;
1729 uint32_t prog_size_bytes = k_chip->max_flash_prog_size;
1730
1731 while (count > 0) {
1732 uint32_t size = prog_size_bytes - offset % prog_size_bytes;
1733 uint32_t align_begin = offset % prog_section_chunk_bytes;
1734 uint32_t align_end;
1735 uint32_t size_aligned;
1736 uint16_t chunk_count;
1737 uint8_t ftfx_fstat;
1738
1739 if (size > count)
1740 size = count;
1741
1742 align_end = (align_begin + size) % prog_section_chunk_bytes;
1743 if (align_end)
1744 align_end = prog_section_chunk_bytes - align_end;
1745
1746 size_aligned = align_begin + size + align_end;
1747 chunk_count = size_aligned / prog_section_chunk_bytes;
1748
1749 if (size != size_aligned) {
1750 /* aligned section: the first, the last or the only */
1751 if (!buffer_aligned)
1752 buffer_aligned = malloc(prog_size_bytes);
1753
1754 memset(buffer_aligned, 0xff, size_aligned);
1755 memcpy(buffer_aligned + align_begin, buffer, size);
1756
1757 result = target_write_memory(bank->target, k_chip->progr_accel_ram,
1758 4, size_aligned / 4, buffer_aligned);
1759
1760 LOG_DEBUG("section @ " TARGET_ADDR_FMT " aligned begin %" PRIu32
1761 ", end %" PRIu32,
1762 bank->base + offset, align_begin, align_end);
1763 } else
1764 result = target_write_memory(bank->target, k_chip->progr_accel_ram,
1765 4, size_aligned / 4, buffer);
1766
1767 LOG_DEBUG("write section @ " TARGET_ADDR_FMT " with length %" PRIu32
1768 " bytes",
1769 bank->base + offset, size);
1770
1771 if (result != ERROR_OK) {
1772 LOG_ERROR("target_write_memory failed");
1773 break;
1774 }
1775
1776 /* execute section-write command */
1777 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTWRITE,
1778 k_bank->prog_base + offset - align_begin,
1779 chunk_count>>8, chunk_count, 0, 0,
1780 0, 0, 0, 0, &ftfx_fstat);
1781
1782 if (result != ERROR_OK) {
1783 LOG_ERROR("Error writing section at " TARGET_ADDR_FMT,
1784 bank->base + offset);
1785 break;
1786 }
1787
1788 if (ftfx_fstat & 0x01) {
1789 LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
1790 bank->base + offset);
1791 if (k_bank->prog_base == 0 && offset == FCF_ADDRESS + FCF_SIZE
1792 && (k_chip->flash_support & FS_WIDTH_256BIT)) {
1793 LOG_ERROR("Flash write immediately after the end of Flash Config Field shows error");
1794 LOG_ERROR("because the flash memory is 256 bits wide (data were written correctly).");
1795 LOG_ERROR("Either change the linker script to add a gap of 16 bytes after FCF");
1796 LOG_ERROR("or set 'kinetis fcf_source write'");
1797 }
1798 }
1799
1800 buffer += size;
1801 offset += size;
1802 count -= size;
1803 }
1804
1805 free(buffer_aligned);
1806 return result;
1807 }
1808
1809
1810 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
1811 uint32_t offset, uint32_t count)
1812 {
1813 int result, fallback = 0;
1814 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1815 struct kinetis_chip *k_chip = k_bank->k_chip;
1816
1817 if (!(k_chip->flash_support & FS_PROGRAM_SECTOR)) {
1818 /* fallback to longword write */
1819 fallback = 1;
1820 LOG_INFO("This device supports Program Longword execution only.");
1821 } else {
1822 result = kinetis_make_ram_ready(bank->target);
1823 if (result != ERROR_OK) {
1824 fallback = 1;
1825 LOG_WARNING("FlexRAM not ready, fallback to slow longword write.");
1826 }
1827 }
1828
1829 LOG_DEBUG("flash write @ " TARGET_ADDR_FMT, bank->base + offset);
1830
1831 if (fallback == 0) {
1832 /* program section command */
1833 kinetis_write_sections(bank, buffer, offset, count);
1834 } else if (k_chip->flash_support & FS_PROGRAM_LONGWORD) {
1835 /* program longword command, not supported in FTFE */
1836 uint8_t *new_buffer = NULL;
1837
1838 /* check word alignment */
1839 if (offset & 0x3) {
1840 LOG_ERROR("offset 0x%" PRIx32 " breaks the required alignment", offset);
1841 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
1842 }
1843
1844 if (count & 0x3) {
1845 uint32_t old_count = count;
1846 count = (old_count | 3) + 1;
1847 new_buffer = malloc(count);
1848 if (new_buffer == NULL) {
1849 LOG_ERROR("odd number of bytes to write and no memory "
1850 "for padding buffer");
1851 return ERROR_FAIL;
1852 }
1853 LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
1854 "and padding with 0xff", old_count, count);
1855 memset(new_buffer + old_count, 0xff, count - old_count);
1856 buffer = memcpy(new_buffer, buffer, old_count);
1857 }
1858
1859 uint32_t words_remaining = count / 4;
1860
1861 kinetis_disable_wdog(k_chip);
1862
1863 /* try using a block write */
1864 result = kinetis_write_block(bank, buffer, offset, words_remaining);
1865
1866 if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
1867 /* if block write failed (no sufficient working area),
1868 * we use normal (slow) single word accesses */
1869 LOG_WARNING("couldn't use block writes, falling back to single "
1870 "memory accesses");
1871
1872 while (words_remaining) {
1873 uint8_t ftfx_fstat;
1874
1875 LOG_DEBUG("write longword @ %08" PRIx32, (uint32_t)(bank->base + offset));
1876
1877 result = kinetis_ftfx_command(bank->target, FTFx_CMD_LWORDPROG, k_bank->prog_base + offset,
1878 buffer[3], buffer[2], buffer[1], buffer[0],
1879 0, 0, 0, 0, &ftfx_fstat);
1880
1881 if (result != ERROR_OK) {
1882 LOG_ERROR("Error writing longword at " TARGET_ADDR_FMT,
1883 bank->base + offset);
1884 break;
1885 }
1886
1887 if (ftfx_fstat & 0x01)
1888 LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
1889 bank->base + offset);
1890
1891 buffer += 4;
1892 offset += 4;
1893 words_remaining--;
1894 }
1895 }
1896 free(new_buffer);
1897 } else {
1898 LOG_ERROR("Flash write strategy not implemented");
1899 return ERROR_FLASH_OPERATION_FAILED;
1900 }
1901
1902 kinetis_invalidate_flash_cache(k_chip);
1903 return result;
1904 }
1905
1906
1907 static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer,
1908 uint32_t offset, uint32_t count)
1909 {
1910 int result;
1911 bool set_fcf = false;
1912 bool fcf_in_data_valid = false;
1913 int sect = 0;
1914 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1915 struct kinetis_chip *k_chip = k_bank->k_chip;
1916 uint8_t fcf_buffer[FCF_SIZE];
1917 uint8_t fcf_current[FCF_SIZE];
1918 uint8_t fcf_in_data[FCF_SIZE];
1919
1920 result = kinetis_check_run_mode(k_chip);
1921 if (result != ERROR_OK)
1922 return result;
1923
1924 /* reset error flags */
1925 result = kinetis_ftfx_prepare(bank->target);
1926 if (result != ERROR_OK)
1927 return result;
1928
1929 if (k_bank->prog_base == 0 && !allow_fcf_writes) {
1930 if (bank->sectors[1].offset <= FCF_ADDRESS)
1931 sect = 1; /* 1kb sector, FCF in 2nd sector */
1932
1933 if (offset < bank->sectors[sect].offset + bank->sectors[sect].size
1934 && offset + count > bank->sectors[sect].offset)
1935 set_fcf = true; /* write to any part of sector with FCF */
1936 }
1937
1938 if (set_fcf) {
1939 kinetis_fill_fcf(bank, fcf_buffer);
1940
1941 fcf_in_data_valid = offset <= FCF_ADDRESS
1942 && offset + count >= FCF_ADDRESS + FCF_SIZE;
1943 if (fcf_in_data_valid) {
1944 memcpy(fcf_in_data, buffer + FCF_ADDRESS - offset, FCF_SIZE);
1945 if (memcmp(fcf_in_data + FCF_FPROT, fcf_buffer, 4)) {
1946 fcf_in_data_valid = false;
1947 LOG_INFO("Flash protection requested in programmed file differs from current setting.");
1948 }
1949 if (fcf_in_data[FCF_FDPROT] != fcf_buffer[FCF_FDPROT]) {
1950 fcf_in_data_valid = false;
1951 LOG_INFO("Data flash protection requested in programmed file differs from current setting.");
1952 }
1953 if ((fcf_in_data[FCF_FSEC] & 3) != 2) {
1954 fcf_in_data_valid = false;
1955 LOG_INFO("Device security requested in programmed file!");
1956 } else if (k_chip->flash_support & FS_ECC
1957 && fcf_in_data[FCF_FSEC] != fcf_buffer[FCF_FSEC]) {
1958 fcf_in_data_valid = false;
1959 LOG_INFO("Strange unsecure mode 0x%02" PRIx8
1960 "requested in programmed file!",
1961 fcf_in_data[FCF_FSEC]);
1962 }
1963 if ((k_chip->flash_support & FS_ECC || fcf_fopt_configured)
1964 && fcf_in_data[FCF_FOPT] != fcf_fopt) {
1965 fcf_in_data_valid = false;
1966 LOG_INFO("FOPT requested in programmed file differs from current setting.");
1967 }
1968 if (!fcf_in_data_valid)
1969 LOG_INFO("Expect verify errors at FCF (0x408-0x40f).");
1970 }
1971 }
1972
1973 if (set_fcf && !fcf_in_data_valid) {
1974 if (offset < FCF_ADDRESS) {
1975 /* write part preceding FCF */
1976 result = kinetis_write_inner(bank, buffer, offset, FCF_ADDRESS - offset);
1977 if (result != ERROR_OK)
1978 return result;
1979 }
1980
1981 result = target_read_memory(bank->target, bank->base + FCF_ADDRESS, 4, FCF_SIZE / 4, fcf_current);
1982 if (result == ERROR_OK && memcmp(fcf_current, fcf_buffer, FCF_SIZE) == 0)
1983 set_fcf = false;
1984
1985 if (set_fcf) {
1986 /* write FCF if differs from flash - eliminate multiple writes */
1987 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1988 if (result != ERROR_OK)
1989 return result;
1990 }
1991
1992 LOG_WARNING("Flash Configuration Field written.");
1993 LOG_WARNING("Reset or power off the device to make settings effective.");
1994
1995 if (offset + count > FCF_ADDRESS + FCF_SIZE) {
1996 uint32_t delta = FCF_ADDRESS + FCF_SIZE - offset;
1997 /* write part after FCF */
1998 result = kinetis_write_inner(bank, buffer + delta, FCF_ADDRESS + FCF_SIZE, count - delta);
1999 }
2000 return result;
2001
2002 } else {
2003 /* no FCF fiddling, normal write */
2004 return kinetis_write_inner(bank, buffer, offset, count);
2005 }
2006 }
2007
2008
2009 static int kinetis_probe_chip(struct kinetis_chip *k_chip)
2010 {
2011 int result;
2012 uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg1_depart;
2013 uint8_t fcfg2_pflsh;
2014 uint32_t ee_size = 0;
2015 uint32_t pflash_size_k, nvm_size_k, dflash_size_k;
2016 uint32_t pflash_size_m;
2017 unsigned num_blocks = 0;
2018 unsigned maxaddr_shift = 13;
2019 struct target *target = k_chip->target;
2020
2021 unsigned familyid = 0, subfamid = 0;
2022 unsigned cpu_mhz = 120;
2023 unsigned idx;
2024 bool use_nvm_marking = false;
2025 char flash_marking[12], nvm_marking[2];
2026 char name[40];
2027
2028 k_chip->probed = false;
2029 k_chip->pflash_sector_size = 0;
2030 k_chip->pflash_base = 0;
2031 k_chip->nvm_base = 0x10000000;
2032 k_chip->progr_accel_ram = FLEXRAM;
2033
2034 name[0] = '\0';
2035
2036 if (k_chip->sim_base)
2037 result = target_read_u32(target, k_chip->sim_base + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2038 else {
2039 result = target_read_u32(target, SIM_BASE + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2040 if (result == ERROR_OK)
2041 k_chip->sim_base = SIM_BASE;
2042 else {
2043 result = target_read_u32(target, SIM_BASE_KL28 + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2044 if (result == ERROR_OK)
2045 k_chip->sim_base = SIM_BASE_KL28;
2046 }
2047 }
2048 if (result != ERROR_OK)
2049 return result;
2050
2051 if ((k_chip->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) {
2052 /* older K-series MCU */
2053 uint32_t mcu_type = k_chip->sim_sdid & KINETIS_K_SDID_TYPE_MASK;
2054 k_chip->cache_type = KINETIS_CACHE_K;
2055 k_chip->watchdog_type = KINETIS_WDOG_K;
2056
2057 switch (mcu_type) {
2058 case KINETIS_K_SDID_K10_M50:
2059 case KINETIS_K_SDID_K20_M50:
2060 /* 1kB sectors */
2061 k_chip->pflash_sector_size = 1<<10;
2062 k_chip->nvm_sector_size = 1<<10;
2063 num_blocks = 2;
2064 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2065 break;
2066 case KINETIS_K_SDID_K10_M72:
2067 case KINETIS_K_SDID_K20_M72:
2068 case KINETIS_K_SDID_K30_M72:
2069 case KINETIS_K_SDID_K30_M100:
2070 case KINETIS_K_SDID_K40_M72:
2071 case KINETIS_K_SDID_K40_M100:
2072 case KINETIS_K_SDID_K50_M72:
2073 /* 2kB sectors, 1kB FlexNVM sectors */
2074 k_chip->pflash_sector_size = 2<<10;
2075 k_chip->nvm_sector_size = 1<<10;
2076 num_blocks = 2;
2077 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2078 k_chip->max_flash_prog_size = 1<<10;
2079 break;
2080 case KINETIS_K_SDID_K10_M100:
2081 case KINETIS_K_SDID_K20_M100:
2082 case KINETIS_K_SDID_K11:
2083 case KINETIS_K_SDID_K12:
2084 case KINETIS_K_SDID_K21_M50:
2085 case KINETIS_K_SDID_K22_M50:
2086 case KINETIS_K_SDID_K51_M72:
2087 case KINETIS_K_SDID_K53:
2088 case KINETIS_K_SDID_K60_M100:
2089 /* 2kB sectors */
2090 k_chip->pflash_sector_size = 2<<10;
2091 k_chip->nvm_sector_size = 2<<10;
2092 num_blocks = 2;
2093 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2094 break;
2095 case KINETIS_K_SDID_K21_M120:
2096 case KINETIS_K_SDID_K22_M120:
2097 /* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */
2098 k_chip->pflash_sector_size = 4<<10;
2099 k_chip->max_flash_prog_size = 1<<10;
2100 k_chip->nvm_sector_size = 4<<10;
2101 num_blocks = 2;
2102 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2103 break;
2104 case KINETIS_K_SDID_K10_M120:
2105 case KINETIS_K_SDID_K20_M120:
2106 case KINETIS_K_SDID_K60_M150:
2107 case KINETIS_K_SDID_K70_M150:
2108 /* 4kB sectors */
2109 k_chip->pflash_sector_size = 4<<10;
2110 k_chip->nvm_sector_size = 4<<10;
2111 num_blocks = 4;
2112 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2113 break;
2114 default:
2115 LOG_ERROR("Unsupported K-family FAMID");
2116 }
2117
2118 for (idx = 0; idx < ARRAY_SIZE(kinetis_types_old); idx++) {
2119 if (kinetis_types_old[idx].sdid == mcu_type) {
2120 strcpy(name, kinetis_types_old[idx].name);
2121 use_nvm_marking = true;
2122 break;
2123 }
2124 }
2125
2126 } else {
2127 /* Newer K-series or KL series MCU */
2128 familyid = (k_chip->sim_sdid & KINETIS_SDID_FAMILYID_MASK) >> KINETIS_SDID_FAMILYID_SHIFT;
2129 subfamid = (k_chip->sim_sdid & KINETIS_SDID_SUBFAMID_MASK) >> KINETIS_SDID_SUBFAMID_SHIFT;
2130
2131 switch (k_chip->sim_sdid & KINETIS_SDID_SERIESID_MASK) {
2132 case KINETIS_SDID_SERIESID_K:
2133 use_nvm_marking = true;
2134 k_chip->cache_type = KINETIS_CACHE_K;
2135 k_chip->watchdog_type = KINETIS_WDOG_K;
2136
2137 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2138 case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2:
2139 /* K02FN64, K02FN128: FTFA, 2kB sectors */
2140 k_chip->pflash_sector_size = 2<<10;
2141 num_blocks = 1;
2142 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2143 cpu_mhz = 100;
2144 break;
2145
2146 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: {
2147 /* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */
2148 uint32_t sopt1;
2149 result = target_read_u32(target, k_chip->sim_base + SIM_SOPT1_OFFSET, &sopt1);
2150 if (result != ERROR_OK)
2151 return result;
2152
2153 if (((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) &&
2154 ((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) {
2155 /* MK24FN1M */
2156 k_chip->pflash_sector_size = 4<<10;
2157 num_blocks = 2;
2158 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2159 k_chip->max_flash_prog_size = 1<<10;
2160 subfamid = 4; /* errata 1N83J fix */
2161 break;
2162 }
2163 if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128
2164 || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256
2165 || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) {
2166 /* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */
2167 k_chip->pflash_sector_size = 2<<10;
2168 /* autodetect 1 or 2 blocks */
2169 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2170 break;
2171 }
2172 LOG_ERROR("Unsupported Kinetis K22 DIEID");
2173 break;
2174 }
2175 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4:
2176 k_chip->pflash_sector_size = 4<<10;
2177 if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) {
2178 /* K24FN256 - smaller pflash with FTFA */
2179 num_blocks = 1;
2180 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2181 break;
2182 }
2183 /* K24FN1M without errata 7534 */
2184 num_blocks = 2;
2185 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2186 k_chip->max_flash_prog_size = 1<<10;
2187 break;
2188
2189 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1: /* errata 7534 - should be K63 */
2190 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2: /* errata 7534 - should be K64 */
2191 subfamid += 2; /* errata 7534 fix */
2192 /* fallthrough */
2193 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3:
2194 /* K63FN1M0 */
2195 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4:
2196 /* K64FN1M0, K64FX512 */
2197 k_chip->pflash_sector_size = 4<<10;
2198 k_chip->nvm_sector_size = 4<<10;
2199 k_chip->max_flash_prog_size = 1<<10;
2200 num_blocks = 2;
2201 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2202 break;
2203
2204 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6:
2205 /* K26FN2M0 */
2206 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6:
2207 /* K66FN2M0, K66FX1M0 */
2208 k_chip->pflash_sector_size = 4<<10;
2209 k_chip->nvm_sector_size = 4<<10;
2210 k_chip->max_flash_prog_size = 1<<10;
2211 num_blocks = 4;
2212 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
2213 cpu_mhz = 180;
2214 break;
2215
2216 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX7:
2217 /* K27FN2M0 */
2218 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
2219 /* K28FN2M0 */
2220 k_chip->pflash_sector_size = 4<<10;
2221 k_chip->max_flash_prog_size = 1<<10;
2222 num_blocks = 4;
2223 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
2224 cpu_mhz = 150;
2225 break;
2226
2227 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX0:
2228 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX1:
2229 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX2:
2230 /* K80FN256, K81FN256, K82FN256 */
2231 k_chip->pflash_sector_size = 4<<10;
2232 num_blocks = 1;
2233 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
2234 cpu_mhz = 150;
2235 break;
2236
2237 case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX1:
2238 case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX2:
2239 /* KL81Z128, KL82Z128 */
2240 k_chip->pflash_sector_size = 2<<10;
2241 num_blocks = 1;
2242 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
2243 k_chip->cache_type = KINETIS_CACHE_L;
2244
2245 use_nvm_marking = false;
2246 snprintf(name, sizeof(name), "MKL8%uZ%%s7",
2247 subfamid);
2248 break;
2249
2250 default:
2251 LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID");
2252 }
2253
2254 if (name[0] == '\0')
2255 snprintf(name, sizeof(name), "MK%u%uF%%s%u",
2256 familyid, subfamid, cpu_mhz / 10);
2257 break;
2258
2259 case KINETIS_SDID_SERIESID_KL:
2260 /* KL-series */
2261 k_chip->pflash_sector_size = 1<<10;
2262 k_chip->nvm_sector_size = 1<<10;
2263 /* autodetect 1 or 2 blocks */
2264 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2265 k_chip->cache_type = KINETIS_CACHE_L;
2266 k_chip->watchdog_type = KINETIS_WDOG_COP;
2267
2268 cpu_mhz = 48;
2269 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2270 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX3:
2271 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX3:
2272 subfamid = 7;
2273 break;
2274
2275 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
2276 cpu_mhz = 72;
2277 k_chip->pflash_sector_size = 2<<10;
2278 num_blocks = 2;
2279 k_chip->watchdog_type = KINETIS_WDOG32_KL28;
2280 k_chip->sysmodectrlr_type = KINETIS_SMC32;
2281 break;
2282 }
2283
2284 snprintf(name, sizeof(name), "MKL%u%uZ%%s%u",
2285 familyid, subfamid, cpu_mhz / 10);
2286 break;
2287
2288 case KINETIS_SDID_SERIESID_KW:
2289 /* Newer KW-series (all KW series except KW2xD, KW01Z) */
2290 cpu_mhz = 48;
2291 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2292 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX0:
2293 /* KW40Z */
2294 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
2295 /* KW30Z */
2296 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX0:
2297 /* KW20Z */
2298 /* FTFA, 1kB sectors */
2299 k_chip->pflash_sector_size = 1<<10;
2300 k_chip->nvm_sector_size = 1<<10;
2301 /* autodetect 1 or 2 blocks */
2302 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2303 k_chip->cache_type = KINETIS_CACHE_L;
2304 k_chip->watchdog_type = KINETIS_WDOG_COP;
2305 break;
2306 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX1:
2307 /* KW41Z */
2308 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
2309 /* KW31Z */
2310 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX1:
2311 /* KW21Z */
2312 /* FTFA, 2kB sectors */
2313 k_chip->pflash_sector_size = 2<<10;
2314 k_chip->nvm_sector_size = 2<<10;
2315 /* autodetect 1 or 2 blocks */
2316 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2317 k_chip->cache_type = KINETIS_CACHE_L;
2318 k_chip->watchdog_type = KINETIS_WDOG_COP;
2319 break;
2320 default:
2321 LOG_ERROR("Unsupported KW FAMILYID SUBFAMID");
2322 }
2323 snprintf(name, sizeof(name), "MKW%u%uZ%%s%u",
2324 familyid, subfamid, cpu_mhz / 10);
2325 break;
2326
2327 case KINETIS_SDID_SERIESID_KV:
2328 /* KV-series */
2329 k_chip->watchdog_type = KINETIS_WDOG_K;
2330 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2331 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX0:
2332 /* KV10: FTFA, 1kB sectors */
2333 k_chip->pflash_sector_size = 1<<10;
2334 num_blocks = 1;
2335 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2336 k_chip->cache_type = KINETIS_CACHE_L;
2337 strcpy(name, "MKV10Z%s7");
2338 break;
2339
2340 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX1:
2341 /* KV11: FTFA, 2kB sectors */
2342 k_chip->pflash_sector_size = 2<<10;
2343 num_blocks = 1;
2344 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2345 k_chip->cache_type = KINETIS_CACHE_L;
2346 strcpy(name, "MKV11Z%s7");
2347 break;
2348
2349 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
2350 /* KV30: FTFA, 2kB sectors, 1 block */
2351 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
2352 /* KV31: FTFA, 2kB sectors, 2 blocks */
2353 k_chip->pflash_sector_size = 2<<10;
2354 /* autodetect 1 or 2 blocks */
2355 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2356 k_chip->cache_type = KINETIS_CACHE_K;
2357 break;
2358
2359 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX2:
2360 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX4:
2361 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX6:
2362 /* KV4x: FTFA, 4kB sectors */
2363 k_chip->pflash_sector_size = 4<<10;
2364 num_blocks = 1;
2365 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2366 k_chip->cache_type = KINETIS_CACHE_K;
2367 cpu_mhz = 168;
2368 break;
2369
2370 case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX6:
2371 case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX8:
2372 /* KV5x: FTFE, 8kB sectors */
2373 k_chip->pflash_sector_size = 8<<10;
2374 k_chip->max_flash_prog_size = 1<<10;
2375 num_blocks = 1;
2376 maxaddr_shift = 14;
2377 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_WIDTH_256BIT | FS_ECC;
2378 k_chip->pflash_base = 0x10000000;
2379 k_chip->progr_accel_ram = 0x18000000;
2380 cpu_mhz = 240;
2381 break;
2382
2383 default:
2384 LOG_ERROR("Unsupported KV FAMILYID SUBFAMID");
2385 }
2386
2387 if (name[0] == '\0')
2388 snprintf(name, sizeof(name), "MKV%u%uF%%s%u",
2389 familyid, subfamid, cpu_mhz / 10);
2390 break;
2391
2392 case KINETIS_SDID_SERIESID_KE:
2393 /* KE1x-series */
2394 k_chip->watchdog_type = KINETIS_WDOG32_KE1X;
2395 switch (k_chip->sim_sdid &
2396 (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK | KINETIS_SDID_PROJECTID_MASK)) {
2397 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1xZ:
2398 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX5 | KINETIS_SDID_PROJECTID_KE1xZ:
2399 /* KE1xZ: FTFE, 2kB sectors */
2400 k_chip->pflash_sector_size = 2<<10;
2401 k_chip->nvm_sector_size = 2<<10;
2402 k_chip->max_flash_prog_size = 1<<9;
2403 num_blocks = 2;
2404 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2405 k_chip->cache_type = KINETIS_CACHE_L;
2406
2407 cpu_mhz = 72;
2408 snprintf(name, sizeof(name), "MKE%u%uZ%%s%u",
2409 familyid, subfamid, cpu_mhz / 10);
2410 break;
2411
2412 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1xF:
2413 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX6 | KINETIS_SDID_PROJECTID_KE1xF:
2414 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX8 | KINETIS_SDID_PROJECTID_KE1xF:
2415 /* KE1xF: FTFE, 4kB sectors */
2416 k_chip->pflash_sector_size = 4<<10;
2417 k_chip->nvm_sector_size = 2<<10;
2418 k_chip->max_flash_prog_size = 1<<10;
2419 num_blocks = 2;
2420 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2421 k_chip->cache_type = KINETIS_CACHE_MSCM;
2422
2423 cpu_mhz = 168;
2424 snprintf(name, sizeof(name), "MKE%u%uF%%s%u",
2425 familyid, subfamid, cpu_mhz / 10);
2426 break;
2427
2428 default:
2429 LOG_ERROR("Unsupported KE FAMILYID SUBFAMID");
2430 }
2431 break;
2432
2433 default:
2434 LOG_ERROR("Unsupported K-series");
2435 }
2436 }
2437
2438 if (k_chip->pflash_sector_size == 0) {
2439 LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, k_chip->sim_sdid);
2440 return ERROR_FLASH_OPER_UNSUPPORTED;
2441 }
2442
2443 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &k_chip->sim_fcfg1);
2444 if (result != ERROR_OK)
2445 return result;
2446
2447 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG2_OFFSET, &k_chip->sim_fcfg2);
2448 if (result != ERROR_OK)
2449 return result;
2450
2451 LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, k_chip->sim_sdid,
2452 k_chip->sim_fcfg1, k_chip->sim_fcfg2);
2453
2454 fcfg1_nvmsize = (uint8_t)((k_chip->sim_fcfg1 >> 28) & 0x0f);
2455 fcfg1_pfsize = (uint8_t)((k_chip->sim_fcfg1 >> 24) & 0x0f);
2456 fcfg1_eesize = (uint8_t)((k_chip->sim_fcfg1 >> 16) & 0x0f);
2457 fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
2458
2459 fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
2460 k_chip->fcfg2_maxaddr0_shifted = ((k_chip->sim_fcfg2 >> 24) & 0x7f) << maxaddr_shift;
2461 k_chip->fcfg2_maxaddr1_shifted = ((k_chip->sim_fcfg2 >> 16) & 0x7f) << maxaddr_shift;
2462
2463 if (num_blocks == 0)
2464 num_blocks = k_chip->fcfg2_maxaddr1_shifted ? 2 : 1;
2465 else if (k_chip->fcfg2_maxaddr1_shifted == 0 && num_blocks >= 2 && fcfg2_pflsh) {
2466 /* fcfg2_maxaddr1 may be zero due to partitioning whole NVM as EEPROM backup
2467 * Do not adjust block count in this case! */
2468 num_blocks = 1;
2469 LOG_WARNING("MAXADDR1 is zero, number of flash banks adjusted to 1");
2470 } else if (k_chip->fcfg2_maxaddr1_shifted != 0 && num_blocks == 1) {
2471 num_blocks = 2;
2472 LOG_WARNING("MAXADDR1 is non zero, number of flash banks adjusted to 2");
2473 }
2474
2475 /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
2476 if (!fcfg2_pflsh) {
2477 switch (fcfg1_nvmsize) {
2478 case 0x03:
2479 case 0x05:
2480 case 0x07:
2481 case 0x09:
2482 case 0x0b:
2483 k_chip->nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
2484 break;
2485 case 0x0f:
2486 if (k_chip->pflash_sector_size >= 4<<10)
2487 k_chip->nvm_size = 512<<10;
2488 else
2489 /* K20_100 */
2490 k_chip->nvm_size = 256<<10;
2491 break;
2492 default:
2493 k_chip->nvm_size = 0;
2494 break;
2495 }
2496
2497 switch (fcfg1_eesize) {
2498 case 0x00:
2499 case 0x01:
2500 case 0x02:
2501 case 0x03:
2502 case 0x04:
2503 case 0x05:
2504 case 0x06:
2505 case 0x07:
2506 case 0x08:
2507 case 0x09:
2508 ee_size = (16 << (10 - fcfg1_eesize));
2509 break;
2510 default:
2511 ee_size = 0;
2512 break;
2513 }
2514
2515 switch (fcfg1_depart) {
2516 case 0x01:
2517 case 0x02:
2518 case 0x03:
2519 case 0x04:
2520 case 0x05:
2521 case 0x06:
2522 k_chip->dflash_size = k_chip->nvm_size - (4096 << fcfg1_depart);
2523 break;
2524 case 0x07:
2525 case 0x08:
2526 k_chip->dflash_size = 0;
2527 break;
2528 case 0x09:
2529 case 0x0a:
2530 case 0x0b:
2531 case 0x0c:
2532 case 0x0d:
2533 k_chip->dflash_size = 4096 << (fcfg1_depart & 0x7);
2534 break;
2535 default:
2536 k_chip->dflash_size = k_chip->nvm_size;
2537 break;
2538 }
2539 }
2540
2541 switch (fcfg1_pfsize) {
2542 case 0x00:
2543 k_chip->pflash_size = 8192;
2544 break;
2545 case 0x01:
2546 case 0x03:
2547 case 0x05:
2548 case 0x07:
2549 case 0x09:
2550 case 0x0b:
2551 case 0x0d:
2552 k_chip->pflash_size = 1 << (14 + (fcfg1_pfsize >> 1));
2553 break;
2554 case 0x0f:
2555 /* a peculiar case: Freescale states different sizes for 0xf
2556 * KL03P24M48SF0RM 32 KB .... duplicate of code 0x3
2557 * K02P64M100SFARM 128 KB ... duplicate of code 0x7
2558 * K22P121M120SF8RM 256 KB ... duplicate of code 0x9
2559 * K22P121M120SF7RM 512 KB ... duplicate of code 0xb
2560 * K22P100M120SF5RM 1024 KB ... duplicate of code 0xd
2561 * K26P169M180SF5RM 2048 KB ... the only unique value
2562 * fcfg2_maxaddr0 seems to be the only clue to pflash_size
2563 * Checking fcfg2_maxaddr0 in bank probe is pointless then
2564 */
2565 if (fcfg2_pflsh)
2566 k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks;
2567 else
2568 k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks / 2;
2569 if (k_chip->pflash_size != 2048<<10)
2570 LOG_WARNING("SIM_FCFG1 PFSIZE = 0xf: please check if pflash is %u KB", k_chip->pflash_size>>10);
2571
2572 break;
2573 default:
2574 k_chip->pflash_size = 0;
2575 break;
2576 }
2577
2578 if (k_chip->flash_support & FS_PROGRAM_SECTOR && k_chip->max_flash_prog_size == 0) {
2579 k_chip->max_flash_prog_size = k_chip->pflash_sector_size;
2580 /* Program section size is equal to sector size by default */
2581 }
2582
2583 if (fcfg2_pflsh) {
2584 k_chip->num_pflash_blocks = num_blocks;
2585 k_chip->num_nvm_blocks = 0;
2586 } else {
2587 k_chip->num_pflash_blocks = (num_blocks + 1) / 2;
2588 k_chip->num_nvm_blocks = num_blocks - k_chip->num_pflash_blocks;
2589 }
2590
2591 if (use_nvm_marking) {
2592 nvm_marking[0] = k_chip->num_nvm_blocks ? 'X' : 'N';
2593 nvm_marking[1] = '\0';
2594 } else
2595 nvm_marking[0] = '\0';
2596
2597 pflash_size_k = k_chip->pflash_size / 1024;
2598 pflash_size_m = pflash_size_k / 1024;
2599 if (pflash_size_m)
2600 snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "M0xxx", nvm_marking, pflash_size_m);
2601 else
2602 snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "xxx", nvm_marking, pflash_size_k);
2603
2604 snprintf(k_chip->name, sizeof(k_chip->name), name, flash_marking);
2605 LOG_INFO("Kinetis %s detected: %u flash blocks", k_chip->name, num_blocks);
2606 LOG_INFO("%u PFlash banks: %" PRIu32 "k total", k_chip->num_pflash_blocks, pflash_size_k);
2607 if (k_chip->num_nvm_blocks) {
2608 nvm_size_k = k_chip->nvm_size / 1024;
2609 dflash_size_k = k_chip->dflash_size / 1024;
2610 LOG_INFO("%u FlexNVM banks: %" PRIu32 "k total, %" PRIu32 "k available as data flash, %" PRIu32 "bytes FlexRAM",
2611 k_chip->num_nvm_blocks, nvm_size_k, dflash_size_k, ee_size);
2612 }
2613
2614 k_chip->probed = true;
2615
2616 if (create_banks)
2617 kinetis_create_missing_banks(k_chip);
2618
2619 return ERROR_OK;
2620 }
2621
2622 static int kinetis_probe(struct flash_bank *bank)
2623 {
2624 int result, i;
2625 uint8_t fcfg2_maxaddr0, fcfg2_pflsh, fcfg2_maxaddr1;
2626 unsigned num_blocks, first_nvm_bank;
2627 uint32_t size_k;
2628 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2629 struct kinetis_chip *k_chip;
2630
2631 assert(k_bank);
2632 k_chip = k_bank->k_chip;
2633
2634 k_bank->probed = false;
2635
2636 if (!k_chip->probed) {
2637 result = kinetis_probe_chip(k_chip);
2638 if (result != ERROR_OK)
2639 return result;
2640 }
2641
2642 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
2643 first_nvm_bank = k_chip->num_pflash_blocks;
2644
2645 if (k_bank->bank_number < k_chip->num_pflash_blocks) {
2646 /* pflash, banks start at address zero */
2647 k_bank->flash_class = FC_PFLASH;
2648 bank->size = (k_chip->pflash_size / k_chip->num_pflash_blocks);
2649 bank->base = k_chip->pflash_base + bank->size * k_bank->bank_number;
2650 k_bank->prog_base = 0x00000000 + bank->size * k_bank->bank_number;
2651 k_bank->sector_size = k_chip->pflash_sector_size;
2652 /* pflash is divided into 32 protection areas for
2653 * parts with more than 32K of PFlash. For parts with
2654 * less the protection unit is set to 1024 bytes */
2655 k_bank->protection_size = MAX(k_chip->pflash_size / 32, 1024);
2656 bank->num_prot_blocks = bank->size / k_bank->protection_size;
2657 k_bank->protection_block = bank->num_prot_blocks * k_bank->bank_number;
2658
2659 size_k = bank->size / 1024;
2660 LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k PFlash, FTFx base 0x%08" PRIx32 ", sect %u",
2661 k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
2662
2663 } else if (k_bank->bank_number < num_blocks) {
2664 /* nvm, banks start at address 0x10000000 */
2665 unsigned nvm_ord = k_bank->bank_number - first_nvm_bank;
2666 uint32_t limit;
2667
2668 k_bank->flash_class = FC_FLEX_NVM;
2669 bank->size = k_chip->nvm_size / k_chip->num_nvm_blocks;
2670 bank->base = k_chip->nvm_base + bank->size * nvm_ord;
2671 k_bank->prog_base = 0x00800000 + bank->size * nvm_ord;
2672 k_bank->sector_size = k_chip->nvm_sector_size;
2673 if (k_chip->dflash_size == 0) {
2674 k_bank->protection_size = 0;
2675 } else {
2676 for (i = k_chip->dflash_size; ~i & 1; i >>= 1)
2677 ;
2678 if (i == 1)
2679 k_bank->protection_size = k_chip->dflash_size / 8; /* data flash size = 2^^n */
2680 else
2681 k_bank->protection_size = k_chip->nvm_size / 8; /* TODO: verify on SF1, not documented in RM */
2682 }
2683 bank->num_prot_blocks = 8 / k_chip->num_nvm_blocks;
2684 k_bank->protection_block = bank->num_prot_blocks * nvm_ord;
2685
2686 /* EEPROM backup part of FlexNVM is not accessible, use dflash_size as a limit */
2687 if (k_chip->dflash_size > bank->size * nvm_ord)
2688 limit = k_chip->dflash_size - bank->size * nvm_ord;
2689 else
2690 limit = 0;
2691
2692 if (bank->size > limit) {
2693 bank->size = limit;
2694 LOG_DEBUG("FlexNVM bank %d limited to 0x%08" PRIx32 " due to active EEPROM backup",
2695 k_bank->bank_number, limit);
2696 }
2697
2698 size_k = bank->size / 1024;
2699 LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k FlexNVM, FTFx base 0x%08" PRIx32 ", sect %u",
2700 k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
2701
2702 } else {
2703 LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
2704 k_bank->bank_number, num_blocks);
2705 return ERROR_FLASH_BANK_INVALID;
2706 }
2707
2708 fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
2709 fcfg2_maxaddr0 = (uint8_t)((k_chip->sim_fcfg2 >> 24) & 0x7f);
2710 fcfg2_maxaddr1 = (uint8_t)((k_chip->sim_fcfg2 >> 16) & 0x7f);
2711
2712 if (k_bank->bank_number == 0 && k_chip->fcfg2_maxaddr0_shifted != bank->size)
2713 LOG_WARNING("MAXADDR0 0x%02" PRIx8 " check failed,"
2714 " please report to OpenOCD mailing list", fcfg2_maxaddr0);
2715
2716 if (fcfg2_pflsh) {
2717 if (k_bank->bank_number == 1 && k_chip->fcfg2_maxaddr1_shifted != bank->size)
2718 LOG_WARNING("MAXADDR1 0x%02" PRIx8 " check failed,"
2719 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2720 } else {
2721 if (k_bank->bank_number == first_nvm_bank
2722 && k_chip->fcfg2_maxaddr1_shifted != k_chip->dflash_size)
2723 LOG_WARNING("FlexNVM MAXADDR1 0x%02" PRIx8 " check failed,"
2724 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2725 }
2726
2727 if (bank->sectors) {
2728 free(bank->sectors);
2729 bank->sectors = NULL;
2730 }
2731 if (bank->prot_blocks) {
2732 free(bank->prot_blocks);
2733 bank->prot_blocks = NULL;
2734 }
2735
2736 if (k_bank->sector_size == 0) {
2737 LOG_ERROR("Unknown sector size for bank %d", bank->bank_number);
2738 return ERROR_FLASH_BANK_INVALID;
2739 }
2740
2741 bank->num_sectors = bank->size / k_bank->sector_size;
2742
2743 if (bank->num_sectors > 0) {
2744 /* FlexNVM bank can be used for EEPROM backup therefore zero sized */
2745 bank->sectors = alloc_block_array(0, k_bank->sector_size, bank->num_sectors);
2746 if (!bank->sectors)
2747 return ERROR_FAIL;
2748
2749 bank->prot_blocks = alloc_block_array(0, k_bank->protection_size, bank->num_prot_blocks);
2750 if (!bank->prot_blocks)
2751 return ERROR_FAIL;
2752
2753 } else {
2754 bank->num_prot_blocks = 0;
2755 }
2756
2757 k_bank->probed = true;
2758
2759 return ERROR_OK;
2760 }
2761
2762 static int kinetis_auto_probe(struct flash_bank *bank)
2763 {
2764 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2765
2766 if (k_bank && k_bank->probed)
2767 return ERROR_OK;
2768
2769 return kinetis_probe(bank);
2770 }
2771
2772 static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
2773 {
2774 const char *bank_class_names[] = {
2775 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
2776 };
2777
2778 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2779 struct kinetis_chip *k_chip = k_bank->k_chip;
2780 uint32_t size_k = bank->size / 1024;
2781
2782 snprintf(buf, buf_size,
2783 "%s %s: %" PRIu32 "k %s bank %s at " TARGET_ADDR_FMT,
2784 bank->driver->name, k_chip->name,
2785 size_k, bank_class_names[k_bank->flash_class],
2786 bank->name, bank->base);
2787
2788 return ERROR_OK;
2789 }
2790
2791 static int kinetis_blank_check(struct flash_bank *bank)
2792 {
2793 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2794 struct kinetis_chip *k_chip = k_bank->k_chip;
2795 int result;
2796
2797 /* suprisingly blank check does not work in VLPR and HSRUN modes */
2798 result = kinetis_check_run_mode(k_chip);
2799 if (result != ERROR_OK)
2800 return result;
2801
2802 /* reset error flags */
2803 result = kinetis_ftfx_prepare(bank->target);
2804 if (result != ERROR_OK)
2805 return result;
2806
2807 if (k_bank->flash_class == FC_PFLASH || k_bank->flash_class == FC_FLEX_NVM) {
2808 bool block_dirty = true;
2809 bool use_block_cmd = !(k_chip->flash_support & FS_NO_CMD_BLOCKSTAT);
2810 uint8_t ftfx_fstat;
2811
2812 if (use_block_cmd && k_bank->flash_class == FC_FLEX_NVM) {
2813 uint8_t fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
2814 /* block operation cannot be used on FlexNVM when EEPROM backup partition is set */
2815 if (fcfg1_depart != 0xf && fcfg1_depart != 0)
2816 use_block_cmd = false;
2817 }
2818
2819 if (use_block_cmd) {
2820 /* check if whole bank is blank */
2821 result = kinetis_ftfx_command(bank->target, FTFx_CMD_BLOCKSTAT, k_bank->prog_base,
2822 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
2823
2824 if (result != ERROR_OK)
2825 kinetis_ftfx_clear_error(bank->target);
2826 else if ((ftfx_fstat & 0x01) == 0)
2827 block_dirty = false;
2828 }
2829
2830 if (block_dirty) {
2831 /* the whole bank is not erased, check sector-by-sector */
2832 int i;
2833 for (i = 0; i < bank->num_sectors; i++) {
2834 /* normal margin */
2835 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTSTAT,
2836 k_bank->prog_base + bank->sectors[i].offset,
2837 1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
2838
2839 if (result == ERROR_OK) {
2840 bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
2841 } else {
2842 LOG_DEBUG("Ignoring errored PFlash sector blank-check");
2843 kinetis_ftfx_clear_error(bank->target);
2844 bank->sectors[i].is_erased = -1;
2845 }
2846 }
2847 } else {
2848 /* the whole bank is erased, update all sectors */
2849 int i;
2850 for (i = 0; i < bank->num_sectors; i++)
2851 bank->sectors[i].is_erased = 1;
2852 }
2853 } else {
2854 LOG_WARNING("kinetis_blank_check not supported yet for FlexRAM");
2855 return ERROR_FLASH_OPERATION_FAILED;
2856 }
2857
2858 return ERROR_OK;
2859 }
2860
2861
2862 COMMAND_HANDLER(kinetis_nvm_partition)
2863 {
2864 int result;
2865 unsigned bank_idx;
2866 unsigned num_blocks, first_nvm_bank;
2867 unsigned long par, log2 = 0, ee1 = 0, ee2 = 0;
2868 enum { SHOW_INFO, DF_SIZE, EEBKP_SIZE } sz_type = SHOW_INFO;
2869 bool enable;
2870 uint8_t load_flex_ram = 1;
2871 uint8_t ee_size_code = 0x3f;
2872 uint8_t flex_nvm_partition_code = 0;
2873 uint8_t ee_split = 3;
2874 struct target *target = get_current_target(CMD_CTX);
2875 struct kinetis_chip *k_chip;
2876 uint32_t sim_fcfg1;
2877
2878 k_chip = kinetis_get_chip(target);
2879
2880 if (CMD_ARGC >= 2) {
2881 if (strcmp(CMD_ARGV[0], "dataflash") == 0)
2882 sz_type = DF_SIZE;
2883 else if (strcmp(CMD_ARGV[0], "eebkp") == 0)
2884 sz_type = EEBKP_SIZE;
2885
2886 par = strtoul(CMD_ARGV[1], NULL, 10);
2887 while (par >> (log2 + 3))
2888 log2++;
2889 }
2890 switch (sz_type) {
2891 case SHOW_INFO:
2892 if (k_chip == NULL) {
2893 LOG_ERROR("Chip not probed.");
2894 return ERROR_FAIL;
2895 }
2896 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &sim_fcfg1);
2897 if (result != ERROR_OK)
2898 return result;
2899
2900 flex_nvm_partition_code = (uint8_t)((sim_fcfg1 >> 8) & 0x0f);
2901 switch (flex_nvm_partition_code) {
2902 case 0:
2903 command_print(CMD, "No EEPROM backup, data flash only");
2904 break;
2905 case 1:
2906 case 2:
2907 case 3:
2908 case 4:
2909 case 5:
2910 case 6:
2911 command_print(CMD, "EEPROM backup %d KB", 4 << flex_nvm_partition_code);
2912 break;
2913 case 8:
2914 command_print(CMD, "No data flash, EEPROM backup only");
2915 break;
2916 case 0x9:
2917 case 0xA:
2918 case 0xB:
2919 case 0xC:
2920 case 0xD:
2921 case 0xE:
2922 command_print(CMD, "data flash %d KB", 4 << (flex_nvm_partition_code & 7));
2923 break;
2924 case 0xf:
2925 command_print(CMD, "No EEPROM backup, data flash only (DEPART not set)");
2926 break;
2927 default:
2928 command_print(CMD, "Unsupported EEPROM backup size code 0x%02" PRIx8, flex_nvm_partition_code);
2929 }
2930 return ERROR_OK;
2931
2932 case DF_SIZE:
2933 flex_nvm_partition_code = 0x8 | log2;
2934 break;
2935
2936 case EEBKP_SIZE:
2937 flex_nvm_partition_code = log2;
2938 break;
2939 }
2940
2941 if (CMD_ARGC == 3)
2942 ee1 = ee2 = strtoul(CMD_ARGV[2], NULL, 10) / 2;
2943 else if (CMD_ARGC >= 4) {
2944 ee1 = strtoul(CMD_ARGV[2], NULL, 10);
2945 ee2 = strtoul(CMD_ARGV[3], NULL, 10);
2946 }
2947
2948 enable = ee1 + ee2 > 0;
2949 if (enable) {
2950 for (log2 = 2; ; log2++) {
2951 if (ee1 + ee2 == (16u << 10) >> log2)
2952 break;
2953 if (ee1 + ee2 > (16u << 10) >> log2 || log2 >= 9) {
2954 LOG_ERROR("Unsupported EEPROM size");
2955 return ERROR_FLASH_OPERATION_FAILED;
2956 }
2957 }
2958
2959 if (ee1 * 3 == ee2)
2960 ee_split = 1;
2961 else if (ee1 * 7 == ee2)
2962 ee_split = 0;
2963 else if (ee1 != ee2) {
2964 LOG_ERROR("Unsupported EEPROM sizes ratio");
2965 return ERROR_FLASH_OPERATION_FAILED;
2966 }
2967
2968 ee_size_code = log2 | ee_split << 4;
2969 }
2970
2971 if (CMD_ARGC >= 5)
2972 COMMAND_PARSE_ON_OFF(CMD_ARGV[4], enable);
2973 if (enable)
2974 load_flex_ram = 0;
2975
2976 LOG_INFO("DEPART 0x%" PRIx8 ", EEPROM size code 0x%" PRIx8,
2977 flex_nvm_partition_code, ee_size_code);
2978
2979 result = kinetis_check_run_mode(k_chip);
2980 if (result != ERROR_OK)
2981 return result;
2982
2983 /* reset error flags */
2984 result = kinetis_ftfx_prepare(target);
2985 if (result != ERROR_OK)
2986 return result;
2987
2988 result = kinetis_ftfx_command(target, FTFx_CMD_PGMPART, load_flex_ram,
2989 ee_size_code, flex_nvm_partition_code, 0, 0,
2990 0, 0, 0, 0, NULL);
2991 if (result != ERROR_OK)
2992 return result;
2993
2994 command_print(CMD, "FlexNVM partition set. Please reset MCU.");
2995
2996 if (k_chip) {
2997 first_nvm_bank = k_chip->num_pflash_blocks;
2998 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
2999 for (bank_idx = first_nvm_bank; bank_idx < num_blocks; bank_idx++)
3000 k_chip->banks[bank_idx].probed = false; /* re-probe before next use */
3001 k_chip->probed = false;
3002 }
3003
3004 command_print(CMD, "FlexNVM banks will be re-probed to set new data flash size.");
3005 return ERROR_OK;
3006 }
3007
3008 COMMAND_HANDLER(kinetis_fcf_source_handler)
3009 {
3010 if (CMD_ARGC > 1)
3011 return ERROR_COMMAND_SYNTAX_ERROR;
3012
3013 if (CMD_ARGC == 1) {
3014 if (strcmp(CMD_ARGV[0], "write") == 0)
3015 allow_fcf_writes = true;
3016 else if (strcmp(CMD_ARGV[0], "protection") == 0)
3017 allow_fcf_writes = false;
3018 else
3019 return ERROR_COMMAND_SYNTAX_ERROR;
3020 }
3021
3022 if (allow_fcf_writes) {
3023 command_print(CMD, "Arbitrary Flash Configuration Field writes enabled.");
3024 command_print(CMD, "Protection info writes to FCF disabled.");
3025 LOG_WARNING("BEWARE: incorrect flash configuration may permanently lock the device.");
3026 } else {
3027 command_print(CMD, "Protection info writes to Flash Configuration Field enabled.");
3028 command_print(CMD, "Arbitrary FCF writes disabled. Mode safe from unwanted locking of the device.");
3029 }
3030
3031 return ERROR_OK;
3032 }
3033
3034 COMMAND_HANDLER(kinetis_fopt_handler)
3035 {
3036 if (CMD_ARGC > 1)
3037 return ERROR_COMMAND_SYNTAX_ERROR;
3038
3039 if (CMD_ARGC == 1) {
3040 fcf_fopt = (uint8_t)strtoul(CMD_ARGV[0], NULL, 0);
3041 fcf_fopt_configured = true;
3042 } else {
3043 command_print(CMD, "FCF_FOPT 0x%02" PRIx8, fcf_fopt);
3044 }
3045
3046 return ERROR_OK;
3047 }
3048
3049 COMMAND_HANDLER(kinetis_create_banks_handler)
3050 {
3051 if (CMD_ARGC > 0)
3052 return ERROR_COMMAND_SYNTAX_ERROR;
3053
3054 create_banks = true;
3055
3056 return ERROR_OK;
3057 }
3058
3059
3060 static const struct command_registration kinetis_security_command_handlers[] = {
3061 {
3062 .name = "check_security",
3063 .mode = COMMAND_EXEC,
3064 .help = "Check status of device security lock",
3065 .usage = "",
3066 .handler = kinetis_check_flash_security_status,
3067 },
3068 {
3069 .name = "halt",
3070 .mode = COMMAND_EXEC,
3071 .help = "Issue a halt via the MDM-AP",
3072 .usage = "",
3073 .handler = kinetis_mdm_halt,
3074 },
3075 {
3076 .name = "mass_erase",
3077 .mode = COMMAND_EXEC,
3078 .help = "Issue a complete flash erase via the MDM-AP",
3079 .usage = "",
3080 .handler = kinetis_mdm_mass_erase,
3081 },
3082 {
3083 .name = "reset",
3084 .mode = COMMAND_EXEC,
3085 .help = "Issue a reset via the MDM-AP",
3086 .usage = "",
3087 .handler = kinetis_mdm_reset,
3088 },
3089 COMMAND_REGISTRATION_DONE
3090 };
3091
3092 static const struct command_registration kinetis_exec_command_handlers[] = {
3093 {
3094 .name = "mdm",
3095 .mode = COMMAND_ANY,
3096 .help = "MDM-AP command group",
3097 .usage = "",
3098 .chain = kinetis_security_command_handlers,
3099 },
3100 {
3101 .name = "disable_wdog",
3102 .mode = COMMAND_EXEC,
3103 .help = "Disable the watchdog timer",
3104 .usage = "",
3105 .handler = kinetis_disable_wdog_handler,
3106 },
3107 {
3108 .name = "nvm_partition",
3109 .mode = COMMAND_EXEC,
3110 .help = "Show/set data flash or EEPROM backup size in kilobytes,"
3111 " set two EEPROM sizes in bytes and FlexRAM loading during reset",
3112 .usage = "('info'|'dataflash' size|'eebkp' size) [eesize1 eesize2] ['on'|'off']",
3113 .handler = kinetis_nvm_partition,
3114 },
3115 {
3116 .name = "fcf_source",
3117 .mode = COMMAND_EXEC,
3118 .help = "Use protection as a source for Flash Configuration Field or allow writing arbitrary values to the FCF"
3119 " Mode 'protection' is safe from unwanted locking of the device.",
3120 .usage = "['protection'|'write']",
3121 .handler = kinetis_fcf_source_handler,
3122 },
3123 {
3124 .name = "fopt",
3125 .mode = COMMAND_EXEC,
3126 .help = "FCF_FOPT value source in 'kinetis fcf_source protection' mode",
3127 .usage = "[num]",
3128 .handler = kinetis_fopt_handler,
3129 },
3130 {
3131 .name = "create_banks",
3132 .mode = COMMAND_CONFIG,
3133 .help = "Driver creates additional banks if device with two/four flash blocks is probed",
3134 .handler = kinetis_create_banks_handler,
3135 .usage = "",
3136 },
3137 COMMAND_REGISTRATION_DONE
3138 };
3139
3140 static const struct command_registration kinetis_command_handler[] = {
3141 {
3142 .name = "kinetis",
3143 .mode = COMMAND_ANY,
3144 .help = "Kinetis flash controller commands",
3145 .usage = "",
3146 .chain = kinetis_exec_command_handlers,
3147 },
3148 COMMAND_REGISTRATION_DONE
3149 };
3150
3151
3152
3153 const struct flash_driver kinetis_flash = {
3154 .name = "kinetis",
3155 .commands = kinetis_command_handler,
3156 .flash_bank_command = kinetis_flash_bank_command,
3157 .erase = kinetis_erase,
3158 .protect = kinetis_protect,
3159 .write = kinetis_write,
3160 .read = default_flash_read,
3161 .probe = kinetis_probe,
3162 .auto_probe = kinetis_auto_probe,
3163 .erase_check = kinetis_blank_check,
3164 .protect_check = kinetis_protect_check,
3165 .info = kinetis_info,
3166 .free_driver_priv = kinetis_free_driver_priv,
3167 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)