nor/kinetis: add keep-alive during flash write
[openocd.git] / src / flash / nor / kinetis.c
1 /***************************************************************************
2 * Copyright (C) 2011 by Mathias Kuester *
3 * kesmtp@freenet.de *
4 * *
5 * Copyright (C) 2011 sleep(5) ltd *
6 * tomas@sleepfive.com *
7 * *
8 * Copyright (C) 2012 by Christopher D. Kilgour *
9 * techie at whiterocker.com *
10 * *
11 * Copyright (C) 2013 Nemui Trinomius *
12 * nemuisan_kawausogasuki@live.jp *
13 * *
14 * Copyright (C) 2015 Tomas Vanek *
15 * vanekt@fbl.cz *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
29 ***************************************************************************/
30
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
34
35 #include "jtag/interface.h"
36 #include "imp.h"
37 #include <helper/binarybuffer.h>
38 #include <helper/time_support.h>
39 #include <target/target_type.h>
40 #include <target/algorithm.h>
41 #include <target/armv7m.h>
42 #include <target/cortex_m.h>
43
44 /*
45 * Implementation Notes
46 *
47 * The persistent memories in the Kinetis chip families K10 through
48 * K70 are all manipulated with the Flash Memory Module. Some
49 * variants call this module the FTFE, others call it the FTFL. To
50 * indicate that both are considered here, we use FTFX.
51 *
52 * Within the module, according to the chip variant, the persistent
53 * memory is divided into what Freescale terms Program Flash, FlexNVM,
54 * and FlexRAM. All chip variants have Program Flash. Some chip
55 * variants also have FlexNVM and FlexRAM, which always appear
56 * together.
57 *
58 * A given Kinetis chip may have 1, 2 or 4 blocks of flash. Here we map
59 * each block to a separate bank. Each block size varies by chip and
60 * may be determined by the read-only SIM_FCFG1 register. The sector
61 * size within each bank/block varies by chip, and may be 1, 2 or 4k.
62 * The sector size may be different for flash and FlexNVM.
63 *
64 * The first half of the flash (1 or 2 blocks) is always Program Flash
65 * and always starts at address 0x00000000. The "PFLSH" flag, bit 23
66 * of the read-only SIM_FCFG2 register, determines whether the second
67 * half of the flash is also Program Flash or FlexNVM+FlexRAM. When
68 * PFLSH is set, the second from the first half. When PFLSH is clear,
69 * the second half of flash is FlexNVM and always starts at address
70 * 0x10000000. FlexRAM, which is also present when PFLSH is clear,
71 * always starts at address 0x14000000.
72 *
73 * The Flash Memory Module provides a register set where flash
74 * commands are loaded to perform flash operations like erase and
75 * program. Different commands are available depending on whether
76 * Program Flash or FlexNVM/FlexRAM is being manipulated. Although
77 * the commands used are quite consistent between flash blocks, the
78 * parameters they accept differ according to the flash sector size.
79 *
80 */
81
82 /* Addressess */
83 #define FCF_ADDRESS 0x00000400
84 #define FCF_FPROT 0x8
85 #define FCF_FSEC 0xc
86 #define FCF_FOPT 0xd
87 #define FCF_FDPROT 0xf
88 #define FCF_SIZE 0x10
89
90 #define FLEXRAM 0x14000000
91
92 #define MSCM_OCMDR0 0x40001400
93 #define FMC_PFB01CR 0x4001f004
94 #define FTFx_FSTAT 0x40020000
95 #define FTFx_FCNFG 0x40020001
96 #define FTFx_FCCOB3 0x40020004
97 #define FTFx_FPROT3 0x40020010
98 #define FTFx_FDPROT 0x40020017
99 #define SIM_BASE 0x40047000
100 #define SIM_BASE_KL28 0x40074000
101 #define SIM_COPC 0x40048100
102 /* SIM_COPC does not exist on devices with changed SIM_BASE */
103 #define WDOG_BASE 0x40052000
104 #define WDOG32_KE1X 0x40052000
105 #define WDOG32_KL28 0x40076000
106 #define SMC_PMCTRL 0x4007E001
107 #define SMC_PMSTAT 0x4007E003
108 #define SMC32_PMCTRL 0x4007E00C
109 #define SMC32_PMSTAT 0x4007E014
110 #define MCM_PLACR 0xF000300C
111
112 /* Offsets */
113 #define SIM_SOPT1_OFFSET 0x0000
114 #define SIM_SDID_OFFSET 0x1024
115 #define SIM_FCFG1_OFFSET 0x104c
116 #define SIM_FCFG2_OFFSET 0x1050
117
118 #define WDOG_STCTRLH_OFFSET 0
119 #define WDOG32_CS_OFFSET 0
120
121 /* Values */
122 #define PM_STAT_RUN 0x01
123 #define PM_STAT_VLPR 0x04
124 #define PM_CTRL_RUNM_RUN 0x00
125
126 /* Commands */
127 #define FTFx_CMD_BLOCKSTAT 0x00
128 #define FTFx_CMD_SECTSTAT 0x01
129 #define FTFx_CMD_LWORDPROG 0x06
130 #define FTFx_CMD_SECTERASE 0x09
131 #define FTFx_CMD_SECTWRITE 0x0b
132 #define FTFx_CMD_MASSERASE 0x44
133 #define FTFx_CMD_PGMPART 0x80
134 #define FTFx_CMD_SETFLEXRAM 0x81
135
136 /* The older Kinetis K series uses the following SDID layout :
137 * Bit 31-16 : 0
138 * Bit 15-12 : REVID
139 * Bit 11-7 : DIEID
140 * Bit 6-4 : FAMID
141 * Bit 3-0 : PINID
142 *
143 * The newer Kinetis series uses the following SDID layout :
144 * Bit 31-28 : FAMID
145 * Bit 27-24 : SUBFAMID
146 * Bit 23-20 : SERIESID
147 * Bit 19-16 : SRAMSIZE
148 * Bit 15-12 : REVID
149 * Bit 6-4 : Reserved (0)
150 * Bit 3-0 : PINID
151 *
152 * We assume that if bits 31-16 are 0 then it's an older
153 * K-series MCU.
154 */
155
156 #define KINETIS_SOPT1_RAMSIZE_MASK 0x0000F000
157 #define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000
158
159 #define KINETIS_SDID_K_SERIES_MASK 0x0000FFFF
160
161 #define KINETIS_SDID_DIEID_MASK 0x00000F80
162
163 #define KINETIS_SDID_DIEID_K22FN128 0x00000680 /* smaller pflash with FTFA */
164 #define KINETIS_SDID_DIEID_K22FN256 0x00000A80
165 #define KINETIS_SDID_DIEID_K22FN512 0x00000E80
166 #define KINETIS_SDID_DIEID_K24FN256 0x00000700
167
168 #define KINETIS_SDID_DIEID_K24FN1M 0x00000300 /* Detect Errata 7534 */
169
170 /* We can't rely solely on the FAMID field to determine the MCU
171 * type since some FAMID values identify multiple MCUs with
172 * different flash sector sizes (K20 and K22 for instance).
173 * Therefore we combine it with the DIEID bits which may possibly
174 * break if Freescale bumps the DIEID for a particular MCU. */
175 #define KINETIS_K_SDID_TYPE_MASK 0x00000FF0
176 #define KINETIS_K_SDID_K10_M50 0x00000000
177 #define KINETIS_K_SDID_K10_M72 0x00000080
178 #define KINETIS_K_SDID_K10_M100 0x00000100
179 #define KINETIS_K_SDID_K10_M120 0x00000180
180 #define KINETIS_K_SDID_K11 0x00000220
181 #define KINETIS_K_SDID_K12 0x00000200
182 #define KINETIS_K_SDID_K20_M50 0x00000010
183 #define KINETIS_K_SDID_K20_M72 0x00000090
184 #define KINETIS_K_SDID_K20_M100 0x00000110
185 #define KINETIS_K_SDID_K20_M120 0x00000190
186 #define KINETIS_K_SDID_K21_M50 0x00000230
187 #define KINETIS_K_SDID_K21_M120 0x00000330
188 #define KINETIS_K_SDID_K22_M50 0x00000210
189 #define KINETIS_K_SDID_K22_M120 0x00000310
190 #define KINETIS_K_SDID_K30_M72 0x000000A0
191 #define KINETIS_K_SDID_K30_M100 0x00000120
192 #define KINETIS_K_SDID_K40_M72 0x000000B0
193 #define KINETIS_K_SDID_K40_M100 0x00000130
194 #define KINETIS_K_SDID_K50_M72 0x000000E0
195 #define KINETIS_K_SDID_K51_M72 0x000000F0
196 #define KINETIS_K_SDID_K53 0x00000170
197 #define KINETIS_K_SDID_K60_M100 0x00000140
198 #define KINETIS_K_SDID_K60_M150 0x000001C0
199 #define KINETIS_K_SDID_K70_M150 0x000001D0
200
201 #define KINETIS_SDID_SERIESID_MASK 0x00F00000
202 #define KINETIS_SDID_SERIESID_K 0x00000000
203 #define KINETIS_SDID_SERIESID_KL 0x00100000
204 #define KINETIS_SDID_SERIESID_KE 0x00200000
205 #define KINETIS_SDID_SERIESID_KW 0x00500000
206 #define KINETIS_SDID_SERIESID_KV 0x00600000
207
208 #define KINETIS_SDID_SUBFAMID_SHIFT 24
209 #define KINETIS_SDID_SUBFAMID_MASK 0x0F000000
210 #define KINETIS_SDID_SUBFAMID_KX0 0x00000000
211 #define KINETIS_SDID_SUBFAMID_KX1 0x01000000
212 #define KINETIS_SDID_SUBFAMID_KX2 0x02000000
213 #define KINETIS_SDID_SUBFAMID_KX3 0x03000000
214 #define KINETIS_SDID_SUBFAMID_KX4 0x04000000
215 #define KINETIS_SDID_SUBFAMID_KX5 0x05000000
216 #define KINETIS_SDID_SUBFAMID_KX6 0x06000000
217 #define KINETIS_SDID_SUBFAMID_KX7 0x07000000
218 #define KINETIS_SDID_SUBFAMID_KX8 0x08000000
219
220 #define KINETIS_SDID_FAMILYID_SHIFT 28
221 #define KINETIS_SDID_FAMILYID_MASK 0xF0000000
222 #define KINETIS_SDID_FAMILYID_K0X 0x00000000
223 #define KINETIS_SDID_FAMILYID_K1X 0x10000000
224 #define KINETIS_SDID_FAMILYID_K2X 0x20000000
225 #define KINETIS_SDID_FAMILYID_K3X 0x30000000
226 #define KINETIS_SDID_FAMILYID_K4X 0x40000000
227 #define KINETIS_SDID_FAMILYID_K5X 0x50000000
228 #define KINETIS_SDID_FAMILYID_K6X 0x60000000
229 #define KINETIS_SDID_FAMILYID_K7X 0x70000000
230 #define KINETIS_SDID_FAMILYID_K8X 0x80000000
231 #define KINETIS_SDID_FAMILYID_KL8X 0x90000000
232
233 /* The field originally named DIEID has new name/meaning on KE1x */
234 #define KINETIS_SDID_PROJECTID_MASK KINETIS_SDID_DIEID_MASK
235 #define KINETIS_SDID_PROJECTID_KE1xF 0x00000080
236 #define KINETIS_SDID_PROJECTID_KE1xZ 0x00000100
237
238 struct kinetis_flash_bank {
239 struct kinetis_chip *k_chip;
240 bool probed;
241 unsigned bank_number; /* bank number in particular chip */
242 struct flash_bank *bank;
243
244 uint32_t sector_size;
245 uint32_t protection_size;
246 uint32_t prog_base; /* base address for FTFx operations */
247 /* usually same as bank->base for pflash, differs for FlexNVM */
248 uint32_t protection_block; /* number of first protection block in this bank */
249
250 enum {
251 FC_AUTO = 0,
252 FC_PFLASH,
253 FC_FLEX_NVM,
254 FC_FLEX_RAM,
255 } flash_class;
256 };
257
258 #define KINETIS_MAX_BANKS 4u
259
260 struct kinetis_chip {
261 struct target *target;
262 bool probed;
263
264 uint32_t sim_sdid;
265 uint32_t sim_fcfg1;
266 uint32_t sim_fcfg2;
267 uint32_t fcfg2_maxaddr0_shifted;
268 uint32_t fcfg2_maxaddr1_shifted;
269
270 unsigned num_pflash_blocks, num_nvm_blocks;
271 unsigned pflash_sector_size, nvm_sector_size;
272 unsigned max_flash_prog_size;
273
274 uint32_t pflash_base;
275 uint32_t pflash_size;
276 uint32_t nvm_base;
277 uint32_t nvm_size; /* whole FlexNVM */
278 uint32_t dflash_size; /* accessible rest of FlexNVM if EEPROM backup uses part of FlexNVM */
279
280 uint32_t progr_accel_ram;
281 uint32_t sim_base;
282
283 enum {
284 FS_PROGRAM_SECTOR = 1,
285 FS_PROGRAM_LONGWORD = 2,
286 FS_PROGRAM_PHRASE = 4, /* Unsupported */
287
288 FS_NO_CMD_BLOCKSTAT = 0x40,
289 FS_WIDTH_256BIT = 0x80,
290 FS_ECC = 0x100,
291 } flash_support;
292
293 enum {
294 KINETIS_CACHE_NONE,
295 KINETIS_CACHE_K, /* invalidate using FMC->PFB0CR/PFB01CR */
296 KINETIS_CACHE_L, /* invalidate using MCM->PLACR */
297 KINETIS_CACHE_MSCM, /* devices like KE1xF, invalidate MSCM->OCMDR0 */
298 } cache_type;
299
300 enum {
301 KINETIS_WDOG_NONE,
302 KINETIS_WDOG_K,
303 KINETIS_WDOG_COP,
304 KINETIS_WDOG32_KE1X,
305 KINETIS_WDOG32_KL28,
306 } watchdog_type;
307
308 enum {
309 KINETIS_SMC,
310 KINETIS_SMC32,
311 } sysmodectrlr_type;
312
313 char name[40];
314
315 unsigned num_banks;
316 struct kinetis_flash_bank banks[KINETIS_MAX_BANKS];
317 };
318
319 struct kinetis_type {
320 uint32_t sdid;
321 char *name;
322 };
323
324 static const struct kinetis_type kinetis_types_old[] = {
325 { KINETIS_K_SDID_K10_M50, "MK10D%s5" },
326 { KINETIS_K_SDID_K10_M72, "MK10D%s7" },
327 { KINETIS_K_SDID_K10_M100, "MK10D%s10" },
328 { KINETIS_K_SDID_K10_M120, "MK10F%s12" },
329 { KINETIS_K_SDID_K11, "MK11D%s5" },
330 { KINETIS_K_SDID_K12, "MK12D%s5" },
331
332 { KINETIS_K_SDID_K20_M50, "MK20D%s5" },
333 { KINETIS_K_SDID_K20_M72, "MK20D%s7" },
334 { KINETIS_K_SDID_K20_M100, "MK20D%s10" },
335 { KINETIS_K_SDID_K20_M120, "MK20F%s12" },
336 { KINETIS_K_SDID_K21_M50, "MK21D%s5" },
337 { KINETIS_K_SDID_K21_M120, "MK21F%s12" },
338 { KINETIS_K_SDID_K22_M50, "MK22D%s5" },
339 { KINETIS_K_SDID_K22_M120, "MK22F%s12" },
340
341 { KINETIS_K_SDID_K30_M72, "MK30D%s7" },
342 { KINETIS_K_SDID_K30_M100, "MK30D%s10" },
343
344 { KINETIS_K_SDID_K40_M72, "MK40D%s7" },
345 { KINETIS_K_SDID_K40_M100, "MK40D%s10" },
346
347 { KINETIS_K_SDID_K50_M72, "MK50D%s7" },
348 { KINETIS_K_SDID_K51_M72, "MK51D%s7" },
349 { KINETIS_K_SDID_K53, "MK53D%s10" },
350
351 { KINETIS_K_SDID_K60_M100, "MK60D%s10" },
352 { KINETIS_K_SDID_K60_M150, "MK60F%s15" },
353
354 { KINETIS_K_SDID_K70_M150, "MK70F%s15" },
355 };
356
357
358 #define MDM_AP 1
359
360 #define MDM_REG_STAT 0x00
361 #define MDM_REG_CTRL 0x04
362 #define MDM_REG_ID 0xfc
363
364 #define MDM_STAT_FMEACK (1<<0)
365 #define MDM_STAT_FREADY (1<<1)
366 #define MDM_STAT_SYSSEC (1<<2)
367 #define MDM_STAT_SYSRES (1<<3)
368 #define MDM_STAT_FMEEN (1<<5)
369 #define MDM_STAT_BACKDOOREN (1<<6)
370 #define MDM_STAT_LPEN (1<<7)
371 #define MDM_STAT_VLPEN (1<<8)
372 #define MDM_STAT_LLSMODEXIT (1<<9)
373 #define MDM_STAT_VLLSXMODEXIT (1<<10)
374 #define MDM_STAT_CORE_HALTED (1<<16)
375 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
376 #define MDM_STAT_CORESLEEPING (1<<18)
377
378 #define MDM_CTRL_FMEIP (1<<0)
379 #define MDM_CTRL_DBG_DIS (1<<1)
380 #define MDM_CTRL_DBG_REQ (1<<2)
381 #define MDM_CTRL_SYS_RES_REQ (1<<3)
382 #define MDM_CTRL_CORE_HOLD_RES (1<<4)
383 #define MDM_CTRL_VLLSX_DBG_REQ (1<<5)
384 #define MDM_CTRL_VLLSX_DBG_ACK (1<<6)
385 #define MDM_CTRL_VLLSX_STAT_ACK (1<<7)
386
387 #define MDM_ACCESS_TIMEOUT 500 /* msec */
388
389
390 static bool allow_fcf_writes;
391 static uint8_t fcf_fopt = 0xff;
392 static bool fcf_fopt_configured;
393 static bool create_banks;
394
395
396 const struct flash_driver kinetis_flash;
397 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
398 uint32_t offset, uint32_t count);
399 static int kinetis_probe_chip(struct kinetis_chip *k_chip);
400 static int kinetis_auto_probe(struct flash_bank *bank);
401
402
403 static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value)
404 {
405 int retval;
406 LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value);
407
408 retval = dap_queue_ap_write(dap_ap(dap, MDM_AP), reg, value);
409 if (retval != ERROR_OK) {
410 LOG_DEBUG("MDM: failed to queue a write request");
411 return retval;
412 }
413
414 retval = dap_run(dap);
415 if (retval != ERROR_OK) {
416 LOG_DEBUG("MDM: dap_run failed");
417 return retval;
418 }
419
420
421 return ERROR_OK;
422 }
423
424 static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result)
425 {
426 int retval;
427
428 retval = dap_queue_ap_read(dap_ap(dap, MDM_AP), reg, result);
429 if (retval != ERROR_OK) {
430 LOG_DEBUG("MDM: failed to queue a read request");
431 return retval;
432 }
433
434 retval = dap_run(dap);
435 if (retval != ERROR_OK) {
436 LOG_DEBUG("MDM: dap_run failed");
437 return retval;
438 }
439
440 LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result);
441 return ERROR_OK;
442 }
443
444 static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg,
445 uint32_t mask, uint32_t value, uint32_t timeout_ms)
446 {
447 uint32_t val;
448 int retval;
449 int64_t ms_timeout = timeval_ms() + timeout_ms;
450
451 do {
452 retval = kinetis_mdm_read_register(dap, reg, &val);
453 if (retval != ERROR_OK || (val & mask) == value)
454 return retval;
455
456 alive_sleep(1);
457 } while (timeval_ms() < ms_timeout);
458
459 LOG_DEBUG("MDM: polling timed out");
460 return ERROR_FAIL;
461 }
462
463 /*
464 * This command can be used to break a watchdog reset loop when
465 * connecting to an unsecured target. Unlike other commands, halt will
466 * automatically retry as it does not know how far into the boot process
467 * it is when the command is called.
468 */
469 COMMAND_HANDLER(kinetis_mdm_halt)
470 {
471 struct target *target = get_current_target(CMD_CTX);
472 struct cortex_m_common *cortex_m = target_to_cm(target);
473 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
474 int retval;
475 int tries = 0;
476 uint32_t stat;
477 int64_t ms_timeout = timeval_ms() + MDM_ACCESS_TIMEOUT;
478
479 if (!dap) {
480 LOG_ERROR("Cannot perform halt with a high-level adapter");
481 return ERROR_FAIL;
482 }
483
484 while (true) {
485 tries++;
486
487 kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_CORE_HOLD_RES);
488
489 alive_sleep(1);
490
491 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
492 if (retval != ERROR_OK) {
493 LOG_DEBUG("MDM: failed to read MDM_REG_STAT");
494 continue;
495 }
496
497 /* Repeat setting MDM_CTRL_CORE_HOLD_RES until system is out of
498 * reset with flash ready and without security
499 */
500 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSSEC | MDM_STAT_SYSRES))
501 == (MDM_STAT_FREADY | MDM_STAT_SYSRES))
502 break;
503
504 if (timeval_ms() >= ms_timeout) {
505 LOG_ERROR("MDM: halt timed out");
506 return ERROR_FAIL;
507 }
508 }
509
510 LOG_DEBUG("MDM: halt succeded after %d attempts.", tries);
511
512 target_poll(target);
513 /* enable polling in case kinetis_check_flash_security_status disabled it */
514 jtag_poll_set_enabled(true);
515
516 alive_sleep(100);
517
518 target->reset_halt = true;
519 target->type->assert_reset(target);
520
521 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
522 if (retval != ERROR_OK) {
523 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
524 return retval;
525 }
526
527 target->type->deassert_reset(target);
528
529 return ERROR_OK;
530 }
531
532 COMMAND_HANDLER(kinetis_mdm_reset)
533 {
534 struct target *target = get_current_target(CMD_CTX);
535 struct cortex_m_common *cortex_m = target_to_cm(target);
536 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
537 int retval;
538
539 if (!dap) {
540 LOG_ERROR("Cannot perform reset with a high-level adapter");
541 return ERROR_FAIL;
542 }
543
544 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
545 if (retval != ERROR_OK) {
546 LOG_ERROR("MDM: failed to write MDM_REG_CTRL");
547 return retval;
548 }
549
550 retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, MDM_STAT_SYSRES, 0, 500);
551 if (retval != ERROR_OK) {
552 LOG_ERROR("MDM: failed to assert reset");
553 return retval;
554 }
555
556 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
557 if (retval != ERROR_OK) {
558 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
559 return retval;
560 }
561
562 return ERROR_OK;
563 }
564
565 /*
566 * This function implements the procedure to mass erase the flash via
567 * SWD/JTAG on Kinetis K and L series of devices as it is described in
568 * AN4835 "Production Flash Programming Best Practices for Kinetis K-
569 * and L-series MCUs" Section 4.2.1. To prevent a watchdog reset loop,
570 * the core remains halted after this function completes as suggested
571 * by the application note.
572 */
573 COMMAND_HANDLER(kinetis_mdm_mass_erase)
574 {
575 struct target *target = get_current_target(CMD_CTX);
576 struct cortex_m_common *cortex_m = target_to_cm(target);
577 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
578
579 if (!dap) {
580 LOG_ERROR("Cannot perform mass erase with a high-level adapter");
581 return ERROR_FAIL;
582 }
583
584 int retval;
585
586 /*
587 * ... Power on the processor, or if power has already been
588 * applied, assert the RESET pin to reset the processor. For
589 * devices that do not have a RESET pin, write the System
590 * Reset Request bit in the MDM-AP control register after
591 * establishing communication...
592 */
593
594 /* assert SRST if configured */
595 bool has_srst = jtag_get_reset_config() & RESET_HAS_SRST;
596 if (has_srst)
597 adapter_assert_reset();
598
599 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
600 if (retval != ERROR_OK && !has_srst) {
601 LOG_ERROR("MDM: failed to assert reset");
602 goto deassert_reset_and_exit;
603 }
604
605 /*
606 * ... Read the MDM-AP status register repeatedly and wait for
607 * stable conditions suitable for mass erase:
608 * - mass erase is enabled
609 * - flash is ready
610 * - reset is finished
611 *
612 * Mass erase is started as soon as all conditions are met in 32
613 * subsequent status reads.
614 *
615 * In case of not stable conditions (RESET/WDOG loop in secured device)
616 * the user is asked for manual pressing of RESET button
617 * as a last resort.
618 */
619 int cnt_mass_erase_disabled = 0;
620 int cnt_ready = 0;
621 int64_t ms_start = timeval_ms();
622 bool man_reset_requested = false;
623
624 do {
625 uint32_t stat = 0;
626 int64_t ms_elapsed = timeval_ms() - ms_start;
627
628 if (!man_reset_requested && ms_elapsed > 100) {
629 LOG_INFO("MDM: Press RESET button now if possible.");
630 man_reset_requested = true;
631 }
632
633 if (ms_elapsed > 3000) {
634 LOG_ERROR("MDM: waiting for mass erase conditions timed out.");
635 LOG_INFO("Mass erase of a secured MCU is not possible without hardware reset.");
636 LOG_INFO("Connect SRST, use 'reset_config srst_only' and retry.");
637 goto deassert_reset_and_exit;
638 }
639 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
640 if (retval != ERROR_OK) {
641 cnt_ready = 0;
642 continue;
643 }
644
645 if (!(stat & MDM_STAT_FMEEN)) {
646 cnt_ready = 0;
647 cnt_mass_erase_disabled++;
648 if (cnt_mass_erase_disabled > 10) {
649 LOG_ERROR("MDM: mass erase is disabled");
650 goto deassert_reset_and_exit;
651 }
652 continue;
653 }
654
655 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSRES)) == MDM_STAT_FREADY)
656 cnt_ready++;
657 else
658 cnt_ready = 0;
659
660 } while (cnt_ready < 32);
661
662 /*
663 * ... Write the MDM-AP control register to set the Flash Mass
664 * Erase in Progress bit. This will start the mass erase
665 * process...
666 */
667 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ | MDM_CTRL_FMEIP);
668 if (retval != ERROR_OK) {
669 LOG_ERROR("MDM: failed to start mass erase");
670 goto deassert_reset_and_exit;
671 }
672
673 /*
674 * ... Read the MDM-AP control register until the Flash Mass
675 * Erase in Progress bit clears...
676 * Data sheed defines erase time <3.6 sec/512kB flash block.
677 * The biggest device has 4 pflash blocks => timeout 16 sec.
678 */
679 retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL, MDM_CTRL_FMEIP, 0, 16000);
680 if (retval != ERROR_OK) {
681 LOG_ERROR("MDM: mass erase timeout");
682 goto deassert_reset_and_exit;
683 }
684
685 target_poll(target);
686 /* enable polling in case kinetis_check_flash_security_status disabled it */
687 jtag_poll_set_enabled(true);
688
689 alive_sleep(100);
690
691 target->reset_halt = true;
692 target->type->assert_reset(target);
693
694 /*
695 * ... Negate the RESET signal or clear the System Reset Request
696 * bit in the MDM-AP control register.
697 */
698 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
699 if (retval != ERROR_OK)
700 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
701
702 target->type->deassert_reset(target);
703
704 return retval;
705
706 deassert_reset_and_exit:
707 kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
708 if (has_srst)
709 adapter_deassert_reset();
710 return retval;
711 }
712
713 static const uint32_t kinetis_known_mdm_ids[] = {
714 0x001C0000, /* Kinetis-K Series */
715 0x001C0020, /* Kinetis-L/M/V/E Series */
716 0x001C0030, /* Kinetis with a Cortex-M7, in time of writing KV58 */
717 };
718
719 /*
720 * This function implements the procedure to connect to
721 * SWD/JTAG on Kinetis K and L series of devices as it is described in
722 * AN4835 "Production Flash Programming Best Practices for Kinetis K-
723 * and L-series MCUs" Section 4.1.1
724 */
725 COMMAND_HANDLER(kinetis_check_flash_security_status)
726 {
727 struct target *target = get_current_target(CMD_CTX);
728 struct cortex_m_common *cortex_m = target_to_cm(target);
729 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
730
731 if (!dap) {
732 LOG_WARNING("Cannot check flash security status with a high-level adapter");
733 return ERROR_OK;
734 }
735
736 if (!dap->ops)
737 return ERROR_OK; /* too early to check, in JTAG mode ops may not be initialised */
738
739 uint32_t val;
740 int retval;
741
742 /*
743 * ... The MDM-AP ID register can be read to verify that the
744 * connection is working correctly...
745 */
746 retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val);
747 if (retval != ERROR_OK) {
748 LOG_ERROR("MDM: failed to read ID register");
749 return ERROR_OK;
750 }
751
752 if (val == 0)
753 return ERROR_OK; /* dap not yet initialised */
754
755 bool found = false;
756 for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) {
757 if (val == kinetis_known_mdm_ids[i]) {
758 found = true;
759 break;
760 }
761 }
762
763 if (!found)
764 LOG_WARNING("MDM: unknown ID %08" PRIX32, val);
765
766 /*
767 * ... Read the System Security bit to determine if security is enabled.
768 * If System Security = 0, then proceed. If System Security = 1, then
769 * communication with the internals of the processor, including the
770 * flash, will not be possible without issuing a mass erase command or
771 * unsecuring the part through other means (backdoor key unlock)...
772 */
773 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val);
774 if (retval != ERROR_OK) {
775 LOG_ERROR("MDM: failed to read MDM_REG_STAT");
776 return ERROR_OK;
777 }
778
779 /*
780 * System Security bit is also active for short time during reset.
781 * If a MCU has blank flash and runs in RESET/WDOG loop,
782 * System Security bit is active most of time!
783 * We should observe Flash Ready bit and read status several times
784 * to avoid false detection of secured MCU
785 */
786 int secured_score = 0, flash_not_ready_score = 0;
787
788 if ((val & (MDM_STAT_SYSSEC | MDM_STAT_FREADY)) != MDM_STAT_FREADY) {
789 uint32_t stats[32];
790
791 for (unsigned int i = 0; i < 32; i++) {
792 stats[i] = MDM_STAT_FREADY;
793 dap_queue_ap_read(dap_ap(dap, MDM_AP), MDM_REG_STAT, &stats[i]);
794 }
795 retval = dap_run(dap);
796 if (retval != ERROR_OK) {
797 LOG_DEBUG("MDM: dap_run failed when validating secured state");
798 return ERROR_OK;
799 }
800 for (unsigned int i = 0; i < 32; i++) {
801 if (stats[i] & MDM_STAT_SYSSEC)
802 secured_score++;
803 if (!(stats[i] & MDM_STAT_FREADY))
804 flash_not_ready_score++;
805 }
806 }
807
808 if (flash_not_ready_score <= 8 && secured_score > 24) {
809 jtag_poll_set_enabled(false);
810
811 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
812 LOG_WARNING("**** ****");
813 LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that, ****");
814 LOG_WARNING("**** with exception for very basic communication, JTAG/SWD ****");
815 LOG_WARNING("**** interface will NOT work. In order to restore its ****");
816 LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase' ****");
817 LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD. ****");
818 LOG_WARNING("**** ****");
819 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
820
821 } else if (flash_not_ready_score > 24) {
822 jtag_poll_set_enabled(false);
823 LOG_WARNING("**** Your Kinetis MCU is probably locked-up in RESET/WDOG loop. ****");
824 LOG_WARNING("**** Common reason is a blank flash (at least a reset vector). ****");
825 LOG_WARNING("**** Issue 'kinetis mdm halt' command or if SRST is connected ****");
826 LOG_WARNING("**** and configured, use 'reset halt' ****");
827 LOG_WARNING("**** If MCU cannot be halted, it is likely secured and running ****");
828 LOG_WARNING("**** in RESET/WDOG loop. Issue 'kinetis mdm mass_erase' ****");
829
830 } else {
831 LOG_INFO("MDM: Chip is unsecured. Continuing.");
832 jtag_poll_set_enabled(true);
833 }
834
835 return ERROR_OK;
836 }
837
838
839 static struct kinetis_chip *kinetis_get_chip(struct target *target)
840 {
841 struct flash_bank *bank_iter;
842 struct kinetis_flash_bank *k_bank;
843
844 /* iterate over all kinetis banks */
845 for (bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
846 if (bank_iter->driver != &kinetis_flash
847 || bank_iter->target != target)
848 continue;
849
850 k_bank = bank_iter->driver_priv;
851 if (!k_bank)
852 continue;
853
854 if (k_bank->k_chip)
855 return k_bank->k_chip;
856 }
857 return NULL;
858 }
859
860 static int kinetis_chip_options(struct kinetis_chip *k_chip, int argc, const char *argv[])
861 {
862 for (int i = 0; i < argc; i++) {
863 if (strcmp(argv[i], "-sim-base") == 0) {
864 if (i + 1 < argc)
865 k_chip->sim_base = strtoul(argv[++i], NULL, 0);
866 } else
867 LOG_ERROR("Unsupported flash bank option %s", argv[i]);
868 }
869 return ERROR_OK;
870 }
871
872 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
873 {
874 struct target *target = bank->target;
875 struct kinetis_chip *k_chip;
876 struct kinetis_flash_bank *k_bank;
877 int retval;
878
879 if (CMD_ARGC < 6)
880 return ERROR_COMMAND_SYNTAX_ERROR;
881
882 LOG_INFO("add flash_bank kinetis %s", bank->name);
883
884 k_chip = kinetis_get_chip(target);
885
886 if (k_chip == NULL) {
887 k_chip = calloc(sizeof(struct kinetis_chip), 1);
888 if (k_chip == NULL) {
889 LOG_ERROR("No memory");
890 return ERROR_FAIL;
891 }
892
893 k_chip->target = target;
894
895 /* only the first defined bank can define chip options */
896 retval = kinetis_chip_options(k_chip, CMD_ARGC - 6, CMD_ARGV + 6);
897 if (retval != ERROR_OK)
898 return retval;
899 }
900
901 if (k_chip->num_banks >= KINETIS_MAX_BANKS) {
902 LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
903 return ERROR_FAIL;
904 }
905
906 bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
907 k_bank->k_chip = k_chip;
908 k_bank->bank_number = k_chip->num_banks;
909 k_bank->bank = bank;
910 k_chip->num_banks++;
911
912 return ERROR_OK;
913 }
914
915
916 static void kinetis_free_driver_priv(struct flash_bank *bank)
917 {
918 struct kinetis_flash_bank *k_bank = bank->driver_priv;
919 if (k_bank == NULL)
920 return;
921
922 struct kinetis_chip *k_chip = k_bank->k_chip;
923 if (k_chip == NULL)
924 return;
925
926 k_chip->num_banks--;
927 if (k_chip->num_banks == 0)
928 free(k_chip);
929 }
930
931
932 static int kinetis_create_missing_banks(struct kinetis_chip *k_chip)
933 {
934 unsigned num_blocks;
935 struct kinetis_flash_bank *k_bank;
936 struct flash_bank *bank;
937 char base_name[69], name[80], num[4];
938 char *class, *p;
939
940 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
941 if (num_blocks > KINETIS_MAX_BANKS) {
942 LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
943 return ERROR_FAIL;
944 }
945
946 bank = k_chip->banks[0].bank;
947 if (bank && bank->name) {
948 strncpy(base_name, bank->name, sizeof(base_name) - 1);
949 base_name[sizeof(base_name) - 1] = '\0';
950 p = strstr(base_name, ".pflash");
951 if (p) {
952 *p = '\0';
953 if (k_chip->num_pflash_blocks > 1) {
954 /* rename first bank if numbering is needed */
955 snprintf(name, sizeof(name), "%s.pflash0", base_name);
956 free(bank->name);
957 bank->name = strdup(name);
958 }
959 }
960 } else {
961 strncpy(base_name, target_name(k_chip->target), sizeof(base_name) - 1);
962 base_name[sizeof(base_name) - 1] = '\0';
963 p = strstr(base_name, ".cpu");
964 if (p)
965 *p = '\0';
966 }
967
968 for (unsigned int bank_idx = 1; bank_idx < num_blocks; bank_idx++) {
969 k_bank = &(k_chip->banks[bank_idx]);
970 bank = k_bank->bank;
971
972 if (bank)
973 continue;
974
975 num[0] = '\0';
976
977 if (bank_idx < k_chip->num_pflash_blocks) {
978 class = "pflash";
979 if (k_chip->num_pflash_blocks > 1)
980 snprintf(num, sizeof(num), "%u", bank_idx);
981 } else {
982 class = "flexnvm";
983 if (k_chip->num_nvm_blocks > 1)
984 snprintf(num, sizeof(num), "%u",
985 bank_idx - k_chip->num_pflash_blocks);
986 }
987
988 bank = calloc(sizeof(struct flash_bank), 1);
989 if (bank == NULL)
990 return ERROR_FAIL;
991
992 bank->target = k_chip->target;
993 bank->driver = &kinetis_flash;
994 bank->default_padded_value = bank->erased_value = 0xff;
995
996 snprintf(name, sizeof(name), "%s.%s%s",
997 base_name, class, num);
998 bank->name = strdup(name);
999
1000 bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
1001 k_bank->k_chip = k_chip;
1002 k_bank->bank_number = bank_idx;
1003 k_bank->bank = bank;
1004 if (k_chip->num_banks <= bank_idx)
1005 k_chip->num_banks = bank_idx + 1;
1006
1007 flash_bank_add(bank);
1008 }
1009 return ERROR_OK;
1010 }
1011
1012
1013 static int kinetis_disable_wdog_algo(struct target *target, size_t code_size, const uint8_t *code, uint32_t wdog_base)
1014 {
1015 struct working_area *wdog_algorithm;
1016 struct armv7m_algorithm armv7m_info;
1017 struct reg_param reg_params[1];
1018 int retval;
1019
1020 if (target->state != TARGET_HALTED) {
1021 LOG_ERROR("Target not halted");
1022 return ERROR_TARGET_NOT_HALTED;
1023 }
1024
1025 retval = target_alloc_working_area(target, code_size, &wdog_algorithm);
1026 if (retval != ERROR_OK)
1027 return retval;
1028
1029 retval = target_write_buffer(target, wdog_algorithm->address,
1030 code_size, code);
1031 if (retval == ERROR_OK) {
1032 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1033 armv7m_info.core_mode = ARM_MODE_THREAD;
1034
1035 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1036 buf_set_u32(reg_params[0].value, 0, 32, wdog_base);
1037
1038 retval = target_run_algorithm(target, 0, NULL, 1, reg_params,
1039 wdog_algorithm->address,
1040 wdog_algorithm->address + code_size - 2,
1041 500, &armv7m_info);
1042
1043 destroy_reg_param(&reg_params[0]);
1044
1045 if (retval != ERROR_OK)
1046 LOG_ERROR("Error executing Kinetis WDOG unlock algorithm");
1047 }
1048
1049 target_free_working_area(target, wdog_algorithm);
1050
1051 return retval;
1052 }
1053
1054 /* Disable the watchdog on Kinetis devices
1055 * Standard Kx WDOG peripheral checks timing and therefore requires to run algo.
1056 */
1057 static int kinetis_disable_wdog_kx(struct target *target)
1058 {
1059 const uint32_t wdog_base = WDOG_BASE;
1060 uint16_t wdog;
1061 int retval;
1062
1063 static const uint8_t kinetis_unlock_wdog_code[] = {
1064 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog.inc"
1065 };
1066
1067 retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
1068 if (retval != ERROR_OK)
1069 return retval;
1070
1071 if ((wdog & 0x1) == 0) {
1072 /* watchdog already disabled */
1073 return ERROR_OK;
1074 }
1075 LOG_INFO("Disabling Kinetis watchdog (initial WDOG_STCTRLH = 0x%04" PRIx16 ")", wdog);
1076
1077 retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
1078 if (retval != ERROR_OK)
1079 return retval;
1080
1081 retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
1082 if (retval != ERROR_OK)
1083 return retval;
1084
1085 LOG_INFO("WDOG_STCTRLH = 0x%04" PRIx16, wdog);
1086 return (wdog & 0x1) ? ERROR_FAIL : ERROR_OK;
1087 }
1088
1089 static int kinetis_disable_wdog32(struct target *target, uint32_t wdog_base)
1090 {
1091 uint32_t wdog_cs;
1092 int retval;
1093
1094 static const uint8_t kinetis_unlock_wdog_code[] = {
1095 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog32.inc"
1096 };
1097
1098 retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
1099 if (retval != ERROR_OK)
1100 return retval;
1101
1102 if ((wdog_cs & 0x80) == 0)
1103 return ERROR_OK; /* watchdog already disabled */
1104
1105 LOG_INFO("Disabling Kinetis watchdog (initial WDOG_CS 0x%08" PRIx32 ")", wdog_cs);
1106
1107 retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
1108 if (retval != ERROR_OK)
1109 return retval;
1110
1111 retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
1112 if (retval != ERROR_OK)
1113 return retval;
1114
1115 if ((wdog_cs & 0x80) == 0)
1116 return ERROR_OK; /* watchdog disabled successfully */
1117
1118 LOG_ERROR("Cannot disable Kinetis watchdog (WDOG_CS 0x%08" PRIx32 "), issue 'reset init'", wdog_cs);
1119 return ERROR_FAIL;
1120 }
1121
1122 static int kinetis_disable_wdog(struct kinetis_chip *k_chip)
1123 {
1124 struct target *target = k_chip->target;
1125 uint8_t sim_copc;
1126 int retval;
1127
1128 if (!k_chip->probed) {
1129 retval = kinetis_probe_chip(k_chip);
1130 if (retval != ERROR_OK)
1131 return retval;
1132 }
1133
1134 switch (k_chip->watchdog_type) {
1135 case KINETIS_WDOG_K:
1136 return kinetis_disable_wdog_kx(target);
1137
1138 case KINETIS_WDOG_COP:
1139 retval = target_read_u8(target, SIM_COPC, &sim_copc);
1140 if (retval != ERROR_OK)
1141 return retval;
1142
1143 if ((sim_copc & 0xc) == 0)
1144 return ERROR_OK; /* watchdog already disabled */
1145
1146 LOG_INFO("Disabling Kinetis watchdog (initial SIM_COPC 0x%02" PRIx8 ")", sim_copc);
1147 retval = target_write_u8(target, SIM_COPC, sim_copc & ~0xc);
1148 if (retval != ERROR_OK)
1149 return retval;
1150
1151 retval = target_read_u8(target, SIM_COPC, &sim_copc);
1152 if (retval != ERROR_OK)
1153 return retval;
1154
1155 if ((sim_copc & 0xc) == 0)
1156 return ERROR_OK; /* watchdog disabled successfully */
1157
1158 LOG_ERROR("Cannot disable Kinetis watchdog (SIM_COPC 0x%02" PRIx8 "), issue 'reset init'", sim_copc);
1159 return ERROR_FAIL;
1160
1161 case KINETIS_WDOG32_KE1X:
1162 return kinetis_disable_wdog32(target, WDOG32_KE1X);
1163
1164 case KINETIS_WDOG32_KL28:
1165 return kinetis_disable_wdog32(target, WDOG32_KL28);
1166
1167 default:
1168 return ERROR_OK;
1169 }
1170 }
1171
1172 COMMAND_HANDLER(kinetis_disable_wdog_handler)
1173 {
1174 int result;
1175 struct target *target = get_current_target(CMD_CTX);
1176 struct kinetis_chip *k_chip = kinetis_get_chip(target);
1177
1178 if (k_chip == NULL)
1179 return ERROR_FAIL;
1180
1181 if (CMD_ARGC > 0)
1182 return ERROR_COMMAND_SYNTAX_ERROR;
1183
1184 result = kinetis_disable_wdog(k_chip);
1185 return result;
1186 }
1187
1188
1189 static int kinetis_ftfx_decode_error(uint8_t fstat)
1190 {
1191 if (fstat & 0x20) {
1192 LOG_ERROR("Flash operation failed, illegal command");
1193 return ERROR_FLASH_OPER_UNSUPPORTED;
1194
1195 } else if (fstat & 0x10)
1196 LOG_ERROR("Flash operation failed, protection violated");
1197
1198 else if (fstat & 0x40)
1199 LOG_ERROR("Flash operation failed, read collision");
1200
1201 else if (fstat & 0x80)
1202 return ERROR_OK;
1203
1204 else
1205 LOG_ERROR("Flash operation timed out");
1206
1207 return ERROR_FLASH_OPERATION_FAILED;
1208 }
1209
1210 static int kinetis_ftfx_clear_error(struct target *target)
1211 {
1212 /* reset error flags */
1213 return target_write_u8(target, FTFx_FSTAT, 0x70);
1214 }
1215
1216
1217 static int kinetis_ftfx_prepare(struct target *target)
1218 {
1219 int result;
1220 uint8_t fstat;
1221
1222 /* wait until busy */
1223 for (unsigned int i = 0; i < 50; i++) {
1224 result = target_read_u8(target, FTFx_FSTAT, &fstat);
1225 if (result != ERROR_OK)
1226 return result;
1227
1228 if (fstat & 0x80)
1229 break;
1230 }
1231
1232 if ((fstat & 0x80) == 0) {
1233 LOG_ERROR("Flash controller is busy");
1234 return ERROR_FLASH_OPERATION_FAILED;
1235 }
1236 if (fstat != 0x80) {
1237 /* reset error flags */
1238 result = kinetis_ftfx_clear_error(target);
1239 }
1240 return result;
1241 }
1242
1243 /* Kinetis Program-LongWord Microcodes */
1244 static const uint8_t kinetis_flash_write_code[] = {
1245 #include "../../../contrib/loaders/flash/kinetis/kinetis_flash.inc"
1246 };
1247
1248 /* Program LongWord Block Write */
1249 static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer,
1250 uint32_t offset, uint32_t wcount)
1251 {
1252 struct target *target = bank->target;
1253 uint32_t buffer_size = 2048; /* Default minimum value */
1254 struct working_area *write_algorithm;
1255 struct working_area *source;
1256 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1257 uint32_t address = k_bank->prog_base + offset;
1258 uint32_t end_address;
1259 struct reg_param reg_params[5];
1260 struct armv7m_algorithm armv7m_info;
1261 int retval;
1262 uint8_t fstat;
1263
1264 /* Increase buffer_size if needed */
1265 if (buffer_size < (target->working_area_size/2))
1266 buffer_size = (target->working_area_size/2);
1267
1268 /* allocate working area with flash programming code */
1269 if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
1270 &write_algorithm) != ERROR_OK) {
1271 LOG_WARNING("no working area available, can't do block memory writes");
1272 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1273 }
1274
1275 retval = target_write_buffer(target, write_algorithm->address,
1276 sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
1277 if (retval != ERROR_OK)
1278 return retval;
1279
1280 /* memory buffer */
1281 while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
1282 buffer_size /= 4;
1283 if (buffer_size <= 256) {
1284 /* free working area, write algorithm already allocated */
1285 target_free_working_area(target, write_algorithm);
1286
1287 LOG_WARNING("No large enough working area available, can't do block memory writes");
1288 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1289 }
1290 }
1291
1292 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1293 armv7m_info.core_mode = ARM_MODE_THREAD;
1294
1295 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* address */
1296 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* word count */
1297 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1298 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1299 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1300
1301 buf_set_u32(reg_params[0].value, 0, 32, address);
1302 buf_set_u32(reg_params[1].value, 0, 32, wcount);
1303 buf_set_u32(reg_params[2].value, 0, 32, source->address);
1304 buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
1305 buf_set_u32(reg_params[4].value, 0, 32, FTFx_FSTAT);
1306
1307 retval = target_run_flash_async_algorithm(target, buffer, wcount, 4,
1308 0, NULL,
1309 5, reg_params,
1310 source->address, source->size,
1311 write_algorithm->address, 0,
1312 &armv7m_info);
1313
1314 if (retval == ERROR_FLASH_OPERATION_FAILED) {
1315 end_address = buf_get_u32(reg_params[0].value, 0, 32);
1316
1317 LOG_ERROR("Error writing flash at %08" PRIx32, end_address);
1318
1319 retval = target_read_u8(target, FTFx_FSTAT, &fstat);
1320 if (retval == ERROR_OK) {
1321 retval = kinetis_ftfx_decode_error(fstat);
1322
1323 /* reset error flags */
1324 target_write_u8(target, FTFx_FSTAT, 0x70);
1325 }
1326 } else if (retval != ERROR_OK)
1327 LOG_ERROR("Error executing kinetis Flash programming algorithm");
1328
1329 target_free_working_area(target, source);
1330 target_free_working_area(target, write_algorithm);
1331
1332 destroy_reg_param(&reg_params[0]);
1333 destroy_reg_param(&reg_params[1]);
1334 destroy_reg_param(&reg_params[2]);
1335 destroy_reg_param(&reg_params[3]);
1336 destroy_reg_param(&reg_params[4]);
1337
1338 return retval;
1339 }
1340
1341 static int kinetis_protect(struct flash_bank *bank, int set, int first, int last)
1342 {
1343 if (allow_fcf_writes) {
1344 LOG_ERROR("Protection setting is possible with 'kinetis fcf_source protection' only!");
1345 return ERROR_FAIL;
1346 }
1347
1348 if (!bank->prot_blocks || bank->num_prot_blocks == 0) {
1349 LOG_ERROR("No protection possible for current bank!");
1350 return ERROR_FLASH_BANK_INVALID;
1351 }
1352
1353 for (int i = first; i < bank->num_prot_blocks && i <= last; i++)
1354 bank->prot_blocks[i].is_protected = set;
1355
1356 LOG_INFO("Protection bits will be written at the next FCF sector erase or write.");
1357 LOG_INFO("Do not issue 'flash info' command until protection is written,");
1358 LOG_INFO("doing so would re-read protection status from MCU.");
1359
1360 return ERROR_OK;
1361 }
1362
1363 static int kinetis_protect_check(struct flash_bank *bank)
1364 {
1365 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1366 int result;
1367 int b;
1368 uint32_t fprot;
1369
1370 if (k_bank->flash_class == FC_PFLASH) {
1371
1372 /* read protection register */
1373 result = target_read_u32(bank->target, FTFx_FPROT3, &fprot);
1374 if (result != ERROR_OK)
1375 return result;
1376
1377 /* Every bit protects 1/32 of the full flash (not necessarily just this bank) */
1378
1379 } else if (k_bank->flash_class == FC_FLEX_NVM) {
1380 uint8_t fdprot;
1381
1382 /* read protection register */
1383 result = target_read_u8(bank->target, FTFx_FDPROT, &fdprot);
1384 if (result != ERROR_OK)
1385 return result;
1386
1387 fprot = fdprot;
1388
1389 } else {
1390 LOG_ERROR("Protection checks for FlexRAM not supported");
1391 return ERROR_FLASH_BANK_INVALID;
1392 }
1393
1394 b = k_bank->protection_block;
1395 for (int i = 0; i < bank->num_prot_blocks; i++) {
1396 if ((fprot >> b) & 1)
1397 bank->prot_blocks[i].is_protected = 0;
1398 else
1399 bank->prot_blocks[i].is_protected = 1;
1400
1401 b++;
1402 }
1403
1404 return ERROR_OK;
1405 }
1406
1407
1408 static int kinetis_fill_fcf(struct flash_bank *bank, uint8_t *fcf)
1409 {
1410 uint32_t fprot = 0xffffffff;
1411 uint8_t fsec = 0xfe; /* set MCU unsecure */
1412 uint8_t fdprot = 0xff;
1413 unsigned num_blocks;
1414 uint32_t pflash_bit;
1415 uint8_t dflash_bit;
1416 struct flash_bank *bank_iter;
1417 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1418 struct kinetis_chip *k_chip = k_bank->k_chip;
1419
1420 memset(fcf, 0xff, FCF_SIZE);
1421
1422 pflash_bit = 1;
1423 dflash_bit = 1;
1424
1425 /* iterate over all kinetis banks */
1426 /* current bank is bank 0, it contains FCF */
1427 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
1428 for (unsigned int bank_idx = 0; bank_idx < num_blocks; bank_idx++) {
1429 k_bank = &(k_chip->banks[bank_idx]);
1430 bank_iter = k_bank->bank;
1431
1432 if (bank_iter == NULL) {
1433 LOG_WARNING("Missing bank %u configuration, FCF protection flags may be incomplette", bank_idx);
1434 continue;
1435 }
1436
1437 kinetis_auto_probe(bank_iter);
1438
1439 assert(bank_iter->prot_blocks);
1440
1441 if (k_bank->flash_class == FC_PFLASH) {
1442 for (int i = 0; i < bank_iter->num_prot_blocks; i++) {
1443 if (bank_iter->prot_blocks[i].is_protected == 1)
1444 fprot &= ~pflash_bit;
1445
1446 pflash_bit <<= 1;
1447 }
1448
1449 } else if (k_bank->flash_class == FC_FLEX_NVM) {
1450 for (int i = 0; i < bank_iter->num_prot_blocks; i++) {
1451 if (bank_iter->prot_blocks[i].is_protected == 1)
1452 fdprot &= ~dflash_bit;
1453
1454 dflash_bit <<= 1;
1455 }
1456
1457 }
1458 }
1459
1460 target_buffer_set_u32(bank->target, fcf + FCF_FPROT, fprot);
1461 fcf[FCF_FSEC] = fsec;
1462 fcf[FCF_FOPT] = fcf_fopt;
1463 fcf[FCF_FDPROT] = fdprot;
1464 return ERROR_OK;
1465 }
1466
1467 static int kinetis_ftfx_command(struct target *target, uint8_t fcmd, uint32_t faddr,
1468 uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
1469 uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
1470 uint8_t *ftfx_fstat)
1471 {
1472 uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
1473 fccob7, fccob6, fccob5, fccob4,
1474 fccobb, fccoba, fccob9, fccob8};
1475 int result;
1476 uint8_t fstat;
1477 int64_t ms_timeout = timeval_ms() + 250;
1478
1479 result = target_write_memory(target, FTFx_FCCOB3, 4, 3, command);
1480 if (result != ERROR_OK)
1481 return result;
1482
1483 /* start command */
1484 result = target_write_u8(target, FTFx_FSTAT, 0x80);
1485 if (result != ERROR_OK)
1486 return result;
1487
1488 /* wait for done */
1489 do {
1490 result = target_read_u8(target, FTFx_FSTAT, &fstat);
1491
1492 if (result != ERROR_OK)
1493 return result;
1494
1495 if (fstat & 0x80)
1496 break;
1497
1498 } while (timeval_ms() < ms_timeout);
1499
1500 if (ftfx_fstat)
1501 *ftfx_fstat = fstat;
1502
1503 if ((fstat & 0xf0) != 0x80) {
1504 LOG_DEBUG("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
1505 fstat, command[3], command[2], command[1], command[0],
1506 command[7], command[6], command[5], command[4],
1507 command[11], command[10], command[9], command[8]);
1508
1509 return kinetis_ftfx_decode_error(fstat);
1510 }
1511
1512 return ERROR_OK;
1513 }
1514
1515
1516 static int kinetis_read_pmstat(struct kinetis_chip *k_chip, uint8_t *pmstat)
1517 {
1518 int result;
1519 uint32_t stat32;
1520 struct target *target = k_chip->target;
1521
1522 switch (k_chip->sysmodectrlr_type) {
1523 case KINETIS_SMC:
1524 result = target_read_u8(target, SMC_PMSTAT, pmstat);
1525 return result;
1526
1527 case KINETIS_SMC32:
1528 result = target_read_u32(target, SMC32_PMSTAT, &stat32);
1529 if (result == ERROR_OK)
1530 *pmstat = stat32 & 0xff;
1531 return result;
1532 }
1533 return ERROR_FAIL;
1534 }
1535
1536 static int kinetis_check_run_mode(struct kinetis_chip *k_chip)
1537 {
1538 int result;
1539 uint8_t pmstat;
1540 struct target *target;
1541
1542 if (k_chip == NULL) {
1543 LOG_ERROR("Chip not probed.");
1544 return ERROR_FAIL;
1545 }
1546 target = k_chip->target;
1547
1548 if (target->state != TARGET_HALTED) {
1549 LOG_ERROR("Target not halted");
1550 return ERROR_TARGET_NOT_HALTED;
1551 }
1552
1553 result = kinetis_read_pmstat(k_chip, &pmstat);
1554 if (result != ERROR_OK)
1555 return result;
1556
1557 if (pmstat == PM_STAT_RUN)
1558 return ERROR_OK;
1559
1560 if (pmstat == PM_STAT_VLPR) {
1561 /* It is safe to switch from VLPR to RUN mode without changing clock */
1562 LOG_INFO("Switching from VLPR to RUN mode.");
1563
1564 switch (k_chip->sysmodectrlr_type) {
1565 case KINETIS_SMC:
1566 result = target_write_u8(target, SMC_PMCTRL, PM_CTRL_RUNM_RUN);
1567 break;
1568
1569 case KINETIS_SMC32:
1570 result = target_write_u32(target, SMC32_PMCTRL, PM_CTRL_RUNM_RUN);
1571 break;
1572 }
1573 if (result != ERROR_OK)
1574 return result;
1575
1576 for (unsigned int i = 100; i > 0; i--) {
1577 result = kinetis_read_pmstat(k_chip, &pmstat);
1578 if (result != ERROR_OK)
1579 return result;
1580
1581 if (pmstat == PM_STAT_RUN)
1582 return ERROR_OK;
1583 }
1584 }
1585
1586 LOG_ERROR("Flash operation not possible in current run mode: SMC_PMSTAT: 0x%x", pmstat);
1587 LOG_ERROR("Issue a 'reset init' command.");
1588 return ERROR_TARGET_NOT_HALTED;
1589 }
1590
1591
1592 static void kinetis_invalidate_flash_cache(struct kinetis_chip *k_chip)
1593 {
1594 struct target *target = k_chip->target;
1595
1596 switch (k_chip->cache_type) {
1597 case KINETIS_CACHE_K:
1598 target_write_u8(target, FMC_PFB01CR + 2, 0xf0);
1599 /* Set CINV_WAY bits - request invalidate of all cache ways */
1600 /* FMC_PFB0CR has same address and CINV_WAY bits as FMC_PFB01CR */
1601 break;
1602
1603 case KINETIS_CACHE_L:
1604 target_write_u8(target, MCM_PLACR + 1, 0x04);
1605 /* set bit CFCC - Clear Flash Controller Cache */
1606 break;
1607
1608 case KINETIS_CACHE_MSCM:
1609 target_write_u32(target, MSCM_OCMDR0, 0x30);
1610 /* disable data prefetch and flash speculate */
1611 break;
1612
1613 default:
1614 break;
1615 }
1616 }
1617
1618
1619 static int kinetis_erase(struct flash_bank *bank, int first, int last)
1620 {
1621 int result;
1622 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1623 struct kinetis_chip *k_chip = k_bank->k_chip;
1624
1625 result = kinetis_check_run_mode(k_chip);
1626 if (result != ERROR_OK)
1627 return result;
1628
1629 /* reset error flags */
1630 result = kinetis_ftfx_prepare(bank->target);
1631 if (result != ERROR_OK)
1632 return result;
1633
1634 if ((first > bank->num_sectors) || (last > bank->num_sectors))
1635 return ERROR_FLASH_OPERATION_FAILED;
1636
1637 /*
1638 * FIXME: TODO: use the 'Erase Flash Block' command if the
1639 * requested erase is PFlash or NVM and encompasses the entire
1640 * block. Should be quicker.
1641 */
1642 for (int i = first; i <= last; i++) {
1643 /* set command and sector address */
1644 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTERASE, k_bank->prog_base + bank->sectors[i].offset,
1645 0, 0, 0, 0, 0, 0, 0, 0, NULL);
1646
1647 if (result != ERROR_OK) {
1648 LOG_WARNING("erase sector %d failed", i);
1649 return ERROR_FLASH_OPERATION_FAILED;
1650 }
1651
1652 bank->sectors[i].is_erased = 1;
1653
1654 if (k_bank->prog_base == 0
1655 && bank->sectors[i].offset <= FCF_ADDRESS
1656 && bank->sectors[i].offset + bank->sectors[i].size > FCF_ADDRESS + FCF_SIZE) {
1657 if (allow_fcf_writes) {
1658 LOG_WARNING("Flash Configuration Field erased, DO NOT reset or power off the device");
1659 LOG_WARNING("until correct FCF is programmed or MCU gets security lock.");
1660 } else {
1661 uint8_t fcf_buffer[FCF_SIZE];
1662
1663 kinetis_fill_fcf(bank, fcf_buffer);
1664 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1665 if (result != ERROR_OK)
1666 LOG_WARNING("Flash Configuration Field write failed");
1667 bank->sectors[i].is_erased = 0;
1668 }
1669 }
1670 }
1671
1672 kinetis_invalidate_flash_cache(k_bank->k_chip);
1673
1674 return ERROR_OK;
1675 }
1676
1677 static int kinetis_make_ram_ready(struct target *target)
1678 {
1679 int result;
1680 uint8_t ftfx_fcnfg;
1681
1682 /* check if ram ready */
1683 result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
1684 if (result != ERROR_OK)
1685 return result;
1686
1687 if (ftfx_fcnfg & (1 << 1))
1688 return ERROR_OK; /* ram ready */
1689
1690 /* make flex ram available */
1691 result = kinetis_ftfx_command(target, FTFx_CMD_SETFLEXRAM, 0x00ff0000,
1692 0, 0, 0, 0, 0, 0, 0, 0, NULL);
1693 if (result != ERROR_OK)
1694 return ERROR_FLASH_OPERATION_FAILED;
1695
1696 /* check again */
1697 result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
1698 if (result != ERROR_OK)
1699 return result;
1700
1701 if (ftfx_fcnfg & (1 << 1))
1702 return ERROR_OK; /* ram ready */
1703
1704 return ERROR_FLASH_OPERATION_FAILED;
1705 }
1706
1707
1708 static int kinetis_write_sections(struct flash_bank *bank, const uint8_t *buffer,
1709 uint32_t offset, uint32_t count)
1710 {
1711 int result = ERROR_OK;
1712 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1713 struct kinetis_chip *k_chip = k_bank->k_chip;
1714 uint8_t *buffer_aligned = NULL;
1715 /*
1716 * Kinetis uses different terms for the granularity of
1717 * sector writes, e.g. "phrase" or "128 bits". We use
1718 * the generic term "chunk". The largest possible
1719 * Kinetis "chunk" is 16 bytes (128 bits).
1720 */
1721 uint32_t prog_section_chunk_bytes = k_bank->sector_size >> 8;
1722 uint32_t prog_size_bytes = k_chip->max_flash_prog_size;
1723
1724 while (count > 0) {
1725 uint32_t size = prog_size_bytes - offset % prog_size_bytes;
1726 uint32_t align_begin = offset % prog_section_chunk_bytes;
1727 uint32_t align_end;
1728 uint32_t size_aligned;
1729 uint16_t chunk_count;
1730 uint8_t ftfx_fstat;
1731
1732 if (size > count)
1733 size = count;
1734
1735 align_end = (align_begin + size) % prog_section_chunk_bytes;
1736 if (align_end)
1737 align_end = prog_section_chunk_bytes - align_end;
1738
1739 size_aligned = align_begin + size + align_end;
1740 chunk_count = size_aligned / prog_section_chunk_bytes;
1741
1742 if (size != size_aligned) {
1743 /* aligned section: the first, the last or the only */
1744 if (!buffer_aligned)
1745 buffer_aligned = malloc(prog_size_bytes);
1746
1747 memset(buffer_aligned, 0xff, size_aligned);
1748 memcpy(buffer_aligned + align_begin, buffer, size);
1749
1750 result = target_write_memory(bank->target, k_chip->progr_accel_ram,
1751 4, size_aligned / 4, buffer_aligned);
1752
1753 LOG_DEBUG("section @ " TARGET_ADDR_FMT " aligned begin %" PRIu32
1754 ", end %" PRIu32,
1755 bank->base + offset, align_begin, align_end);
1756 } else
1757 result = target_write_memory(bank->target, k_chip->progr_accel_ram,
1758 4, size_aligned / 4, buffer);
1759
1760 LOG_DEBUG("write section @ " TARGET_ADDR_FMT " with length %" PRIu32
1761 " bytes",
1762 bank->base + offset, size);
1763
1764 if (result != ERROR_OK) {
1765 LOG_ERROR("target_write_memory failed");
1766 break;
1767 }
1768
1769 /* execute section-write command */
1770 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTWRITE,
1771 k_bank->prog_base + offset - align_begin,
1772 chunk_count>>8, chunk_count, 0, 0,
1773 0, 0, 0, 0, &ftfx_fstat);
1774
1775 if (result != ERROR_OK) {
1776 LOG_ERROR("Error writing section at " TARGET_ADDR_FMT,
1777 bank->base + offset);
1778 break;
1779 }
1780
1781 if (ftfx_fstat & 0x01) {
1782 LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
1783 bank->base + offset);
1784 if (k_bank->prog_base == 0 && offset == FCF_ADDRESS + FCF_SIZE
1785 && (k_chip->flash_support & FS_WIDTH_256BIT)) {
1786 LOG_ERROR("Flash write immediately after the end of Flash Config Field shows error");
1787 LOG_ERROR("because the flash memory is 256 bits wide (data were written correctly).");
1788 LOG_ERROR("Either change the linker script to add a gap of 16 bytes after FCF");
1789 LOG_ERROR("or set 'kinetis fcf_source write'");
1790 }
1791 }
1792
1793 buffer += size;
1794 offset += size;
1795 count -= size;
1796
1797 keep_alive();
1798 }
1799
1800 free(buffer_aligned);
1801 return result;
1802 }
1803
1804
1805 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
1806 uint32_t offset, uint32_t count)
1807 {
1808 int result;
1809 bool fallback = false;
1810 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1811 struct kinetis_chip *k_chip = k_bank->k_chip;
1812
1813 if (!(k_chip->flash_support & FS_PROGRAM_SECTOR)) {
1814 /* fallback to longword write */
1815 fallback = true;
1816 LOG_INFO("This device supports Program Longword execution only.");
1817 } else {
1818 result = kinetis_make_ram_ready(bank->target);
1819 if (result != ERROR_OK) {
1820 fallback = true;
1821 LOG_WARNING("FlexRAM not ready, fallback to slow longword write.");
1822 }
1823 }
1824
1825 LOG_DEBUG("flash write @ " TARGET_ADDR_FMT, bank->base + offset);
1826
1827 if (!fallback) {
1828 /* program section command */
1829 kinetis_write_sections(bank, buffer, offset, count);
1830 } else if (k_chip->flash_support & FS_PROGRAM_LONGWORD) {
1831 /* program longword command, not supported in FTFE */
1832 uint8_t *new_buffer = NULL;
1833
1834 /* check word alignment */
1835 if (offset & 0x3) {
1836 LOG_ERROR("offset 0x%" PRIx32 " breaks the required alignment", offset);
1837 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
1838 }
1839
1840 if (count & 0x3) {
1841 uint32_t old_count = count;
1842 count = (old_count | 3) + 1;
1843 new_buffer = malloc(count);
1844 if (new_buffer == NULL) {
1845 LOG_ERROR("odd number of bytes to write and no memory "
1846 "for padding buffer");
1847 return ERROR_FAIL;
1848 }
1849 LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
1850 "and padding with 0xff", old_count, count);
1851 memset(new_buffer + old_count, 0xff, count - old_count);
1852 buffer = memcpy(new_buffer, buffer, old_count);
1853 }
1854
1855 uint32_t words_remaining = count / 4;
1856
1857 kinetis_disable_wdog(k_chip);
1858
1859 /* try using a block write */
1860 result = kinetis_write_block(bank, buffer, offset, words_remaining);
1861
1862 if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
1863 /* if block write failed (no sufficient working area),
1864 * we use normal (slow) single word accesses */
1865 LOG_WARNING("couldn't use block writes, falling back to single "
1866 "memory accesses");
1867
1868 while (words_remaining) {
1869 uint8_t ftfx_fstat;
1870
1871 LOG_DEBUG("write longword @ %08" PRIx32, (uint32_t)(bank->base + offset));
1872
1873 result = kinetis_ftfx_command(bank->target, FTFx_CMD_LWORDPROG, k_bank->prog_base + offset,
1874 buffer[3], buffer[2], buffer[1], buffer[0],
1875 0, 0, 0, 0, &ftfx_fstat);
1876
1877 if (result != ERROR_OK) {
1878 LOG_ERROR("Error writing longword at " TARGET_ADDR_FMT,
1879 bank->base + offset);
1880 break;
1881 }
1882
1883 if (ftfx_fstat & 0x01)
1884 LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
1885 bank->base + offset);
1886
1887 buffer += 4;
1888 offset += 4;
1889 words_remaining--;
1890
1891 keep_alive();
1892 }
1893 }
1894 free(new_buffer);
1895 } else {
1896 LOG_ERROR("Flash write strategy not implemented");
1897 return ERROR_FLASH_OPERATION_FAILED;
1898 }
1899
1900 kinetis_invalidate_flash_cache(k_chip);
1901 return result;
1902 }
1903
1904
1905 static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer,
1906 uint32_t offset, uint32_t count)
1907 {
1908 int result;
1909 bool set_fcf = false;
1910 bool fcf_in_data_valid = false;
1911 int sect = 0;
1912 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1913 struct kinetis_chip *k_chip = k_bank->k_chip;
1914 uint8_t fcf_buffer[FCF_SIZE];
1915 uint8_t fcf_current[FCF_SIZE];
1916 uint8_t fcf_in_data[FCF_SIZE];
1917
1918 result = kinetis_check_run_mode(k_chip);
1919 if (result != ERROR_OK)
1920 return result;
1921
1922 /* reset error flags */
1923 result = kinetis_ftfx_prepare(bank->target);
1924 if (result != ERROR_OK)
1925 return result;
1926
1927 if (k_bank->prog_base == 0 && !allow_fcf_writes) {
1928 if (bank->sectors[1].offset <= FCF_ADDRESS)
1929 sect = 1; /* 1kb sector, FCF in 2nd sector */
1930
1931 if (offset < bank->sectors[sect].offset + bank->sectors[sect].size
1932 && offset + count > bank->sectors[sect].offset)
1933 set_fcf = true; /* write to any part of sector with FCF */
1934 }
1935
1936 if (set_fcf) {
1937 kinetis_fill_fcf(bank, fcf_buffer);
1938
1939 fcf_in_data_valid = offset <= FCF_ADDRESS
1940 && offset + count >= FCF_ADDRESS + FCF_SIZE;
1941 if (fcf_in_data_valid) {
1942 memcpy(fcf_in_data, buffer + FCF_ADDRESS - offset, FCF_SIZE);
1943 if (memcmp(fcf_in_data + FCF_FPROT, fcf_buffer, 4)) {
1944 fcf_in_data_valid = false;
1945 LOG_INFO("Flash protection requested in programmed file differs from current setting.");
1946 }
1947 if (fcf_in_data[FCF_FDPROT] != fcf_buffer[FCF_FDPROT]) {
1948 fcf_in_data_valid = false;
1949 LOG_INFO("Data flash protection requested in programmed file differs from current setting.");
1950 }
1951 if ((fcf_in_data[FCF_FSEC] & 3) != 2) {
1952 fcf_in_data_valid = false;
1953 LOG_INFO("Device security requested in programmed file!");
1954 } else if (k_chip->flash_support & FS_ECC
1955 && fcf_in_data[FCF_FSEC] != fcf_buffer[FCF_FSEC]) {
1956 fcf_in_data_valid = false;
1957 LOG_INFO("Strange unsecure mode 0x%02" PRIx8
1958 "requested in programmed file!",
1959 fcf_in_data[FCF_FSEC]);
1960 }
1961 if ((k_chip->flash_support & FS_ECC || fcf_fopt_configured)
1962 && fcf_in_data[FCF_FOPT] != fcf_fopt) {
1963 fcf_in_data_valid = false;
1964 LOG_INFO("FOPT requested in programmed file differs from current setting.");
1965 }
1966 if (!fcf_in_data_valid)
1967 LOG_INFO("Expect verify errors at FCF (0x408-0x40f).");
1968 }
1969 }
1970
1971 if (set_fcf && !fcf_in_data_valid) {
1972 if (offset < FCF_ADDRESS) {
1973 /* write part preceding FCF */
1974 result = kinetis_write_inner(bank, buffer, offset, FCF_ADDRESS - offset);
1975 if (result != ERROR_OK)
1976 return result;
1977 }
1978
1979 result = target_read_memory(bank->target, bank->base + FCF_ADDRESS, 4, FCF_SIZE / 4, fcf_current);
1980 if (result == ERROR_OK && memcmp(fcf_current, fcf_buffer, FCF_SIZE) == 0)
1981 set_fcf = false;
1982
1983 if (set_fcf) {
1984 /* write FCF if differs from flash - eliminate multiple writes */
1985 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1986 if (result != ERROR_OK)
1987 return result;
1988 }
1989
1990 LOG_WARNING("Flash Configuration Field written.");
1991 LOG_WARNING("Reset or power off the device to make settings effective.");
1992
1993 if (offset + count > FCF_ADDRESS + FCF_SIZE) {
1994 uint32_t delta = FCF_ADDRESS + FCF_SIZE - offset;
1995 /* write part after FCF */
1996 result = kinetis_write_inner(bank, buffer + delta, FCF_ADDRESS + FCF_SIZE, count - delta);
1997 }
1998 return result;
1999
2000 } else {
2001 /* no FCF fiddling, normal write */
2002 return kinetis_write_inner(bank, buffer, offset, count);
2003 }
2004 }
2005
2006
2007 static int kinetis_probe_chip(struct kinetis_chip *k_chip)
2008 {
2009 int result;
2010 uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg1_depart;
2011 uint8_t fcfg2_pflsh;
2012 uint32_t ee_size = 0;
2013 uint32_t pflash_size_k, nvm_size_k, dflash_size_k;
2014 uint32_t pflash_size_m;
2015 unsigned num_blocks = 0;
2016 unsigned maxaddr_shift = 13;
2017 struct target *target = k_chip->target;
2018
2019 unsigned familyid = 0, subfamid = 0;
2020 unsigned cpu_mhz = 120;
2021 bool use_nvm_marking = false;
2022 char flash_marking[12], nvm_marking[2];
2023 char name[40];
2024
2025 k_chip->probed = false;
2026 k_chip->pflash_sector_size = 0;
2027 k_chip->pflash_base = 0;
2028 k_chip->nvm_base = 0x10000000;
2029 k_chip->progr_accel_ram = FLEXRAM;
2030
2031 name[0] = '\0';
2032
2033 if (k_chip->sim_base)
2034 result = target_read_u32(target, k_chip->sim_base + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2035 else {
2036 result = target_read_u32(target, SIM_BASE + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2037 if (result == ERROR_OK)
2038 k_chip->sim_base = SIM_BASE;
2039 else {
2040 result = target_read_u32(target, SIM_BASE_KL28 + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2041 if (result == ERROR_OK)
2042 k_chip->sim_base = SIM_BASE_KL28;
2043 }
2044 }
2045 if (result != ERROR_OK)
2046 return result;
2047
2048 if ((k_chip->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) {
2049 /* older K-series MCU */
2050 uint32_t mcu_type = k_chip->sim_sdid & KINETIS_K_SDID_TYPE_MASK;
2051 k_chip->cache_type = KINETIS_CACHE_K;
2052 k_chip->watchdog_type = KINETIS_WDOG_K;
2053
2054 switch (mcu_type) {
2055 case KINETIS_K_SDID_K10_M50:
2056 case KINETIS_K_SDID_K20_M50:
2057 /* 1kB sectors */
2058 k_chip->pflash_sector_size = 1<<10;
2059 k_chip->nvm_sector_size = 1<<10;
2060 num_blocks = 2;
2061 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2062 break;
2063 case KINETIS_K_SDID_K10_M72:
2064 case KINETIS_K_SDID_K20_M72:
2065 case KINETIS_K_SDID_K30_M72:
2066 case KINETIS_K_SDID_K30_M100:
2067 case KINETIS_K_SDID_K40_M72:
2068 case KINETIS_K_SDID_K40_M100:
2069 case KINETIS_K_SDID_K50_M72:
2070 /* 2kB sectors, 1kB FlexNVM sectors */
2071 k_chip->pflash_sector_size = 2<<10;
2072 k_chip->nvm_sector_size = 1<<10;
2073 num_blocks = 2;
2074 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2075 k_chip->max_flash_prog_size = 1<<10;
2076 break;
2077 case KINETIS_K_SDID_K10_M100:
2078 case KINETIS_K_SDID_K20_M100:
2079 case KINETIS_K_SDID_K11:
2080 case KINETIS_K_SDID_K12:
2081 case KINETIS_K_SDID_K21_M50:
2082 case KINETIS_K_SDID_K22_M50:
2083 case KINETIS_K_SDID_K51_M72:
2084 case KINETIS_K_SDID_K53:
2085 case KINETIS_K_SDID_K60_M100:
2086 /* 2kB sectors */
2087 k_chip->pflash_sector_size = 2<<10;
2088 k_chip->nvm_sector_size = 2<<10;
2089 num_blocks = 2;
2090 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2091 break;
2092 case KINETIS_K_SDID_K21_M120:
2093 case KINETIS_K_SDID_K22_M120:
2094 /* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */
2095 k_chip->pflash_sector_size = 4<<10;
2096 k_chip->max_flash_prog_size = 1<<10;
2097 k_chip->nvm_sector_size = 4<<10;
2098 num_blocks = 2;
2099 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2100 break;
2101 case KINETIS_K_SDID_K10_M120:
2102 case KINETIS_K_SDID_K20_M120:
2103 case KINETIS_K_SDID_K60_M150:
2104 case KINETIS_K_SDID_K70_M150:
2105 /* 4kB sectors */
2106 k_chip->pflash_sector_size = 4<<10;
2107 k_chip->nvm_sector_size = 4<<10;
2108 num_blocks = 4;
2109 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2110 break;
2111 default:
2112 LOG_ERROR("Unsupported K-family FAMID");
2113 }
2114
2115 for (size_t idx = 0; idx < ARRAY_SIZE(kinetis_types_old); idx++) {
2116 if (kinetis_types_old[idx].sdid == mcu_type) {
2117 strcpy(name, kinetis_types_old[idx].name);
2118 use_nvm_marking = true;
2119 break;
2120 }
2121 }
2122
2123 } else {
2124 /* Newer K-series or KL series MCU */
2125 familyid = (k_chip->sim_sdid & KINETIS_SDID_FAMILYID_MASK) >> KINETIS_SDID_FAMILYID_SHIFT;
2126 subfamid = (k_chip->sim_sdid & KINETIS_SDID_SUBFAMID_MASK) >> KINETIS_SDID_SUBFAMID_SHIFT;
2127
2128 switch (k_chip->sim_sdid & KINETIS_SDID_SERIESID_MASK) {
2129 case KINETIS_SDID_SERIESID_K:
2130 use_nvm_marking = true;
2131 k_chip->cache_type = KINETIS_CACHE_K;
2132 k_chip->watchdog_type = KINETIS_WDOG_K;
2133
2134 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2135 case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2:
2136 /* K02FN64, K02FN128: FTFA, 2kB sectors */
2137 k_chip->pflash_sector_size = 2<<10;
2138 num_blocks = 1;
2139 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2140 cpu_mhz = 100;
2141 break;
2142
2143 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: {
2144 /* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */
2145 uint32_t sopt1;
2146 result = target_read_u32(target, k_chip->sim_base + SIM_SOPT1_OFFSET, &sopt1);
2147 if (result != ERROR_OK)
2148 return result;
2149
2150 if (((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) &&
2151 ((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) {
2152 /* MK24FN1M */
2153 k_chip->pflash_sector_size = 4<<10;
2154 num_blocks = 2;
2155 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2156 k_chip->max_flash_prog_size = 1<<10;
2157 subfamid = 4; /* errata 1N83J fix */
2158 break;
2159 }
2160 if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128
2161 || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256
2162 || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) {
2163 /* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */
2164 k_chip->pflash_sector_size = 2<<10;
2165 /* autodetect 1 or 2 blocks */
2166 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2167 break;
2168 }
2169 LOG_ERROR("Unsupported Kinetis K22 DIEID");
2170 break;
2171 }
2172 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4:
2173 k_chip->pflash_sector_size = 4<<10;
2174 if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) {
2175 /* K24FN256 - smaller pflash with FTFA */
2176 num_blocks = 1;
2177 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2178 break;
2179 }
2180 /* K24FN1M without errata 7534 */
2181 num_blocks = 2;
2182 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2183 k_chip->max_flash_prog_size = 1<<10;
2184 break;
2185
2186 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1: /* errata 7534 - should be K63 */
2187 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2: /* errata 7534 - should be K64 */
2188 subfamid += 2; /* errata 7534 fix */
2189 /* fallthrough */
2190 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3:
2191 /* K63FN1M0 */
2192 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4:
2193 /* K64FN1M0, K64FX512 */
2194 k_chip->pflash_sector_size = 4<<10;
2195 k_chip->nvm_sector_size = 4<<10;
2196 k_chip->max_flash_prog_size = 1<<10;
2197 num_blocks = 2;
2198 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2199 break;
2200
2201 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6:
2202 /* K26FN2M0 */
2203 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6:
2204 /* K66FN2M0, K66FX1M0 */
2205 k_chip->pflash_sector_size = 4<<10;
2206 k_chip->nvm_sector_size = 4<<10;
2207 k_chip->max_flash_prog_size = 1<<10;
2208 num_blocks = 4;
2209 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
2210 cpu_mhz = 180;
2211 break;
2212
2213 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX7:
2214 /* K27FN2M0 */
2215 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
2216 /* K28FN2M0 */
2217 k_chip->pflash_sector_size = 4<<10;
2218 k_chip->max_flash_prog_size = 1<<10;
2219 num_blocks = 4;
2220 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
2221 cpu_mhz = 150;
2222 break;
2223
2224 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX0:
2225 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX1:
2226 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX2:
2227 /* K80FN256, K81FN256, K82FN256 */
2228 k_chip->pflash_sector_size = 4<<10;
2229 num_blocks = 1;
2230 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
2231 cpu_mhz = 150;
2232 break;
2233
2234 case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX1:
2235 case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX2:
2236 /* KL81Z128, KL82Z128 */
2237 k_chip->pflash_sector_size = 2<<10;
2238 num_blocks = 1;
2239 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
2240 k_chip->cache_type = KINETIS_CACHE_L;
2241
2242 use_nvm_marking = false;
2243 snprintf(name, sizeof(name), "MKL8%uZ%%s7",
2244 subfamid);
2245 break;
2246
2247 default:
2248 LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID");
2249 }
2250
2251 if (name[0] == '\0')
2252 snprintf(name, sizeof(name), "MK%u%uF%%s%u",
2253 familyid, subfamid, cpu_mhz / 10);
2254 break;
2255
2256 case KINETIS_SDID_SERIESID_KL:
2257 /* KL-series */
2258 k_chip->pflash_sector_size = 1<<10;
2259 k_chip->nvm_sector_size = 1<<10;
2260 /* autodetect 1 or 2 blocks */
2261 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2262 k_chip->cache_type = KINETIS_CACHE_L;
2263 k_chip->watchdog_type = KINETIS_WDOG_COP;
2264
2265 cpu_mhz = 48;
2266 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2267 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX3:
2268 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX3:
2269 subfamid = 7;
2270 break;
2271
2272 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
2273 cpu_mhz = 72;
2274 k_chip->pflash_sector_size = 2<<10;
2275 num_blocks = 2;
2276 k_chip->watchdog_type = KINETIS_WDOG32_KL28;
2277 k_chip->sysmodectrlr_type = KINETIS_SMC32;
2278 break;
2279 }
2280
2281 snprintf(name, sizeof(name), "MKL%u%uZ%%s%u",
2282 familyid, subfamid, cpu_mhz / 10);
2283 break;
2284
2285 case KINETIS_SDID_SERIESID_KW:
2286 /* Newer KW-series (all KW series except KW2xD, KW01Z) */
2287 cpu_mhz = 48;
2288 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2289 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX0:
2290 /* KW40Z */
2291 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
2292 /* KW30Z */
2293 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX0:
2294 /* KW20Z */
2295 /* FTFA, 1kB sectors */
2296 k_chip->pflash_sector_size = 1<<10;
2297 k_chip->nvm_sector_size = 1<<10;
2298 /* autodetect 1 or 2 blocks */
2299 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2300 k_chip->cache_type = KINETIS_CACHE_L;
2301 k_chip->watchdog_type = KINETIS_WDOG_COP;
2302 break;
2303 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX1:
2304 /* KW41Z */
2305 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
2306 /* KW31Z */
2307 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX1:
2308 /* KW21Z */
2309 /* FTFA, 2kB sectors */
2310 k_chip->pflash_sector_size = 2<<10;
2311 k_chip->nvm_sector_size = 2<<10;
2312 /* autodetect 1 or 2 blocks */
2313 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2314 k_chip->cache_type = KINETIS_CACHE_L;
2315 k_chip->watchdog_type = KINETIS_WDOG_COP;
2316 break;
2317 default:
2318 LOG_ERROR("Unsupported KW FAMILYID SUBFAMID");
2319 }
2320 snprintf(name, sizeof(name), "MKW%u%uZ%%s%u",
2321 familyid, subfamid, cpu_mhz / 10);
2322 break;
2323
2324 case KINETIS_SDID_SERIESID_KV:
2325 /* KV-series */
2326 k_chip->watchdog_type = KINETIS_WDOG_K;
2327 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2328 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX0:
2329 /* KV10: FTFA, 1kB sectors */
2330 k_chip->pflash_sector_size = 1<<10;
2331 num_blocks = 1;
2332 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2333 k_chip->cache_type = KINETIS_CACHE_L;
2334 strcpy(name, "MKV10Z%s7");
2335 break;
2336
2337 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX1:
2338 /* KV11: FTFA, 2kB sectors */
2339 k_chip->pflash_sector_size = 2<<10;
2340 num_blocks = 1;
2341 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2342 k_chip->cache_type = KINETIS_CACHE_L;
2343 strcpy(name, "MKV11Z%s7");
2344 break;
2345
2346 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
2347 /* KV30: FTFA, 2kB sectors, 1 block */
2348 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
2349 /* KV31: FTFA, 2kB sectors, 2 blocks */
2350 k_chip->pflash_sector_size = 2<<10;
2351 /* autodetect 1 or 2 blocks */
2352 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2353 k_chip->cache_type = KINETIS_CACHE_K;
2354 break;
2355
2356 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX2:
2357 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX4:
2358 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX6:
2359 /* KV4x: FTFA, 4kB sectors */
2360 k_chip->pflash_sector_size = 4<<10;
2361 num_blocks = 1;
2362 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2363 k_chip->cache_type = KINETIS_CACHE_K;
2364 cpu_mhz = 168;
2365 break;
2366
2367 case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX6:
2368 case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX8:
2369 /* KV5x: FTFE, 8kB sectors */
2370 k_chip->pflash_sector_size = 8<<10;
2371 k_chip->max_flash_prog_size = 1<<10;
2372 num_blocks = 1;
2373 maxaddr_shift = 14;
2374 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_WIDTH_256BIT | FS_ECC;
2375 k_chip->pflash_base = 0x10000000;
2376 k_chip->progr_accel_ram = 0x18000000;
2377 cpu_mhz = 240;
2378 break;
2379
2380 default:
2381 LOG_ERROR("Unsupported KV FAMILYID SUBFAMID");
2382 }
2383
2384 if (name[0] == '\0')
2385 snprintf(name, sizeof(name), "MKV%u%uF%%s%u",
2386 familyid, subfamid, cpu_mhz / 10);
2387 break;
2388
2389 case KINETIS_SDID_SERIESID_KE:
2390 /* KE1x-series */
2391 k_chip->watchdog_type = KINETIS_WDOG32_KE1X;
2392 switch (k_chip->sim_sdid &
2393 (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK | KINETIS_SDID_PROJECTID_MASK)) {
2394 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1xZ:
2395 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX5 | KINETIS_SDID_PROJECTID_KE1xZ:
2396 /* KE1xZ: FTFE, 2kB sectors */
2397 k_chip->pflash_sector_size = 2<<10;
2398 k_chip->nvm_sector_size = 2<<10;
2399 k_chip->max_flash_prog_size = 1<<9;
2400 num_blocks = 2;
2401 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2402 k_chip->cache_type = KINETIS_CACHE_L;
2403
2404 cpu_mhz = 72;
2405 snprintf(name, sizeof(name), "MKE%u%uZ%%s%u",
2406 familyid, subfamid, cpu_mhz / 10);
2407 break;
2408
2409 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1xF:
2410 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX6 | KINETIS_SDID_PROJECTID_KE1xF:
2411 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX8 | KINETIS_SDID_PROJECTID_KE1xF:
2412 /* KE1xF: FTFE, 4kB sectors */
2413 k_chip->pflash_sector_size = 4<<10;
2414 k_chip->nvm_sector_size = 2<<10;
2415 k_chip->max_flash_prog_size = 1<<10;
2416 num_blocks = 2;
2417 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2418 k_chip->cache_type = KINETIS_CACHE_MSCM;
2419
2420 cpu_mhz = 168;
2421 snprintf(name, sizeof(name), "MKE%u%uF%%s%u",
2422 familyid, subfamid, cpu_mhz / 10);
2423 break;
2424
2425 default:
2426 LOG_ERROR("Unsupported KE FAMILYID SUBFAMID");
2427 }
2428 break;
2429
2430 default:
2431 LOG_ERROR("Unsupported K-series");
2432 }
2433 }
2434
2435 if (k_chip->pflash_sector_size == 0) {
2436 LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, k_chip->sim_sdid);
2437 return ERROR_FLASH_OPER_UNSUPPORTED;
2438 }
2439
2440 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &k_chip->sim_fcfg1);
2441 if (result != ERROR_OK)
2442 return result;
2443
2444 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG2_OFFSET, &k_chip->sim_fcfg2);
2445 if (result != ERROR_OK)
2446 return result;
2447
2448 LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, k_chip->sim_sdid,
2449 k_chip->sim_fcfg1, k_chip->sim_fcfg2);
2450
2451 fcfg1_nvmsize = (uint8_t)((k_chip->sim_fcfg1 >> 28) & 0x0f);
2452 fcfg1_pfsize = (uint8_t)((k_chip->sim_fcfg1 >> 24) & 0x0f);
2453 fcfg1_eesize = (uint8_t)((k_chip->sim_fcfg1 >> 16) & 0x0f);
2454 fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
2455
2456 fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
2457 k_chip->fcfg2_maxaddr0_shifted = ((k_chip->sim_fcfg2 >> 24) & 0x7f) << maxaddr_shift;
2458 k_chip->fcfg2_maxaddr1_shifted = ((k_chip->sim_fcfg2 >> 16) & 0x7f) << maxaddr_shift;
2459
2460 if (num_blocks == 0)
2461 num_blocks = k_chip->fcfg2_maxaddr1_shifted ? 2 : 1;
2462 else if (k_chip->fcfg2_maxaddr1_shifted == 0 && num_blocks >= 2 && fcfg2_pflsh) {
2463 /* fcfg2_maxaddr1 may be zero due to partitioning whole NVM as EEPROM backup
2464 * Do not adjust block count in this case! */
2465 num_blocks = 1;
2466 LOG_WARNING("MAXADDR1 is zero, number of flash banks adjusted to 1");
2467 } else if (k_chip->fcfg2_maxaddr1_shifted != 0 && num_blocks == 1) {
2468 num_blocks = 2;
2469 LOG_WARNING("MAXADDR1 is non zero, number of flash banks adjusted to 2");
2470 }
2471
2472 /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
2473 if (!fcfg2_pflsh) {
2474 switch (fcfg1_nvmsize) {
2475 case 0x03:
2476 case 0x05:
2477 case 0x07:
2478 case 0x09:
2479 case 0x0b:
2480 k_chip->nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
2481 break;
2482 case 0x0f:
2483 if (k_chip->pflash_sector_size >= 4<<10)
2484 k_chip->nvm_size = 512<<10;
2485 else
2486 /* K20_100 */
2487 k_chip->nvm_size = 256<<10;
2488 break;
2489 default:
2490 k_chip->nvm_size = 0;
2491 break;
2492 }
2493
2494 switch (fcfg1_eesize) {
2495 case 0x00:
2496 case 0x01:
2497 case 0x02:
2498 case 0x03:
2499 case 0x04:
2500 case 0x05:
2501 case 0x06:
2502 case 0x07:
2503 case 0x08:
2504 case 0x09:
2505 ee_size = (16 << (10 - fcfg1_eesize));
2506 break;
2507 default:
2508 ee_size = 0;
2509 break;
2510 }
2511
2512 switch (fcfg1_depart) {
2513 case 0x01:
2514 case 0x02:
2515 case 0x03:
2516 case 0x04:
2517 case 0x05:
2518 case 0x06:
2519 k_chip->dflash_size = k_chip->nvm_size - (4096 << fcfg1_depart);
2520 break;
2521 case 0x07:
2522 case 0x08:
2523 k_chip->dflash_size = 0;
2524 break;
2525 case 0x09:
2526 case 0x0a:
2527 case 0x0b:
2528 case 0x0c:
2529 case 0x0d:
2530 k_chip->dflash_size = 4096 << (fcfg1_depart & 0x7);
2531 break;
2532 default:
2533 k_chip->dflash_size = k_chip->nvm_size;
2534 break;
2535 }
2536 }
2537
2538 switch (fcfg1_pfsize) {
2539 case 0x00:
2540 k_chip->pflash_size = 8192;
2541 break;
2542 case 0x01:
2543 case 0x03:
2544 case 0x05:
2545 case 0x07:
2546 case 0x09:
2547 case 0x0b:
2548 case 0x0d:
2549 k_chip->pflash_size = 1 << (14 + (fcfg1_pfsize >> 1));
2550 break;
2551 case 0x0f:
2552 /* a peculiar case: Freescale states different sizes for 0xf
2553 * KL03P24M48SF0RM 32 KB .... duplicate of code 0x3
2554 * K02P64M100SFARM 128 KB ... duplicate of code 0x7
2555 * K22P121M120SF8RM 256 KB ... duplicate of code 0x9
2556 * K22P121M120SF7RM 512 KB ... duplicate of code 0xb
2557 * K22P100M120SF5RM 1024 KB ... duplicate of code 0xd
2558 * K26P169M180SF5RM 2048 KB ... the only unique value
2559 * fcfg2_maxaddr0 seems to be the only clue to pflash_size
2560 * Checking fcfg2_maxaddr0 in bank probe is pointless then
2561 */
2562 if (fcfg2_pflsh)
2563 k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks;
2564 else
2565 k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks / 2;
2566 if (k_chip->pflash_size != 2048<<10)
2567 LOG_WARNING("SIM_FCFG1 PFSIZE = 0xf: please check if pflash is %u KB", k_chip->pflash_size>>10);
2568
2569 break;
2570 default:
2571 k_chip->pflash_size = 0;
2572 break;
2573 }
2574
2575 if (k_chip->flash_support & FS_PROGRAM_SECTOR && k_chip->max_flash_prog_size == 0) {
2576 k_chip->max_flash_prog_size = k_chip->pflash_sector_size;
2577 /* Program section size is equal to sector size by default */
2578 }
2579
2580 if (fcfg2_pflsh) {
2581 k_chip->num_pflash_blocks = num_blocks;
2582 k_chip->num_nvm_blocks = 0;
2583 } else {
2584 k_chip->num_pflash_blocks = (num_blocks + 1) / 2;
2585 k_chip->num_nvm_blocks = num_blocks - k_chip->num_pflash_blocks;
2586 }
2587
2588 if (use_nvm_marking) {
2589 nvm_marking[0] = k_chip->num_nvm_blocks ? 'X' : 'N';
2590 nvm_marking[1] = '\0';
2591 } else
2592 nvm_marking[0] = '\0';
2593
2594 pflash_size_k = k_chip->pflash_size / 1024;
2595 pflash_size_m = pflash_size_k / 1024;
2596 if (pflash_size_m)
2597 snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "M0xxx", nvm_marking, pflash_size_m);
2598 else
2599 snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "xxx", nvm_marking, pflash_size_k);
2600
2601 snprintf(k_chip->name, sizeof(k_chip->name), name, flash_marking);
2602 LOG_INFO("Kinetis %s detected: %u flash blocks", k_chip->name, num_blocks);
2603 LOG_INFO("%u PFlash banks: %" PRIu32 "k total", k_chip->num_pflash_blocks, pflash_size_k);
2604 if (k_chip->num_nvm_blocks) {
2605 nvm_size_k = k_chip->nvm_size / 1024;
2606 dflash_size_k = k_chip->dflash_size / 1024;
2607 LOG_INFO("%u FlexNVM banks: %" PRIu32 "k total, %" PRIu32 "k available as data flash, %" PRIu32 "bytes FlexRAM",
2608 k_chip->num_nvm_blocks, nvm_size_k, dflash_size_k, ee_size);
2609 }
2610
2611 k_chip->probed = true;
2612
2613 if (create_banks)
2614 kinetis_create_missing_banks(k_chip);
2615
2616 return ERROR_OK;
2617 }
2618
2619 static int kinetis_probe(struct flash_bank *bank)
2620 {
2621 int result;
2622 uint8_t fcfg2_maxaddr0, fcfg2_pflsh, fcfg2_maxaddr1;
2623 unsigned num_blocks, first_nvm_bank;
2624 uint32_t size_k;
2625 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2626 struct kinetis_chip *k_chip;
2627
2628 assert(k_bank);
2629 k_chip = k_bank->k_chip;
2630
2631 k_bank->probed = false;
2632
2633 if (!k_chip->probed) {
2634 result = kinetis_probe_chip(k_chip);
2635 if (result != ERROR_OK)
2636 return result;
2637 }
2638
2639 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
2640 first_nvm_bank = k_chip->num_pflash_blocks;
2641
2642 if (k_bank->bank_number < k_chip->num_pflash_blocks) {
2643 /* pflash, banks start at address zero */
2644 k_bank->flash_class = FC_PFLASH;
2645 bank->size = (k_chip->pflash_size / k_chip->num_pflash_blocks);
2646 bank->base = k_chip->pflash_base + bank->size * k_bank->bank_number;
2647 k_bank->prog_base = 0x00000000 + bank->size * k_bank->bank_number;
2648 k_bank->sector_size = k_chip->pflash_sector_size;
2649 /* pflash is divided into 32 protection areas for
2650 * parts with more than 32K of PFlash. For parts with
2651 * less the protection unit is set to 1024 bytes */
2652 k_bank->protection_size = MAX(k_chip->pflash_size / 32, 1024);
2653 bank->num_prot_blocks = bank->size / k_bank->protection_size;
2654 k_bank->protection_block = bank->num_prot_blocks * k_bank->bank_number;
2655
2656 size_k = bank->size / 1024;
2657 LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k PFlash, FTFx base 0x%08" PRIx32 ", sect %u",
2658 k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
2659
2660 } else if (k_bank->bank_number < num_blocks) {
2661 /* nvm, banks start at address 0x10000000 */
2662 unsigned nvm_ord = k_bank->bank_number - first_nvm_bank;
2663 uint32_t limit;
2664
2665 k_bank->flash_class = FC_FLEX_NVM;
2666 bank->size = k_chip->nvm_size / k_chip->num_nvm_blocks;
2667 bank->base = k_chip->nvm_base + bank->size * nvm_ord;
2668 k_bank->prog_base = 0x00800000 + bank->size * nvm_ord;
2669 k_bank->sector_size = k_chip->nvm_sector_size;
2670 if (k_chip->dflash_size == 0) {
2671 k_bank->protection_size = 0;
2672 } else {
2673 int i;
2674 for (i = k_chip->dflash_size; ~i & 1; i >>= 1)
2675 ;
2676 if (i == 1)
2677 k_bank->protection_size = k_chip->dflash_size / 8; /* data flash size = 2^^n */
2678 else
2679 k_bank->protection_size = k_chip->nvm_size / 8; /* TODO: verify on SF1, not documented in RM */
2680 }
2681 bank->num_prot_blocks = 8 / k_chip->num_nvm_blocks;
2682 k_bank->protection_block = bank->num_prot_blocks * nvm_ord;
2683
2684 /* EEPROM backup part of FlexNVM is not accessible, use dflash_size as a limit */
2685 if (k_chip->dflash_size > bank->size * nvm_ord)
2686 limit = k_chip->dflash_size - bank->size * nvm_ord;
2687 else
2688 limit = 0;
2689
2690 if (bank->size > limit) {
2691 bank->size = limit;
2692 LOG_DEBUG("FlexNVM bank %d limited to 0x%08" PRIx32 " due to active EEPROM backup",
2693 k_bank->bank_number, limit);
2694 }
2695
2696 size_k = bank->size / 1024;
2697 LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k FlexNVM, FTFx base 0x%08" PRIx32 ", sect %u",
2698 k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
2699
2700 } else {
2701 LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
2702 k_bank->bank_number, num_blocks);
2703 return ERROR_FLASH_BANK_INVALID;
2704 }
2705
2706 fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
2707 fcfg2_maxaddr0 = (uint8_t)((k_chip->sim_fcfg2 >> 24) & 0x7f);
2708 fcfg2_maxaddr1 = (uint8_t)((k_chip->sim_fcfg2 >> 16) & 0x7f);
2709
2710 if (k_bank->bank_number == 0 && k_chip->fcfg2_maxaddr0_shifted != bank->size)
2711 LOG_WARNING("MAXADDR0 0x%02" PRIx8 " check failed,"
2712 " please report to OpenOCD mailing list", fcfg2_maxaddr0);
2713
2714 if (fcfg2_pflsh) {
2715 if (k_bank->bank_number == 1 && k_chip->fcfg2_maxaddr1_shifted != bank->size)
2716 LOG_WARNING("MAXADDR1 0x%02" PRIx8 " check failed,"
2717 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2718 } else {
2719 if (k_bank->bank_number == first_nvm_bank
2720 && k_chip->fcfg2_maxaddr1_shifted != k_chip->dflash_size)
2721 LOG_WARNING("FlexNVM MAXADDR1 0x%02" PRIx8 " check failed,"
2722 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2723 }
2724
2725 if (bank->sectors) {
2726 free(bank->sectors);
2727 bank->sectors = NULL;
2728 }
2729 if (bank->prot_blocks) {
2730 free(bank->prot_blocks);
2731 bank->prot_blocks = NULL;
2732 }
2733
2734 if (k_bank->sector_size == 0) {
2735 LOG_ERROR("Unknown sector size for bank %d", bank->bank_number);
2736 return ERROR_FLASH_BANK_INVALID;
2737 }
2738
2739 bank->num_sectors = bank->size / k_bank->sector_size;
2740
2741 if (bank->num_sectors > 0) {
2742 /* FlexNVM bank can be used for EEPROM backup therefore zero sized */
2743 bank->sectors = alloc_block_array(0, k_bank->sector_size, bank->num_sectors);
2744 if (!bank->sectors)
2745 return ERROR_FAIL;
2746
2747 bank->prot_blocks = alloc_block_array(0, k_bank->protection_size, bank->num_prot_blocks);
2748 if (!bank->prot_blocks)
2749 return ERROR_FAIL;
2750
2751 } else {
2752 bank->num_prot_blocks = 0;
2753 }
2754
2755 k_bank->probed = true;
2756
2757 return ERROR_OK;
2758 }
2759
2760 static int kinetis_auto_probe(struct flash_bank *bank)
2761 {
2762 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2763
2764 if (k_bank && k_bank->probed)
2765 return ERROR_OK;
2766
2767 return kinetis_probe(bank);
2768 }
2769
2770 static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
2771 {
2772 const char *bank_class_names[] = {
2773 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
2774 };
2775
2776 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2777 struct kinetis_chip *k_chip = k_bank->k_chip;
2778 uint32_t size_k = bank->size / 1024;
2779
2780 snprintf(buf, buf_size,
2781 "%s %s: %" PRIu32 "k %s bank %s at " TARGET_ADDR_FMT,
2782 bank->driver->name, k_chip->name,
2783 size_k, bank_class_names[k_bank->flash_class],
2784 bank->name, bank->base);
2785
2786 return ERROR_OK;
2787 }
2788
2789 static int kinetis_blank_check(struct flash_bank *bank)
2790 {
2791 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2792 struct kinetis_chip *k_chip = k_bank->k_chip;
2793 int result;
2794
2795 /* suprisingly blank check does not work in VLPR and HSRUN modes */
2796 result = kinetis_check_run_mode(k_chip);
2797 if (result != ERROR_OK)
2798 return result;
2799
2800 /* reset error flags */
2801 result = kinetis_ftfx_prepare(bank->target);
2802 if (result != ERROR_OK)
2803 return result;
2804
2805 if (k_bank->flash_class == FC_PFLASH || k_bank->flash_class == FC_FLEX_NVM) {
2806 bool block_dirty = true;
2807 bool use_block_cmd = !(k_chip->flash_support & FS_NO_CMD_BLOCKSTAT);
2808 uint8_t ftfx_fstat;
2809
2810 if (use_block_cmd && k_bank->flash_class == FC_FLEX_NVM) {
2811 uint8_t fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
2812 /* block operation cannot be used on FlexNVM when EEPROM backup partition is set */
2813 if (fcfg1_depart != 0xf && fcfg1_depart != 0)
2814 use_block_cmd = false;
2815 }
2816
2817 if (use_block_cmd) {
2818 /* check if whole bank is blank */
2819 result = kinetis_ftfx_command(bank->target, FTFx_CMD_BLOCKSTAT, k_bank->prog_base,
2820 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
2821
2822 if (result != ERROR_OK)
2823 kinetis_ftfx_clear_error(bank->target);
2824 else if ((ftfx_fstat & 0x01) == 0)
2825 block_dirty = false;
2826 }
2827
2828 if (block_dirty) {
2829 /* the whole bank is not erased, check sector-by-sector */
2830 for (int i = 0; i < bank->num_sectors; i++) {
2831 /* normal margin */
2832 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTSTAT,
2833 k_bank->prog_base + bank->sectors[i].offset,
2834 1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
2835
2836 if (result == ERROR_OK) {
2837 bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
2838 } else {
2839 LOG_DEBUG("Ignoring errored PFlash sector blank-check");
2840 kinetis_ftfx_clear_error(bank->target);
2841 bank->sectors[i].is_erased = -1;
2842 }
2843 }
2844 } else {
2845 /* the whole bank is erased, update all sectors */
2846 for (int i = 0; i < bank->num_sectors; i++)
2847 bank->sectors[i].is_erased = 1;
2848 }
2849 } else {
2850 LOG_WARNING("kinetis_blank_check not supported yet for FlexRAM");
2851 return ERROR_FLASH_OPERATION_FAILED;
2852 }
2853
2854 return ERROR_OK;
2855 }
2856
2857
2858 COMMAND_HANDLER(kinetis_nvm_partition)
2859 {
2860 int result;
2861 unsigned bank_idx;
2862 unsigned num_blocks, first_nvm_bank;
2863 unsigned long par, log2 = 0, ee1 = 0, ee2 = 0;
2864 enum { SHOW_INFO, DF_SIZE, EEBKP_SIZE } sz_type = SHOW_INFO;
2865 bool enable;
2866 uint8_t load_flex_ram = 1;
2867 uint8_t ee_size_code = 0x3f;
2868 uint8_t flex_nvm_partition_code = 0;
2869 uint8_t ee_split = 3;
2870 struct target *target = get_current_target(CMD_CTX);
2871 struct kinetis_chip *k_chip;
2872 uint32_t sim_fcfg1;
2873
2874 k_chip = kinetis_get_chip(target);
2875
2876 if (CMD_ARGC >= 2) {
2877 if (strcmp(CMD_ARGV[0], "dataflash") == 0)
2878 sz_type = DF_SIZE;
2879 else if (strcmp(CMD_ARGV[0], "eebkp") == 0)
2880 sz_type = EEBKP_SIZE;
2881
2882 par = strtoul(CMD_ARGV[1], NULL, 10);
2883 while (par >> (log2 + 3))
2884 log2++;
2885 }
2886 switch (sz_type) {
2887 case SHOW_INFO:
2888 if (k_chip == NULL) {
2889 LOG_ERROR("Chip not probed.");
2890 return ERROR_FAIL;
2891 }
2892 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &sim_fcfg1);
2893 if (result != ERROR_OK)
2894 return result;
2895
2896 flex_nvm_partition_code = (uint8_t)((sim_fcfg1 >> 8) & 0x0f);
2897 switch (flex_nvm_partition_code) {
2898 case 0:
2899 command_print(CMD, "No EEPROM backup, data flash only");
2900 break;
2901 case 1:
2902 case 2:
2903 case 3:
2904 case 4:
2905 case 5:
2906 case 6:
2907 command_print(CMD, "EEPROM backup %d KB", 4 << flex_nvm_partition_code);
2908 break;
2909 case 8:
2910 command_print(CMD, "No data flash, EEPROM backup only");
2911 break;
2912 case 0x9:
2913 case 0xA:
2914 case 0xB:
2915 case 0xC:
2916 case 0xD:
2917 case 0xE:
2918 command_print(CMD, "data flash %d KB", 4 << (flex_nvm_partition_code & 7));
2919 break;
2920 case 0xf:
2921 command_print(CMD, "No EEPROM backup, data flash only (DEPART not set)");
2922 break;
2923 default:
2924 command_print(CMD, "Unsupported EEPROM backup size code 0x%02" PRIx8, flex_nvm_partition_code);
2925 }
2926 return ERROR_OK;
2927
2928 case DF_SIZE:
2929 flex_nvm_partition_code = 0x8 | log2;
2930 break;
2931
2932 case EEBKP_SIZE:
2933 flex_nvm_partition_code = log2;
2934 break;
2935 }
2936
2937 if (CMD_ARGC == 3)
2938 ee1 = ee2 = strtoul(CMD_ARGV[2], NULL, 10) / 2;
2939 else if (CMD_ARGC >= 4) {
2940 ee1 = strtoul(CMD_ARGV[2], NULL, 10);
2941 ee2 = strtoul(CMD_ARGV[3], NULL, 10);
2942 }
2943
2944 enable = ee1 + ee2 > 0;
2945 if (enable) {
2946 for (log2 = 2; ; log2++) {
2947 if (ee1 + ee2 == (16u << 10) >> log2)
2948 break;
2949 if (ee1 + ee2 > (16u << 10) >> log2 || log2 >= 9) {
2950 LOG_ERROR("Unsupported EEPROM size");
2951 return ERROR_FLASH_OPERATION_FAILED;
2952 }
2953 }
2954
2955 if (ee1 * 3 == ee2)
2956 ee_split = 1;
2957 else if (ee1 * 7 == ee2)
2958 ee_split = 0;
2959 else if (ee1 != ee2) {
2960 LOG_ERROR("Unsupported EEPROM sizes ratio");
2961 return ERROR_FLASH_OPERATION_FAILED;
2962 }
2963
2964 ee_size_code = log2 | ee_split << 4;
2965 }
2966
2967 if (CMD_ARGC >= 5)
2968 COMMAND_PARSE_ON_OFF(CMD_ARGV[4], enable);
2969 if (enable)
2970 load_flex_ram = 0;
2971
2972 LOG_INFO("DEPART 0x%" PRIx8 ", EEPROM size code 0x%" PRIx8,
2973 flex_nvm_partition_code, ee_size_code);
2974
2975 result = kinetis_check_run_mode(k_chip);
2976 if (result != ERROR_OK)
2977 return result;
2978
2979 /* reset error flags */
2980 result = kinetis_ftfx_prepare(target);
2981 if (result != ERROR_OK)
2982 return result;
2983
2984 result = kinetis_ftfx_command(target, FTFx_CMD_PGMPART, load_flex_ram,
2985 ee_size_code, flex_nvm_partition_code, 0, 0,
2986 0, 0, 0, 0, NULL);
2987 if (result != ERROR_OK)
2988 return result;
2989
2990 command_print(CMD, "FlexNVM partition set. Please reset MCU.");
2991
2992 if (k_chip) {
2993 first_nvm_bank = k_chip->num_pflash_blocks;
2994 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
2995 for (bank_idx = first_nvm_bank; bank_idx < num_blocks; bank_idx++)
2996 k_chip->banks[bank_idx].probed = false; /* re-probe before next use */
2997 k_chip->probed = false;
2998 }
2999
3000 command_print(CMD, "FlexNVM banks will be re-probed to set new data flash size.");
3001 return ERROR_OK;
3002 }
3003
3004 COMMAND_HANDLER(kinetis_fcf_source_handler)
3005 {
3006 if (CMD_ARGC > 1)
3007 return ERROR_COMMAND_SYNTAX_ERROR;
3008
3009 if (CMD_ARGC == 1) {
3010 if (strcmp(CMD_ARGV[0], "write") == 0)
3011 allow_fcf_writes = true;
3012 else if (strcmp(CMD_ARGV[0], "protection") == 0)
3013 allow_fcf_writes = false;
3014 else
3015 return ERROR_COMMAND_SYNTAX_ERROR;
3016 }
3017
3018 if (allow_fcf_writes) {
3019 command_print(CMD, "Arbitrary Flash Configuration Field writes enabled.");
3020 command_print(CMD, "Protection info writes to FCF disabled.");
3021 LOG_WARNING("BEWARE: incorrect flash configuration may permanently lock the device.");
3022 } else {
3023 command_print(CMD, "Protection info writes to Flash Configuration Field enabled.");
3024 command_print(CMD, "Arbitrary FCF writes disabled. Mode safe from unwanted locking of the device.");
3025 }
3026
3027 return ERROR_OK;
3028 }
3029
3030 COMMAND_HANDLER(kinetis_fopt_handler)
3031 {
3032 if (CMD_ARGC > 1)
3033 return ERROR_COMMAND_SYNTAX_ERROR;
3034
3035 if (CMD_ARGC == 1) {
3036 fcf_fopt = (uint8_t)strtoul(CMD_ARGV[0], NULL, 0);
3037 fcf_fopt_configured = true;
3038 } else {
3039 command_print(CMD, "FCF_FOPT 0x%02" PRIx8, fcf_fopt);
3040 }
3041
3042 return ERROR_OK;
3043 }
3044
3045 COMMAND_HANDLER(kinetis_create_banks_handler)
3046 {
3047 if (CMD_ARGC > 0)
3048 return ERROR_COMMAND_SYNTAX_ERROR;
3049
3050 create_banks = true;
3051
3052 return ERROR_OK;
3053 }
3054
3055
3056 static const struct command_registration kinetis_security_command_handlers[] = {
3057 {
3058 .name = "check_security",
3059 .mode = COMMAND_EXEC,
3060 .help = "Check status of device security lock",
3061 .usage = "",
3062 .handler = kinetis_check_flash_security_status,
3063 },
3064 {
3065 .name = "halt",
3066 .mode = COMMAND_EXEC,
3067 .help = "Issue a halt via the MDM-AP",
3068 .usage = "",
3069 .handler = kinetis_mdm_halt,
3070 },
3071 {
3072 .name = "mass_erase",
3073 .mode = COMMAND_EXEC,
3074 .help = "Issue a complete flash erase via the MDM-AP",
3075 .usage = "",
3076 .handler = kinetis_mdm_mass_erase,
3077 },
3078 {
3079 .name = "reset",
3080 .mode = COMMAND_EXEC,
3081 .help = "Issue a reset via the MDM-AP",
3082 .usage = "",
3083 .handler = kinetis_mdm_reset,
3084 },
3085 COMMAND_REGISTRATION_DONE
3086 };
3087
3088 static const struct command_registration kinetis_exec_command_handlers[] = {
3089 {
3090 .name = "mdm",
3091 .mode = COMMAND_ANY,
3092 .help = "MDM-AP command group",
3093 .usage = "",
3094 .chain = kinetis_security_command_handlers,
3095 },
3096 {
3097 .name = "disable_wdog",
3098 .mode = COMMAND_EXEC,
3099 .help = "Disable the watchdog timer",
3100 .usage = "",
3101 .handler = kinetis_disable_wdog_handler,
3102 },
3103 {
3104 .name = "nvm_partition",
3105 .mode = COMMAND_EXEC,
3106 .help = "Show/set data flash or EEPROM backup size in kilobytes,"
3107 " set two EEPROM sizes in bytes and FlexRAM loading during reset",
3108 .usage = "('info'|'dataflash' size|'eebkp' size) [eesize1 eesize2] ['on'|'off']",
3109 .handler = kinetis_nvm_partition,
3110 },
3111 {
3112 .name = "fcf_source",
3113 .mode = COMMAND_EXEC,
3114 .help = "Use protection as a source for Flash Configuration Field or allow writing arbitrary values to the FCF"
3115 " Mode 'protection' is safe from unwanted locking of the device.",
3116 .usage = "['protection'|'write']",
3117 .handler = kinetis_fcf_source_handler,
3118 },
3119 {
3120 .name = "fopt",
3121 .mode = COMMAND_EXEC,
3122 .help = "FCF_FOPT value source in 'kinetis fcf_source protection' mode",
3123 .usage = "[num]",
3124 .handler = kinetis_fopt_handler,
3125 },
3126 {
3127 .name = "create_banks",
3128 .mode = COMMAND_CONFIG,
3129 .help = "Driver creates additional banks if device with two/four flash blocks is probed",
3130 .handler = kinetis_create_banks_handler,
3131 .usage = "",
3132 },
3133 COMMAND_REGISTRATION_DONE
3134 };
3135
3136 static const struct command_registration kinetis_command_handler[] = {
3137 {
3138 .name = "kinetis",
3139 .mode = COMMAND_ANY,
3140 .help = "Kinetis flash controller commands",
3141 .usage = "",
3142 .chain = kinetis_exec_command_handlers,
3143 },
3144 COMMAND_REGISTRATION_DONE
3145 };
3146
3147
3148
3149 const struct flash_driver kinetis_flash = {
3150 .name = "kinetis",
3151 .commands = kinetis_command_handler,
3152 .flash_bank_command = kinetis_flash_bank_command,
3153 .erase = kinetis_erase,
3154 .protect = kinetis_protect,
3155 .write = kinetis_write,
3156 .read = default_flash_read,
3157 .probe = kinetis_probe,
3158 .auto_probe = kinetis_auto_probe,
3159 .erase_check = kinetis_blank_check,
3160 .protect_check = kinetis_protect_check,
3161 .info = kinetis_info,
3162 .free_driver_priv = kinetis_free_driver_priv,
3163 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)