70114da612307b8c3f710cfe3b9fe8016b11177f
[openocd.git] / src / flash / nor / fm3.c
1 /***************************************************************************
2 * Copyright (C) 2011 by Marc Willam, Holger Wech *
3 * openOCD.fseu(AT)de.fujitsu.com *
4 * Copyright (C) 2011 Ronny Strutz *
5 * *
6 * This program is free software; you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation; either version 2 of the License, or *
9 * (at your option) any later version. *
10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program; if not, write to the *
18 * Free Software Foundation, Inc., *
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
20 ***************************************************************************/
21
22 #ifdef HAVE_CONFIG_H
23 #include "config.h"
24 #endif
25
26 #include "imp.h"
27 #include <helper/binarybuffer.h>
28 #include <target/algorithm.h>
29 #include <target/armv7m.h>
30
31 #define FLASH_DQ6 0x00000040 /* Data toggle flag bit (TOGG) position */
32 #define FLASH_DQ5 0x00000020 /* Time limit exceeding flag bit (TLOV) position */
33
34 enum fm3_variant {
35 mb9bfxx1, /* Flash Type '1' */
36 mb9bfxx2,
37 mb9bfxx3,
38 mb9bfxx4,
39 mb9bfxx5,
40 mb9bfxx6,
41 mb9bfxx7,
42 mb9bfxx8,
43
44 mb9afxx1, /* Flash Type '2' */
45 mb9afxx2,
46 mb9afxx3,
47 mb9afxx4,
48 mb9afxx5,
49 mb9afxx6,
50 mb9afxx7,
51 mb9afxx8,
52 };
53
54 enum fm3_flash_type {
55 fm3_no_flash_type = 0,
56 fm3_flash_type1 = 1,
57 fm3_flash_type2 = 2
58 };
59
60 struct fm3_flash_bank {
61 enum fm3_variant variant;
62 enum fm3_flash_type flashtype;
63 int probed;
64 };
65
66 FLASH_BANK_COMMAND_HANDLER(fm3_flash_bank_command)
67 {
68 struct fm3_flash_bank *fm3_info;
69
70 if (CMD_ARGC < 6)
71 return ERROR_COMMAND_SYNTAX_ERROR;
72
73 fm3_info = malloc(sizeof(struct fm3_flash_bank));
74 bank->driver_priv = fm3_info;
75
76 /* Flash type '1' */
77 if (strcmp(CMD_ARGV[5], "mb9bfxx1.cpu") == 0) {
78 fm3_info->variant = mb9bfxx1;
79 fm3_info->flashtype = fm3_flash_type1;
80 } else if (strcmp(CMD_ARGV[5], "mb9bfxx2.cpu") == 0) {
81 fm3_info->variant = mb9bfxx2;
82 fm3_info->flashtype = fm3_flash_type1;
83 } else if (strcmp(CMD_ARGV[5], "mb9bfxx3.cpu") == 0) {
84 fm3_info->variant = mb9bfxx3;
85 fm3_info->flashtype = fm3_flash_type1;
86 } else if (strcmp(CMD_ARGV[5], "mb9bfxx4.cpu") == 0) {
87 fm3_info->variant = mb9bfxx4;
88 fm3_info->flashtype = fm3_flash_type1;
89 } else if (strcmp(CMD_ARGV[5], "mb9bfxx5.cpu") == 0) {
90 fm3_info->variant = mb9bfxx5;
91 fm3_info->flashtype = fm3_flash_type1;
92 } else if (strcmp(CMD_ARGV[5], "mb9bfxx6.cpu") == 0) {
93 fm3_info->variant = mb9bfxx6;
94 fm3_info->flashtype = fm3_flash_type1;
95 } else if (strcmp(CMD_ARGV[5], "mb9bfxx7.cpu") == 0) {
96 fm3_info->variant = mb9bfxx7;
97 fm3_info->flashtype = fm3_flash_type1;
98 } else if (strcmp(CMD_ARGV[5], "mb9bfxx8.cpu") == 0) {
99 fm3_info->variant = mb9bfxx8;
100 fm3_info->flashtype = fm3_flash_type1;
101 } else if (strcmp(CMD_ARGV[5], "mb9afxx1.cpu") == 0) { /* Flash type '2' */
102 fm3_info->variant = mb9afxx1;
103 fm3_info->flashtype = fm3_flash_type2;
104 } else if (strcmp(CMD_ARGV[5], "mb9afxx2.cpu") == 0) {
105 fm3_info->variant = mb9afxx2;
106 fm3_info->flashtype = fm3_flash_type2;
107 } else if (strcmp(CMD_ARGV[5], "mb9afxx3.cpu") == 0) {
108 fm3_info->variant = mb9afxx3;
109 fm3_info->flashtype = fm3_flash_type2;
110 } else if (strcmp(CMD_ARGV[5], "mb9afxx4.cpu") == 0) {
111 fm3_info->variant = mb9afxx4;
112 fm3_info->flashtype = fm3_flash_type2;
113 } else if (strcmp(CMD_ARGV[5], "mb9afxx5.cpu") == 0) {
114 fm3_info->variant = mb9afxx5;
115 fm3_info->flashtype = fm3_flash_type2;
116 } else if (strcmp(CMD_ARGV[5], "mb9afxx6.cpu") == 0) {
117 fm3_info->variant = mb9afxx6;
118 fm3_info->flashtype = fm3_flash_type2;
119 } else if (strcmp(CMD_ARGV[5], "mb9afxx7.cpu") == 0) {
120 fm3_info->variant = mb9afxx7;
121 fm3_info->flashtype = fm3_flash_type2;
122 } else if (strcmp(CMD_ARGV[5], "mb9afxx8.cpu") == 0) {
123 fm3_info->variant = mb9afxx8;
124 fm3_info->flashtype = fm3_flash_type2;
125 }
126
127 /* unknown Flash type */
128 else {
129 LOG_ERROR("unknown fm3 variant: %s", CMD_ARGV[5]);
130 free(fm3_info);
131 return ERROR_FLASH_BANK_INVALID;
132 }
133
134 fm3_info->probed = 0;
135
136 return ERROR_OK;
137 }
138
139 /* Data polling algorithm */
140 static int fm3_busy_wait(struct target *target, uint32_t offset, int timeout_ms)
141 {
142 int retval = ERROR_OK;
143 uint16_t state1, state2;
144 int ms = 0;
145
146 /* While(1) loop exit via "break" and "return" on error */
147 while (1) {
148 /* dummy-read - see flash manual */
149 retval = target_read_u16(target, offset, &state1);
150 if (retval != ERROR_OK)
151 return retval;
152
153 /* Data polling 1 */
154 retval = target_read_u16(target, offset, &state1);
155 if (retval != ERROR_OK)
156 return retval;
157
158 /* Data polling 2 */
159 retval = target_read_u16(target, offset, &state2);
160 if (retval != ERROR_OK)
161 return retval;
162
163 /* Flash command finished via polled data equal? */
164 if ((state1 & FLASH_DQ6) == (state2 & FLASH_DQ6))
165 break;
166 /* Timeout Flag? */
167 else if (state1 & FLASH_DQ5) {
168 /* Retry data polling */
169
170 /* Data polling 1 */
171 retval = target_read_u16(target, offset, &state1);
172 if (retval != ERROR_OK)
173 return retval;
174
175 /* Data polling 2 */
176 retval = target_read_u16(target, offset, &state2);
177 if (retval != ERROR_OK)
178 return retval;
179
180 /* Flash command finished via polled data equal? */
181 if ((state1 & FLASH_DQ6) != (state2 & FLASH_DQ6))
182 return ERROR_FLASH_OPERATION_FAILED;
183
184 /* finish anyway */
185 break;
186 }
187 usleep(1000);
188 ++ms;
189
190 /* Polling time exceeded? */
191 if (ms > timeout_ms) {
192 LOG_ERROR("Polling data reading timed out!");
193 return ERROR_FLASH_OPERATION_FAILED;
194 }
195 }
196
197 if (retval == ERROR_OK)
198 LOG_DEBUG("fm3_busy_wait(%" PRIx32 ") needs about %d ms", offset, ms);
199
200 return retval;
201 }
202
203 static int fm3_erase(struct flash_bank *bank, int first, int last)
204 {
205 struct fm3_flash_bank *fm3_info = bank->driver_priv;
206 struct target *target = bank->target;
207 int retval = ERROR_OK;
208 uint32_t u32DummyRead;
209 int sector, odd;
210 uint32_t u32FlashType;
211 uint32_t u32FlashSeqAddress1;
212 uint32_t u32FlashSeqAddress2;
213
214 u32FlashType = (uint32_t) fm3_info->flashtype;
215
216 if (u32FlashType == fm3_flash_type1) {
217 u32FlashSeqAddress1 = 0x00001550;
218 u32FlashSeqAddress2 = 0x00000AA8;
219 } else if (u32FlashType == fm3_flash_type2) {
220 u32FlashSeqAddress1 = 0x00000AA8;
221 u32FlashSeqAddress2 = 0x00000554;
222 } else {
223 LOG_ERROR("Flash/Device type unknown!");
224 return ERROR_FLASH_OPERATION_FAILED;
225 }
226
227 if (target->state != TARGET_HALTED) {
228 LOG_ERROR("Target not halted");
229 return ERROR_TARGET_NOT_HALTED;
230 }
231
232 LOG_INFO("Fujitsu MB9[A/B]FXXX: Sector Erase ... (%d to %d)", first, last);
233
234 /* FASZR = 0x01, Enables CPU Programming Mode (16-bit Flash acccess) */
235 retval = target_write_u32(target, 0x40000000, 0x0001);
236 if (retval != ERROR_OK)
237 return retval;
238
239 /* dummy read of FASZR */
240 retval = target_read_u32(target, 0x40000000, &u32DummyRead);
241 if (retval != ERROR_OK)
242 return retval;
243
244 for (sector = first ; sector <= last ; sector++) {
245 uint32_t offset = bank->sectors[sector].offset;
246
247 for (odd = 0; odd < 2 ; odd++) {
248 if (odd)
249 offset += 4;
250
251 /* Flash unlock sequence */
252 retval = target_write_u16(target, u32FlashSeqAddress1, 0x00AA);
253 if (retval != ERROR_OK)
254 return retval;
255
256 retval = target_write_u16(target, u32FlashSeqAddress2, 0x0055);
257 if (retval != ERROR_OK)
258 return retval;
259
260 retval = target_write_u16(target, u32FlashSeqAddress1, 0x0080);
261 if (retval != ERROR_OK)
262 return retval;
263
264 retval = target_write_u16(target, u32FlashSeqAddress1, 0x00AA);
265 if (retval != ERROR_OK)
266 return retval;
267
268 retval = target_write_u16(target, u32FlashSeqAddress2, 0x0055);
269 if (retval != ERROR_OK)
270 return retval;
271
272 /* Sector erase command (0x0030) */
273 retval = target_write_u16(target, offset, 0x0030);
274 if (retval != ERROR_OK)
275 return retval;
276
277 retval = fm3_busy_wait(target, offset, 500);
278 if (retval != ERROR_OK)
279 return retval;
280 }
281 bank->sectors[sector].is_erased = 1;
282 }
283
284 /* FASZR = 0x02, Enables CPU Run Mode (32-bit Flash acccess) */
285 retval = target_write_u32(target, 0x40000000, 0x0002);
286 if (retval != ERROR_OK)
287 return retval;
288
289 retval = target_read_u32(target, 0x40000000, &u32DummyRead); /* dummy read of FASZR */
290
291 return retval;
292 }
293
294 static int fm3_write_block(struct flash_bank *bank, uint8_t *buffer,
295 uint32_t offset, uint32_t count)
296 {
297 struct fm3_flash_bank *fm3_info = bank->driver_priv;
298 struct target *target = bank->target;
299 uint32_t buffer_size = 2048; /* Default minimum value */
300 struct working_area *write_algorithm;
301 struct working_area *source;
302 uint32_t address = bank->base + offset;
303 struct reg_param reg_params[6];
304 struct armv7m_algorithm armv7m_info;
305 int retval = ERROR_OK;
306 uint32_t u32FlashType;
307 uint32_t u32FlashSeqAddress1;
308 uint32_t u32FlashSeqAddress2;
309
310 /* Increase buffer_size if needed */
311 if (buffer_size < (target->working_area_size / 2))
312 buffer_size = (target->working_area_size / 2);
313
314 u32FlashType = (uint32_t) fm3_info->flashtype;
315
316 if (u32FlashType == fm3_flash_type1) {
317 u32FlashSeqAddress1 = 0x00001550;
318 u32FlashSeqAddress2 = 0x00000AA8;
319 } else if (u32FlashType == fm3_flash_type2) {
320 u32FlashSeqAddress1 = 0x00000AA8;
321 u32FlashSeqAddress2 = 0x00000554;
322 } else {
323 LOG_ERROR("Flash/Device type unknown!");
324 return ERROR_FLASH_OPERATION_FAILED;
325 }
326
327 /* RAMCODE used for fm3 Flash programming: */
328 /* R0 keeps source start address (u32Source) */
329 /* R1 keeps target start address (u32Target) */
330 /* R2 keeps number of halfwords to write (u32Count) */
331 /* R3 keeps Flash Sequence address 1 (u32FlashSeq1) */
332 /* R4 keeps Flash Sequence address 2 (u32FlashSeq2) */
333 /* R5 returns result value (u32FlashResult) */
334
335 const uint8_t fm3_flash_write_code[] = {
336 /* fm3_FLASH_IF->FASZ &= 0xFFFD; */
337 0x5F, 0xF0, 0x80, 0x45, /* MOVS.W R5, #(fm3_FLASH_IF->FASZ) */
338 0x2D, 0x68, /* LDR R5, [R5] */
339 0x4F, 0xF6, 0xFD, 0x76, /* MOVW R6, #0xFFFD */
340 0x35, 0x40, /* ANDS R5, R5, R6 */
341 0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */
342 0x35, 0x60, /* STR R5, [R6] */
343 /* fm3_FLASH_IF->FASZ |= 1; */
344 0x5F, 0xF0, 0x80, 0x45, /* MOVS.W R5, #(fm3_FLASH_IF->FASZ) */
345 0x2D, 0x68, /* LDR R5, [R3] */
346 0x55, 0xF0, 0x01, 0x05, /* ORRS.W R5, R5, #1 */
347 0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */
348 0x35, 0x60, /* STR R5, [R6] */
349 /* u32DummyRead = fm3_FLASH_IF->FASZ; */
350 0x28, 0x4D, /* LDR.N R5, ??u32DummyRead */
351 0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */
352 0x36, 0x68, /* LDR R6, [R6] */
353 0x2E, 0x60, /* STR R6, [R5] */
354 /* u32FlashResult = FLASH_WRITE_NO_RESULT */
355 0x26, 0x4D, /* LDR.N R5, ??u32FlashResult */
356 0x00, 0x26, /* MOVS R6, #0 */
357 0x2E, 0x60, /* STR R6, [R5] */
358 /* while ((u32Count > 0 ) */
359 /* && (u32FlashResult */
360 /* == FLASH_WRITE_NO_RESULT)) */
361 0x01, 0x2A, /* L0: CMP R2, #1 */
362 0x2C, 0xDB, /* BLT.N L1 */
363 0x24, 0x4D, /* LDR.N R5, ??u32FlashResult */
364 0x2D, 0x68, /* LDR R5, [R5] */
365 0x00, 0x2D, /* CMP R5, #0 */
366 0x28, 0xD1, /* BNE.N L1 */
367 /* *u32FlashSeq1 = FLASH_WRITE_1; */
368 0xAA, 0x25, /* MOVS R5, #0xAA */
369 0x1D, 0x60, /* STR R5, [R3] */
370 /* *u32FlashSeq2 = FLASH_WRITE_2; */
371 0x55, 0x25, /* MOVS R5, #0x55 */
372 0x25, 0x60, /* STR R5, [R4] */
373 /* *u32FlashSeq1 = FLASH_WRITE_3; */
374 0xA0, 0x25, /* MOVS R5, #0xA0 */
375 0x1D, 0x60, /* STRH R5, [R3] */
376 /* *(volatile uint16_t*)u32Target */
377 /* = *(volatile uint16_t*)u32Source; */
378 0x05, 0x88, /* LDRH R5, [R0] */
379 0x0D, 0x80, /* STRH R5, [R1] */
380 /* while (u32FlashResult */
381 /* == FLASH_WRITE_NO_RESTULT) */
382 0x1E, 0x4D, /* L2: LDR.N R5, ??u32FlashResult */
383 0x2D, 0x68, /* LDR R5, [R5] */
384 0x00, 0x2D, /* CMP R5, #0 */
385 0x11, 0xD1, /* BNE.N L3 */
386 /* if ((*(volatile uint16_t*)u32Target */
387 /* & FLASH_DQ5) == FLASH_DQ5) */
388 0x0D, 0x88, /* LDRH R5, [R1] */
389 0xAD, 0x06, /* LSLS R5, R5, #0x1A */
390 0x02, 0xD5, /* BPL.N L4 */
391 /* u32FlashResult = FLASH_WRITE_TIMEOUT */
392 0x1A, 0x4D, /* LDR.N R5, ??u32FlashResult */
393 0x02, 0x26, /* MOVS R6, #2 */
394 0x2E, 0x60, /* STR R6, [R5] */
395 /* if ((*(volatile uint16_t *)u32Target */
396 /* & FLASH_DQ7) */
397 /* == (*(volatile uint16_t*)u32Source */
398 /* & FLASH_DQ7)) */
399 0x0D, 0x88, /* L4: LDRH R5, [R1] */
400 0x15, 0xF0, 0x80, 0x05, /* ANDS.W R5, R5, #0x80 */
401 0x06, 0x88, /* LDRH R6, [R0] */
402 0x16, 0xF0, 0x80, 0x06, /* ANDS.W R6, R6, #0x80 */
403 0xB5, 0x42, /* CMP R5, R6 */
404 0xED, 0xD1, /* BNE.N L2 */
405 /* u32FlashResult = FLASH_WRITE_OKAY */
406 0x15, 0x4D, /* LDR.N R5, ??u32FlashResult */
407 0x01, 0x26, /* MOVS R6, #1 */
408 0x2E, 0x60, /* STR R6, [R5] */
409 0xE9, 0xE7, /* B.N L2 */
410 /* if (u32FlashResult */
411 /* != FLASH_WRITE_TIMEOUT) */
412 0x13, 0x4D, /* LDR.N R5, ??u32FlashResult */
413 0x2D, 0x68, /* LDR R5, [R5] */
414 0x02, 0x2D, /* CMP R5, #2 */
415 0x02, 0xD0, /* BEQ.N L5 */
416 /* u32FlashResult = FLASH_WRITE_NO_RESULT */
417 0x11, 0x4D, /* LDR.N R5, ??u32FlashResult */
418 0x00, 0x26, /* MOVS R6, #0 */
419 0x2E, 0x60, /* STR R6, [R5] */
420 /* u32Count--; */
421 0x52, 0x1E, /* L5: SUBS R2, R2, #1 */
422 /* u32Source += 2; */
423 0x80, 0x1C, /* ADDS R0, R0, #2 */
424 /* u32Target += 2; */
425 0x89, 0x1C, /* ADDS R1, R1, #2 */
426 0xD0, 0xE7, /* B.N L0 */
427 /* fm3_FLASH_IF->FASZ &= 0xFFFE; */
428 0x5F, 0xF0, 0x80, 0x45, /* L1: MOVS.W R5, #(fm3_FLASH_IF->FASZ) */
429 0x2D, 0x68, /* LDR R5, [R5] */
430 0x4F, 0xF6, 0xFE, 0x76, /* MOVW R6, #0xFFFE */
431 0x35, 0x40, /* ANDS R5, R5, R6 */
432 0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */
433 0x35, 0x60, /* STR R5, [R6] */
434 /* fm3_FLASH_IF->FASZ |= 2; */
435 0x5F, 0xF0, 0x80, 0x45, /* MOVS.W R5, #(fm3_FLASH_IF->FASZ) */
436 0x2D, 0x68, /* LDR R5, [R5] */
437 0x55, 0xF0, 0x02, 0x05, /* ORRS.W R5, R5, #2 */
438 0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */
439 0x35, 0x60, /* STR R5, [R6] */
440 /* u32DummyRead = fm3_FLASH_IF->FASZ; */
441 0x04, 0x4D, /* LDR.N R5, ??u32DummyRead */
442 0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */
443 0x36, 0x68, /* LDR R6, [R6] */
444 0x2E, 0x60, /* STR R6, [R5] */
445 /* copy u32FlashResult to R3 for return */
446 /* value */
447 0xDF, 0xF8, 0x08, 0x50, /* LDR.W R5, ??u32FlashResult */
448 0x2D, 0x68, /* LDR R5, [R5] */
449 /* Breakpoint here */
450 0x00, 0xBE, /* BKPT #0 */
451
452 /* The following address pointers assume, that the code is running from */
453 /* SRAM basic-address(BASE_ADDR)+8.These address pointers will be patched */
454 /* if a different start address in RAM is used (e.g. for Flash type 2)! */
455 0x00, 0x80, 0xFF, 0x1F, /* u32DummyRead address in RAM (BASE_ADDR) */
456 0x04, 0x80, 0xFF, 0x1F /* u32FlashResult address in RAM (BASE_ADDR+4)*/
457 };
458
459 LOG_INFO("Fujitsu MB9[A/B]FXXX: FLASH Write ...");
460
461 /* disable HW watchdog */
462 retval = target_write_u32(target, 0x40011C00, 0x1ACCE551);
463 if (retval != ERROR_OK)
464 return retval;
465
466 retval = target_write_u32(target, 0x40011C00, 0xE5331AAE);
467 if (retval != ERROR_OK)
468 return retval;
469
470 retval = target_write_u32(target, 0x40011008, 0x00000000);
471 if (retval != ERROR_OK)
472 return retval;
473
474 count = count / 2; /* number bytes -> number halfwords */
475
476 /* check code alignment */
477 if (offset & 0x1) {
478 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
479 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
480 }
481
482 /* allocate working area with flash programming code */
483 if (target_alloc_working_area(target, sizeof(fm3_flash_write_code),
484 &write_algorithm) != ERROR_OK) {
485 LOG_WARNING("no working area available, can't do block memory writes");
486 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
487 }
488
489 retval = target_write_buffer(target, write_algorithm->address,
490 sizeof(fm3_flash_write_code), fm3_flash_write_code);
491 if (retval != ERROR_OK)
492 return retval;
493
494 /* memory buffer */
495 while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
496 buffer_size /= 2;
497 if (buffer_size <= 256) {
498 /* free working area, write algorithm already allocated */
499 target_free_working_area(target, write_algorithm);
500
501 LOG_WARNING("No large enough working area available, can't do block memory writes");
502 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
503 }
504 }
505
506 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
507 armv7m_info.core_mode = ARM_MODE_THREAD;
508
509 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT); /* source start address */
510 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* target start address */
511 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* number of halfwords to program */
512 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* Flash Sequence address 1 */
513 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT); /* Flash Sequence address 1 */
514 init_reg_param(&reg_params[5], "r5", 32, PARAM_IN); /* result */
515
516 /* write code buffer and use Flash programming code within fm3 */
517 /* Set breakpoint to 0 with time-out of 1000 ms */
518 while (count > 0) {
519 uint32_t thisrun_count = (count > (buffer_size / 2)) ? (buffer_size / 2) : count;
520
521 retval = target_write_buffer(target, write_algorithm->address, 8,
522 fm3_flash_write_code);
523 if (retval != ERROR_OK)
524 break;
525
526 /* Patching 'local variable address' for different RAM addresses */
527 if (write_algorithm->address != (target->working_area_phys + 8)) {
528 /* Algorithm: u32DummyRead: */
529 retval = target_write_u32(target, (write_algorithm->address)
530 + sizeof(fm3_flash_write_code) - 8, (write_algorithm->address) - 8);
531 if (retval != ERROR_OK)
532 break;
533
534 /* Algorithm: u32FlashResult: */
535 retval = target_write_u32(target, (write_algorithm->address)
536 + sizeof(fm3_flash_write_code) - 4, (write_algorithm->address) - 4);
537 if (retval != ERROR_OK)
538 break;
539 }
540
541 retval = target_write_buffer(target, source->address, thisrun_count * 2, buffer);
542 if (retval != ERROR_OK)
543 break;
544
545 buf_set_u32(reg_params[0].value, 0, 32, source->address);
546 buf_set_u32(reg_params[1].value, 0, 32, address);
547 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
548 buf_set_u32(reg_params[3].value, 0, 32, u32FlashSeqAddress1);
549 buf_set_u32(reg_params[4].value, 0, 32, u32FlashSeqAddress2);
550
551 retval = target_run_algorithm(target, 0, NULL, 6, reg_params,
552 write_algorithm->address, 0, 1000, &armv7m_info);
553 if (retval != ERROR_OK) {
554 LOG_ERROR("Error executing fm3 Flash programming algorithm");
555 retval = ERROR_FLASH_OPERATION_FAILED;
556 break;
557 }
558
559 if (buf_get_u32(reg_params[5].value, 0, 32) != ERROR_OK) {
560 LOG_ERROR("Fujitsu MB9[A/B]FXXX: Flash programming ERROR (Timeout) -> Reg R3: %" PRIx32,
561 buf_get_u32(reg_params[5].value, 0, 32));
562 retval = ERROR_FLASH_OPERATION_FAILED;
563 break;
564 }
565
566 buffer += thisrun_count * 2;
567 address += thisrun_count * 2;
568 count -= thisrun_count;
569 }
570
571 target_free_working_area(target, source);
572 target_free_working_area(target, write_algorithm);
573
574 destroy_reg_param(&reg_params[0]);
575 destroy_reg_param(&reg_params[1]);
576 destroy_reg_param(&reg_params[2]);
577 destroy_reg_param(&reg_params[3]);
578 destroy_reg_param(&reg_params[4]);
579 destroy_reg_param(&reg_params[5]);
580
581 return retval;
582 }
583
584 static int fm3_probe(struct flash_bank *bank)
585 {
586 struct fm3_flash_bank *fm3_info = bank->driver_priv;
587 uint16_t num_pages;
588
589 if (bank->target->state != TARGET_HALTED) {
590 LOG_ERROR("Target not halted");
591 return ERROR_TARGET_NOT_HALTED;
592 }
593
594 /*
595 -- page-- start -- blocksize - mpu - totalFlash --
596 page0 0x00000 16k
597 page1 0x04000 16k
598 page2 0x08000 96k ___ fxx3 128k Flash
599 page3 0x20000 128k ___ fxx4 256k Flash
600 page4 0x40000 128k ___ fxx5 384k Flash
601 page5 0x60000 128k ___ fxx6 512k Flash
602 -----------------------
603 page6 0x80000 128k
604 page7 0xa0000 128k ___ fxx7 256k Flash
605 page8 0xc0000 128k
606 page9 0xe0000 128k ___ fxx8 256k Flash
607 */
608
609 num_pages = 10; /* max number of Flash pages for malloc */
610 fm3_info->probed = 0;
611
612 bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
613 bank->base = 0x00000000;
614 bank->size = 32 * 1024; /* bytes */
615
616 bank->sectors[0].offset = 0;
617 bank->sectors[0].size = 16 * 1024;
618 bank->sectors[0].is_erased = -1;
619 bank->sectors[0].is_protected = -1;
620
621 bank->sectors[1].offset = 0x4000;
622 bank->sectors[1].size = 16 * 1024;
623 bank->sectors[1].is_erased = -1;
624 bank->sectors[1].is_protected = -1;
625
626 if ((fm3_info->variant == mb9bfxx1)
627 || (fm3_info->variant == mb9afxx1)) {
628 num_pages = 3;
629 bank->size = 64 * 1024; /* bytes */
630 bank->num_sectors = num_pages;
631
632 bank->sectors[2].offset = 0x8000;
633 bank->sectors[2].size = 32 * 1024;
634 bank->sectors[2].is_erased = -1;
635 bank->sectors[2].is_protected = -1;
636 }
637
638 if ((fm3_info->variant == mb9bfxx2)
639 || (fm3_info->variant == mb9bfxx4)
640 || (fm3_info->variant == mb9bfxx5)
641 || (fm3_info->variant == mb9bfxx6)
642 || (fm3_info->variant == mb9bfxx7)
643 || (fm3_info->variant == mb9bfxx8)
644 || (fm3_info->variant == mb9afxx2)
645 || (fm3_info->variant == mb9afxx4)
646 || (fm3_info->variant == mb9afxx5)
647 || (fm3_info->variant == mb9afxx6)
648 || (fm3_info->variant == mb9afxx7)
649 || (fm3_info->variant == mb9afxx8)) {
650 num_pages = 3;
651 bank->size = 128 * 1024; /* bytes */
652 bank->num_sectors = num_pages;
653
654 bank->sectors[2].offset = 0x8000;
655 bank->sectors[2].size = 96 * 1024;
656 bank->sectors[2].is_erased = -1;
657 bank->sectors[2].is_protected = -1;
658 }
659
660 if ((fm3_info->variant == mb9bfxx4)
661 || (fm3_info->variant == mb9bfxx5)
662 || (fm3_info->variant == mb9bfxx6)
663 || (fm3_info->variant == mb9bfxx7)
664 || (fm3_info->variant == mb9bfxx8)
665 || (fm3_info->variant == mb9afxx4)
666 || (fm3_info->variant == mb9afxx5)
667 || (fm3_info->variant == mb9afxx6)
668 || (fm3_info->variant == mb9afxx7)
669 || (fm3_info->variant == mb9afxx8)) {
670 num_pages = 4;
671 bank->size = 256 * 1024; /* bytes */
672 bank->num_sectors = num_pages;
673
674 bank->sectors[3].offset = 0x20000;
675 bank->sectors[3].size = 128 * 1024;
676 bank->sectors[3].is_erased = -1;
677 bank->sectors[3].is_protected = -1;
678 }
679
680 if ((fm3_info->variant == mb9bfxx5)
681 || (fm3_info->variant == mb9bfxx6)
682 || (fm3_info->variant == mb9bfxx7)
683 || (fm3_info->variant == mb9bfxx8)
684 || (fm3_info->variant == mb9afxx5)
685 || (fm3_info->variant == mb9afxx6)
686 || (fm3_info->variant == mb9afxx7)
687 || (fm3_info->variant == mb9afxx8)) {
688 num_pages = 5;
689 bank->size = 384 * 1024; /* bytes */
690 bank->num_sectors = num_pages;
691
692 bank->sectors[4].offset = 0x40000;
693 bank->sectors[4].size = 128 * 1024;
694 bank->sectors[4].is_erased = -1;
695 bank->sectors[4].is_protected = -1;
696 }
697
698 if ((fm3_info->variant == mb9bfxx6)
699 || (fm3_info->variant == mb9bfxx7)
700 || (fm3_info->variant == mb9bfxx8)
701 || (fm3_info->variant == mb9afxx6)
702 || (fm3_info->variant == mb9afxx7)
703 || (fm3_info->variant == mb9afxx8)) {
704 num_pages = 6;
705 bank->size = 512 * 1024; /* bytes */
706 bank->num_sectors = num_pages;
707
708 bank->sectors[5].offset = 0x60000;
709 bank->sectors[5].size = 128 * 1024;
710 bank->sectors[5].is_erased = -1;
711 bank->sectors[5].is_protected = -1;
712 }
713
714 if ((fm3_info->variant == mb9bfxx7)
715 || (fm3_info->variant == mb9bfxx8)
716 || (fm3_info->variant == mb9afxx7)
717 || (fm3_info->variant == mb9afxx8)) {
718 num_pages = 8;
719 bank->size = 768 * 1024; /* bytes */
720 bank->num_sectors = num_pages;
721
722 bank->sectors[6].offset = 0x80000;
723 bank->sectors[6].size = 128 * 1024;
724 bank->sectors[6].is_erased = -1;
725 bank->sectors[6].is_protected = -1;
726
727 bank->sectors[7].offset = 0xa0000;
728 bank->sectors[7].size = 128 * 1024;
729 bank->sectors[7].is_erased = -1;
730 bank->sectors[7].is_protected = -1;
731 }
732
733 if ((fm3_info->variant == mb9bfxx8)
734 || (fm3_info->variant == mb9afxx8)) {
735 num_pages = 10;
736 bank->size = 1024 * 1024; /* bytes */
737 bank->num_sectors = num_pages;
738
739 bank->sectors[8].offset = 0xc0000;
740 bank->sectors[8].size = 128 * 1024;
741 bank->sectors[8].is_erased = -1;
742 bank->sectors[8].is_protected = -1;
743
744 bank->sectors[9].offset = 0xe0000;
745 bank->sectors[9].size = 128 * 1024;
746 bank->sectors[9].is_erased = -1;
747 bank->sectors[9].is_protected = -1;
748 }
749
750 fm3_info->probed = 1;
751
752 return ERROR_OK;
753 }
754
755 static int fm3_auto_probe(struct flash_bank *bank)
756 {
757 struct fm3_flash_bank *fm3_info = bank->driver_priv;
758 if (fm3_info->probed)
759 return ERROR_OK;
760 return fm3_probe(bank);
761 }
762
763 /* Chip erase */
764 static int fm3_chip_erase(struct flash_bank *bank)
765 {
766 struct target *target = bank->target;
767 struct fm3_flash_bank *fm3_info2 = bank->driver_priv;
768 int retval = ERROR_OK;
769 uint32_t u32DummyRead;
770 uint32_t u32FlashType;
771 uint32_t u32FlashSeqAddress1;
772 uint32_t u32FlashSeqAddress2;
773
774 u32FlashType = (uint32_t) fm3_info2->flashtype;
775
776 if (u32FlashType == fm3_flash_type1) {
777 LOG_INFO("*** Erasing mb9bfxxx type");
778 u32FlashSeqAddress1 = 0x00001550;
779 u32FlashSeqAddress2 = 0x00000AA8;
780 } else if (u32FlashType == fm3_flash_type2) {
781 LOG_INFO("*** Erasing mb9afxxx type");
782 u32FlashSeqAddress1 = 0x00000AA8;
783 u32FlashSeqAddress2 = 0x00000554;
784 } else {
785 LOG_ERROR("Flash/Device type unknown!");
786 return ERROR_FLASH_OPERATION_FAILED;
787 }
788
789 if (target->state != TARGET_HALTED) {
790 LOG_ERROR("Target not halted");
791 return ERROR_TARGET_NOT_HALTED;
792 }
793
794 LOG_INFO("Fujitsu MB9[AB]xxx: Chip Erase ... (may take several seconds)");
795
796 /* Implement Flash chip erase (mass erase) completely on host */
797
798 /* FASZR = 0x01, Enables CPU Programming Mode (16-bit Flash access) */
799 retval = target_write_u32(target, 0x40000000, 0x0001);
800 if (retval != ERROR_OK)
801 return retval;
802
803 /* dummy read of FASZR */
804 retval = target_read_u32(target, 0x40000000, &u32DummyRead);
805 if (retval != ERROR_OK)
806 return retval;
807
808 /* Flash unlock sequence */
809 retval = target_write_u16(target, u32FlashSeqAddress1, 0x00AA);
810 if (retval != ERROR_OK)
811 return retval;
812
813 retval = target_write_u16(target, u32FlashSeqAddress2, 0x0055);
814 if (retval != ERROR_OK)
815 return retval;
816
817 retval = target_write_u16(target, u32FlashSeqAddress1, 0x0080);
818 if (retval != ERROR_OK)
819 return retval;
820
821 retval = target_write_u16(target, u32FlashSeqAddress1, 0x00AA);
822 if (retval != ERROR_OK)
823 return retval;
824
825 retval = target_write_u16(target, u32FlashSeqAddress2, 0x0055);
826 if (retval != ERROR_OK)
827 return retval;
828
829 /* Chip Erase command (0x0010) */
830 retval = target_write_u16(target, u32FlashSeqAddress1, 0x0010);
831 if (retval != ERROR_OK)
832 return retval;
833
834 retval = fm3_busy_wait(target, u32FlashSeqAddress2, 20000); /* 20s timeout */
835 if (retval != ERROR_OK)
836 return retval;
837
838 /* FASZR = 0x02, Re-enables CPU Run Mode (32-bit Flash access) */
839 retval = target_write_u32(target, 0x40000000, 0x0002);
840 if (retval != ERROR_OK)
841 return retval;
842
843 retval = target_read_u32(target, 0x40000000, &u32DummyRead); /* dummy read of FASZR */
844
845 return retval;
846 }
847
848 COMMAND_HANDLER(fm3_handle_chip_erase_command)
849 {
850 int i;
851
852 if (CMD_ARGC < 1)
853 return ERROR_COMMAND_SYNTAX_ERROR;
854
855 struct flash_bank *bank;
856 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
857 if (ERROR_OK != retval)
858 return retval;
859
860 if (fm3_chip_erase(bank) == ERROR_OK) {
861 /* set all sectors as erased */
862 for (i = 0; i < bank->num_sectors; i++)
863 bank->sectors[i].is_erased = 1;
864
865 command_print(CMD_CTX, "fm3 chip erase complete");
866 } else {
867 command_print(CMD_CTX, "fm3 chip erase failed");
868 }
869
870 return ERROR_OK;
871 }
872
873 static const struct command_registration fm3_exec_command_handlers[] = {
874 {
875 .name = "chip_erase",
876 .usage = "<bank>",
877 .handler = fm3_handle_chip_erase_command,
878 .mode = COMMAND_EXEC,
879 .help = "Erase entire Flash device.",
880 },
881 COMMAND_REGISTRATION_DONE
882 };
883
884 static const struct command_registration fm3_command_handlers[] = {
885 {
886 .name = "fm3",
887 .mode = COMMAND_ANY,
888 .help = "fm3 Flash command group",
889 .usage = "",
890 .chain = fm3_exec_command_handlers,
891 },
892 COMMAND_REGISTRATION_DONE
893 };
894
895 struct flash_driver fm3_flash = {
896 .name = "fm3",
897 .commands = fm3_command_handlers,
898 .flash_bank_command = fm3_flash_bank_command,
899 .erase = fm3_erase,
900 .write = fm3_write_block,
901 .probe = fm3_probe,
902 .auto_probe = fm3_auto_probe,
903 .erase_check = default_flash_blank_check,
904 };