Cleanup: removal of obsolete semicolons
[openocd.git] / src / flash / nor / cfi.c
1 /***************************************************************************
2 * Copyright (C) 2005, 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * Copyright (C) 2009 Michael Schwingen *
5 * michael@schwingen.org *
6 * Copyright (C) 2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
7 * Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General Public License as published by *
11 * the Free Software Foundation; either version 2 of the License, or *
12 * (at your option) any later version. *
13 * *
14 * This program is distributed in the hope that it will be useful, *
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
17 * GNU General Public License for more details. *
18 * *
19 * You should have received a copy of the GNU General Public License *
20 * along with this program; if not, write to the *
21 * Free Software Foundation, Inc., *
22 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
23 ***************************************************************************/
24
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "imp.h"
30 #include "cfi.h"
31 #include "non_cfi.h"
32 #include <target/arm.h>
33 #include <target/arm7_9_common.h>
34 #include <target/armv7m.h>
35 #include <target/mips32.h>
36 #include <helper/binarybuffer.h>
37 #include <target/algorithm.h>
38
39 #define CFI_MAX_BUS_WIDTH 4
40 #define CFI_MAX_CHIP_WIDTH 4
41
42 /* defines internal maximum size for code fragment in cfi_intel_write_block() */
43 #define CFI_MAX_INTEL_CODESIZE 256
44
45 /* some id-types with specific handling */
46 #define AT49BV6416 0x00d6
47 #define AT49BV6416T 0x00d2
48
49 static const struct cfi_unlock_addresses cfi_unlock_addresses[] = {
50 [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
51 [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
52 };
53
54 static const int cfi_status_poll_mask_dq6_dq7 = CFI_STATUS_POLL_MASK_DQ6_DQ7;
55
56 /* CFI fixups forward declarations */
57 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, const void *param);
58 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, const void *param);
59 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, const void *param);
60 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, const void *param);
61 static void cfi_fixup_0002_polling_bits(struct flash_bank *bank, const void *param);
62
63 /* fixup after reading cmdset 0002 primary query table */
64 static const struct cfi_fixup cfi_0002_fixups[] = {
65 {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses,
66 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
67 {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses,
68 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
69 {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses,
70 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
71 {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses,
72 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
73 {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses,
74 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
75 {CFI_MFR_SST, 0x274b, cfi_fixup_0002_unlock_addresses,
76 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
77 {CFI_MFR_SST, 0x235f, cfi_fixup_0002_polling_bits, /* 39VF3201C */
78 &cfi_status_poll_mask_dq6_dq7},
79 {CFI_MFR_SST, 0x236d, cfi_fixup_0002_unlock_addresses,
80 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
81 {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_reversed_erase_regions, NULL},
82 {CFI_MFR_ST, 0x22C4, cfi_fixup_reversed_erase_regions, NULL}, /* M29W160ET */
83 {CFI_MFR_FUJITSU, 0x22ea, cfi_fixup_0002_unlock_addresses,
84 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
85 {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses,
86 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
87 {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses,
88 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
89 {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses,
90 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
91 {CFI_MFR_EON, 0x225b, cfi_fixup_0002_unlock_addresses,
92 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
93 {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses,
94 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
95 {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
96 {CFI_MFR_ST, 0x227E, cfi_fixup_0002_write_buffer, NULL},/* M29W128G */
97 {0, 0, NULL, NULL}
98 };
99
100 /* fixup after reading cmdset 0001 primary query table */
101 static const struct cfi_fixup cfi_0001_fixups[] = {
102 {0, 0, NULL, NULL}
103 };
104
105 static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
106 {
107 struct cfi_flash_bank *cfi_info = bank->driver_priv;
108 const struct cfi_fixup *f;
109
110 for (f = fixups; f->fixup; f++) {
111 if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
112 ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
113 f->fixup(bank, f->param);
114 }
115 }
116
117 static inline uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset)
118 {
119 struct cfi_flash_bank *cfi_info = bank->driver_priv;
120
121 if (cfi_info->x16_as_x8)
122 offset *= 2;
123
124 /* while the sector list isn't built, only accesses to sector 0 work */
125 if (sector == 0)
126 return bank->base + offset * bank->bus_width;
127 else {
128 if (!bank->sectors) {
129 LOG_ERROR("BUG: sector list not yet built");
130 exit(-1);
131 }
132 return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
133 }
134 }
135
136 static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
137 {
138 int i;
139 struct cfi_flash_bank *cfi_info = bank->driver_priv;
140
141 /* clear whole buffer, to ensure bits that exceed the bus_width
142 * are set to zero
143 */
144 for (i = 0; i < CFI_MAX_BUS_WIDTH; i++)
145 cmd_buf[i] = 0;
146
147 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN) {
148 for (i = bank->bus_width; i > 0; i--)
149 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
150 } else {
151 for (i = 1; i <= bank->bus_width; i++)
152 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
153 }
154 }
155
156 static int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
157 {
158 uint8_t command[CFI_MAX_BUS_WIDTH];
159
160 cfi_command(bank, cmd, command);
161 return target_write_memory(bank->target, address, bank->bus_width, 1, command);
162 }
163
164 /* read unsigned 8-bit value from the bank
165 * flash banks are expected to be made of similar chips
166 * the query result should be the same for all
167 */
168 static int cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
169 {
170 struct target *target = bank->target;
171 struct cfi_flash_bank *cfi_info = bank->driver_priv;
172 uint8_t data[CFI_MAX_BUS_WIDTH];
173
174 int retval;
175 retval = target_read_memory(target, flash_address(bank, sector, offset),
176 bank->bus_width, 1, data);
177 if (retval != ERROR_OK)
178 return retval;
179
180 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
181 *val = data[0];
182 else
183 *val = data[bank->bus_width - 1];
184
185 return ERROR_OK;
186 }
187
188 /* read unsigned 8-bit value from the bank
189 * in case of a bank made of multiple chips,
190 * the individual values are ORed
191 */
192 static int cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
193 {
194 struct target *target = bank->target;
195 struct cfi_flash_bank *cfi_info = bank->driver_priv;
196 uint8_t data[CFI_MAX_BUS_WIDTH];
197 int i;
198
199 int retval;
200 retval = target_read_memory(target, flash_address(bank, sector, offset),
201 bank->bus_width, 1, data);
202 if (retval != ERROR_OK)
203 return retval;
204
205 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN) {
206 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
207 data[0] |= data[i];
208
209 *val = data[0];
210 } else {
211 uint8_t value = 0;
212 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
213 value |= data[bank->bus_width - 1 - i];
214
215 *val = value;
216 }
217 return ERROR_OK;
218 }
219
220 static int cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset, uint16_t *val)
221 {
222 struct target *target = bank->target;
223 struct cfi_flash_bank *cfi_info = bank->driver_priv;
224 uint8_t data[CFI_MAX_BUS_WIDTH * 2];
225 int retval;
226
227 if (cfi_info->x16_as_x8) {
228 uint8_t i;
229 for (i = 0; i < 2; i++) {
230 retval = target_read_memory(target, flash_address(bank, sector, offset + i),
231 bank->bus_width, 1, &data[i * bank->bus_width]);
232 if (retval != ERROR_OK)
233 return retval;
234 }
235 } else {
236 retval = target_read_memory(target, flash_address(bank, sector, offset),
237 bank->bus_width, 2, data);
238 if (retval != ERROR_OK)
239 return retval;
240 }
241
242 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
243 *val = data[0] | data[bank->bus_width] << 8;
244 else
245 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
246
247 return ERROR_OK;
248 }
249
250 static int cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset, uint32_t *val)
251 {
252 struct target *target = bank->target;
253 struct cfi_flash_bank *cfi_info = bank->driver_priv;
254 uint8_t data[CFI_MAX_BUS_WIDTH * 4];
255 int retval;
256
257 if (cfi_info->x16_as_x8) {
258 uint8_t i;
259 for (i = 0; i < 4; i++) {
260 retval = target_read_memory(target, flash_address(bank, sector, offset + i),
261 bank->bus_width, 1, &data[i * bank->bus_width]);
262 if (retval != ERROR_OK)
263 return retval;
264 }
265 } else {
266 retval = target_read_memory(target, flash_address(bank, sector, offset),
267 bank->bus_width, 4, data);
268 if (retval != ERROR_OK)
269 return retval;
270 }
271
272 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
273 *val = data[0] | data[bank->bus_width] << 8 |
274 data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
275 else
276 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8 |
277 data[(3 * bank->bus_width) - 1] << 16 |
278 data[(4 * bank->bus_width) - 1] << 24;
279
280 return ERROR_OK;
281 }
282
283 static int cfi_reset(struct flash_bank *bank)
284 {
285 struct cfi_flash_bank *cfi_info = bank->driver_priv;
286 int retval = ERROR_OK;
287
288 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
289 if (retval != ERROR_OK)
290 return retval;
291
292 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
293 if (retval != ERROR_OK)
294 return retval;
295
296 if (cfi_info->manufacturer == 0x20 &&
297 (cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E)) {
298 /* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state
299 * so we send an extra 0xF0 reset to fix the bug */
300 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x00));
301 if (retval != ERROR_OK)
302 return retval;
303 }
304
305 return retval;
306 }
307
308 static void cfi_intel_clear_status_register(struct flash_bank *bank)
309 {
310 cfi_send_command(bank, 0x50, flash_address(bank, 0, 0x0));
311 }
312
313 static int cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout, uint8_t *val)
314 {
315 uint8_t status;
316
317 int retval = ERROR_OK;
318
319 for (;; ) {
320 if (timeout-- < 0) {
321 LOG_ERROR("timeout while waiting for WSM to become ready");
322 return ERROR_FAIL;
323 }
324
325 retval = cfi_get_u8(bank, 0, 0x0, &status);
326 if (retval != ERROR_OK)
327 return retval;
328
329 if (status & 0x80)
330 break;
331
332 alive_sleep(1);
333 }
334
335 /* mask out bit 0 (reserved) */
336 status = status & 0xfe;
337
338 LOG_DEBUG("status: 0x%x", status);
339
340 if (status != 0x80) {
341 LOG_ERROR("status register: 0x%x", status);
342 if (status & 0x2)
343 LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
344 if (status & 0x4)
345 LOG_ERROR("Program suspended");
346 if (status & 0x8)
347 LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
348 if (status & 0x10)
349 LOG_ERROR("Program Error / Error in Setting Lock-Bit");
350 if (status & 0x20)
351 LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
352 if (status & 0x40)
353 LOG_ERROR("Block Erase Suspended");
354
355 cfi_intel_clear_status_register(bank);
356
357 retval = ERROR_FAIL;
358 }
359
360 *val = status;
361 return retval;
362 }
363
364 static int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
365 {
366 uint8_t status, oldstatus;
367 struct cfi_flash_bank *cfi_info = bank->driver_priv;
368 int retval;
369
370 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
371 if (retval != ERROR_OK)
372 return retval;
373
374 do {
375 retval = cfi_get_u8(bank, 0, 0x0, &status);
376
377 if (retval != ERROR_OK)
378 return retval;
379
380 if ((status ^ oldstatus) & 0x40) {
381 if (status & cfi_info->status_poll_mask & 0x20) {
382 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
383 if (retval != ERROR_OK)
384 return retval;
385 retval = cfi_get_u8(bank, 0, 0x0, &status);
386 if (retval != ERROR_OK)
387 return retval;
388 if ((status ^ oldstatus) & 0x40) {
389 LOG_ERROR("dq5 timeout, status: 0x%x", status);
390 return ERROR_FLASH_OPERATION_FAILED;
391 } else {
392 LOG_DEBUG("status: 0x%x", status);
393 return ERROR_OK;
394 }
395 }
396 } else {/* no toggle: finished, OK */
397 LOG_DEBUG("status: 0x%x", status);
398 return ERROR_OK;
399 }
400
401 oldstatus = status;
402 alive_sleep(1);
403 } while (timeout-- > 0);
404
405 LOG_ERROR("timeout, status: 0x%x", status);
406
407 return ERROR_FLASH_BUSY;
408 }
409
410 static int cfi_read_intel_pri_ext(struct flash_bank *bank)
411 {
412 int retval;
413 struct cfi_flash_bank *cfi_info = bank->driver_priv;
414 struct cfi_intel_pri_ext *pri_ext;
415
416 if (cfi_info->pri_ext)
417 free(cfi_info->pri_ext);
418
419 pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
420 if (pri_ext == NULL) {
421 LOG_ERROR("Out of memory");
422 return ERROR_FAIL;
423 }
424 cfi_info->pri_ext = pri_ext;
425
426 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
427 if (retval != ERROR_OK)
428 return retval;
429 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
430 if (retval != ERROR_OK)
431 return retval;
432 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
433 if (retval != ERROR_OK)
434 return retval;
435
436 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
437 retval = cfi_reset(bank);
438 if (retval != ERROR_OK)
439 return retval;
440 LOG_ERROR("Could not read bank flash bank information");
441 return ERROR_FLASH_BANK_INVALID;
442 }
443
444 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
445 if (retval != ERROR_OK)
446 return retval;
447 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
448 if (retval != ERROR_OK)
449 return retval;
450
451 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
452 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
453
454 retval = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5, &pri_ext->feature_support);
455 if (retval != ERROR_OK)
456 return retval;
457 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->suspend_cmd_support);
458 if (retval != ERROR_OK)
459 return retval;
460 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa, &pri_ext->blk_status_reg_mask);
461 if (retval != ERROR_OK)
462 return retval;
463
464 LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: "
465 "0x%x, blk_status_reg_mask: 0x%x",
466 pri_ext->feature_support,
467 pri_ext->suspend_cmd_support,
468 pri_ext->blk_status_reg_mask);
469
470 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc, &pri_ext->vcc_optimal);
471 if (retval != ERROR_OK)
472 return retval;
473 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd, &pri_ext->vpp_optimal);
474 if (retval != ERROR_OK)
475 return retval;
476
477 LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
478 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
479 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
480
481 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe, &pri_ext->num_protection_fields);
482 if (retval != ERROR_OK)
483 return retval;
484 if (pri_ext->num_protection_fields != 1) {
485 LOG_WARNING("expected one protection register field, but found %i",
486 pri_ext->num_protection_fields);
487 }
488
489 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf, &pri_ext->prot_reg_addr);
490 if (retval != ERROR_OK)
491 return retval;
492 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11, &pri_ext->fact_prot_reg_size);
493 if (retval != ERROR_OK)
494 return retval;
495 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12, &pri_ext->user_prot_reg_size);
496 if (retval != ERROR_OK)
497 return retval;
498
499 LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, "
500 "factory pre-programmed: %i, user programmable: %i",
501 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
502 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
503
504 return ERROR_OK;
505 }
506
507 static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
508 {
509 int retval;
510 struct cfi_flash_bank *cfi_info = bank->driver_priv;
511 struct cfi_spansion_pri_ext *pri_ext;
512
513 if (cfi_info->pri_ext)
514 free(cfi_info->pri_ext);
515
516 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
517 if (pri_ext == NULL) {
518 LOG_ERROR("Out of memory");
519 return ERROR_FAIL;
520 }
521 cfi_info->pri_ext = pri_ext;
522
523 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
524 if (retval != ERROR_OK)
525 return retval;
526 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
527 if (retval != ERROR_OK)
528 return retval;
529 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
530 if (retval != ERROR_OK)
531 return retval;
532
533 /* default values for implementation specific workarounds */
534 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
535 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
536 pri_ext->_reversed_geometry = 0;
537
538 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
539 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
540 if (retval != ERROR_OK)
541 return retval;
542 LOG_ERROR("Could not read spansion bank information");
543 return ERROR_FLASH_BANK_INVALID;
544 }
545
546 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
547 if (retval != ERROR_OK)
548 return retval;
549 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
550 if (retval != ERROR_OK)
551 return retval;
552
553 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
554 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
555
556 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &pri_ext->SiliconRevision);
557 if (retval != ERROR_OK)
558 return retval;
559 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &pri_ext->EraseSuspend);
560 if (retval != ERROR_OK)
561 return retval;
562 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &pri_ext->BlkProt);
563 if (retval != ERROR_OK)
564 return retval;
565 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &pri_ext->TmpBlkUnprotect);
566 if (retval != ERROR_OK)
567 return retval;
568 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->BlkProtUnprot);
569 if (retval != ERROR_OK)
570 return retval;
571 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10, &pri_ext->SimultaneousOps);
572 if (retval != ERROR_OK)
573 return retval;
574 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11, &pri_ext->BurstMode);
575 if (retval != ERROR_OK)
576 return retval;
577 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12, &pri_ext->PageMode);
578 if (retval != ERROR_OK)
579 return retval;
580 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13, &pri_ext->VppMin);
581 if (retval != ERROR_OK)
582 return retval;
583 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14, &pri_ext->VppMax);
584 if (retval != ERROR_OK)
585 return retval;
586 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15, &pri_ext->TopBottom);
587 if (retval != ERROR_OK)
588 return retval;
589
590 LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x",
591 pri_ext->SiliconRevision, pri_ext->EraseSuspend, pri_ext->BlkProt);
592
593 LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, "
594 "Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
595 pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
596
597 LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
598
599
600 LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
601 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
602 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
603
604 LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
605
606 return ERROR_OK;
607 }
608
609 static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
610 {
611 int retval;
612 struct cfi_atmel_pri_ext atmel_pri_ext;
613 struct cfi_flash_bank *cfi_info = bank->driver_priv;
614 struct cfi_spansion_pri_ext *pri_ext;
615
616 if (cfi_info->pri_ext)
617 free(cfi_info->pri_ext);
618
619 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
620 if (pri_ext == NULL) {
621 LOG_ERROR("Out of memory");
622 return ERROR_FAIL;
623 }
624
625 /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
626 * but a different primary extended query table.
627 * We read the atmel table, and prepare a valid AMD/Spansion query table.
628 */
629
630 memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
631
632 cfi_info->pri_ext = pri_ext;
633
634 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &atmel_pri_ext.pri[0]);
635 if (retval != ERROR_OK)
636 return retval;
637 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &atmel_pri_ext.pri[1]);
638 if (retval != ERROR_OK)
639 return retval;
640 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &atmel_pri_ext.pri[2]);
641 if (retval != ERROR_OK)
642 return retval;
643
644 if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R')
645 || (atmel_pri_ext.pri[2] != 'I')) {
646 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
647 if (retval != ERROR_OK)
648 return retval;
649 LOG_ERROR("Could not read atmel bank information");
650 return ERROR_FLASH_BANK_INVALID;
651 }
652
653 pri_ext->pri[0] = atmel_pri_ext.pri[0];
654 pri_ext->pri[1] = atmel_pri_ext.pri[1];
655 pri_ext->pri[2] = atmel_pri_ext.pri[2];
656
657 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &atmel_pri_ext.major_version);
658 if (retval != ERROR_OK)
659 return retval;
660 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &atmel_pri_ext.minor_version);
661 if (retval != ERROR_OK)
662 return retval;
663
664 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0],
665 atmel_pri_ext.pri[1], atmel_pri_ext.pri[2],
666 atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
667
668 pri_ext->major_version = atmel_pri_ext.major_version;
669 pri_ext->minor_version = atmel_pri_ext.minor_version;
670
671 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &atmel_pri_ext.features);
672 if (retval != ERROR_OK)
673 return retval;
674 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &atmel_pri_ext.bottom_boot);
675 if (retval != ERROR_OK)
676 return retval;
677 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &atmel_pri_ext.burst_mode);
678 if (retval != ERROR_OK)
679 return retval;
680 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &atmel_pri_ext.page_mode);
681 if (retval != ERROR_OK)
682 return retval;
683
684 LOG_DEBUG(
685 "features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
686 atmel_pri_ext.features,
687 atmel_pri_ext.bottom_boot,
688 atmel_pri_ext.burst_mode,
689 atmel_pri_ext.page_mode);
690
691 if (atmel_pri_ext.features & 0x02)
692 pri_ext->EraseSuspend = 2;
693
694 /* some chips got it backwards... */
695 if (cfi_info->device_id == AT49BV6416 ||
696 cfi_info->device_id == AT49BV6416T) {
697 if (atmel_pri_ext.bottom_boot)
698 pri_ext->TopBottom = 3;
699 else
700 pri_ext->TopBottom = 2;
701 } else {
702 if (atmel_pri_ext.bottom_boot)
703 pri_ext->TopBottom = 2;
704 else
705 pri_ext->TopBottom = 3;
706 }
707
708 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
709 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
710
711 return ERROR_OK;
712 }
713
714 static int cfi_read_0002_pri_ext(struct flash_bank *bank)
715 {
716 struct cfi_flash_bank *cfi_info = bank->driver_priv;
717
718 if (cfi_info->manufacturer == CFI_MFR_ATMEL)
719 return cfi_read_atmel_pri_ext(bank);
720 else
721 return cfi_read_spansion_pri_ext(bank);
722 }
723
724 static int cfi_spansion_info(struct flash_bank *bank, char *buf, int buf_size)
725 {
726 int printed;
727 struct cfi_flash_bank *cfi_info = bank->driver_priv;
728 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
729
730 printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
731 buf += printed;
732 buf_size -= printed;
733
734 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
735 pri_ext->pri[1], pri_ext->pri[2],
736 pri_ext->major_version, pri_ext->minor_version);
737 buf += printed;
738 buf_size -= printed;
739
740 printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
741 (pri_ext->SiliconRevision) >> 2,
742 (pri_ext->SiliconRevision) & 0x03);
743 buf += printed;
744 buf_size -= printed;
745
746 printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
747 pri_ext->EraseSuspend,
748 pri_ext->BlkProt);
749 buf += printed;
750 buf_size -= printed;
751
752 snprintf(buf, buf_size, "VppMin: %u.%x, VppMax: %u.%x\n",
753 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
754 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
755
756 return ERROR_OK;
757 }
758
759 static int cfi_intel_info(struct flash_bank *bank, char *buf, int buf_size)
760 {
761 int printed;
762 struct cfi_flash_bank *cfi_info = bank->driver_priv;
763 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
764
765 printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
766 buf += printed;
767 buf_size -= printed;
768
769 printed = snprintf(buf,
770 buf_size,
771 "pri: '%c%c%c', version: %c.%c\n",
772 pri_ext->pri[0],
773 pri_ext->pri[1],
774 pri_ext->pri[2],
775 pri_ext->major_version,
776 pri_ext->minor_version);
777 buf += printed;
778 buf_size -= printed;
779
780 printed = snprintf(buf,
781 buf_size,
782 "feature_support: 0x%" PRIx32 ", "
783 "suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n",
784 pri_ext->feature_support,
785 pri_ext->suspend_cmd_support,
786 pri_ext->blk_status_reg_mask);
787 buf += printed;
788 buf_size -= printed;
789
790 printed = snprintf(buf, buf_size, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
791 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
792 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
793 buf += printed;
794 buf_size -= printed;
795
796 snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, "
797 "factory pre-programmed: %i, user programmable: %i\n",
798 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
799 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
800
801 return ERROR_OK;
802 }
803
804 /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
805 */
806 FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
807 {
808 struct cfi_flash_bank *cfi_info;
809 int bus_swap = 0;
810
811 if (CMD_ARGC < 6)
812 return ERROR_COMMAND_SYNTAX_ERROR;
813
814 /* both widths must:
815 * - not exceed max value;
816 * - not be null;
817 * - be equal to a power of 2.
818 * bus must be wide enough to hold one chip */
819 if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
820 || (bank->bus_width > CFI_MAX_BUS_WIDTH)
821 || (bank->chip_width == 0)
822 || (bank->bus_width == 0)
823 || (bank->chip_width & (bank->chip_width - 1))
824 || (bank->bus_width & (bank->bus_width - 1))
825 || (bank->chip_width > bank->bus_width)) {
826 LOG_ERROR("chip and bus width have to specified in bytes");
827 return ERROR_FLASH_BANK_INVALID;
828 }
829
830 cfi_info = malloc(sizeof(struct cfi_flash_bank));
831 cfi_info->probed = 0;
832 cfi_info->erase_region_info = NULL;
833 cfi_info->pri_ext = NULL;
834 bank->driver_priv = cfi_info;
835
836 cfi_info->x16_as_x8 = 0;
837 cfi_info->jedec_probe = 0;
838 cfi_info->not_cfi = 0;
839
840 for (unsigned i = 6; i < CMD_ARGC; i++) {
841 if (strcmp(CMD_ARGV[i], "x16_as_x8") == 0)
842 cfi_info->x16_as_x8 = 1;
843 else if (strcmp(CMD_ARGV[i], "bus_swap") == 0)
844 bus_swap = 1;
845 else if (strcmp(CMD_ARGV[i], "jedec_probe") == 0)
846 cfi_info->jedec_probe = 1;
847 }
848
849 if (bus_swap)
850 cfi_info->endianness =
851 bank->target->endianness == TARGET_LITTLE_ENDIAN ?
852 TARGET_BIG_ENDIAN : TARGET_LITTLE_ENDIAN;
853 else
854 cfi_info->endianness = bank->target->endianness;
855
856 /* bank wasn't probed yet */
857 cfi_info->qry[0] = 0xff;
858
859 return ERROR_OK;
860 }
861
862 static int cfi_intel_erase(struct flash_bank *bank, int first, int last)
863 {
864 int retval;
865 struct cfi_flash_bank *cfi_info = bank->driver_priv;
866 int i;
867
868 cfi_intel_clear_status_register(bank);
869
870 for (i = first; i <= last; i++) {
871 retval = cfi_send_command(bank, 0x20, flash_address(bank, i, 0x0));
872 if (retval != ERROR_OK)
873 return retval;
874
875 retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0));
876 if (retval != ERROR_OK)
877 return retval;
878
879 uint8_t status;
880 retval = cfi_intel_wait_status_busy(bank, cfi_info->block_erase_timeout, &status);
881 if (retval != ERROR_OK)
882 return retval;
883
884 if (status == 0x80)
885 bank->sectors[i].is_erased = 1;
886 else {
887 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
888 if (retval != ERROR_OK)
889 return retval;
890
891 LOG_ERROR("couldn't erase block %i of flash bank at base 0x%"
892 PRIx32, i, bank->base);
893 return ERROR_FLASH_OPERATION_FAILED;
894 }
895 }
896
897 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
898 }
899
900 static int cfi_spansion_erase(struct flash_bank *bank, int first, int last)
901 {
902 int retval;
903 struct cfi_flash_bank *cfi_info = bank->driver_priv;
904 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
905 int i;
906
907 for (i = first; i <= last; i++) {
908 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
909 if (retval != ERROR_OK)
910 return retval;
911
912 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
913 if (retval != ERROR_OK)
914 return retval;
915
916 retval = cfi_send_command(bank, 0x80, flash_address(bank, 0, pri_ext->_unlock1));
917 if (retval != ERROR_OK)
918 return retval;
919
920 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
921 if (retval != ERROR_OK)
922 return retval;
923
924 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
925 if (retval != ERROR_OK)
926 return retval;
927
928 retval = cfi_send_command(bank, 0x30, flash_address(bank, i, 0x0));
929 if (retval != ERROR_OK)
930 return retval;
931
932 if (cfi_spansion_wait_status_busy(bank, cfi_info->block_erase_timeout) == ERROR_OK)
933 bank->sectors[i].is_erased = 1;
934 else {
935 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
936 if (retval != ERROR_OK)
937 return retval;
938
939 LOG_ERROR("couldn't erase block %i of flash bank at base 0x%"
940 PRIx32, i, bank->base);
941 return ERROR_FLASH_OPERATION_FAILED;
942 }
943 }
944
945 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
946 }
947
948 static int cfi_erase(struct flash_bank *bank, int first, int last)
949 {
950 struct cfi_flash_bank *cfi_info = bank->driver_priv;
951
952 if (bank->target->state != TARGET_HALTED) {
953 LOG_ERROR("Target not halted");
954 return ERROR_TARGET_NOT_HALTED;
955 }
956
957 if ((first < 0) || (last < first) || (last >= bank->num_sectors))
958 return ERROR_FLASH_SECTOR_INVALID;
959
960 if (cfi_info->qry[0] != 'Q')
961 return ERROR_FLASH_BANK_NOT_PROBED;
962
963 switch (cfi_info->pri_id) {
964 case 1:
965 case 3:
966 return cfi_intel_erase(bank, first, last);
967 break;
968 case 2:
969 return cfi_spansion_erase(bank, first, last);
970 break;
971 default:
972 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
973 break;
974 }
975
976 return ERROR_OK;
977 }
978
979 static int cfi_intel_protect(struct flash_bank *bank, int set, int first, int last)
980 {
981 int retval;
982 struct cfi_flash_bank *cfi_info = bank->driver_priv;
983 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
984 int retry = 0;
985 int i;
986
987 /* if the device supports neither legacy lock/unlock (bit 3) nor
988 * instant individual block locking (bit 5).
989 */
990 if (!(pri_ext->feature_support & 0x28)) {
991 LOG_ERROR("lock/unlock not supported on flash");
992 return ERROR_FLASH_OPERATION_FAILED;
993 }
994
995 cfi_intel_clear_status_register(bank);
996
997 for (i = first; i <= last; i++) {
998 retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0));
999 if (retval != ERROR_OK)
1000 return retval;
1001 if (set) {
1002 retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0));
1003 if (retval != ERROR_OK)
1004 return retval;
1005 bank->sectors[i].is_protected = 1;
1006 } else {
1007 retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0));
1008 if (retval != ERROR_OK)
1009 return retval;
1010 bank->sectors[i].is_protected = 0;
1011 }
1012
1013 /* instant individual block locking doesn't require reading of the status register
1014 **/
1015 if (!(pri_ext->feature_support & 0x20)) {
1016 /* Clear lock bits operation may take up to 1.4s */
1017 uint8_t status;
1018 retval = cfi_intel_wait_status_busy(bank, 1400, &status);
1019 if (retval != ERROR_OK)
1020 return retval;
1021 } else {
1022 uint8_t block_status;
1023 /* read block lock bit, to verify status */
1024 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55));
1025 if (retval != ERROR_OK)
1026 return retval;
1027 retval = cfi_get_u8(bank, i, 0x2, &block_status);
1028 if (retval != ERROR_OK)
1029 return retval;
1030
1031 if ((block_status & 0x1) != set) {
1032 LOG_ERROR(
1033 "couldn't change block lock status (set = %i, block_status = 0x%2.2x)",
1034 set, block_status);
1035 retval = cfi_send_command(bank, 0x70, flash_address(bank, 0, 0x55));
1036 if (retval != ERROR_OK)
1037 return retval;
1038 uint8_t status;
1039 retval = cfi_intel_wait_status_busy(bank, 10, &status);
1040 if (retval != ERROR_OK)
1041 return retval;
1042
1043 if (retry > 10)
1044 return ERROR_FLASH_OPERATION_FAILED;
1045 else {
1046 i--;
1047 retry++;
1048 }
1049 }
1050 }
1051 }
1052
1053 /* if the device doesn't support individual block lock bits set/clear,
1054 * all blocks have been unlocked in parallel, so we set those that should be protected
1055 */
1056 if ((!set) && (!(pri_ext->feature_support & 0x20))) {
1057 /* FIX!!! this code path is broken!!!
1058 *
1059 * The correct approach is:
1060 *
1061 * 1. read out current protection status
1062 *
1063 * 2. override read out protection status w/unprotected.
1064 *
1065 * 3. re-protect what should be protected.
1066 *
1067 */
1068 for (i = 0; i < bank->num_sectors; i++) {
1069 if (bank->sectors[i].is_protected == 1) {
1070 cfi_intel_clear_status_register(bank);
1071
1072 retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0));
1073 if (retval != ERROR_OK)
1074 return retval;
1075
1076 retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0));
1077 if (retval != ERROR_OK)
1078 return retval;
1079
1080 uint8_t status;
1081 retval = cfi_intel_wait_status_busy(bank, 100, &status);
1082 if (retval != ERROR_OK)
1083 return retval;
1084 }
1085 }
1086 }
1087
1088 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
1089 }
1090
1091 static int cfi_protect(struct flash_bank *bank, int set, int first, int last)
1092 {
1093 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1094
1095 if (bank->target->state != TARGET_HALTED) {
1096 LOG_ERROR("Target not halted");
1097 return ERROR_TARGET_NOT_HALTED;
1098 }
1099
1100 if ((first < 0) || (last < first) || (last >= bank->num_sectors)) {
1101 LOG_ERROR("Invalid sector range");
1102 return ERROR_FLASH_SECTOR_INVALID;
1103 }
1104
1105 if (cfi_info->qry[0] != 'Q')
1106 return ERROR_FLASH_BANK_NOT_PROBED;
1107
1108 switch (cfi_info->pri_id) {
1109 case 1:
1110 case 3:
1111 return cfi_intel_protect(bank, set, first, last);
1112 break;
1113 default:
1114 LOG_WARNING("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
1115 return ERROR_OK;
1116 }
1117 }
1118
1119 static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
1120 {
1121 struct target *target = bank->target;
1122
1123 uint8_t buf[CFI_MAX_BUS_WIDTH];
1124 cfi_command(bank, cmd, buf);
1125 switch (bank->bus_width) {
1126 case 1:
1127 return buf[0];
1128 break;
1129 case 2:
1130 return target_buffer_get_u16(target, buf);
1131 break;
1132 case 4:
1133 return target_buffer_get_u32(target, buf);
1134 break;
1135 default:
1136 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1137 bank->bus_width);
1138 return 0;
1139 }
1140 }
1141
1142 static int cfi_intel_write_block(struct flash_bank *bank, const uint8_t *buffer,
1143 uint32_t address, uint32_t count)
1144 {
1145 struct target *target = bank->target;
1146 struct reg_param reg_params[7];
1147 struct arm_algorithm arm_algo;
1148 struct working_area *write_algorithm;
1149 struct working_area *source = NULL;
1150 uint32_t buffer_size = 32768;
1151 uint32_t write_command_val, busy_pattern_val, error_pattern_val;
1152
1153 /* algorithm register usage:
1154 * r0: source address (in RAM)
1155 * r1: target address (in Flash)
1156 * r2: count
1157 * r3: flash write command
1158 * r4: status byte (returned to host)
1159 * r5: busy test pattern
1160 * r6: error test pattern
1161 */
1162
1163 /* see contib/loaders/flash/armv4_5_cfi_intel_32.s for src */
1164 static const uint32_t word_32_code[] = {
1165 0xe4904004, /* loop: ldr r4, [r0], #4 */
1166 0xe5813000, /* str r3, [r1] */
1167 0xe5814000, /* str r4, [r1] */
1168 0xe5914000, /* busy: ldr r4, [r1] */
1169 0xe0047005, /* and r7, r4, r5 */
1170 0xe1570005, /* cmp r7, r5 */
1171 0x1afffffb, /* bne busy */
1172 0xe1140006, /* tst r4, r6 */
1173 0x1a000003, /* bne done */
1174 0xe2522001, /* subs r2, r2, #1 */
1175 0x0a000001, /* beq done */
1176 0xe2811004, /* add r1, r1 #4 */
1177 0xeafffff2, /* b loop */
1178 0xeafffffe /* done: b -2 */
1179 };
1180
1181 /* see contib/loaders/flash/armv4_5_cfi_intel_16.s for src */
1182 static const uint32_t word_16_code[] = {
1183 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
1184 0xe1c130b0, /* strh r3, [r1] */
1185 0xe1c140b0, /* strh r4, [r1] */
1186 0xe1d140b0, /* busy ldrh r4, [r1] */
1187 0xe0047005, /* and r7, r4, r5 */
1188 0xe1570005, /* cmp r7, r5 */
1189 0x1afffffb, /* bne busy */
1190 0xe1140006, /* tst r4, r6 */
1191 0x1a000003, /* bne done */
1192 0xe2522001, /* subs r2, r2, #1 */
1193 0x0a000001, /* beq done */
1194 0xe2811002, /* add r1, r1 #2 */
1195 0xeafffff2, /* b loop */
1196 0xeafffffe /* done: b -2 */
1197 };
1198
1199 /* see contib/loaders/flash/armv4_5_cfi_intel_8.s for src */
1200 static const uint32_t word_8_code[] = {
1201 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
1202 0xe5c13000, /* strb r3, [r1] */
1203 0xe5c14000, /* strb r4, [r1] */
1204 0xe5d14000, /* busy ldrb r4, [r1] */
1205 0xe0047005, /* and r7, r4, r5 */
1206 0xe1570005, /* cmp r7, r5 */
1207 0x1afffffb, /* bne busy */
1208 0xe1140006, /* tst r4, r6 */
1209 0x1a000003, /* bne done */
1210 0xe2522001, /* subs r2, r2, #1 */
1211 0x0a000001, /* beq done */
1212 0xe2811001, /* add r1, r1 #1 */
1213 0xeafffff2, /* b loop */
1214 0xeafffffe /* done: b -2 */
1215 };
1216 uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
1217 const uint32_t *target_code_src;
1218 uint32_t target_code_size;
1219 int retval = ERROR_OK;
1220
1221 /* check we have a supported arch */
1222 if (is_arm(target_to_arm(target))) {
1223 /* All other ARM CPUs have 32 bit instructions */
1224 arm_algo.common_magic = ARM_COMMON_MAGIC;
1225 arm_algo.core_mode = ARM_MODE_SVC;
1226 arm_algo.core_state = ARM_STATE_ARM;
1227 } else {
1228 LOG_ERROR("Unknown architecture");
1229 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1230 }
1231
1232 cfi_intel_clear_status_register(bank);
1233
1234 /* If we are setting up the write_algorith, we need target_code_src
1235 * if not we only need target_code_size. */
1236
1237 /* However, we don't want to create multiple code paths, so we
1238 * do the unnecessary evaluation of target_code_src, which the
1239 * compiler will probably nicely optimize away if not needed */
1240
1241 /* prepare algorithm code for target endian */
1242 switch (bank->bus_width) {
1243 case 1:
1244 target_code_src = word_8_code;
1245 target_code_size = sizeof(word_8_code);
1246 break;
1247 case 2:
1248 target_code_src = word_16_code;
1249 target_code_size = sizeof(word_16_code);
1250 break;
1251 case 4:
1252 target_code_src = word_32_code;
1253 target_code_size = sizeof(word_32_code);
1254 break;
1255 default:
1256 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1257 bank->bus_width);
1258 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1259 }
1260
1261 /* flash write code */
1262 if (target_code_size > sizeof(target_code)) {
1263 LOG_WARNING("Internal error - target code buffer to small. "
1264 "Increase CFI_MAX_INTEL_CODESIZE and recompile.");
1265 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1266 }
1267
1268 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1269
1270 /* Get memory for block write handler */
1271 retval = target_alloc_working_area(target,
1272 target_code_size,
1273 &write_algorithm);
1274 if (retval != ERROR_OK) {
1275 LOG_WARNING("No working area available, can't do block memory writes");
1276 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1277 }
1278
1279 /* write algorithm code to working area */
1280 retval = target_write_buffer(target, write_algorithm->address,
1281 target_code_size, target_code);
1282 if (retval != ERROR_OK) {
1283 LOG_ERROR("Unable to write block write code to target");
1284 goto cleanup;
1285 }
1286
1287 /* Get a workspace buffer for the data to flash starting with 32k size.
1288 * Half size until buffer would be smaller 256 Bytes then fail back */
1289 /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
1290 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1291 buffer_size /= 2;
1292 if (buffer_size <= 256) {
1293 LOG_WARNING(
1294 "no large enough working area available, can't do block memory writes");
1295 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1296 goto cleanup;
1297 }
1298 }
1299
1300 /* setup algo registers */
1301 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1302 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1303 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1304 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1305 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
1306 init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
1307 init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
1308
1309 /* prepare command and status register patterns */
1310 write_command_val = cfi_command_val(bank, 0x40);
1311 busy_pattern_val = cfi_command_val(bank, 0x80);
1312 error_pattern_val = cfi_command_val(bank, 0x7e);
1313
1314 LOG_DEBUG("Using target buffer at 0x%08" PRIx32 " and of size 0x%04" PRIx32,
1315 source->address, buffer_size);
1316
1317 /* Programming main loop */
1318 while (count > 0) {
1319 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1320 uint32_t wsm_error;
1321
1322 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1323 if (retval != ERROR_OK)
1324 goto cleanup;
1325
1326 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1327 buf_set_u32(reg_params[1].value, 0, 32, address);
1328 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1329
1330 buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
1331 buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
1332 buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
1333
1334 LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32,
1335 thisrun_count, address);
1336
1337 /* Execute algorithm, assume breakpoint for last instruction */
1338 retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
1339 write_algorithm->address,
1340 write_algorithm->address + target_code_size -
1341 sizeof(uint32_t),
1342 10000, /* 10s should be enough for max. 32k of data */
1343 &arm_algo);
1344
1345 /* On failure try a fall back to direct word writes */
1346 if (retval != ERROR_OK) {
1347 cfi_intel_clear_status_register(bank);
1348 LOG_ERROR(
1349 "Execution of flash algorythm failed. Can't fall back. Please report.");
1350 retval = ERROR_FLASH_OPERATION_FAILED;
1351 /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
1352 /* FIXME To allow fall back or recovery, we must save the actual status
1353 * somewhere, so that a higher level code can start recovery. */
1354 goto cleanup;
1355 }
1356
1357 /* Check return value from algo code */
1358 wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
1359 if (wsm_error) {
1360 /* read status register (outputs debug information) */
1361 uint8_t status;
1362 cfi_intel_wait_status_busy(bank, 100, &status);
1363 cfi_intel_clear_status_register(bank);
1364 retval = ERROR_FLASH_OPERATION_FAILED;
1365 goto cleanup;
1366 }
1367
1368 buffer += thisrun_count;
1369 address += thisrun_count;
1370 count -= thisrun_count;
1371
1372 keep_alive();
1373 }
1374
1375 /* free up resources */
1376 cleanup:
1377 if (source)
1378 target_free_working_area(target, source);
1379
1380 target_free_working_area(target, write_algorithm);
1381
1382 destroy_reg_param(&reg_params[0]);
1383 destroy_reg_param(&reg_params[1]);
1384 destroy_reg_param(&reg_params[2]);
1385 destroy_reg_param(&reg_params[3]);
1386 destroy_reg_param(&reg_params[4]);
1387 destroy_reg_param(&reg_params[5]);
1388 destroy_reg_param(&reg_params[6]);
1389
1390 return retval;
1391 }
1392
1393 static int cfi_spansion_write_block_mips(struct flash_bank *bank, const uint8_t *buffer,
1394 uint32_t address, uint32_t count)
1395 {
1396 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1397 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1398 struct target *target = bank->target;
1399 struct reg_param reg_params[10];
1400 struct mips32_algorithm mips32_info;
1401 struct working_area *write_algorithm;
1402 struct working_area *source;
1403 uint32_t buffer_size = 32768;
1404 uint32_t status;
1405 int retval = ERROR_OK;
1406
1407 /* input parameters -
1408 * 4 A0 = source address
1409 * 5 A1 = destination address
1410 * 6 A2 = number of writes
1411 * 7 A3 = flash write command
1412 * 8 T0 = constant to mask DQ7 bits (also used for Dq5 with shift)
1413 * output parameters -
1414 * 9 T1 = 0x80 ok 0x00 bad
1415 * temp registers -
1416 * 10 T2 = value read from flash to test status
1417 * 11 T3 = holding register
1418 * unlock registers -
1419 * 12 T4 = unlock1_addr
1420 * 13 T5 = unlock1_cmd
1421 * 14 T6 = unlock2_addr
1422 * 15 T7 = unlock2_cmd */
1423
1424 static const uint32_t mips_word_16_code[] = {
1425 /* start: */
1426 MIPS32_LHU(9, 0, 4), /* lhu $t1, ($a0) ; out = &saddr */
1427 MIPS32_ADDI(4, 4, 2), /* addi $a0, $a0, 2 ; saddr += 2 */
1428 MIPS32_SH(13, 0, 12), /* sh $t5, ($t4) ; *fl_unl_addr1 = fl_unl_cmd1 */
1429 MIPS32_SH(15, 0, 14), /* sh $t7, ($t6) ; *fl_unl_addr2 = fl_unl_cmd2 */
1430 MIPS32_SH(7, 0, 12), /* sh $a3, ($t4) ; *fl_unl_addr1 = fl_write_cmd */
1431 MIPS32_SH(9, 0, 5), /* sh $t1, ($a1) ; *daddr = out */
1432 MIPS32_NOP, /* nop */
1433 /* busy: */
1434 MIPS32_LHU(10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1435 MIPS32_XOR(11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
1436 MIPS32_AND(11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
1437 MIPS32_BNE(11, 8, 13), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
1438 MIPS32_NOP, /* nop */
1439
1440 MIPS32_SRL(10, 8, 2), /* srl $t2,$t0,2 ; temp1 = DQ7mask >> 2 */
1441 MIPS32_AND(11, 10, 11), /* and $t3, $t2, $t3 ; temp2 = temp2 & temp1 */
1442 MIPS32_BNE(11, 10, NEG16(8)), /* bne $t3, $t2, busy ; if (temp2 != temp1) goto busy */
1443 MIPS32_NOP, /* nop */
1444
1445 MIPS32_LHU(10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1446 MIPS32_XOR(11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
1447 MIPS32_AND(11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
1448 MIPS32_BNE(11, 8, 4), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
1449 MIPS32_NOP, /* nop */
1450
1451 MIPS32_XOR(9, 9, 9), /* xor $t1, $t1, $t1 ; out = 0 */
1452 MIPS32_BEQ(9, 0, 11), /* beq $t1, $zero, done ; if (out == 0) goto done */
1453 MIPS32_NOP, /* nop */
1454 /* cont: */
1455 MIPS32_ADDI(6, 6, NEG16(1)), /* addi, $a2, $a2, -1 ; numwrites-- */
1456 MIPS32_BNE(6, 0, 5), /* bne $a2, $zero, cont2 ; if (numwrite != 0) goto cont2 */
1457 MIPS32_NOP, /* nop */
1458
1459 MIPS32_LUI(9, 0), /* lui $t1, 0 */
1460 MIPS32_ORI(9, 9, 0x80), /* ori $t1, $t1, 0x80 ; out = 0x80 */
1461
1462 MIPS32_B(4), /* b done ; goto done */
1463 MIPS32_NOP, /* nop */
1464 /* cont2: */
1465 MIPS32_ADDI(5, 5, 2), /* addi $a0, $a0, 2 ; daddr += 2 */
1466 MIPS32_B(NEG16(33)), /* b start ; goto start */
1467 MIPS32_NOP, /* nop */
1468 /* done: */
1469 MIPS32_SDBBP, /* sdbbp ; break(); */
1470 };
1471
1472 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
1473 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
1474
1475 int target_code_size = 0;
1476 const uint32_t *target_code_src = NULL;
1477
1478 switch (bank->bus_width) {
1479 case 2:
1480 /* Check for DQ5 support */
1481 if (cfi_info->status_poll_mask & (1 << 5)) {
1482 target_code_src = mips_word_16_code;
1483 target_code_size = sizeof(mips_word_16_code);
1484 } else {
1485 LOG_ERROR("Need DQ5 support");
1486 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1487 /* target_code_src = mips_word_16_code_dq7only; */
1488 /* target_code_size = sizeof(mips_word_16_code_dq7only); */
1489 }
1490 break;
1491 default:
1492 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1493 bank->bus_width);
1494 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1495 }
1496
1497 /* flash write code */
1498 uint8_t *target_code;
1499
1500 /* convert bus-width dependent algorithm code to correct endianness */
1501 target_code = malloc(target_code_size);
1502 if (target_code == NULL) {
1503 LOG_ERROR("Out of memory");
1504 return ERROR_FAIL;
1505 }
1506
1507 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1508
1509 /* allocate working area */
1510 retval = target_alloc_working_area(target, target_code_size,
1511 &write_algorithm);
1512 if (retval != ERROR_OK) {
1513 free(target_code);
1514 return retval;
1515 }
1516
1517 /* write algorithm code to working area */
1518 retval = target_write_buffer(target, write_algorithm->address,
1519 target_code_size, target_code);
1520 if (retval != ERROR_OK) {
1521 free(target_code);
1522 return retval;
1523 }
1524
1525 free(target_code);
1526
1527 /* the following code still assumes target code is fixed 24*4 bytes */
1528
1529 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1530 buffer_size /= 2;
1531 if (buffer_size <= 256) {
1532 /* we already allocated the writing code, but failed to get a
1533 * buffer, free the algorithm */
1534 target_free_working_area(target, write_algorithm);
1535
1536 LOG_WARNING(
1537 "not enough working area available, can't do block memory writes");
1538 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1539 }
1540 }
1541
1542 init_reg_param(&reg_params[0], "r4", 32, PARAM_OUT);
1543 init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
1544 init_reg_param(&reg_params[2], "r6", 32, PARAM_OUT);
1545 init_reg_param(&reg_params[3], "r7", 32, PARAM_OUT);
1546 init_reg_param(&reg_params[4], "r8", 32, PARAM_OUT);
1547 init_reg_param(&reg_params[5], "r9", 32, PARAM_IN);
1548 init_reg_param(&reg_params[6], "r12", 32, PARAM_OUT);
1549 init_reg_param(&reg_params[7], "r13", 32, PARAM_OUT);
1550 init_reg_param(&reg_params[8], "r14", 32, PARAM_OUT);
1551 init_reg_param(&reg_params[9], "r15", 32, PARAM_OUT);
1552
1553 while (count > 0) {
1554 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1555
1556 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1557 if (retval != ERROR_OK)
1558 break;
1559
1560 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1561 buf_set_u32(reg_params[1].value, 0, 32, address);
1562 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1563 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1564 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1565 buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
1566 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1567 buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
1568 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1569
1570 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1571 write_algorithm->address,
1572 write_algorithm->address + ((target_code_size) - 4),
1573 10000, &mips32_info);
1574 if (retval != ERROR_OK)
1575 break;
1576
1577 status = buf_get_u32(reg_params[5].value, 0, 32);
1578 if (status != 0x80) {
1579 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1580 retval = ERROR_FLASH_OPERATION_FAILED;
1581 break;
1582 }
1583
1584 buffer += thisrun_count;
1585 address += thisrun_count;
1586 count -= thisrun_count;
1587 }
1588
1589 target_free_all_working_areas(target);
1590
1591 destroy_reg_param(&reg_params[0]);
1592 destroy_reg_param(&reg_params[1]);
1593 destroy_reg_param(&reg_params[2]);
1594 destroy_reg_param(&reg_params[3]);
1595 destroy_reg_param(&reg_params[4]);
1596 destroy_reg_param(&reg_params[5]);
1597 destroy_reg_param(&reg_params[6]);
1598 destroy_reg_param(&reg_params[7]);
1599 destroy_reg_param(&reg_params[8]);
1600 destroy_reg_param(&reg_params[9]);
1601
1602 return retval;
1603 }
1604
1605 static int cfi_spansion_write_block(struct flash_bank *bank, const uint8_t *buffer,
1606 uint32_t address, uint32_t count)
1607 {
1608 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1609 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1610 struct target *target = bank->target;
1611 struct reg_param reg_params[10];
1612 void *arm_algo;
1613 struct arm_algorithm armv4_5_algo;
1614 struct armv7m_algorithm armv7m_algo;
1615 struct working_area *write_algorithm;
1616 struct working_area *source;
1617 uint32_t buffer_size = 32768;
1618 uint32_t status;
1619 int retval = ERROR_OK;
1620
1621 /* input parameters -
1622 * R0 = source address
1623 * R1 = destination address
1624 * R2 = number of writes
1625 * R3 = flash write command
1626 * R4 = constant to mask DQ7 bits (also used for Dq5 with shift)
1627 * output parameters -
1628 * R5 = 0x80 ok 0x00 bad
1629 * temp registers -
1630 * R6 = value read from flash to test status
1631 * R7 = holding register
1632 * unlock registers -
1633 * R8 = unlock1_addr
1634 * R9 = unlock1_cmd
1635 * R10 = unlock2_addr
1636 * R11 = unlock2_cmd */
1637
1638 /* see contib/loaders/flash/armv4_5_cfi_span_32.s for src */
1639 static const uint32_t armv4_5_word_32_code[] = {
1640 /* 00008100 <sp_32_code>: */
1641 0xe4905004, /* ldr r5, [r0], #4 */
1642 0xe5889000, /* str r9, [r8] */
1643 0xe58ab000, /* str r11, [r10] */
1644 0xe5883000, /* str r3, [r8] */
1645 0xe5815000, /* str r5, [r1] */
1646 0xe1a00000, /* nop */
1647 /* 00008110 <sp_32_busy>: */
1648 0xe5916000, /* ldr r6, [r1] */
1649 0xe0257006, /* eor r7, r5, r6 */
1650 0xe0147007, /* ands r7, r4, r7 */
1651 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1652 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1653 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
1654 0xe5916000, /* ldr r6, [r1] */
1655 0xe0257006, /* eor r7, r5, r6 */
1656 0xe0147007, /* ands r7, r4, r7 */
1657 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1658 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
1659 0x1a000004, /* bne 8154 <sp_32_done> */
1660 /* 00008140 <sp_32_cont>: */
1661 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1662 0x03a05080, /* moveq r5, #128 ; 0x80 */
1663 0x0a000001, /* beq 8154 <sp_32_done> */
1664 0xe2811004, /* add r1, r1, #4 ; 0x4 */
1665 0xeaffffe8, /* b 8100 <sp_32_code> */
1666 /* 00008154 <sp_32_done>: */
1667 0xeafffffe /* b 8154 <sp_32_done> */
1668 };
1669
1670 /* see contib/loaders/flash/armv4_5_cfi_span_16.s for src */
1671 static const uint32_t armv4_5_word_16_code[] = {
1672 /* 00008158 <sp_16_code>: */
1673 0xe0d050b2, /* ldrh r5, [r0], #2 */
1674 0xe1c890b0, /* strh r9, [r8] */
1675 0xe1cab0b0, /* strh r11, [r10] */
1676 0xe1c830b0, /* strh r3, [r8] */
1677 0xe1c150b0, /* strh r5, [r1] */
1678 0xe1a00000, /* nop (mov r0,r0) */
1679 /* 00008168 <sp_16_busy>: */
1680 0xe1d160b0, /* ldrh r6, [r1] */
1681 0xe0257006, /* eor r7, r5, r6 */
1682 0xe0147007, /* ands r7, r4, r7 */
1683 0x0a000007, /* beq 8198 <sp_16_cont> */
1684 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1685 0x0afffff9, /* beq 8168 <sp_16_busy> */
1686 0xe1d160b0, /* ldrh r6, [r1] */
1687 0xe0257006, /* eor r7, r5, r6 */
1688 0xe0147007, /* ands r7, r4, r7 */
1689 0x0a000001, /* beq 8198 <sp_16_cont> */
1690 0xe3a05000, /* mov r5, #0 ; 0x0 */
1691 0x1a000004, /* bne 81ac <sp_16_done> */
1692 /* 00008198 <sp_16_cont>: */
1693 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1694 0x03a05080, /* moveq r5, #128 ; 0x80 */
1695 0x0a000001, /* beq 81ac <sp_16_done> */
1696 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1697 0xeaffffe8, /* b 8158 <sp_16_code> */
1698 /* 000081ac <sp_16_done>: */
1699 0xeafffffe /* b 81ac <sp_16_done> */
1700 };
1701
1702 /* see contrib/loaders/flash/armv7m_cfi_span_16.s for src */
1703 static const uint32_t armv7m_word_16_code[] = {
1704 0x5B02F830,
1705 0x9000F8A8,
1706 0xB000F8AA,
1707 0x3000F8A8,
1708 0xBF00800D,
1709 0xEA85880E,
1710 0x40270706,
1711 0xEA16D00A,
1712 0xD0F70694,
1713 0xEA85880E,
1714 0x40270706,
1715 0xF04FD002,
1716 0xD1070500,
1717 0xD0023A01,
1718 0x0102F101,
1719 0xF04FE7E0,
1720 0xE7FF0580,
1721 0x0000BE00
1722 };
1723
1724 /* see contrib/loaders/flash/armv7m_cfi_span_16_dq7.s for src */
1725 static const uint32_t armv7m_word_16_code_dq7only[] = {
1726 /* 00000000 <code>: */
1727 0x5B02F830, /* ldrh.w r5, [r0], #2 */
1728 0x9000F8A8, /* strh.w r9, [r8] */
1729 0xB000F8AA, /* strh.w fp, [sl] */
1730 0x3000F8A8, /* strh.w r3, [r8] */
1731 0xBF00800D, /* strh r5, [r1, #0] */
1732 /* nop */
1733
1734 /* 00000014 <busy>: */
1735 0xEA85880E, /* ldrh r6, [r1, #0] */
1736 /* eor.w r7, r5, r6 */
1737 0x40270706, /* ands r7, r4 */
1738 0x3A01D1FA, /* bne.n 14 <busy> */
1739 /* subs r2, #1 */
1740 0xF101D002, /* beq.n 28 <success> */
1741 0xE7EB0102, /* add.w r1, r1, #2 */
1742 /* b.n 0 <code> */
1743
1744 /* 00000028 <success>: */
1745 0x0580F04F, /* mov.w r5, #128 */
1746 0xBF00E7FF, /* b.n 30 <done> */
1747 /* nop (for alignment purposes) */
1748
1749 /* 00000030 <done>: */
1750 0x0000BE00 /* bkpt 0x0000 */
1751 };
1752
1753 /* see contrib/loaders/flash/armv4_5_cfi_span_16_dq7.s for src */
1754 static const uint32_t armv4_5_word_16_code_dq7only[] = {
1755 /* <sp_16_code>: */
1756 0xe0d050b2, /* ldrh r5, [r0], #2 */
1757 0xe1c890b0, /* strh r9, [r8] */
1758 0xe1cab0b0, /* strh r11, [r10] */
1759 0xe1c830b0, /* strh r3, [r8] */
1760 0xe1c150b0, /* strh r5, [r1] */
1761 0xe1a00000, /* nop (mov r0,r0) */
1762 /* <sp_16_busy>: */
1763 0xe1d160b0, /* ldrh r6, [r1] */
1764 0xe0257006, /* eor r7, r5, r6 */
1765 0xe2177080, /* ands r7, #0x80 */
1766 0x1afffffb, /* bne 8168 <sp_16_busy> */
1767 /* */
1768 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1769 0x03a05080, /* moveq r5, #128 ; 0x80 */
1770 0x0a000001, /* beq 81ac <sp_16_done> */
1771 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1772 0xeafffff0, /* b 8158 <sp_16_code> */
1773 /* 000081ac <sp_16_done>: */
1774 0xeafffffe /* b 81ac <sp_16_done> */
1775 };
1776
1777 /* see contrib/loaders/flash/armv4_5_cfi_span_8.s for src */
1778 static const uint32_t armv4_5_word_8_code[] = {
1779 /* 000081b0 <sp_16_code_end>: */
1780 0xe4d05001, /* ldrb r5, [r0], #1 */
1781 0xe5c89000, /* strb r9, [r8] */
1782 0xe5cab000, /* strb r11, [r10] */
1783 0xe5c83000, /* strb r3, [r8] */
1784 0xe5c15000, /* strb r5, [r1] */
1785 0xe1a00000, /* nop (mov r0,r0) */
1786 /* 000081c0 <sp_8_busy>: */
1787 0xe5d16000, /* ldrb r6, [r1] */
1788 0xe0257006, /* eor r7, r5, r6 */
1789 0xe0147007, /* ands r7, r4, r7 */
1790 0x0a000007, /* beq 81f0 <sp_8_cont> */
1791 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1792 0x0afffff9, /* beq 81c0 <sp_8_busy> */
1793 0xe5d16000, /* ldrb r6, [r1] */
1794 0xe0257006, /* eor r7, r5, r6 */
1795 0xe0147007, /* ands r7, r4, r7 */
1796 0x0a000001, /* beq 81f0 <sp_8_cont> */
1797 0xe3a05000, /* mov r5, #0 ; 0x0 */
1798 0x1a000004, /* bne 8204 <sp_8_done> */
1799 /* 000081f0 <sp_8_cont>: */
1800 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1801 0x03a05080, /* moveq r5, #128 ; 0x80 */
1802 0x0a000001, /* beq 8204 <sp_8_done> */
1803 0xe2811001, /* add r1, r1, #1 ; 0x1 */
1804 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
1805 /* 00008204 <sp_8_done>: */
1806 0xeafffffe /* b 8204 <sp_8_done> */
1807 };
1808
1809 if (strncmp(target_type_name(target), "mips_m4k", 8) == 0)
1810 return cfi_spansion_write_block_mips(bank, buffer, address, count);
1811
1812 if (is_armv7m(target_to_armv7m(target))) { /* armv7m target */
1813 armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
1814 armv7m_algo.core_mode = ARM_MODE_THREAD;
1815 arm_algo = &armv7m_algo;
1816 } else if (is_arm(target_to_arm(target))) {
1817 /* All other ARM CPUs have 32 bit instructions */
1818 armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
1819 armv4_5_algo.core_mode = ARM_MODE_SVC;
1820 armv4_5_algo.core_state = ARM_STATE_ARM;
1821 arm_algo = &armv4_5_algo;
1822 } else {
1823 LOG_ERROR("Unknown architecture");
1824 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1825 }
1826
1827 int target_code_size = 0;
1828 const uint32_t *target_code_src = NULL;
1829
1830 switch (bank->bus_width) {
1831 case 1:
1832 if (is_armv7m(target_to_armv7m(target))) {
1833 LOG_ERROR("Unknown ARM architecture");
1834 return ERROR_FAIL;
1835 }
1836 target_code_src = armv4_5_word_8_code;
1837 target_code_size = sizeof(armv4_5_word_8_code);
1838 break;
1839 case 2:
1840 /* Check for DQ5 support */
1841 if (cfi_info->status_poll_mask & (1 << 5)) {
1842 if (is_armv7m(target_to_armv7m(target))) {
1843 /* armv7m target */
1844 target_code_src = armv7m_word_16_code;
1845 target_code_size = sizeof(armv7m_word_16_code);
1846 } else { /* armv4_5 target */
1847 target_code_src = armv4_5_word_16_code;
1848 target_code_size = sizeof(armv4_5_word_16_code);
1849 }
1850 } else {
1851 /* No DQ5 support. Use DQ7 DATA# polling only. */
1852 if (is_armv7m(target_to_armv7m(target))) {
1853 /* armv7m target */
1854 target_code_src = armv7m_word_16_code_dq7only;
1855 target_code_size = sizeof(armv7m_word_16_code_dq7only);
1856 } else { /* armv4_5 target */
1857 target_code_src = armv4_5_word_16_code_dq7only;
1858 target_code_size = sizeof(armv4_5_word_16_code_dq7only);
1859 }
1860 }
1861 break;
1862 case 4:
1863 if (is_armv7m(target_to_armv7m(target))) {
1864 LOG_ERROR("Unknown ARM architecture");
1865 return ERROR_FAIL;
1866 }
1867 target_code_src = armv4_5_word_32_code;
1868 target_code_size = sizeof(armv4_5_word_32_code);
1869 break;
1870 default:
1871 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1872 bank->bus_width);
1873 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1874 }
1875
1876 /* flash write code */
1877 uint8_t *target_code;
1878
1879 /* convert bus-width dependent algorithm code to correct endianness */
1880 target_code = malloc(target_code_size);
1881 if (target_code == NULL) {
1882 LOG_ERROR("Out of memory");
1883 return ERROR_FAIL;
1884 }
1885
1886 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1887
1888 /* allocate working area */
1889 retval = target_alloc_working_area(target, target_code_size,
1890 &write_algorithm);
1891 if (retval != ERROR_OK) {
1892 free(target_code);
1893 return retval;
1894 }
1895
1896 /* write algorithm code to working area */
1897 retval = target_write_buffer(target, write_algorithm->address,
1898 target_code_size, target_code);
1899 if (retval != ERROR_OK) {
1900 free(target_code);
1901 return retval;
1902 }
1903
1904 free(target_code);
1905
1906 /* the following code still assumes target code is fixed 24*4 bytes */
1907
1908 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1909 buffer_size /= 2;
1910 if (buffer_size <= 256) {
1911 /* we already allocated the writing code, but failed to get a
1912 * buffer, free the algorithm */
1913 target_free_working_area(target, write_algorithm);
1914
1915 LOG_WARNING(
1916 "not enough working area available, can't do block memory writes");
1917 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1918 }
1919 }
1920
1921 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1922 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1923 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1924 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1925 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1926 init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
1927 init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
1928 init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
1929 init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
1930 init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
1931
1932 while (count > 0) {
1933 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1934
1935 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1936 if (retval != ERROR_OK)
1937 break;
1938
1939 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1940 buf_set_u32(reg_params[1].value, 0, 32, address);
1941 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1942 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1943 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1944 buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
1945 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1946 buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
1947 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1948
1949 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1950 write_algorithm->address,
1951 write_algorithm->address + ((target_code_size) - 4),
1952 10000, arm_algo);
1953 if (retval != ERROR_OK)
1954 break;
1955
1956 status = buf_get_u32(reg_params[5].value, 0, 32);
1957 if (status != 0x80) {
1958 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1959 retval = ERROR_FLASH_OPERATION_FAILED;
1960 break;
1961 }
1962
1963 buffer += thisrun_count;
1964 address += thisrun_count;
1965 count -= thisrun_count;
1966 }
1967
1968 target_free_all_working_areas(target);
1969
1970 destroy_reg_param(&reg_params[0]);
1971 destroy_reg_param(&reg_params[1]);
1972 destroy_reg_param(&reg_params[2]);
1973 destroy_reg_param(&reg_params[3]);
1974 destroy_reg_param(&reg_params[4]);
1975 destroy_reg_param(&reg_params[5]);
1976 destroy_reg_param(&reg_params[6]);
1977 destroy_reg_param(&reg_params[7]);
1978 destroy_reg_param(&reg_params[8]);
1979 destroy_reg_param(&reg_params[9]);
1980
1981 return retval;
1982 }
1983
1984 static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1985 {
1986 int retval;
1987 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1988 struct target *target = bank->target;
1989
1990 cfi_intel_clear_status_register(bank);
1991 retval = cfi_send_command(bank, 0x40, address);
1992 if (retval != ERROR_OK)
1993 return retval;
1994
1995 retval = target_write_memory(target, address, bank->bus_width, 1, word);
1996 if (retval != ERROR_OK)
1997 return retval;
1998
1999 uint8_t status;
2000 retval = cfi_intel_wait_status_busy(bank, cfi_info->word_write_timeout, &status);
2001 if (retval != ERROR_OK)
2002 return retval;
2003 if (status != 0x80) {
2004 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2005 if (retval != ERROR_OK)
2006 return retval;
2007
2008 LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address 0x%" PRIx32,
2009 bank->base, address);
2010 return ERROR_FLASH_OPERATION_FAILED;
2011 }
2012
2013 return ERROR_OK;
2014 }
2015
2016 static int cfi_intel_write_words(struct flash_bank *bank, const uint8_t *word,
2017 uint32_t wordcount, uint32_t address)
2018 {
2019 int retval;
2020 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2021 struct target *target = bank->target;
2022
2023 /* Calculate buffer size and boundary mask
2024 * buffersize is (buffer size per chip) * (number of chips)
2025 * bufferwsize is buffersize in words */
2026 uint32_t buffersize =
2027 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2028 uint32_t buffermask = buffersize-1;
2029 uint32_t bufferwsize = buffersize / bank->bus_width;
2030
2031 /* Check for valid range */
2032 if (address & buffermask) {
2033 LOG_ERROR("Write address at base 0x%" PRIx32 ", address 0x%" PRIx32
2034 " not aligned to 2^%d boundary",
2035 bank->base, address, cfi_info->max_buf_write_size);
2036 return ERROR_FLASH_OPERATION_FAILED;
2037 }
2038
2039 /* Check for valid size */
2040 if (wordcount > bufferwsize) {
2041 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32,
2042 wordcount, buffersize);
2043 return ERROR_FLASH_OPERATION_FAILED;
2044 }
2045
2046 /* Write to flash buffer */
2047 cfi_intel_clear_status_register(bank);
2048
2049 /* Initiate buffer operation _*/
2050 retval = cfi_send_command(bank, 0xe8, address);
2051 if (retval != ERROR_OK)
2052 return retval;
2053 uint8_t status;
2054 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2055 if (retval != ERROR_OK)
2056 return retval;
2057 if (status != 0x80) {
2058 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2059 if (retval != ERROR_OK)
2060 return retval;
2061
2062 LOG_ERROR(
2063 "couldn't start buffer write operation at base 0x%" PRIx32 ", address 0x%" PRIx32,
2064 bank->base,
2065 address);
2066 return ERROR_FLASH_OPERATION_FAILED;
2067 }
2068
2069 /* Write buffer wordcount-1 and data words */
2070 retval = cfi_send_command(bank, bufferwsize-1, address);
2071 if (retval != ERROR_OK)
2072 return retval;
2073
2074 retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word);
2075 if (retval != ERROR_OK)
2076 return retval;
2077
2078 /* Commit write operation */
2079 retval = cfi_send_command(bank, 0xd0, address);
2080 if (retval != ERROR_OK)
2081 return retval;
2082
2083 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2084 if (retval != ERROR_OK)
2085 return retval;
2086
2087 if (status != 0x80) {
2088 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2089 if (retval != ERROR_OK)
2090 return retval;
2091
2092 LOG_ERROR("Buffer write at base 0x%" PRIx32
2093 ", address 0x%" PRIx32 " failed.", bank->base, address);
2094 return ERROR_FLASH_OPERATION_FAILED;
2095 }
2096
2097 return ERROR_OK;
2098 }
2099
2100 static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2101 {
2102 int retval;
2103 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2104 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2105 struct target *target = bank->target;
2106
2107 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
2108 if (retval != ERROR_OK)
2109 return retval;
2110
2111 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
2112 if (retval != ERROR_OK)
2113 return retval;
2114
2115 retval = cfi_send_command(bank, 0xa0, flash_address(bank, 0, pri_ext->_unlock1));
2116 if (retval != ERROR_OK)
2117 return retval;
2118
2119 retval = target_write_memory(target, address, bank->bus_width, 1, word);
2120 if (retval != ERROR_OK)
2121 return retval;
2122
2123 if (cfi_spansion_wait_status_busy(bank, cfi_info->word_write_timeout) != ERROR_OK) {
2124 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
2125 if (retval != ERROR_OK)
2126 return retval;
2127
2128 LOG_ERROR("couldn't write word at base 0x%" PRIx32
2129 ", address 0x%" PRIx32, bank->base, address);
2130 return ERROR_FLASH_OPERATION_FAILED;
2131 }
2132
2133 return ERROR_OK;
2134 }
2135
2136 static int cfi_spansion_write_words(struct flash_bank *bank, const uint8_t *word,
2137 uint32_t wordcount, uint32_t address)
2138 {
2139 int retval;
2140 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2141 struct target *target = bank->target;
2142 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2143
2144 /* Calculate buffer size and boundary mask
2145 * buffersize is (buffer size per chip) * (number of chips)
2146 * bufferwsize is buffersize in words */
2147 uint32_t buffersize =
2148 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2149 uint32_t buffermask = buffersize-1;
2150 uint32_t bufferwsize = buffersize / bank->bus_width;
2151
2152 /* Check for valid range */
2153 if (address & buffermask) {
2154 LOG_ERROR("Write address at base 0x%" PRIx32
2155 ", address 0x%" PRIx32 " not aligned to 2^%d boundary",
2156 bank->base, address, cfi_info->max_buf_write_size);
2157 return ERROR_FLASH_OPERATION_FAILED;
2158 }
2159
2160 /* Check for valid size */
2161 if (wordcount > bufferwsize) {
2162 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %"
2163 PRId32, wordcount, buffersize);
2164 return ERROR_FLASH_OPERATION_FAILED;
2165 }
2166
2167 /* Unlock */
2168 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
2169 if (retval != ERROR_OK)
2170 return retval;
2171
2172 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
2173 if (retval != ERROR_OK)
2174 return retval;
2175
2176 /* Buffer load command */
2177 retval = cfi_send_command(bank, 0x25, address);
2178 if (retval != ERROR_OK)
2179 return retval;
2180
2181 /* Write buffer wordcount-1 and data words */
2182 retval = cfi_send_command(bank, bufferwsize-1, address);
2183 if (retval != ERROR_OK)
2184 return retval;
2185
2186 retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word);
2187 if (retval != ERROR_OK)
2188 return retval;
2189
2190 /* Commit write operation */
2191 retval = cfi_send_command(bank, 0x29, address);
2192 if (retval != ERROR_OK)
2193 return retval;
2194
2195 if (cfi_spansion_wait_status_busy(bank, cfi_info->buf_write_timeout) != ERROR_OK) {
2196 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
2197 if (retval != ERROR_OK)
2198 return retval;
2199
2200 LOG_ERROR("couldn't write block at base 0x%" PRIx32
2201 ", address 0x%" PRIx32 ", size 0x%" PRIx32, bank->base, address,
2202 bufferwsize);
2203 return ERROR_FLASH_OPERATION_FAILED;
2204 }
2205
2206 return ERROR_OK;
2207 }
2208
2209 static int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2210 {
2211 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2212
2213 switch (cfi_info->pri_id) {
2214 case 1:
2215 case 3:
2216 return cfi_intel_write_word(bank, word, address);
2217 break;
2218 case 2:
2219 return cfi_spansion_write_word(bank, word, address);
2220 break;
2221 default:
2222 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2223 break;
2224 }
2225
2226 return ERROR_FLASH_OPERATION_FAILED;
2227 }
2228
2229 static int cfi_write_words(struct flash_bank *bank, const uint8_t *word,
2230 uint32_t wordcount, uint32_t address)
2231 {
2232 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2233
2234 if (cfi_info->buf_write_timeout_typ == 0) {
2235 /* buffer writes are not supported */
2236 LOG_DEBUG("Buffer Writes Not Supported");
2237 return ERROR_FLASH_OPER_UNSUPPORTED;
2238 }
2239
2240 switch (cfi_info->pri_id) {
2241 case 1:
2242 case 3:
2243 return cfi_intel_write_words(bank, word, wordcount, address);
2244 break;
2245 case 2:
2246 return cfi_spansion_write_words(bank, word, wordcount, address);
2247 break;
2248 default:
2249 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2250 break;
2251 }
2252
2253 return ERROR_FLASH_OPERATION_FAILED;
2254 }
2255
2256 static int cfi_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
2257 {
2258 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2259 struct target *target = bank->target;
2260 uint32_t address = bank->base + offset;
2261 uint32_t read_p;
2262 int align; /* number of unaligned bytes */
2263 uint8_t current_word[CFI_MAX_BUS_WIDTH];
2264 int i;
2265 int retval;
2266
2267 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2268 (int)count, (unsigned)offset);
2269
2270 if (bank->target->state != TARGET_HALTED) {
2271 LOG_ERROR("Target not halted");
2272 return ERROR_TARGET_NOT_HALTED;
2273 }
2274
2275 if (offset + count > bank->size)
2276 return ERROR_FLASH_DST_OUT_OF_BANK;
2277
2278 if (cfi_info->qry[0] != 'Q')
2279 return ERROR_FLASH_BANK_NOT_PROBED;
2280
2281 /* start at the first byte of the first word (bus_width size) */
2282 read_p = address & ~(bank->bus_width - 1);
2283 align = address - read_p;
2284 if (align != 0) {
2285 LOG_INFO("Fixup %d unaligned read head bytes", align);
2286
2287 /* read a complete word from flash */
2288 retval = target_read_memory(target, read_p, bank->bus_width, 1, current_word);
2289 if (retval != ERROR_OK)
2290 return retval;
2291
2292 /* take only bytes we need */
2293 for (i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2294 *buffer++ = current_word[i];
2295
2296 read_p += bank->bus_width;
2297 }
2298
2299 align = count / bank->bus_width;
2300 if (align) {
2301 retval = target_read_memory(target, read_p, bank->bus_width, align, buffer);
2302 if (retval != ERROR_OK)
2303 return retval;
2304
2305 read_p += align * bank->bus_width;
2306 buffer += align * bank->bus_width;
2307 count -= align * bank->bus_width;
2308 }
2309
2310 if (count) {
2311 LOG_INFO("Fixup %" PRIu32 " unaligned read tail bytes", count);
2312
2313 /* read a complete word from flash */
2314 retval = target_read_memory(target, read_p, bank->bus_width, 1, current_word);
2315 if (retval != ERROR_OK)
2316 return retval;
2317
2318 /* take only bytes we need */
2319 for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2320 *buffer++ = current_word[i];
2321 }
2322
2323 return ERROR_OK;
2324 }
2325
2326 static int cfi_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count)
2327 {
2328 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2329 struct target *target = bank->target;
2330 uint32_t address = bank->base + offset; /* address of first byte to be programmed */
2331 uint32_t write_p;
2332 int align; /* number of unaligned bytes */
2333 int blk_count; /* number of bus_width bytes for block copy */
2334 uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being
2335 *programmed */
2336 int i;
2337 int retval;
2338
2339 if (bank->target->state != TARGET_HALTED) {
2340 LOG_ERROR("Target not halted");
2341 return ERROR_TARGET_NOT_HALTED;
2342 }
2343
2344 if (offset + count > bank->size)
2345 return ERROR_FLASH_DST_OUT_OF_BANK;
2346
2347 if (cfi_info->qry[0] != 'Q')
2348 return ERROR_FLASH_BANK_NOT_PROBED;
2349
2350 /* start at the first byte of the first word (bus_width size) */
2351 write_p = address & ~(bank->bus_width - 1);
2352 align = address - write_p;
2353 if (align != 0) {
2354 LOG_INFO("Fixup %d unaligned head bytes", align);
2355
2356 /* read a complete word from flash */
2357 retval = target_read_memory(target, write_p, bank->bus_width, 1, current_word);
2358 if (retval != ERROR_OK)
2359 return retval;
2360
2361 /* replace only bytes that must be written */
2362 for (i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2363 current_word[i] = *buffer++;
2364
2365 retval = cfi_write_word(bank, current_word, write_p);
2366 if (retval != ERROR_OK)
2367 return retval;
2368 write_p += bank->bus_width;
2369 }
2370
2371 /* handle blocks of bus_size aligned bytes */
2372 blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
2373 switch (cfi_info->pri_id) {
2374 /* try block writes (fails without working area) */
2375 case 1:
2376 case 3:
2377 retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
2378 break;
2379 case 2:
2380 retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
2381 break;
2382 default:
2383 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2384 retval = ERROR_FLASH_OPERATION_FAILED;
2385 break;
2386 }
2387 if (retval == ERROR_OK) {
2388 /* Increment pointers and decrease count on succesful block write */
2389 buffer += blk_count;
2390 write_p += blk_count;
2391 count -= blk_count;
2392 } else {
2393 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
2394 /* Calculate buffer size and boundary mask
2395 * buffersize is (buffer size per chip) * (number of chips)
2396 * bufferwsize is buffersize in words */
2397 uint32_t buffersize =
2398 (1UL <<
2399 cfi_info->max_buf_write_size) *
2400 (bank->bus_width / bank->chip_width);
2401 uint32_t buffermask = buffersize-1;
2402 uint32_t bufferwsize = buffersize / bank->bus_width;
2403
2404 /* fall back to memory writes */
2405 while (count >= (uint32_t)bank->bus_width) {
2406 int fallback;
2407 if ((write_p & 0xff) == 0) {
2408 LOG_INFO("Programming at 0x%08" PRIx32 ", count 0x%08"
2409 PRIx32 " bytes remaining", write_p, count);
2410 }
2411 fallback = 1;
2412 if ((bufferwsize > 0) && (count >= buffersize) &&
2413 !(write_p & buffermask)) {
2414 retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
2415 if (retval == ERROR_OK) {
2416 buffer += buffersize;
2417 write_p += buffersize;
2418 count -= buffersize;
2419 fallback = 0;
2420 } else if (retval != ERROR_FLASH_OPER_UNSUPPORTED)
2421 return retval;
2422 }
2423 /* try the slow way? */
2424 if (fallback) {
2425 for (i = 0; i < bank->bus_width; i++)
2426 current_word[i] = *buffer++;
2427
2428 retval = cfi_write_word(bank, current_word, write_p);
2429 if (retval != ERROR_OK)
2430 return retval;
2431
2432 write_p += bank->bus_width;
2433 count -= bank->bus_width;
2434 }
2435 }
2436 } else
2437 return retval;
2438 }
2439
2440 /* return to read array mode, so we can read from flash again for padding */
2441 retval = cfi_reset(bank);
2442 if (retval != ERROR_OK)
2443 return retval;
2444
2445 /* handle unaligned tail bytes */
2446 if (count > 0) {
2447 LOG_INFO("Fixup %" PRId32 " unaligned tail bytes", count);
2448
2449 /* read a complete word from flash */
2450 retval = target_read_memory(target, write_p, bank->bus_width, 1, current_word);
2451 if (retval != ERROR_OK)
2452 return retval;
2453
2454 /* replace only bytes that must be written */
2455 for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2456 current_word[i] = *buffer++;
2457
2458 retval = cfi_write_word(bank, current_word, write_p);
2459 if (retval != ERROR_OK)
2460 return retval;
2461 }
2462
2463 /* return to read array mode */
2464 return cfi_reset(bank);
2465 }
2466
2467 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, const void *param)
2468 {
2469 (void) param;
2470 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2471 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2472
2473 pri_ext->_reversed_geometry = 1;
2474 }
2475
2476 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, const void *param)
2477 {
2478 int i;
2479 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2480 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2481 (void) param;
2482
2483 if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3)) {
2484 LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
2485
2486 for (i = 0; i < cfi_info->num_erase_regions / 2; i++) {
2487 int j = (cfi_info->num_erase_regions - 1) - i;
2488 uint32_t swap;
2489
2490 swap = cfi_info->erase_region_info[i];
2491 cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
2492 cfi_info->erase_region_info[j] = swap;
2493 }
2494 }
2495 }
2496
2497 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, const void *param)
2498 {
2499 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2500 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2501 const struct cfi_unlock_addresses *unlock_addresses = param;
2502
2503 pri_ext->_unlock1 = unlock_addresses->unlock1;
2504 pri_ext->_unlock2 = unlock_addresses->unlock2;
2505 }
2506
2507 static void cfi_fixup_0002_polling_bits(struct flash_bank *bank, const void *param)
2508 {
2509 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2510 const int *status_poll_mask = param;
2511
2512 cfi_info->status_poll_mask = *status_poll_mask;
2513 }
2514
2515
2516 static int cfi_query_string(struct flash_bank *bank, int address)
2517 {
2518 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2519 int retval;
2520
2521 retval = cfi_send_command(bank, 0x98, flash_address(bank, 0, address));
2522 if (retval != ERROR_OK)
2523 return retval;
2524
2525 retval = cfi_query_u8(bank, 0, 0x10, &cfi_info->qry[0]);
2526 if (retval != ERROR_OK)
2527 return retval;
2528 retval = cfi_query_u8(bank, 0, 0x11, &cfi_info->qry[1]);
2529 if (retval != ERROR_OK)
2530 return retval;
2531 retval = cfi_query_u8(bank, 0, 0x12, &cfi_info->qry[2]);
2532 if (retval != ERROR_OK)
2533 return retval;
2534
2535 LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x",
2536 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
2537
2538 if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y')) {
2539 retval = cfi_reset(bank);
2540 if (retval != ERROR_OK)
2541 return retval;
2542 LOG_ERROR("Could not probe bank: no QRY");
2543 return ERROR_FLASH_BANK_INVALID;
2544 }
2545
2546 return ERROR_OK;
2547 }
2548
2549 static int cfi_probe(struct flash_bank *bank)
2550 {
2551 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2552 struct target *target = bank->target;
2553 int num_sectors = 0;
2554 int i;
2555 int sector = 0;
2556 uint32_t unlock1 = 0x555;
2557 uint32_t unlock2 = 0x2aa;
2558 int retval;
2559 uint8_t value_buf0[CFI_MAX_BUS_WIDTH], value_buf1[CFI_MAX_BUS_WIDTH];
2560
2561 if (bank->target->state != TARGET_HALTED) {
2562 LOG_ERROR("Target not halted");
2563 return ERROR_TARGET_NOT_HALTED;
2564 }
2565
2566 cfi_info->probed = 0;
2567 cfi_info->num_erase_regions = 0;
2568 if (bank->sectors) {
2569 free(bank->sectors);
2570 bank->sectors = NULL;
2571 }
2572 if (cfi_info->erase_region_info) {
2573 free(cfi_info->erase_region_info);
2574 cfi_info->erase_region_info = NULL;
2575 }
2576
2577 /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
2578 * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
2579 */
2580 if (cfi_info->jedec_probe) {
2581 unlock1 = 0x5555;
2582 unlock2 = 0x2aaa;
2583 }
2584
2585 /* switch to read identifier codes mode ("AUTOSELECT") */
2586 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, unlock1));
2587 if (retval != ERROR_OK)
2588 return retval;
2589 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, unlock2));
2590 if (retval != ERROR_OK)
2591 return retval;
2592 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, unlock1));
2593 if (retval != ERROR_OK)
2594 return retval;
2595
2596 retval = target_read_memory(target, flash_address(bank, 0, 0x00),
2597 bank->bus_width, 1, value_buf0);
2598 if (retval != ERROR_OK)
2599 return retval;
2600 retval = target_read_memory(target, flash_address(bank, 0, 0x01),
2601 bank->bus_width, 1, value_buf1);
2602 if (retval != ERROR_OK)
2603 return retval;
2604 switch (bank->chip_width) {
2605 case 1:
2606 cfi_info->manufacturer = *value_buf0;
2607 cfi_info->device_id = *value_buf1;
2608 break;
2609 case 2:
2610 cfi_info->manufacturer = target_buffer_get_u16(target, value_buf0);
2611 cfi_info->device_id = target_buffer_get_u16(target, value_buf1);
2612 break;
2613 case 4:
2614 cfi_info->manufacturer = target_buffer_get_u32(target, value_buf0);
2615 cfi_info->device_id = target_buffer_get_u32(target, value_buf1);
2616 break;
2617 default:
2618 LOG_ERROR("Unsupported bank chipwidth %d, can't probe memory",
2619 bank->chip_width);
2620 return ERROR_FLASH_OPERATION_FAILED;
2621 }
2622
2623 LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x",
2624 cfi_info->manufacturer, cfi_info->device_id);
2625 /* switch back to read array mode */
2626 retval = cfi_reset(bank);
2627 if (retval != ERROR_OK)
2628 return retval;
2629
2630 /* check device/manufacturer ID for known non-CFI flashes. */
2631 cfi_fixup_non_cfi(bank);
2632
2633 /* query only if this is a CFI compatible flash,
2634 * otherwise the relevant info has already been filled in
2635 */
2636 if (cfi_info->not_cfi == 0) {
2637 /* enter CFI query mode
2638 * according to JEDEC Standard No. 68.01,
2639 * a single bus sequence with address = 0x55, data = 0x98 should put
2640 * the device into CFI query mode.
2641 *
2642 * SST flashes clearly violate this, and we will consider them incompatible for now
2643 */
2644
2645 retval = cfi_query_string(bank, 0x55);
2646 if (retval != ERROR_OK) {
2647 /*
2648 * Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
2649 * be harmless enough:
2650 *
2651 * http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
2652 */
2653 LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
2654 retval = cfi_query_string(bank, 0x555);
2655 }
2656 if (retval != ERROR_OK)
2657 return retval;
2658
2659 retval = cfi_query_u16(bank, 0, 0x13, &cfi_info->pri_id);
2660 if (retval != ERROR_OK)
2661 return retval;
2662 retval = cfi_query_u16(bank, 0, 0x15, &cfi_info->pri_addr);
2663 if (retval != ERROR_OK)
2664 return retval;
2665 retval = cfi_query_u16(bank, 0, 0x17, &cfi_info->alt_id);
2666 if (retval != ERROR_OK)
2667 return retval;
2668 retval = cfi_query_u16(bank, 0, 0x19, &cfi_info->alt_addr);
2669 if (retval != ERROR_OK)
2670 return retval;
2671
2672 LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: "
2673 "0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1],
2674 cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr,
2675 cfi_info->alt_id, cfi_info->alt_addr);
2676
2677 retval = cfi_query_u8(bank, 0, 0x1b, &cfi_info->vcc_min);
2678 if (retval != ERROR_OK)
2679 return retval;
2680 retval = cfi_query_u8(bank, 0, 0x1c, &cfi_info->vcc_max);
2681 if (retval != ERROR_OK)
2682 return retval;
2683 retval = cfi_query_u8(bank, 0, 0x1d, &cfi_info->vpp_min);
2684 if (retval != ERROR_OK)
2685 return retval;
2686 retval = cfi_query_u8(bank, 0, 0x1e, &cfi_info->vpp_max);
2687 if (retval != ERROR_OK)
2688 return retval;
2689
2690 retval = cfi_query_u8(bank, 0, 0x1f, &cfi_info->word_write_timeout_typ);
2691 if (retval != ERROR_OK)
2692 return retval;
2693 retval = cfi_query_u8(bank, 0, 0x20, &cfi_info->buf_write_timeout_typ);
2694 if (retval != ERROR_OK)
2695 return retval;
2696 retval = cfi_query_u8(bank, 0, 0x21, &cfi_info->block_erase_timeout_typ);
2697 if (retval != ERROR_OK)
2698 return retval;
2699 retval = cfi_query_u8(bank, 0, 0x22, &cfi_info->chip_erase_timeout_typ);
2700 if (retval != ERROR_OK)
2701 return retval;
2702 retval = cfi_query_u8(bank, 0, 0x23, &cfi_info->word_write_timeout_max);
2703 if (retval != ERROR_OK)
2704 return retval;
2705 retval = cfi_query_u8(bank, 0, 0x24, &cfi_info->buf_write_timeout_max);
2706 if (retval != ERROR_OK)
2707 return retval;
2708 retval = cfi_query_u8(bank, 0, 0x25, &cfi_info->block_erase_timeout_max);
2709 if (retval != ERROR_OK)
2710 return retval;
2711 retval = cfi_query_u8(bank, 0, 0x26, &cfi_info->chip_erase_timeout_max);
2712 if (retval != ERROR_OK)
2713 return retval;
2714
2715 uint8_t data;
2716 retval = cfi_query_u8(bank, 0, 0x27, &data);
2717 if (retval != ERROR_OK)
2718 return retval;
2719 cfi_info->dev_size = 1 << data;
2720
2721 retval = cfi_query_u16(bank, 0, 0x28, &cfi_info->interface_desc);
2722 if (retval != ERROR_OK)
2723 return retval;
2724 retval = cfi_query_u16(bank, 0, 0x2a, &cfi_info->max_buf_write_size);
2725 if (retval != ERROR_OK)
2726 return retval;
2727 retval = cfi_query_u8(bank, 0, 0x2c, &cfi_info->num_erase_regions);
2728 if (retval != ERROR_OK)
2729 return retval;
2730
2731 LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: 0x%x",
2732 cfi_info->dev_size, cfi_info->interface_desc,
2733 (1 << cfi_info->max_buf_write_size));
2734
2735 if (cfi_info->num_erase_regions) {
2736 cfi_info->erase_region_info = malloc(sizeof(*cfi_info->erase_region_info)
2737 * cfi_info->num_erase_regions);
2738 for (i = 0; i < cfi_info->num_erase_regions; i++) {
2739 retval = cfi_query_u32(bank,
2740 0,
2741 0x2d + (4 * i),
2742 &cfi_info->erase_region_info[i]);
2743 if (retval != ERROR_OK)
2744 return retval;
2745 LOG_DEBUG(
2746 "erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "",
2747 i,
2748 (cfi_info->erase_region_info[i] & 0xffff) + 1,
2749 (cfi_info->erase_region_info[i] >> 16) * 256);
2750 }
2751 } else
2752 cfi_info->erase_region_info = NULL;
2753
2754 /* We need to read the primary algorithm extended query table before calculating
2755 * the sector layout to be able to apply fixups
2756 */
2757 switch (cfi_info->pri_id) {
2758 /* Intel command set (standard and extended) */
2759 case 0x0001:
2760 case 0x0003:
2761 cfi_read_intel_pri_ext(bank);
2762 break;
2763 /* AMD/Spansion, Atmel, ... command set */
2764 case 0x0002:
2765 cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /*
2766 *default
2767 *for
2768 *all
2769 *CFI
2770 *flashs
2771 **/
2772 cfi_read_0002_pri_ext(bank);
2773 break;
2774 default:
2775 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2776 break;
2777 }
2778
2779 /* return to read array mode
2780 * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
2781 */
2782 retval = cfi_reset(bank);
2783 if (retval != ERROR_OK)
2784 return retval;
2785 } /* end CFI case */
2786
2787 LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
2788 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2789 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2790 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2791 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2792
2793 LOG_DEBUG("typ. word write timeout: %u us, typ. buf write timeout: %u us, "
2794 "typ. block erase timeout: %u ms, typ. chip erase timeout: %u ms",
2795 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
2796 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
2797
2798 LOG_DEBUG("max. word write timeout: %u us, max. buf write timeout: %u us, "
2799 "max. block erase timeout: %u ms, max. chip erase timeout: %u ms",
2800 (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2801 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2802 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2803 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2804
2805 /* convert timeouts to real values in ms */
2806 cfi_info->word_write_timeout = DIV_ROUND_UP((1L << cfi_info->word_write_timeout_typ) *
2807 (1L << cfi_info->word_write_timeout_max), 1000);
2808 cfi_info->buf_write_timeout = DIV_ROUND_UP((1L << cfi_info->buf_write_timeout_typ) *
2809 (1L << cfi_info->buf_write_timeout_max), 1000);
2810 cfi_info->block_erase_timeout = (1L << cfi_info->block_erase_timeout_typ) *
2811 (1L << cfi_info->block_erase_timeout_max);
2812 cfi_info->chip_erase_timeout = (1L << cfi_info->chip_erase_timeout_typ) *
2813 (1L << cfi_info->chip_erase_timeout_max);
2814
2815 LOG_DEBUG("calculated word write timeout: %u ms, buf write timeout: %u ms, "
2816 "block erase timeout: %u ms, chip erase timeout: %u ms",
2817 cfi_info->word_write_timeout, cfi_info->buf_write_timeout,
2818 cfi_info->block_erase_timeout, cfi_info->chip_erase_timeout);
2819
2820 /* apply fixups depending on the primary command set */
2821 switch (cfi_info->pri_id) {
2822 /* Intel command set (standard and extended) */
2823 case 0x0001:
2824 case 0x0003:
2825 cfi_fixup(bank, cfi_0001_fixups);
2826 break;
2827 /* AMD/Spansion, Atmel, ... command set */
2828 case 0x0002:
2829 cfi_fixup(bank, cfi_0002_fixups);
2830 break;
2831 default:
2832 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2833 break;
2834 }
2835
2836 if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size) {
2837 LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32
2838 " size flash was found", bank->size, cfi_info->dev_size);
2839 }
2840
2841 if (cfi_info->num_erase_regions == 0) {
2842 /* a device might have only one erase block, spanning the whole device */
2843 bank->num_sectors = 1;
2844 bank->sectors = malloc(sizeof(struct flash_sector));
2845
2846 bank->sectors[sector].offset = 0x0;
2847 bank->sectors[sector].size = bank->size;
2848 bank->sectors[sector].is_erased = -1;
2849 bank->sectors[sector].is_protected = -1;
2850 } else {
2851 uint32_t offset = 0;
2852
2853 for (i = 0; i < cfi_info->num_erase_regions; i++)
2854 num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
2855
2856 bank->num_sectors = num_sectors;
2857 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
2858
2859 for (i = 0; i < cfi_info->num_erase_regions; i++) {
2860 uint32_t j;
2861 for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++) {
2862 bank->sectors[sector].offset = offset;
2863 bank->sectors[sector].size =
2864 ((cfi_info->erase_region_info[i] >> 16) * 256)
2865 * bank->bus_width / bank->chip_width;
2866 offset += bank->sectors[sector].size;
2867 bank->sectors[sector].is_erased = -1;
2868 bank->sectors[sector].is_protected = -1;
2869 sector++;
2870 }
2871 }
2872 if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width)) {
2873 LOG_WARNING(
2874 "CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "", \
2875 (cfi_info->dev_size * bank->bus_width / bank->chip_width),
2876 offset);
2877 }
2878 }
2879
2880 cfi_info->probed = 1;
2881
2882 return ERROR_OK;
2883 }
2884
2885 static int cfi_auto_probe(struct flash_bank *bank)
2886 {
2887 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2888 if (cfi_info->probed)
2889 return ERROR_OK;
2890 return cfi_probe(bank);
2891 }
2892
2893 static int cfi_intel_protect_check(struct flash_bank *bank)
2894 {
2895 int retval;
2896 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2897 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
2898 int i;
2899
2900 /* check if block lock bits are supported on this device */
2901 if (!(pri_ext->blk_status_reg_mask & 0x1))
2902 return ERROR_FLASH_OPERATION_FAILED;
2903
2904 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55));
2905 if (retval != ERROR_OK)
2906 return retval;
2907
2908 for (i = 0; i < bank->num_sectors; i++) {
2909 uint8_t block_status;
2910 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2911 if (retval != ERROR_OK)
2912 return retval;
2913
2914 if (block_status & 1)
2915 bank->sectors[i].is_protected = 1;
2916 else
2917 bank->sectors[i].is_protected = 0;
2918 }
2919
2920 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2921 }
2922
2923 static int cfi_spansion_protect_check(struct flash_bank *bank)
2924 {
2925 int retval;
2926 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2927 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2928 int i;
2929
2930 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
2931 if (retval != ERROR_OK)
2932 return retval;
2933
2934 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
2935 if (retval != ERROR_OK)
2936 return retval;
2937
2938 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, pri_ext->_unlock1));
2939 if (retval != ERROR_OK)
2940 return retval;
2941
2942 for (i = 0; i < bank->num_sectors; i++) {
2943 uint8_t block_status;
2944 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2945 if (retval != ERROR_OK)
2946 return retval;
2947
2948 if (block_status & 1)
2949 bank->sectors[i].is_protected = 1;
2950 else
2951 bank->sectors[i].is_protected = 0;
2952 }
2953
2954 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
2955 }
2956
2957 static int cfi_protect_check(struct flash_bank *bank)
2958 {
2959 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2960
2961 if (bank->target->state != TARGET_HALTED) {
2962 LOG_ERROR("Target not halted");
2963 return ERROR_TARGET_NOT_HALTED;
2964 }
2965
2966 if (cfi_info->qry[0] != 'Q')
2967 return ERROR_FLASH_BANK_NOT_PROBED;
2968
2969 switch (cfi_info->pri_id) {
2970 case 1:
2971 case 3:
2972 return cfi_intel_protect_check(bank);
2973 break;
2974 case 2:
2975 return cfi_spansion_protect_check(bank);
2976 break;
2977 default:
2978 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2979 break;
2980 }
2981
2982 return ERROR_OK;
2983 }
2984
2985 static int get_cfi_info(struct flash_bank *bank, char *buf, int buf_size)
2986 {
2987 int printed;
2988 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2989
2990 if (cfi_info->qry[0] == 0xff) {
2991 snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n");
2992 return ERROR_OK;
2993 }
2994
2995 if (cfi_info->not_cfi == 0)
2996 printed = snprintf(buf, buf_size, "\nCFI flash: ");
2997 else
2998 printed = snprintf(buf, buf_size, "\nnon-CFI flash: ");
2999 buf += printed;
3000 buf_size -= printed;
3001
3002 printed = snprintf(buf, buf_size, "mfr: 0x%4.4x, id:0x%4.4x\n\n",
3003 cfi_info->manufacturer, cfi_info->device_id);
3004 buf += printed;
3005 buf_size -= printed;
3006
3007 printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: "
3008 "0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n",
3009 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2],
3010 cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
3011 buf += printed;
3012 buf_size -= printed;
3013
3014 printed = snprintf(buf, buf_size, "Vcc min: %x.%x, Vcc max: %x.%x, "
3015 "Vpp min: %u.%x, Vpp max: %u.%x\n",
3016 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
3017 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
3018 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
3019 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
3020 buf += printed;
3021 buf_size -= printed;
3022
3023 printed = snprintf(buf, buf_size, "typ. word write timeout: %u us, "
3024 "typ. buf write timeout: %u us, "
3025 "typ. block erase timeout: %u ms, "
3026 "typ. chip erase timeout: %u ms\n",
3027 1 << cfi_info->word_write_timeout_typ,
3028 1 << cfi_info->buf_write_timeout_typ,
3029 1 << cfi_info->block_erase_timeout_typ,
3030 1 << cfi_info->chip_erase_timeout_typ);
3031 buf += printed;
3032 buf_size -= printed;
3033
3034 printed = snprintf(buf,
3035 buf_size,
3036 "max. word write timeout: %u us, "
3037 "max. buf write timeout: %u us, max. "
3038 "block erase timeout: %u ms, max. chip erase timeout: %u ms\n",
3039 (1 <<
3040 cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
3041 (1 <<
3042 cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
3043 (1 <<
3044 cfi_info->block_erase_timeout_max) *
3045 (1 << cfi_info->block_erase_timeout_typ),
3046 (1 <<
3047 cfi_info->chip_erase_timeout_max) *
3048 (1 << cfi_info->chip_erase_timeout_typ));
3049 buf += printed;
3050 buf_size -= printed;
3051
3052 printed = snprintf(buf, buf_size, "size: 0x%" PRIx32 ", interface desc: %i, "
3053 "max buffer write size: 0x%x\n",
3054 cfi_info->dev_size,
3055 cfi_info->interface_desc,
3056 1 << cfi_info->max_buf_write_size);
3057 buf += printed;
3058 buf_size -= printed;
3059
3060 switch (cfi_info->pri_id) {
3061 case 1:
3062 case 3:
3063 cfi_intel_info(bank, buf, buf_size);
3064 break;
3065 case 2:
3066 cfi_spansion_info(bank, buf, buf_size);
3067 break;
3068 default:
3069 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
3070 break;
3071 }
3072
3073 return ERROR_OK;
3074 }
3075
3076 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, const void *param)
3077 {
3078 struct cfi_flash_bank *cfi_info = bank->driver_priv;
3079
3080 /* disable write buffer for M29W128G */
3081 cfi_info->buf_write_timeout_typ = 0;
3082 }
3083
3084 struct flash_driver cfi_flash = {
3085 .name = "cfi",
3086 .flash_bank_command = cfi_flash_bank_command,
3087 .erase = cfi_erase,
3088 .protect = cfi_protect,
3089 .write = cfi_write,
3090 .read = cfi_read,
3091 .probe = cfi_probe,
3092 .auto_probe = cfi_auto_probe,
3093 /* FIXME: access flash at bus_width size */
3094 .erase_check = default_flash_blank_check,
3095 .protect_check = cfi_protect_check,
3096 .info = get_cfi_info,
3097 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)