flash/nor: make all working area pointers local
[openocd.git] / src / flash / nor / cfi.c
1 /***************************************************************************
2 * Copyright (C) 2005, 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * Copyright (C) 2009 Michael Schwingen *
5 * michael@schwingen.org *
6 * Copyright (C) 2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
7 * Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General Public License as published by *
11 * the Free Software Foundation; either version 2 of the License, or *
12 * (at your option) any later version. *
13 * *
14 * This program is distributed in the hope that it will be useful, *
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
17 * GNU General Public License for more details. *
18 * *
19 * You should have received a copy of the GNU General Public License *
20 * along with this program; if not, write to the *
21 * Free Software Foundation, Inc., *
22 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
23 ***************************************************************************/
24
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "imp.h"
30 #include "cfi.h"
31 #include "non_cfi.h"
32 #include <target/arm.h>
33 #include <target/arm7_9_common.h>
34 #include <target/armv7m.h>
35 #include <target/mips32.h>
36 #include <helper/binarybuffer.h>
37 #include <target/algorithm.h>
38
39 #define CFI_MAX_BUS_WIDTH 4
40 #define CFI_MAX_CHIP_WIDTH 4
41
42 /* defines internal maximum size for code fragment in cfi_intel_write_block() */
43 #define CFI_MAX_INTEL_CODESIZE 256
44
45 /* some id-types with specific handling */
46 #define AT49BV6416 0x00d6
47 #define AT49BV6416T 0x00d2
48
49 static struct cfi_unlock_addresses cfi_unlock_addresses[] = {
50 [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
51 [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
52 };
53
54 /* CFI fixups foward declarations */
55 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, void *param);
56 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, void *param);
57 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, void *param);
58 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, void *param);
59
60 /* fixup after reading cmdset 0002 primary query table */
61 static const struct cfi_fixup cfi_0002_fixups[] = {
62 {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses,
63 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
64 {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses,
65 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
66 {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses,
67 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
68 {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses,
69 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
70 {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses,
71 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
72 {CFI_MFR_SST, 0x274b, cfi_fixup_0002_unlock_addresses,
73 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
74 {CFI_MFR_SST, 0x236d, cfi_fixup_0002_unlock_addresses,
75 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
76 {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_reversed_erase_regions, NULL},
77 {CFI_MFR_ST, 0x22C4, cfi_fixup_reversed_erase_regions, NULL}, /* M29W160ET */
78 {CFI_MFR_FUJITSU, 0x22ea, cfi_fixup_0002_unlock_addresses,
79 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
80 {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses,
81 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
82 {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses,
83 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
84 {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses,
85 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
86 {CFI_MFR_EON, 0x225b, cfi_fixup_0002_unlock_addresses,
87 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
88 {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses,
89 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
90 {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
91 {CFI_MFR_ST, 0x227E, cfi_fixup_0002_write_buffer, NULL},/* M29W128G */
92 {0, 0, NULL, NULL}
93 };
94
95 /* fixup after reading cmdset 0001 primary query table */
96 static const struct cfi_fixup cfi_0001_fixups[] = {
97 {0, 0, NULL, NULL}
98 };
99
100 static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
101 {
102 struct cfi_flash_bank *cfi_info = bank->driver_priv;
103 const struct cfi_fixup *f;
104
105 for (f = fixups; f->fixup; f++) {
106 if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
107 ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
108 f->fixup(bank, f->param);
109 }
110 }
111
112 /* inline uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset) */
113 static inline uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset)
114 {
115 struct cfi_flash_bank *cfi_info = bank->driver_priv;
116
117 if (cfi_info->x16_as_x8)
118 offset *= 2;
119
120 /* while the sector list isn't built, only accesses to sector 0 work */
121 if (sector == 0)
122 return bank->base + offset * bank->bus_width;
123 else {
124 if (!bank->sectors) {
125 LOG_ERROR("BUG: sector list not yet built");
126 exit(-1);
127 }
128 return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
129 }
130 }
131
132 static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
133 {
134 int i;
135
136 /* clear whole buffer, to ensure bits that exceed the bus_width
137 * are set to zero
138 */
139 for (i = 0; i < CFI_MAX_BUS_WIDTH; i++)
140 cmd_buf[i] = 0;
141
142 if (bank->target->endianness == TARGET_LITTLE_ENDIAN) {
143 for (i = bank->bus_width; i > 0; i--)
144 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
145 } else {
146 for (i = 1; i <= bank->bus_width; i++)
147 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
148 }
149 }
150
151 static int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
152 {
153 uint8_t command[CFI_MAX_BUS_WIDTH];
154
155 cfi_command(bank, cmd, command);
156 return target_write_memory(bank->target, address, bank->bus_width, 1, command);
157 }
158
159 /* read unsigned 8-bit value from the bank
160 * flash banks are expected to be made of similar chips
161 * the query result should be the same for all
162 */
163 static int cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
164 {
165 struct target *target = bank->target;
166 uint8_t data[CFI_MAX_BUS_WIDTH];
167
168 int retval;
169 retval = target_read_memory(target, flash_address(bank, sector, offset),
170 bank->bus_width, 1, data);
171 if (retval != ERROR_OK)
172 return retval;
173
174 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
175 *val = data[0];
176 else
177 *val = data[bank->bus_width - 1];
178
179 return ERROR_OK;
180 }
181
182 /* read unsigned 8-bit value from the bank
183 * in case of a bank made of multiple chips,
184 * the individual values are ORed
185 */
186 static int cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
187 {
188 struct target *target = bank->target;
189 uint8_t data[CFI_MAX_BUS_WIDTH];
190 int i;
191
192 int retval;
193 retval = target_read_memory(target, flash_address(bank, sector, offset),
194 bank->bus_width, 1, data);
195 if (retval != ERROR_OK)
196 return retval;
197
198 if (bank->target->endianness == TARGET_LITTLE_ENDIAN) {
199 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
200 data[0] |= data[i];
201
202 *val = data[0];
203 } else {
204 uint8_t value = 0;
205 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
206 value |= data[bank->bus_width - 1 - i];
207
208 *val = value;
209 }
210 return ERROR_OK;
211 }
212
213 static int cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset, uint16_t *val)
214 {
215 struct target *target = bank->target;
216 struct cfi_flash_bank *cfi_info = bank->driver_priv;
217 uint8_t data[CFI_MAX_BUS_WIDTH * 2];
218 int retval;
219
220 if (cfi_info->x16_as_x8) {
221 uint8_t i;
222 for (i = 0; i < 2; i++) {
223 retval = target_read_memory(target, flash_address(bank, sector, offset + i),
224 bank->bus_width, 1, &data[i * bank->bus_width]);
225 if (retval != ERROR_OK)
226 return retval;
227 }
228 } else {
229 retval = target_read_memory(target, flash_address(bank, sector, offset),
230 bank->bus_width, 2, data);
231 if (retval != ERROR_OK)
232 return retval;
233 }
234
235 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
236 *val = data[0] | data[bank->bus_width] << 8;
237 else
238 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
239
240 return ERROR_OK;
241 }
242
243 static int cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset, uint32_t *val)
244 {
245 struct target *target = bank->target;
246 struct cfi_flash_bank *cfi_info = bank->driver_priv;
247 uint8_t data[CFI_MAX_BUS_WIDTH * 4];
248 int retval;
249
250 if (cfi_info->x16_as_x8) {
251 uint8_t i;
252 for (i = 0; i < 4; i++) {
253 retval = target_read_memory(target, flash_address(bank, sector, offset + i),
254 bank->bus_width, 1, &data[i * bank->bus_width]);
255 if (retval != ERROR_OK)
256 return retval;
257 }
258 } else {
259 retval = target_read_memory(target, flash_address(bank, sector, offset),
260 bank->bus_width, 4, data);
261 if (retval != ERROR_OK)
262 return retval;
263 }
264
265 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
266 *val = data[0] | data[bank->bus_width] << 8 |
267 data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
268 else
269 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8 |
270 data[(3 * bank->bus_width) - 1] << 16 |
271 data[(4 * bank->bus_width) - 1] << 24;
272
273 return ERROR_OK;
274 }
275
276 static int cfi_reset(struct flash_bank *bank)
277 {
278 struct cfi_flash_bank *cfi_info = bank->driver_priv;
279 int retval = ERROR_OK;
280
281 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
282 if (retval != ERROR_OK)
283 return retval;
284
285 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
286 if (retval != ERROR_OK)
287 return retval;
288
289 if (cfi_info->manufacturer == 0x20 &&
290 (cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E)) {
291 /* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state
292 * so we send an extra 0xF0 reset to fix the bug */
293 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x00));
294 if (retval != ERROR_OK)
295 return retval;
296 }
297
298 return retval;
299 }
300
301 static void cfi_intel_clear_status_register(struct flash_bank *bank)
302 {
303 cfi_send_command(bank, 0x50, flash_address(bank, 0, 0x0));
304 }
305
306 static int cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout, uint8_t *val)
307 {
308 uint8_t status;
309
310 int retval = ERROR_OK;
311
312 for (;; ) {
313 if (timeout-- < 0) {
314 LOG_ERROR("timeout while waiting for WSM to become ready");
315 return ERROR_FAIL;
316 }
317
318 retval = cfi_get_u8(bank, 0, 0x0, &status);
319 if (retval != ERROR_OK)
320 return retval;
321
322 if (status & 0x80)
323 break;
324
325 alive_sleep(1);
326 }
327
328 /* mask out bit 0 (reserved) */
329 status = status & 0xfe;
330
331 LOG_DEBUG("status: 0x%x", status);
332
333 if (status != 0x80) {
334 LOG_ERROR("status register: 0x%x", status);
335 if (status & 0x2)
336 LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
337 if (status & 0x4)
338 LOG_ERROR("Program suspended");
339 if (status & 0x8)
340 LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
341 if (status & 0x10)
342 LOG_ERROR("Program Error / Error in Setting Lock-Bit");
343 if (status & 0x20)
344 LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
345 if (status & 0x40)
346 LOG_ERROR("Block Erase Suspended");
347
348 cfi_intel_clear_status_register(bank);
349
350 retval = ERROR_FAIL;
351 }
352
353 *val = status;
354 return retval;
355 }
356
357 static int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
358 {
359 uint8_t status, oldstatus;
360 struct cfi_flash_bank *cfi_info = bank->driver_priv;
361 int retval;
362
363 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
364 if (retval != ERROR_OK)
365 return retval;
366
367 do {
368 retval = cfi_get_u8(bank, 0, 0x0, &status);
369
370 if (retval != ERROR_OK)
371 return retval;
372
373 if ((status ^ oldstatus) & 0x40) {
374 if (status & cfi_info->status_poll_mask & 0x20) {
375 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
376 if (retval != ERROR_OK)
377 return retval;
378 retval = cfi_get_u8(bank, 0, 0x0, &status);
379 if (retval != ERROR_OK)
380 return retval;
381 if ((status ^ oldstatus) & 0x40) {
382 LOG_ERROR("dq5 timeout, status: 0x%x", status);
383 return ERROR_FLASH_OPERATION_FAILED;
384 } else {
385 LOG_DEBUG("status: 0x%x", status);
386 return ERROR_OK;
387 }
388 }
389 } else {/* no toggle: finished, OK */
390 LOG_DEBUG("status: 0x%x", status);
391 return ERROR_OK;
392 }
393
394 oldstatus = status;
395 alive_sleep(1);
396 } while (timeout-- > 0);
397
398 LOG_ERROR("timeout, status: 0x%x", status);
399
400 return ERROR_FLASH_BUSY;
401 }
402
403 static int cfi_read_intel_pri_ext(struct flash_bank *bank)
404 {
405 int retval;
406 struct cfi_flash_bank *cfi_info = bank->driver_priv;
407 struct cfi_intel_pri_ext *pri_ext;
408
409 if (cfi_info->pri_ext)
410 free(cfi_info->pri_ext);
411
412 pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
413 if (pri_ext == NULL) {
414 LOG_ERROR("Out of memory");
415 return ERROR_FAIL;
416 }
417 cfi_info->pri_ext = pri_ext;
418
419 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
420 if (retval != ERROR_OK)
421 return retval;
422 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
423 if (retval != ERROR_OK)
424 return retval;
425 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
426 if (retval != ERROR_OK)
427 return retval;
428
429 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
430 retval = cfi_reset(bank);
431 if (retval != ERROR_OK)
432 return retval;
433 LOG_ERROR("Could not read bank flash bank information");
434 return ERROR_FLASH_BANK_INVALID;
435 }
436
437 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
438 if (retval != ERROR_OK)
439 return retval;
440 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
441 if (retval != ERROR_OK)
442 return retval;
443
444 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
445 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
446
447 retval = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5, &pri_ext->feature_support);
448 if (retval != ERROR_OK)
449 return retval;
450 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->suspend_cmd_support);
451 if (retval != ERROR_OK)
452 return retval;
453 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa, &pri_ext->blk_status_reg_mask);
454 if (retval != ERROR_OK)
455 return retval;
456
457 LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: "
458 "0x%x, blk_status_reg_mask: 0x%x",
459 pri_ext->feature_support,
460 pri_ext->suspend_cmd_support,
461 pri_ext->blk_status_reg_mask);
462
463 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc, &pri_ext->vcc_optimal);
464 if (retval != ERROR_OK)
465 return retval;
466 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd, &pri_ext->vpp_optimal);
467 if (retval != ERROR_OK)
468 return retval;
469
470 LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
471 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
472 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
473
474 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe, &pri_ext->num_protection_fields);
475 if (retval != ERROR_OK)
476 return retval;
477 if (pri_ext->num_protection_fields != 1) {
478 LOG_WARNING("expected one protection register field, but found %i",
479 pri_ext->num_protection_fields);
480 }
481
482 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf, &pri_ext->prot_reg_addr);
483 if (retval != ERROR_OK)
484 return retval;
485 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11, &pri_ext->fact_prot_reg_size);
486 if (retval != ERROR_OK)
487 return retval;
488 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12, &pri_ext->user_prot_reg_size);
489 if (retval != ERROR_OK)
490 return retval;
491
492 LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, "
493 "factory pre-programmed: %i, user programmable: %i",
494 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
495 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
496
497 return ERROR_OK;
498 }
499
500 static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
501 {
502 int retval;
503 struct cfi_flash_bank *cfi_info = bank->driver_priv;
504 struct cfi_spansion_pri_ext *pri_ext;
505
506 if (cfi_info->pri_ext)
507 free(cfi_info->pri_ext);
508
509 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
510 if (pri_ext == NULL) {
511 LOG_ERROR("Out of memory");
512 return ERROR_FAIL;
513 }
514 cfi_info->pri_ext = pri_ext;
515
516 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
517 if (retval != ERROR_OK)
518 return retval;
519 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
520 if (retval != ERROR_OK)
521 return retval;
522 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
523 if (retval != ERROR_OK)
524 return retval;
525
526 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
527 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
528 if (retval != ERROR_OK)
529 return retval;
530 LOG_ERROR("Could not read spansion bank information");
531 return ERROR_FLASH_BANK_INVALID;
532 }
533
534 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
535 if (retval != ERROR_OK)
536 return retval;
537 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
538 if (retval != ERROR_OK)
539 return retval;
540
541 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
542 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
543
544 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &pri_ext->SiliconRevision);
545 if (retval != ERROR_OK)
546 return retval;
547 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &pri_ext->EraseSuspend);
548 if (retval != ERROR_OK)
549 return retval;
550 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &pri_ext->BlkProt);
551 if (retval != ERROR_OK)
552 return retval;
553 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &pri_ext->TmpBlkUnprotect);
554 if (retval != ERROR_OK)
555 return retval;
556 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->BlkProtUnprot);
557 if (retval != ERROR_OK)
558 return retval;
559 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10, &pri_ext->SimultaneousOps);
560 if (retval != ERROR_OK)
561 return retval;
562 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11, &pri_ext->BurstMode);
563 if (retval != ERROR_OK)
564 return retval;
565 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12, &pri_ext->PageMode);
566 if (retval != ERROR_OK)
567 return retval;
568 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13, &pri_ext->VppMin);
569 if (retval != ERROR_OK)
570 return retval;
571 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14, &pri_ext->VppMax);
572 if (retval != ERROR_OK)
573 return retval;
574 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15, &pri_ext->TopBottom);
575 if (retval != ERROR_OK)
576 return retval;
577
578 LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x",
579 pri_ext->SiliconRevision, pri_ext->EraseSuspend, pri_ext->BlkProt);
580
581 LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, "
582 "Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
583 pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
584
585 LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
586
587
588 LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
589 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
590 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
591
592 LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
593
594 /* default values for implementation specific workarounds */
595 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
596 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
597 pri_ext->_reversed_geometry = 0;
598
599 return ERROR_OK;
600 }
601
602 static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
603 {
604 int retval;
605 struct cfi_atmel_pri_ext atmel_pri_ext;
606 struct cfi_flash_bank *cfi_info = bank->driver_priv;
607 struct cfi_spansion_pri_ext *pri_ext;
608
609 if (cfi_info->pri_ext)
610 free(cfi_info->pri_ext);
611
612 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
613 if (pri_ext == NULL) {
614 LOG_ERROR("Out of memory");
615 return ERROR_FAIL;
616 }
617
618 /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
619 * but a different primary extended query table.
620 * We read the atmel table, and prepare a valid AMD/Spansion query table.
621 */
622
623 memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
624
625 cfi_info->pri_ext = pri_ext;
626
627 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &atmel_pri_ext.pri[0]);
628 if (retval != ERROR_OK)
629 return retval;
630 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &atmel_pri_ext.pri[1]);
631 if (retval != ERROR_OK)
632 return retval;
633 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &atmel_pri_ext.pri[2]);
634 if (retval != ERROR_OK)
635 return retval;
636
637 if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R')
638 || (atmel_pri_ext.pri[2] != 'I')) {
639 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
640 if (retval != ERROR_OK)
641 return retval;
642 LOG_ERROR("Could not read atmel bank information");
643 return ERROR_FLASH_BANK_INVALID;
644 }
645
646 pri_ext->pri[0] = atmel_pri_ext.pri[0];
647 pri_ext->pri[1] = atmel_pri_ext.pri[1];
648 pri_ext->pri[2] = atmel_pri_ext.pri[2];
649
650 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &atmel_pri_ext.major_version);
651 if (retval != ERROR_OK)
652 return retval;
653 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &atmel_pri_ext.minor_version);
654 if (retval != ERROR_OK)
655 return retval;
656
657 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0],
658 atmel_pri_ext.pri[1], atmel_pri_ext.pri[2],
659 atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
660
661 pri_ext->major_version = atmel_pri_ext.major_version;
662 pri_ext->minor_version = atmel_pri_ext.minor_version;
663
664 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &atmel_pri_ext.features);
665 if (retval != ERROR_OK)
666 return retval;
667 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &atmel_pri_ext.bottom_boot);
668 if (retval != ERROR_OK)
669 return retval;
670 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &atmel_pri_ext.burst_mode);
671 if (retval != ERROR_OK)
672 return retval;
673 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &atmel_pri_ext.page_mode);
674 if (retval != ERROR_OK)
675 return retval;
676
677 LOG_DEBUG(
678 "features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
679 atmel_pri_ext.features,
680 atmel_pri_ext.bottom_boot,
681 atmel_pri_ext.burst_mode,
682 atmel_pri_ext.page_mode);
683
684 if (atmel_pri_ext.features & 0x02)
685 pri_ext->EraseSuspend = 2;
686
687 /* some chips got it backwards... */
688 if (cfi_info->device_id == AT49BV6416 ||
689 cfi_info->device_id == AT49BV6416T) {
690 if (atmel_pri_ext.bottom_boot)
691 pri_ext->TopBottom = 3;
692 else
693 pri_ext->TopBottom = 2;
694 } else {
695 if (atmel_pri_ext.bottom_boot)
696 pri_ext->TopBottom = 2;
697 else
698 pri_ext->TopBottom = 3;
699 }
700
701 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
702 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
703
704 return ERROR_OK;
705 }
706
707 static int cfi_read_0002_pri_ext(struct flash_bank *bank)
708 {
709 struct cfi_flash_bank *cfi_info = bank->driver_priv;
710
711 if (cfi_info->manufacturer == CFI_MFR_ATMEL)
712 return cfi_read_atmel_pri_ext(bank);
713 else
714 return cfi_read_spansion_pri_ext(bank);
715 }
716
717 static int cfi_spansion_info(struct flash_bank *bank, char *buf, int buf_size)
718 {
719 int printed;
720 struct cfi_flash_bank *cfi_info = bank->driver_priv;
721 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
722
723 printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
724 buf += printed;
725 buf_size -= printed;
726
727 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
728 pri_ext->pri[1], pri_ext->pri[2],
729 pri_ext->major_version, pri_ext->minor_version);
730 buf += printed;
731 buf_size -= printed;
732
733 printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
734 (pri_ext->SiliconRevision) >> 2,
735 (pri_ext->SiliconRevision) & 0x03);
736 buf += printed;
737 buf_size -= printed;
738
739 printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
740 pri_ext->EraseSuspend,
741 pri_ext->BlkProt);
742 buf += printed;
743 buf_size -= printed;
744
745 snprintf(buf, buf_size, "VppMin: %u.%x, VppMax: %u.%x\n",
746 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
747 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
748
749 return ERROR_OK;
750 }
751
752 static int cfi_intel_info(struct flash_bank *bank, char *buf, int buf_size)
753 {
754 int printed;
755 struct cfi_flash_bank *cfi_info = bank->driver_priv;
756 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
757
758 printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
759 buf += printed;
760 buf_size -= printed;
761
762 printed = snprintf(buf,
763 buf_size,
764 "pri: '%c%c%c', version: %c.%c\n",
765 pri_ext->pri[0],
766 pri_ext->pri[1],
767 pri_ext->pri[2],
768 pri_ext->major_version,
769 pri_ext->minor_version);
770 buf += printed;
771 buf_size -= printed;
772
773 printed = snprintf(buf,
774 buf_size,
775 "feature_support: 0x%" PRIx32 ", "
776 "suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n",
777 pri_ext->feature_support,
778 pri_ext->suspend_cmd_support,
779 pri_ext->blk_status_reg_mask);
780 buf += printed;
781 buf_size -= printed;
782
783 printed = snprintf(buf, buf_size, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
784 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
785 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
786 buf += printed;
787 buf_size -= printed;
788
789 snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, "
790 "factory pre-programmed: %i, user programmable: %i\n",
791 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
792 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
793
794 return ERROR_OK;
795 }
796
797 /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
798 */
799 FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
800 {
801 struct cfi_flash_bank *cfi_info;
802
803 if (CMD_ARGC < 6)
804 return ERROR_COMMAND_SYNTAX_ERROR;
805
806 /* both widths must:
807 * - not exceed max value;
808 * - not be null;
809 * - be equal to a power of 2.
810 * bus must be wide enought to hold one chip */
811 if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
812 || (bank->bus_width > CFI_MAX_BUS_WIDTH)
813 || (bank->chip_width == 0)
814 || (bank->bus_width == 0)
815 || (bank->chip_width & (bank->chip_width - 1))
816 || (bank->bus_width & (bank->bus_width - 1))
817 || (bank->chip_width > bank->bus_width)) {
818 LOG_ERROR("chip and bus width have to specified in bytes");
819 return ERROR_FLASH_BANK_INVALID;
820 }
821
822 cfi_info = malloc(sizeof(struct cfi_flash_bank));
823 cfi_info->probed = 0;
824 cfi_info->erase_region_info = NULL;
825 cfi_info->pri_ext = NULL;
826 bank->driver_priv = cfi_info;
827
828 cfi_info->x16_as_x8 = 0;
829 cfi_info->jedec_probe = 0;
830 cfi_info->not_cfi = 0;
831
832 for (unsigned i = 6; i < CMD_ARGC; i++) {
833 if (strcmp(CMD_ARGV[i], "x16_as_x8") == 0)
834 cfi_info->x16_as_x8 = 1;
835 else if (strcmp(CMD_ARGV[i], "jedec_probe") == 0)
836 cfi_info->jedec_probe = 1;
837 }
838
839 /* bank wasn't probed yet */
840 cfi_info->qry[0] = 0xff;
841
842 return ERROR_OK;
843 }
844
845 static int cfi_intel_erase(struct flash_bank *bank, int first, int last)
846 {
847 int retval;
848 struct cfi_flash_bank *cfi_info = bank->driver_priv;
849 int i;
850
851 cfi_intel_clear_status_register(bank);
852
853 for (i = first; i <= last; i++) {
854 retval = cfi_send_command(bank, 0x20, flash_address(bank, i, 0x0));
855 if (retval != ERROR_OK)
856 return retval;
857
858 retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0));
859 if (retval != ERROR_OK)
860 return retval;
861
862 uint8_t status;
863 retval = cfi_intel_wait_status_busy(bank, cfi_info->block_erase_timeout, &status);
864 if (retval != ERROR_OK)
865 return retval;
866
867 if (status == 0x80)
868 bank->sectors[i].is_erased = 1;
869 else {
870 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
871 if (retval != ERROR_OK)
872 return retval;
873
874 LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32,
875 i,
876 bank->base);
877 return ERROR_FLASH_OPERATION_FAILED;
878 }
879 }
880
881 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
882 }
883
884 static int cfi_spansion_erase(struct flash_bank *bank, int first, int last)
885 {
886 int retval;
887 struct cfi_flash_bank *cfi_info = bank->driver_priv;
888 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
889 int i;
890
891 for (i = first; i <= last; i++) {
892 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
893 if (retval != ERROR_OK)
894 return retval;
895
896 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
897 if (retval != ERROR_OK)
898 return retval;
899
900 retval = cfi_send_command(bank, 0x80, flash_address(bank, 0, pri_ext->_unlock1));
901 if (retval != ERROR_OK)
902 return retval;
903
904 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
905 if (retval != ERROR_OK)
906 return retval;
907
908 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
909 if (retval != ERROR_OK)
910 return retval;
911
912 retval = cfi_send_command(bank, 0x30, flash_address(bank, i, 0x0));
913 if (retval != ERROR_OK)
914 return retval;
915
916 if (cfi_spansion_wait_status_busy(bank, cfi_info->block_erase_timeout) == ERROR_OK)
917 bank->sectors[i].is_erased = 1;
918 else {
919 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
920 if (retval != ERROR_OK)
921 return retval;
922
923 LOG_ERROR("couldn't erase block %i of flash bank at base 0x%"
924 PRIx32, i, bank->base);
925 return ERROR_FLASH_OPERATION_FAILED;
926 }
927 }
928
929 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
930 }
931
932 static int cfi_erase(struct flash_bank *bank, int first, int last)
933 {
934 struct cfi_flash_bank *cfi_info = bank->driver_priv;
935
936 if (bank->target->state != TARGET_HALTED) {
937 LOG_ERROR("Target not halted");
938 return ERROR_TARGET_NOT_HALTED;
939 }
940
941 if ((first < 0) || (last < first) || (last >= bank->num_sectors))
942 return ERROR_FLASH_SECTOR_INVALID;
943
944 if (cfi_info->qry[0] != 'Q')
945 return ERROR_FLASH_BANK_NOT_PROBED;
946
947 switch (cfi_info->pri_id) {
948 case 1:
949 case 3:
950 return cfi_intel_erase(bank, first, last);
951 break;
952 case 2:
953 return cfi_spansion_erase(bank, first, last);
954 break;
955 default:
956 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
957 break;
958 }
959
960 return ERROR_OK;
961 }
962
963 static int cfi_intel_protect(struct flash_bank *bank, int set, int first, int last)
964 {
965 int retval;
966 struct cfi_flash_bank *cfi_info = bank->driver_priv;
967 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
968 int retry = 0;
969 int i;
970
971 /* if the device supports neither legacy lock/unlock (bit 3) nor
972 * instant individual block locking (bit 5).
973 */
974 if (!(pri_ext->feature_support & 0x28)) {
975 LOG_ERROR("lock/unlock not supported on flash");
976 return ERROR_FLASH_OPERATION_FAILED;
977 }
978
979 cfi_intel_clear_status_register(bank);
980
981 for (i = first; i <= last; i++) {
982 retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0));
983 if (retval != ERROR_OK)
984 return retval;
985 if (set) {
986 retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0));
987 if (retval != ERROR_OK)
988 return retval;
989 bank->sectors[i].is_protected = 1;
990 } else {
991 retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0));
992 if (retval != ERROR_OK)
993 return retval;
994 bank->sectors[i].is_protected = 0;
995 }
996
997 /* instant individual block locking doesn't require reading of the status register
998 **/
999 if (!(pri_ext->feature_support & 0x20)) {
1000 /* Clear lock bits operation may take up to 1.4s */
1001 uint8_t status;
1002 retval = cfi_intel_wait_status_busy(bank, 1400, &status);
1003 if (retval != ERROR_OK)
1004 return retval;
1005 } else {
1006 uint8_t block_status;
1007 /* read block lock bit, to verify status */
1008 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55));
1009 if (retval != ERROR_OK)
1010 return retval;
1011 retval = cfi_get_u8(bank, i, 0x2, &block_status);
1012 if (retval != ERROR_OK)
1013 return retval;
1014
1015 if ((block_status & 0x1) != set) {
1016 LOG_ERROR(
1017 "couldn't change block lock status (set = %i, block_status = 0x%2.2x)",
1018 set, block_status);
1019 retval = cfi_send_command(bank, 0x70, flash_address(bank, 0, 0x55));
1020 if (retval != ERROR_OK)
1021 return retval;
1022 uint8_t status;
1023 retval = cfi_intel_wait_status_busy(bank, 10, &status);
1024 if (retval != ERROR_OK)
1025 return retval;
1026
1027 if (retry > 10)
1028 return ERROR_FLASH_OPERATION_FAILED;
1029 else {
1030 i--;
1031 retry++;
1032 }
1033 }
1034 }
1035 }
1036
1037 /* if the device doesn't support individual block lock bits set/clear,
1038 * all blocks have been unlocked in parallel, so we set those that should be protected
1039 */
1040 if ((!set) && (!(pri_ext->feature_support & 0x20))) {
1041 /* FIX!!! this code path is broken!!!
1042 *
1043 * The correct approach is:
1044 *
1045 * 1. read out current protection status
1046 *
1047 * 2. override read out protection status w/unprotected.
1048 *
1049 * 3. re-protect what should be protected.
1050 *
1051 */
1052 for (i = 0; i < bank->num_sectors; i++) {
1053 if (bank->sectors[i].is_protected == 1) {
1054 cfi_intel_clear_status_register(bank);
1055
1056 retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0));
1057 if (retval != ERROR_OK)
1058 return retval;
1059
1060 retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0));
1061 if (retval != ERROR_OK)
1062 return retval;
1063
1064 uint8_t status;
1065 retval = cfi_intel_wait_status_busy(bank, 100, &status);
1066 if (retval != ERROR_OK)
1067 return retval;
1068 }
1069 }
1070 }
1071
1072 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
1073 }
1074
1075 static int cfi_protect(struct flash_bank *bank, int set, int first, int last)
1076 {
1077 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1078
1079 if (bank->target->state != TARGET_HALTED) {
1080 LOG_ERROR("Target not halted");
1081 return ERROR_TARGET_NOT_HALTED;
1082 }
1083
1084 if ((first < 0) || (last < first) || (last >= bank->num_sectors)) {
1085 LOG_ERROR("Invalid sector range");
1086 return ERROR_FLASH_SECTOR_INVALID;
1087 }
1088
1089 if (cfi_info->qry[0] != 'Q')
1090 return ERROR_FLASH_BANK_NOT_PROBED;
1091
1092 switch (cfi_info->pri_id) {
1093 case 1:
1094 case 3:
1095 return cfi_intel_protect(bank, set, first, last);
1096 break;
1097 default:
1098 LOG_WARNING("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
1099 return ERROR_OK;
1100 }
1101 }
1102
1103 /* Convert code image to target endian
1104 * FIXME create general block conversion fcts in target.c?) */
1105 static void cfi_fix_code_endian(struct target *target, uint8_t *dest,
1106 const uint32_t *src, uint32_t count)
1107 {
1108 uint32_t i;
1109 for (i = 0; i < count; i++) {
1110 target_buffer_set_u32(target, dest, *src);
1111 dest += 4;
1112 src++;
1113 }
1114 }
1115
1116 static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
1117 {
1118 struct target *target = bank->target;
1119
1120 uint8_t buf[CFI_MAX_BUS_WIDTH];
1121 cfi_command(bank, cmd, buf);
1122 switch (bank->bus_width) {
1123 case 1:
1124 return buf[0];
1125 break;
1126 case 2:
1127 return target_buffer_get_u16(target, buf);
1128 break;
1129 case 4:
1130 return target_buffer_get_u32(target, buf);
1131 break;
1132 default:
1133 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1134 bank->bus_width);
1135 return 0;
1136 }
1137 }
1138
1139 static int cfi_intel_write_block(struct flash_bank *bank, uint8_t *buffer,
1140 uint32_t address, uint32_t count)
1141 {
1142 struct target *target = bank->target;
1143 struct reg_param reg_params[7];
1144 struct arm_algorithm arm_algo;
1145 struct working_area *write_algorithm;
1146 struct working_area *source = NULL;
1147 uint32_t buffer_size = 32768;
1148 uint32_t write_command_val, busy_pattern_val, error_pattern_val;
1149
1150 /* algorithm register usage:
1151 * r0: source address (in RAM)
1152 * r1: target address (in Flash)
1153 * r2: count
1154 * r3: flash write command
1155 * r4: status byte (returned to host)
1156 * r5: busy test pattern
1157 * r6: error test pattern
1158 */
1159
1160 /* see contib/loaders/flash/armv4_5_cfi_intel_32.s for src */
1161 static const uint32_t word_32_code[] = {
1162 0xe4904004, /* loop: ldr r4, [r0], #4 */
1163 0xe5813000, /* str r3, [r1] */
1164 0xe5814000, /* str r4, [r1] */
1165 0xe5914000, /* busy: ldr r4, [r1] */
1166 0xe0047005, /* and r7, r4, r5 */
1167 0xe1570005, /* cmp r7, r5 */
1168 0x1afffffb, /* bne busy */
1169 0xe1140006, /* tst r4, r6 */
1170 0x1a000003, /* bne done */
1171 0xe2522001, /* subs r2, r2, #1 */
1172 0x0a000001, /* beq done */
1173 0xe2811004, /* add r1, r1 #4 */
1174 0xeafffff2, /* b loop */
1175 0xeafffffe /* done: b -2 */
1176 };
1177
1178 /* see contib/loaders/flash/armv4_5_cfi_intel_16.s for src */
1179 static const uint32_t word_16_code[] = {
1180 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
1181 0xe1c130b0, /* strh r3, [r1] */
1182 0xe1c140b0, /* strh r4, [r1] */
1183 0xe1d140b0, /* busy ldrh r4, [r1] */
1184 0xe0047005, /* and r7, r4, r5 */
1185 0xe1570005, /* cmp r7, r5 */
1186 0x1afffffb, /* bne busy */
1187 0xe1140006, /* tst r4, r6 */
1188 0x1a000003, /* bne done */
1189 0xe2522001, /* subs r2, r2, #1 */
1190 0x0a000001, /* beq done */
1191 0xe2811002, /* add r1, r1 #2 */
1192 0xeafffff2, /* b loop */
1193 0xeafffffe /* done: b -2 */
1194 };
1195
1196 /* see contib/loaders/flash/armv4_5_cfi_intel_8.s for src */
1197 static const uint32_t word_8_code[] = {
1198 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
1199 0xe5c13000, /* strb r3, [r1] */
1200 0xe5c14000, /* strb r4, [r1] */
1201 0xe5d14000, /* busy ldrb r4, [r1] */
1202 0xe0047005, /* and r7, r4, r5 */
1203 0xe1570005, /* cmp r7, r5 */
1204 0x1afffffb, /* bne busy */
1205 0xe1140006, /* tst r4, r6 */
1206 0x1a000003, /* bne done */
1207 0xe2522001, /* subs r2, r2, #1 */
1208 0x0a000001, /* beq done */
1209 0xe2811001, /* add r1, r1 #1 */
1210 0xeafffff2, /* b loop */
1211 0xeafffffe /* done: b -2 */
1212 };
1213 uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
1214 const uint32_t *target_code_src;
1215 uint32_t target_code_size;
1216 int retval = ERROR_OK;
1217
1218 /* check we have a supported arch */
1219 if (is_arm(target_to_arm(target))) {
1220 /* All other ARM CPUs have 32 bit instructions */
1221 arm_algo.common_magic = ARM_COMMON_MAGIC;
1222 arm_algo.core_mode = ARM_MODE_SVC;
1223 arm_algo.core_state = ARM_STATE_ARM;
1224 } else {
1225 LOG_ERROR("Unknown architecture");
1226 return ERROR_FAIL;
1227 }
1228
1229 cfi_intel_clear_status_register(bank);
1230
1231 /* If we are setting up the write_algorith, we need target_code_src
1232 * if not we only need target_code_size. */
1233
1234 /* However, we don't want to create multiple code paths, so we
1235 * do the unecessary evaluation of target_code_src, which the
1236 * compiler will probably nicely optimize away if not needed */
1237
1238 /* prepare algorithm code for target endian */
1239 switch (bank->bus_width) {
1240 case 1:
1241 target_code_src = word_8_code;
1242 target_code_size = sizeof(word_8_code);
1243 break;
1244 case 2:
1245 target_code_src = word_16_code;
1246 target_code_size = sizeof(word_16_code);
1247 break;
1248 case 4:
1249 target_code_src = word_32_code;
1250 target_code_size = sizeof(word_32_code);
1251 break;
1252 default:
1253 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1254 bank->bus_width);
1255 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1256 }
1257
1258 /* flash write code */
1259 if (target_code_size > sizeof(target_code)) {
1260 LOG_WARNING("Internal error - target code buffer to small. "
1261 "Increase CFI_MAX_INTEL_CODESIZE and recompile.");
1262 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1263 }
1264 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1265
1266 /* Get memory for block write handler */
1267 retval = target_alloc_working_area(target,
1268 target_code_size,
1269 &write_algorithm);
1270 if (retval != ERROR_OK) {
1271 LOG_WARNING("No working area available, can't do block memory writes");
1272 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1273 }
1274 ;
1275
1276 /* write algorithm code to working area */
1277 retval = target_write_buffer(target, write_algorithm->address,
1278 target_code_size, target_code);
1279 if (retval != ERROR_OK) {
1280 LOG_ERROR("Unable to write block write code to target");
1281 goto cleanup;
1282 }
1283
1284 /* Get a workspace buffer for the data to flash starting with 32k size.
1285 Half size until buffer would be smaller 256 Bytem then fail back */
1286 /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
1287 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1288 buffer_size /= 2;
1289 if (buffer_size <= 256) {
1290 LOG_WARNING(
1291 "no large enough working area available, can't do block memory writes");
1292 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1293 goto cleanup;
1294 }
1295 }
1296 ;
1297
1298 /* setup algo registers */
1299 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1300 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1301 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1302 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1303 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
1304 init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
1305 init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
1306
1307 /* prepare command and status register patterns */
1308 write_command_val = cfi_command_val(bank, 0x40);
1309 busy_pattern_val = cfi_command_val(bank, 0x80);
1310 error_pattern_val = cfi_command_val(bank, 0x7e);
1311
1312 LOG_DEBUG("Using target buffer at 0x%08" PRIx32 " and of size 0x%04" PRIx32,
1313 source->address, buffer_size);
1314
1315 /* Programming main loop */
1316 while (count > 0) {
1317 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1318 uint32_t wsm_error;
1319
1320 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1321 if (retval != ERROR_OK)
1322 goto cleanup;
1323
1324 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1325 buf_set_u32(reg_params[1].value, 0, 32, address);
1326 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1327
1328 buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
1329 buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
1330 buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
1331
1332 LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32,
1333 thisrun_count, address);
1334
1335 /* Execute algorithm, assume breakpoint for last instruction */
1336 retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
1337 write_algorithm->address,
1338 write_algorithm->address + target_code_size -
1339 sizeof(uint32_t),
1340 10000, /* 10s should be enough for max. 32k of data */
1341 &arm_algo);
1342
1343 /* On failure try a fall back to direct word writes */
1344 if (retval != ERROR_OK) {
1345 cfi_intel_clear_status_register(bank);
1346 LOG_ERROR(
1347 "Execution of flash algorythm failed. Can't fall back. Please report.");
1348 retval = ERROR_FLASH_OPERATION_FAILED;
1349 /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
1350 /* FIXME To allow fall back or recovery, we must save the actual status
1351 * somewhere, so that a higher level code can start recovery. */
1352 goto cleanup;
1353 }
1354
1355 /* Check return value from algo code */
1356 wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
1357 if (wsm_error) {
1358 /* read status register (outputs debug inforation) */
1359 uint8_t status;
1360 cfi_intel_wait_status_busy(bank, 100, &status);
1361 cfi_intel_clear_status_register(bank);
1362 retval = ERROR_FLASH_OPERATION_FAILED;
1363 goto cleanup;
1364 }
1365
1366 buffer += thisrun_count;
1367 address += thisrun_count;
1368 count -= thisrun_count;
1369
1370 keep_alive();
1371 }
1372
1373 /* free up resources */
1374 cleanup:
1375 if (source)
1376 target_free_working_area(target, source);
1377
1378 target_free_working_area(target, write_algorithm);
1379
1380 destroy_reg_param(&reg_params[0]);
1381 destroy_reg_param(&reg_params[1]);
1382 destroy_reg_param(&reg_params[2]);
1383 destroy_reg_param(&reg_params[3]);
1384 destroy_reg_param(&reg_params[4]);
1385 destroy_reg_param(&reg_params[5]);
1386 destroy_reg_param(&reg_params[6]);
1387
1388 return retval;
1389 }
1390
1391 static int cfi_spansion_write_block_mips(struct flash_bank *bank, uint8_t *buffer,
1392 uint32_t address, uint32_t count)
1393 {
1394 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1395 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1396 struct target *target = bank->target;
1397 struct reg_param reg_params[10];
1398 struct mips32_algorithm mips32_info;
1399 struct working_area *write_algorithm;
1400 struct working_area *source;
1401 uint32_t buffer_size = 32768;
1402 uint32_t status;
1403 int retval = ERROR_OK;
1404
1405 /* input parameters -
1406 * 4 A0 = source address
1407 * 5 A1 = destination address
1408 * 6 A2 = number of writes
1409 * 7 A3 = flash write command
1410 * 8 T0 = constant to mask DQ7 bits (also used for Dq5 with shift)
1411 * output parameters -
1412 * 9 T1 = 0x80 ok 0x00 bad
1413 * temp registers -
1414 * 10 T2 = value read from flash to test status
1415 * 11 T3 = holding register
1416 * unlock registers -
1417 * 12 T4 = unlock1_addr
1418 * 13 T5 = unlock1_cmd
1419 * 14 T6 = unlock2_addr
1420 * 15 T7 = unlock2_cmd */
1421
1422 static const uint32_t mips_word_16_code[] = {
1423 /* start: */
1424 MIPS32_LHU(9, 0, 4), /* lhu $t1, ($a0) ; out = &saddr */
1425 MIPS32_ADDI(4, 4, 2), /* addi $a0, $a0, 2 ; saddr += 2 */
1426 MIPS32_SH(13, 0, 12), /* sh $t5, ($t4) ; *fl_unl_addr1 =
1427 *fl_unl_cmd1 */
1428 MIPS32_SH(15, 0, 14), /* sh $t7, ($t6) ; *fl_unl_addr2 =
1429 *fl_unl_cmd2 */
1430 MIPS32_SH(7, 0, 12), /* sh $a3, ($t4) ; *fl_unl_addr1 =
1431 *fl_write_cmd */
1432 MIPS32_SH(9, 0, 5), /* sh $t1, ($a1) ; *daddr = out */
1433 MIPS32_NOP, /* nop */
1434 /* busy: */
1435 MIPS32_LHU(10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1436 MIPS32_XOR(11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^
1437 *temp1; */
1438 MIPS32_AND(11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 &
1439 *DQ7mask */
1440 MIPS32_BNE(11, 8, 13), /* bne $t3, $t0, cont ; if (temp2 !=
1441 *DQ7mask) goto cont */
1442 MIPS32_NOP, /* nop */
1443
1444 MIPS32_SRL(10, 8, 2), /* srl $t2,$t0,2 ; temp1 = DQ7mask >>
1445 *2 */
1446 MIPS32_AND(11, 10, 11), /* and $t3, $t2, $t3 ; temp2 = temp2 &
1447 *temp1 */
1448 MIPS32_BNE(11, 10, NEG16(8)), /* bne $t3, $t2, busy ; if (temp2 !=
1449 *temp1) goto busy */
1450 MIPS32_NOP, /* nop */
1451
1452 MIPS32_LHU(10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1453 MIPS32_XOR(11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^
1454 *temp1; */
1455 MIPS32_AND(11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 &
1456 *DQ7mask */
1457 MIPS32_BNE(11, 8, 4), /* bne $t3, $t0, cont ; if (temp2 !=
1458 *DQ7mask) goto cont */
1459 MIPS32_NOP, /* nop */
1460
1461 MIPS32_XOR(9, 9, 9), /* xor $t1, $t1, $t1 ; out = 0 */
1462 MIPS32_BEQ(9, 0, 11), /* beq $t1, $zero, done ; if (out == 0) goto
1463 *done */
1464 MIPS32_NOP, /* nop */
1465 /* cont: */
1466 MIPS32_ADDI(6, 6, NEG16(1)), /* addi, $a2, $a2, -1 ; numwrites-- */
1467 MIPS32_BNE(6, 0, 5), /* bne $a2, $zero, cont2 ; if (numwrite != 0)
1468 *goto cont2 */
1469 MIPS32_NOP, /* nop */
1470
1471 MIPS32_LUI(9, 0), /* lui $t1, 0 */
1472 MIPS32_ORI(9, 9, 0x80), /* ori $t1, $t1, 0x80 ; out = 0x80 */
1473
1474 MIPS32_B(4), /* b done ; goto done */
1475 MIPS32_NOP, /* nop */
1476 /* cont2: */
1477 MIPS32_ADDI(5, 5, 2), /* addi $a0, $a0, 2 ; daddr += 2 */
1478 MIPS32_B(NEG16(33)), /* b start ; goto start */
1479 MIPS32_NOP, /* nop */
1480 /* done:
1481 *MIPS32_B(NEG16(1)), */ /* b done ; goto done */
1482 MIPS32_SDBBP, /* sdbbp ; break(); */
1483 /*MIPS32_B(NEG16(33)), */ /* b start ; goto start
1484 * MIPS32_NOP, */
1485 };
1486
1487 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
1488 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
1489
1490 int target_code_size = 0;
1491 const uint32_t *target_code_src = NULL;
1492
1493 switch (bank->bus_width) {
1494 case 2:
1495 /* Check for DQ5 support */
1496 if (cfi_info->status_poll_mask & (1 << 5)) {
1497 target_code_src = mips_word_16_code;
1498 target_code_size = sizeof(mips_word_16_code);
1499 } else {
1500 LOG_ERROR("Need DQ5 support");
1501 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1502 /* target_code_src = mips_word_16_code_dq7only; */
1503 /* target_code_size = sizeof(mips_word_16_code_dq7only); */
1504 }
1505 break;
1506 default:
1507 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1508 bank->bus_width);
1509 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1510 }
1511
1512 /* flash write code */
1513 uint8_t *target_code;
1514
1515 /* convert bus-width dependent algorithm code to correct endiannes */
1516 target_code = malloc(target_code_size);
1517 if (target_code == NULL) {
1518 LOG_ERROR("Out of memory");
1519 return ERROR_FAIL;
1520 }
1521 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1522
1523 /* allocate working area */
1524 retval = target_alloc_working_area(target, target_code_size,
1525 &write_algorithm);
1526 if (retval != ERROR_OK) {
1527 free(target_code);
1528 return retval;
1529 }
1530
1531 /* write algorithm code to working area */
1532 retval = target_write_buffer(target, write_algorithm->address,
1533 target_code_size, target_code);
1534 if (retval != ERROR_OK) {
1535 free(target_code);
1536 return retval;
1537 }
1538
1539 free(target_code);
1540
1541 /* the following code still assumes target code is fixed 24*4 bytes */
1542
1543 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1544 buffer_size /= 2;
1545 if (buffer_size <= 256) {
1546 /* we already allocated the writing code, but failed to get a
1547 * buffer, free the algorithm */
1548 target_free_working_area(target, write_algorithm);
1549
1550 LOG_WARNING(
1551 "not enough working area available, can't do block memory writes");
1552 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1553 }
1554 }
1555 ;
1556
1557 init_reg_param(&reg_params[0], "a0", 32, PARAM_OUT);
1558 init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
1559 init_reg_param(&reg_params[2], "a2", 32, PARAM_OUT);
1560 init_reg_param(&reg_params[3], "a3", 32, PARAM_OUT);
1561 init_reg_param(&reg_params[4], "t0", 32, PARAM_OUT);
1562 init_reg_param(&reg_params[5], "t1", 32, PARAM_IN);
1563 init_reg_param(&reg_params[6], "t4", 32, PARAM_OUT);
1564 init_reg_param(&reg_params[7], "t5", 32, PARAM_OUT);
1565 init_reg_param(&reg_params[8], "t6", 32, PARAM_OUT);
1566 init_reg_param(&reg_params[9], "t7", 32, PARAM_OUT);
1567
1568 while (count > 0) {
1569 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1570
1571 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1572 if (retval != ERROR_OK)
1573 break;
1574
1575 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1576 buf_set_u32(reg_params[1].value, 0, 32, address);
1577 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1578 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1579 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1580 buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
1581 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1582 buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
1583 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1584
1585 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1586 write_algorithm->address,
1587 write_algorithm->address + ((target_code_size) - 4),
1588 10000, &mips32_info);
1589 if (retval != ERROR_OK)
1590 break;
1591
1592 status = buf_get_u32(reg_params[5].value, 0, 32);
1593 if (status != 0x80) {
1594 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1595 retval = ERROR_FLASH_OPERATION_FAILED;
1596 break;
1597 }
1598
1599 buffer += thisrun_count;
1600 address += thisrun_count;
1601 count -= thisrun_count;
1602 }
1603
1604 target_free_all_working_areas(target);
1605
1606 destroy_reg_param(&reg_params[0]);
1607 destroy_reg_param(&reg_params[1]);
1608 destroy_reg_param(&reg_params[2]);
1609 destroy_reg_param(&reg_params[3]);
1610 destroy_reg_param(&reg_params[4]);
1611 destroy_reg_param(&reg_params[5]);
1612 destroy_reg_param(&reg_params[6]);
1613 destroy_reg_param(&reg_params[7]);
1614 destroy_reg_param(&reg_params[8]);
1615 destroy_reg_param(&reg_params[9]);
1616
1617 return retval;
1618 }
1619
1620 static int cfi_spansion_write_block(struct flash_bank *bank, uint8_t *buffer,
1621 uint32_t address, uint32_t count)
1622 {
1623 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1624 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1625 struct target *target = bank->target;
1626 struct reg_param reg_params[10];
1627 void *arm_algo;
1628 struct arm_algorithm armv4_5_algo;
1629 struct armv7m_algorithm armv7m_algo;
1630 struct working_area *write_algorithm;
1631 struct working_area *source;
1632 uint32_t buffer_size = 32768;
1633 uint32_t status;
1634 int retval = ERROR_OK;
1635
1636 /* input parameters -
1637 * R0 = source address
1638 * R1 = destination address
1639 * R2 = number of writes
1640 * R3 = flash write command
1641 * R4 = constant to mask DQ7 bits (also used for Dq5 with shift)
1642 * output parameters -
1643 * R5 = 0x80 ok 0x00 bad
1644 * temp registers -
1645 * R6 = value read from flash to test status
1646 * R7 = holding register
1647 * unlock registers -
1648 * R8 = unlock1_addr
1649 * R9 = unlock1_cmd
1650 * R10 = unlock2_addr
1651 * R11 = unlock2_cmd */
1652
1653 /* see contib/loaders/flash/armv4_5_cfi_span_32.s for src */
1654 static const uint32_t armv4_5_word_32_code[] = {
1655 /* 00008100 <sp_32_code>: */
1656 0xe4905004, /* ldr r5, [r0], #4 */
1657 0xe5889000, /* str r9, [r8] */
1658 0xe58ab000, /* str r11, [r10] */
1659 0xe5883000, /* str r3, [r8] */
1660 0xe5815000, /* str r5, [r1] */
1661 0xe1a00000, /* nop */
1662 /*
1663 * 00008110 <sp_32_busy>: */
1664 0xe5916000, /* ldr r6, [r1] */
1665 0xe0257006, /* eor r7, r5, r6 */
1666 0xe0147007, /* ands r7, r4, r7 */
1667 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1668 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1669 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
1670 0xe5916000, /* ldr r6, [r1] */
1671 0xe0257006, /* eor r7, r5, r6 */
1672 0xe0147007, /* ands r7, r4, r7 */
1673 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1674 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
1675 0x1a000004, /* bne 8154 <sp_32_done> */
1676 /*
1677 * 00008140 <sp_32_cont>: */
1678 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1679 0x03a05080, /* moveq r5, #128 ; 0x80 */
1680 0x0a000001, /* beq 8154 <sp_32_done> */
1681 0xe2811004, /* add r1, r1, #4 ; 0x4 */
1682 0xeaffffe8, /* b 8100 <sp_32_code> */
1683 /*
1684 * 00008154 <sp_32_done>: */
1685 0xeafffffe /* b 8154 <sp_32_done> */
1686 };
1687
1688 /* see contib/loaders/flash/armv4_5_cfi_span_16.s for src */
1689 static const uint32_t armv4_5_word_16_code[] = {
1690 /* 00008158 <sp_16_code>: */
1691 0xe0d050b2, /* ldrh r5, [r0], #2 */
1692 0xe1c890b0, /* strh r9, [r8] */
1693 0xe1cab0b0, /* strh r11, [r10] */
1694 0xe1c830b0, /* strh r3, [r8] */
1695 0xe1c150b0, /* strh r5, [r1] */
1696 0xe1a00000, /* nop (mov r0,r0) */
1697 /*
1698 * 00008168 <sp_16_busy>: */
1699 0xe1d160b0, /* ldrh r6, [r1] */
1700 0xe0257006, /* eor r7, r5, r6 */
1701 0xe0147007, /* ands r7, r4, r7 */
1702 0x0a000007, /* beq 8198 <sp_16_cont> */
1703 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1704 0x0afffff9, /* beq 8168 <sp_16_busy> */
1705 0xe1d160b0, /* ldrh r6, [r1] */
1706 0xe0257006, /* eor r7, r5, r6 */
1707 0xe0147007, /* ands r7, r4, r7 */
1708 0x0a000001, /* beq 8198 <sp_16_cont> */
1709 0xe3a05000, /* mov r5, #0 ; 0x0 */
1710 0x1a000004, /* bne 81ac <sp_16_done> */
1711 /*
1712 * 00008198 <sp_16_cont>: */
1713 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1714 0x03a05080, /* moveq r5, #128 ; 0x80 */
1715 0x0a000001, /* beq 81ac <sp_16_done> */
1716 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1717 0xeaffffe8, /* b 8158 <sp_16_code> */
1718 /*
1719 * 000081ac <sp_16_done>: */
1720 0xeafffffe /* b 81ac <sp_16_done> */
1721 };
1722
1723 /* see contib/loaders/flash/armv7m_cfi_span_16.s for src */
1724 static const uint32_t armv7m_word_16_code[] = {
1725 0x5B02F830,
1726 0x9000F8A8,
1727 0xB000F8AA,
1728 0x3000F8A8,
1729 0xBF00800D,
1730 0xEA85880E,
1731 0x40270706,
1732 0xEA16D00A,
1733 0xD0F70694,
1734 0xEA85880E,
1735 0x40270706,
1736 0xF04FD002,
1737 0xD1070500,
1738 0xD0023A01,
1739 0x0102F101,
1740 0xF04FE7E0,
1741 0xE7FF0580,
1742 0x0000BE00
1743 };
1744
1745 /* see contib/loaders/flash/armv4_5_cfi_span_16_dq7.s for src */
1746 static const uint32_t armv4_5_word_16_code_dq7only[] = {
1747 /* <sp_16_code>: */
1748 0xe0d050b2, /* ldrh r5, [r0], #2 */
1749 0xe1c890b0, /* strh r9, [r8] */
1750 0xe1cab0b0, /* strh r11, [r10] */
1751 0xe1c830b0, /* strh r3, [r8] */
1752 0xe1c150b0, /* strh r5, [r1] */
1753 0xe1a00000, /* nop (mov r0,r0) */
1754 /*
1755 * <sp_16_busy>: */
1756 0xe1d160b0, /* ldrh r6, [r1] */
1757 0xe0257006, /* eor r7, r5, r6 */
1758 0xe2177080, /* ands r7, #0x80 */
1759 0x1afffffb, /* bne 8168 <sp_16_busy> */
1760 /* */
1761 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1762 0x03a05080, /* moveq r5, #128 ; 0x80 */
1763 0x0a000001, /* beq 81ac <sp_16_done> */
1764 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1765 0xeafffff0, /* b 8158 <sp_16_code> */
1766 /*
1767 * 000081ac <sp_16_done>: */
1768 0xeafffffe /* b 81ac <sp_16_done> */
1769 };
1770
1771 /* see contib/loaders/flash/armv4_5_cfi_span_8.s for src */
1772 static const uint32_t armv4_5_word_8_code[] = {
1773 /* 000081b0 <sp_16_code_end>: */
1774 0xe4d05001, /* ldrb r5, [r0], #1 */
1775 0xe5c89000, /* strb r9, [r8] */
1776 0xe5cab000, /* strb r11, [r10] */
1777 0xe5c83000, /* strb r3, [r8] */
1778 0xe5c15000, /* strb r5, [r1] */
1779 0xe1a00000, /* nop (mov r0,r0) */
1780 /*
1781 * 000081c0 <sp_8_busy>: */
1782 0xe5d16000, /* ldrb r6, [r1] */
1783 0xe0257006, /* eor r7, r5, r6 */
1784 0xe0147007, /* ands r7, r4, r7 */
1785 0x0a000007, /* beq 81f0 <sp_8_cont> */
1786 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1787 0x0afffff9, /* beq 81c0 <sp_8_busy> */
1788 0xe5d16000, /* ldrb r6, [r1] */
1789 0xe0257006, /* eor r7, r5, r6 */
1790 0xe0147007, /* ands r7, r4, r7 */
1791 0x0a000001, /* beq 81f0 <sp_8_cont> */
1792 0xe3a05000, /* mov r5, #0 ; 0x0 */
1793 0x1a000004, /* bne 8204 <sp_8_done> */
1794 /*
1795 * 000081f0 <sp_8_cont>: */
1796 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1797 0x03a05080, /* moveq r5, #128 ; 0x80 */
1798 0x0a000001, /* beq 8204 <sp_8_done> */
1799 0xe2811001, /* add r1, r1, #1 ; 0x1 */
1800 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
1801 /*
1802 * 00008204 <sp_8_done>: */
1803 0xeafffffe /* b 8204 <sp_8_done> */
1804 };
1805
1806 if (strncmp(target_type_name(target), "mips_m4k", 8) == 0)
1807 return cfi_spansion_write_block_mips(bank, buffer, address, count);
1808
1809 if (is_armv7m(target_to_armv7m(target))) { /* Cortex-M3 target */
1810 armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
1811 armv7m_algo.core_mode = ARMV7M_MODE_HANDLER;
1812 arm_algo = &armv7m_algo;
1813 } else if (is_arm(target_to_arm(target))) {
1814 /* All other ARM CPUs have 32 bit instructions */
1815 armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
1816 armv4_5_algo.core_mode = ARM_MODE_SVC;
1817 armv4_5_algo.core_state = ARM_STATE_ARM;
1818 arm_algo = &armv4_5_algo;
1819 } else {
1820 LOG_ERROR("Unknown architecture");
1821 return ERROR_FAIL;
1822 }
1823
1824 int target_code_size = 0;
1825 const uint32_t *target_code_src = NULL;
1826
1827 switch (bank->bus_width) {
1828 case 1:
1829 if (is_armv7m(target_to_armv7m(target))) {
1830 LOG_ERROR("Unknown ARM architecture");
1831 return ERROR_FAIL;
1832 }
1833 target_code_src = armv4_5_word_8_code;
1834 target_code_size = sizeof(armv4_5_word_8_code);
1835 break;
1836 case 2:
1837 /* Check for DQ5 support */
1838 if (cfi_info->status_poll_mask & (1 << 5)) {
1839 if (is_armv7m(target_to_armv7m(target))) { /*
1840 *cortex-m3
1841 *target
1842 **/
1843 target_code_src = armv7m_word_16_code;
1844 target_code_size = sizeof(armv7m_word_16_code);
1845 } else { /* armv4_5 target */
1846 target_code_src = armv4_5_word_16_code;
1847 target_code_size = sizeof(armv4_5_word_16_code);
1848 }
1849 } else {
1850 /* No DQ5 support. Use DQ7 DATA# polling only. */
1851 if (is_armv7m(target_to_armv7m(target))) {
1852 LOG_ERROR("Unknown ARM architecture");
1853 return ERROR_FAIL;
1854 }
1855 target_code_src = armv4_5_word_16_code_dq7only;
1856 target_code_size = sizeof(armv4_5_word_16_code_dq7only);
1857 }
1858 break;
1859 case 4:
1860 if (is_armv7m(target_to_armv7m(target))) {
1861 LOG_ERROR("Unknown ARM architecture");
1862 return ERROR_FAIL;
1863 }
1864 target_code_src = armv4_5_word_32_code;
1865 target_code_size = sizeof(armv4_5_word_32_code);
1866 break;
1867 default:
1868 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1869 bank->bus_width);
1870 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1871 }
1872
1873 /* flash write code */
1874 uint8_t *target_code;
1875
1876 /* convert bus-width dependent algorithm code to correct endiannes */
1877 target_code = malloc(target_code_size);
1878 if (target_code == NULL) {
1879 LOG_ERROR("Out of memory");
1880 return ERROR_FAIL;
1881 }
1882 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1883
1884 /* allocate working area */
1885 retval = target_alloc_working_area(target, target_code_size,
1886 &write_algorithm);
1887 if (retval != ERROR_OK) {
1888 free(target_code);
1889 return retval;
1890 }
1891
1892 /* write algorithm code to working area */
1893 retval = target_write_buffer(target, write_algorithm->address,
1894 target_code_size, target_code);
1895 if (retval != ERROR_OK) {
1896 free(target_code);
1897 return retval;
1898 }
1899
1900 free(target_code);
1901
1902 /* the following code still assumes target code is fixed 24*4 bytes */
1903
1904 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1905 buffer_size /= 2;
1906 if (buffer_size <= 256) {
1907 /* we already allocated the writing code, but failed to get a
1908 * buffer, free the algorithm */
1909 target_free_working_area(target, write_algorithm);
1910
1911 LOG_WARNING(
1912 "not enough working area available, can't do block memory writes");
1913 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1914 }
1915 }
1916 ;
1917
1918 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1919 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1920 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1921 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1922 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1923 init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
1924 init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
1925 init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
1926 init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
1927 init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
1928
1929 while (count > 0) {
1930 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1931
1932 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1933 if (retval != ERROR_OK)
1934 break;
1935
1936 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1937 buf_set_u32(reg_params[1].value, 0, 32, address);
1938 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1939 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1940 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1941 buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
1942 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1943 buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
1944 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1945
1946 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1947 write_algorithm->address,
1948 write_algorithm->address + ((target_code_size) - 4),
1949 10000, arm_algo);
1950 if (retval != ERROR_OK)
1951 break;
1952
1953 status = buf_get_u32(reg_params[5].value, 0, 32);
1954 if (status != 0x80) {
1955 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1956 retval = ERROR_FLASH_OPERATION_FAILED;
1957 break;
1958 }
1959
1960 buffer += thisrun_count;
1961 address += thisrun_count;
1962 count -= thisrun_count;
1963 }
1964
1965 target_free_all_working_areas(target);
1966
1967 destroy_reg_param(&reg_params[0]);
1968 destroy_reg_param(&reg_params[1]);
1969 destroy_reg_param(&reg_params[2]);
1970 destroy_reg_param(&reg_params[3]);
1971 destroy_reg_param(&reg_params[4]);
1972 destroy_reg_param(&reg_params[5]);
1973 destroy_reg_param(&reg_params[6]);
1974 destroy_reg_param(&reg_params[7]);
1975 destroy_reg_param(&reg_params[8]);
1976 destroy_reg_param(&reg_params[9]);
1977
1978 return retval;
1979 }
1980
1981 static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1982 {
1983 int retval;
1984 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1985 struct target *target = bank->target;
1986
1987 cfi_intel_clear_status_register(bank);
1988 retval = cfi_send_command(bank, 0x40, address);
1989 if (retval != ERROR_OK)
1990 return retval;
1991
1992 retval = target_write_memory(target, address, bank->bus_width, 1, word);
1993 if (retval != ERROR_OK)
1994 return retval;
1995
1996 uint8_t status;
1997 retval = cfi_intel_wait_status_busy(bank, cfi_info->word_write_timeout, &status);
1998 if (retval != 0x80) {
1999 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2000 if (retval != ERROR_OK)
2001 return retval;
2002
2003 LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address 0x%" PRIx32,
2004 bank->base, address);
2005 return ERROR_FLASH_OPERATION_FAILED;
2006 }
2007
2008 return ERROR_OK;
2009 }
2010
2011 static int cfi_intel_write_words(struct flash_bank *bank, uint8_t *word,
2012 uint32_t wordcount, uint32_t address)
2013 {
2014 int retval;
2015 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2016 struct target *target = bank->target;
2017
2018 /* Calculate buffer size and boundary mask
2019 * buffersize is (buffer size per chip) * (number of chips)
2020 * bufferwsize is buffersize in words */
2021 uint32_t buffersize =
2022 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2023 uint32_t buffermask = buffersize-1;
2024 uint32_t bufferwsize = buffersize / bank->bus_width;
2025
2026 /* Check for valid range */
2027 if (address & buffermask) {
2028 LOG_ERROR("Write address at base 0x%" PRIx32 ", address 0x%" PRIx32
2029 " not aligned to 2^%d boundary",
2030 bank->base, address, cfi_info->max_buf_write_size);
2031 return ERROR_FLASH_OPERATION_FAILED;
2032 }
2033
2034 /* Check for valid size */
2035 if (wordcount > bufferwsize) {
2036 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32,
2037 wordcount, buffersize);
2038 return ERROR_FLASH_OPERATION_FAILED;
2039 }
2040
2041 /* Write to flash buffer */
2042 cfi_intel_clear_status_register(bank);
2043
2044 /* Initiate buffer operation _*/
2045 retval = cfi_send_command(bank, 0xe8, address);
2046 if (retval != ERROR_OK)
2047 return retval;
2048 uint8_t status;
2049 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2050 if (retval != ERROR_OK)
2051 return retval;
2052 if (status != 0x80) {
2053 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2054 if (retval != ERROR_OK)
2055 return retval;
2056
2057 LOG_ERROR(
2058 "couldn't start buffer write operation at base 0x%" PRIx32 ", address 0x%" PRIx32,
2059 bank->base,
2060 address);
2061 return ERROR_FLASH_OPERATION_FAILED;
2062 }
2063
2064 /* Write buffer wordcount-1 and data words */
2065 retval = cfi_send_command(bank, bufferwsize-1, address);
2066 if (retval != ERROR_OK)
2067 return retval;
2068
2069 retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word);
2070 if (retval != ERROR_OK)
2071 return retval;
2072
2073 /* Commit write operation */
2074 retval = cfi_send_command(bank, 0xd0, address);
2075 if (retval != ERROR_OK)
2076 return retval;
2077
2078 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2079 if (retval != ERROR_OK)
2080 return retval;
2081
2082 if (status != 0x80) {
2083 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2084 if (retval != ERROR_OK)
2085 return retval;
2086
2087 LOG_ERROR("Buffer write at base 0x%" PRIx32
2088 ", address 0x%" PRIx32 " failed.", bank->base, address);
2089 return ERROR_FLASH_OPERATION_FAILED;
2090 }
2091
2092 return ERROR_OK;
2093 }
2094
2095 static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2096 {
2097 int retval;
2098 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2099 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2100 struct target *target = bank->target;
2101
2102 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
2103 if (retval != ERROR_OK)
2104 return retval;
2105
2106 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
2107 if (retval != ERROR_OK)
2108 return retval;
2109
2110 retval = cfi_send_command(bank, 0xa0, flash_address(bank, 0, pri_ext->_unlock1));
2111 if (retval != ERROR_OK)
2112 return retval;
2113
2114 retval = target_write_memory(target, address, bank->bus_width, 1, word);
2115 if (retval != ERROR_OK)
2116 return retval;
2117
2118 if (cfi_spansion_wait_status_busy(bank, cfi_info->word_write_timeout) != ERROR_OK) {
2119 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
2120 if (retval != ERROR_OK)
2121 return retval;
2122
2123 LOG_ERROR("couldn't write word at base 0x%" PRIx32
2124 ", address 0x%" PRIx32, bank->base, address);
2125 return ERROR_FLASH_OPERATION_FAILED;
2126 }
2127
2128 return ERROR_OK;
2129 }
2130
2131 static int cfi_spansion_write_words(struct flash_bank *bank, uint8_t *word,
2132 uint32_t wordcount, uint32_t address)
2133 {
2134 int retval;
2135 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2136 struct target *target = bank->target;
2137 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2138
2139 /* Calculate buffer size and boundary mask
2140 * buffersize is (buffer size per chip) * (number of chips)
2141 * bufferwsize is buffersize in words */
2142 uint32_t buffersize =
2143 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2144 uint32_t buffermask = buffersize-1;
2145 uint32_t bufferwsize = buffersize / bank->bus_width;
2146
2147 /* Check for valid range */
2148 if (address & buffermask) {
2149 LOG_ERROR("Write address at base 0x%" PRIx32
2150 ", address 0x%" PRIx32 " not aligned to 2^%d boundary",
2151 bank->base, address, cfi_info->max_buf_write_size);
2152 return ERROR_FLASH_OPERATION_FAILED;
2153 }
2154
2155 /* Check for valid size */
2156 if (wordcount > bufferwsize) {
2157 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %"
2158 PRId32, wordcount, buffersize);
2159 return ERROR_FLASH_OPERATION_FAILED;
2160 }
2161
2162 /* Unlock */
2163 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
2164 if (retval != ERROR_OK)
2165 return retval;
2166
2167 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
2168 if (retval != ERROR_OK)
2169 return retval;
2170
2171 /* Buffer load command */
2172 retval = cfi_send_command(bank, 0x25, address);
2173 if (retval != ERROR_OK)
2174 return retval;
2175
2176 /* Write buffer wordcount-1 and data words */
2177 retval = cfi_send_command(bank, bufferwsize-1, address);
2178 if (retval != ERROR_OK)
2179 return retval;
2180
2181 retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word);
2182 if (retval != ERROR_OK)
2183 return retval;
2184
2185 /* Commit write operation */
2186 retval = cfi_send_command(bank, 0x29, address);
2187 if (retval != ERROR_OK)
2188 return retval;
2189
2190 if (cfi_spansion_wait_status_busy(bank, cfi_info->buf_write_timeout) != ERROR_OK) {
2191 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
2192 if (retval != ERROR_OK)
2193 return retval;
2194
2195 LOG_ERROR("couldn't write block at base 0x%" PRIx32
2196 ", address 0x%" PRIx32 ", size 0x%" PRIx32, bank->base, address,
2197 bufferwsize);
2198 return ERROR_FLASH_OPERATION_FAILED;
2199 }
2200
2201 return ERROR_OK;
2202 }
2203
2204 static int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2205 {
2206 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2207
2208 switch (cfi_info->pri_id) {
2209 case 1:
2210 case 3:
2211 return cfi_intel_write_word(bank, word, address);
2212 break;
2213 case 2:
2214 return cfi_spansion_write_word(bank, word, address);
2215 break;
2216 default:
2217 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2218 break;
2219 }
2220
2221 return ERROR_FLASH_OPERATION_FAILED;
2222 }
2223
2224 static int cfi_write_words(struct flash_bank *bank, uint8_t *word,
2225 uint32_t wordcount, uint32_t address)
2226 {
2227 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2228
2229 if (cfi_info->buf_write_timeout_typ == 0) {
2230 /* buffer writes are not supported */
2231 LOG_DEBUG("Buffer Writes Not Supported");
2232 return ERROR_FLASH_OPER_UNSUPPORTED;
2233 }
2234
2235 switch (cfi_info->pri_id) {
2236 case 1:
2237 case 3:
2238 return cfi_intel_write_words(bank, word, wordcount, address);
2239 break;
2240 case 2:
2241 return cfi_spansion_write_words(bank, word, wordcount, address);
2242 break;
2243 default:
2244 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2245 break;
2246 }
2247
2248 return ERROR_FLASH_OPERATION_FAILED;
2249 }
2250
2251 static int cfi_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
2252 {
2253 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2254 struct target *target = bank->target;
2255 uint32_t address = bank->base + offset;
2256 uint32_t read_p;
2257 int align; /* number of unaligned bytes */
2258 uint8_t current_word[CFI_MAX_BUS_WIDTH];
2259 int i;
2260 int retval;
2261
2262 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2263 (int)count, (unsigned)offset);
2264
2265 if (bank->target->state != TARGET_HALTED) {
2266 LOG_ERROR("Target not halted");
2267 return ERROR_TARGET_NOT_HALTED;
2268 }
2269
2270 if (offset + count > bank->size)
2271 return ERROR_FLASH_DST_OUT_OF_BANK;
2272
2273 if (cfi_info->qry[0] != 'Q')
2274 return ERROR_FLASH_BANK_NOT_PROBED;
2275
2276 /* start at the first byte of the first word (bus_width size) */
2277 read_p = address & ~(bank->bus_width - 1);
2278 align = address - read_p;
2279 if (align != 0) {
2280 LOG_INFO("Fixup %d unaligned read head bytes", align);
2281
2282 /* read a complete word from flash */
2283 retval = target_read_memory(target, read_p, bank->bus_width, 1, current_word);
2284 if (retval != ERROR_OK)
2285 return retval;
2286
2287 /* take only bytes we need */
2288 for (i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2289 *buffer++ = current_word[i];
2290
2291 read_p += bank->bus_width;
2292 }
2293
2294 align = count / bank->bus_width;
2295 if (align) {
2296 retval = target_read_memory(target, read_p, bank->bus_width, align, buffer);
2297 if (retval != ERROR_OK)
2298 return retval;
2299
2300 read_p += align * bank->bus_width;
2301 buffer += align * bank->bus_width;
2302 count -= align * bank->bus_width;
2303 }
2304
2305 if (count) {
2306 LOG_INFO("Fixup %d unaligned read tail bytes", count);
2307
2308 /* read a complete word from flash */
2309 retval = target_read_memory(target, read_p, bank->bus_width, 1, current_word);
2310 if (retval != ERROR_OK)
2311 return retval;
2312
2313 /* take only bytes we need */
2314 for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2315 *buffer++ = current_word[i];
2316 }
2317
2318 return ERROR_OK;
2319 }
2320
2321 static int cfi_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
2322 {
2323 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2324 struct target *target = bank->target;
2325 uint32_t address = bank->base + offset; /* address of first byte to be programmed */
2326 uint32_t write_p;
2327 int align; /* number of unaligned bytes */
2328 int blk_count; /* number of bus_width bytes for block copy */
2329 uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being
2330 *programmed */
2331 int i;
2332 int retval;
2333
2334 if (bank->target->state != TARGET_HALTED) {
2335 LOG_ERROR("Target not halted");
2336 return ERROR_TARGET_NOT_HALTED;
2337 }
2338
2339 if (offset + count > bank->size)
2340 return ERROR_FLASH_DST_OUT_OF_BANK;
2341
2342 if (cfi_info->qry[0] != 'Q')
2343 return ERROR_FLASH_BANK_NOT_PROBED;
2344
2345 /* start at the first byte of the first word (bus_width size) */
2346 write_p = address & ~(bank->bus_width - 1);
2347 align = address - write_p;
2348 if (align != 0) {
2349 LOG_INFO("Fixup %d unaligned head bytes", align);
2350
2351 /* read a complete word from flash */
2352 retval = target_read_memory(target, write_p, bank->bus_width, 1, current_word);
2353 if (retval != ERROR_OK)
2354 return retval;
2355
2356 /* replace only bytes that must be written */
2357 for (i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2358 current_word[i] = *buffer++;
2359
2360 retval = cfi_write_word(bank, current_word, write_p);
2361 if (retval != ERROR_OK)
2362 return retval;
2363 write_p += bank->bus_width;
2364 }
2365
2366 /* handle blocks of bus_size aligned bytes */
2367 blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
2368 switch (cfi_info->pri_id) {
2369 /* try block writes (fails without working area) */
2370 case 1:
2371 case 3:
2372 retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
2373 break;
2374 case 2:
2375 retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
2376 break;
2377 default:
2378 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2379 retval = ERROR_FLASH_OPERATION_FAILED;
2380 break;
2381 }
2382 if (retval == ERROR_OK) {
2383 /* Increment pointers and decrease count on succesful block write */
2384 buffer += blk_count;
2385 write_p += blk_count;
2386 count -= blk_count;
2387 } else {
2388 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
2389 /* Calculate buffer size and boundary mask
2390 * buffersize is (buffer size per chip) * (number of chips)
2391 * bufferwsize is buffersize in words */
2392 uint32_t buffersize =
2393 (1UL <<
2394 cfi_info->max_buf_write_size) *
2395 (bank->bus_width / bank->chip_width);
2396 uint32_t buffermask = buffersize-1;
2397 uint32_t bufferwsize = buffersize / bank->bus_width;
2398
2399 /* fall back to memory writes */
2400 while (count >= (uint32_t)bank->bus_width) {
2401 int fallback;
2402 if ((write_p & 0xff) == 0) {
2403 LOG_INFO("Programming at 0x%08" PRIx32 ", count 0x%08"
2404 PRIx32 " bytes remaining", write_p, count);
2405 }
2406 fallback = 1;
2407 if ((bufferwsize > 0) && (count >= buffersize) &&
2408 !(write_p & buffermask)) {
2409 retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
2410 if (retval == ERROR_OK) {
2411 buffer += buffersize;
2412 write_p += buffersize;
2413 count -= buffersize;
2414 fallback = 0;
2415 } else if (retval != ERROR_FLASH_OPER_UNSUPPORTED)
2416 return retval;
2417 }
2418 /* try the slow way? */
2419 if (fallback) {
2420 for (i = 0; i < bank->bus_width; i++)
2421 current_word[i] = *buffer++;
2422
2423 retval = cfi_write_word(bank, current_word, write_p);
2424 if (retval != ERROR_OK)
2425 return retval;
2426
2427 write_p += bank->bus_width;
2428 count -= bank->bus_width;
2429 }
2430 }
2431 } else
2432 return retval;
2433 }
2434
2435 /* return to read array mode, so we can read from flash again for padding */
2436 retval = cfi_reset(bank);
2437 if (retval != ERROR_OK)
2438 return retval;
2439
2440 /* handle unaligned tail bytes */
2441 if (count > 0) {
2442 LOG_INFO("Fixup %" PRId32 " unaligned tail bytes", count);
2443
2444 /* read a complete word from flash */
2445 retval = target_read_memory(target, write_p, bank->bus_width, 1, current_word);
2446 if (retval != ERROR_OK)
2447 return retval;
2448
2449 /* replace only bytes that must be written */
2450 for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2451 current_word[i] = *buffer++;
2452
2453 retval = cfi_write_word(bank, current_word, write_p);
2454 if (retval != ERROR_OK)
2455 return retval;
2456 }
2457
2458 /* return to read array mode */
2459 return cfi_reset(bank);
2460 }
2461
2462 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, void *param)
2463 {
2464 (void) param;
2465 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2466 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2467
2468 pri_ext->_reversed_geometry = 1;
2469 }
2470
2471 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, void *param)
2472 {
2473 int i;
2474 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2475 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2476 (void) param;
2477
2478 if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3)) {
2479 LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
2480
2481 for (i = 0; i < cfi_info->num_erase_regions / 2; i++) {
2482 int j = (cfi_info->num_erase_regions - 1) - i;
2483 uint32_t swap;
2484
2485 swap = cfi_info->erase_region_info[i];
2486 cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
2487 cfi_info->erase_region_info[j] = swap;
2488 }
2489 }
2490 }
2491
2492 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, void *param)
2493 {
2494 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2495 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2496 struct cfi_unlock_addresses *unlock_addresses = param;
2497
2498 pri_ext->_unlock1 = unlock_addresses->unlock1;
2499 pri_ext->_unlock2 = unlock_addresses->unlock2;
2500 }
2501
2502
2503 static int cfi_query_string(struct flash_bank *bank, int address)
2504 {
2505 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2506 int retval;
2507
2508 retval = cfi_send_command(bank, 0x98, flash_address(bank, 0, address));
2509 if (retval != ERROR_OK)
2510 return retval;
2511
2512 retval = cfi_query_u8(bank, 0, 0x10, &cfi_info->qry[0]);
2513 if (retval != ERROR_OK)
2514 return retval;
2515 retval = cfi_query_u8(bank, 0, 0x11, &cfi_info->qry[1]);
2516 if (retval != ERROR_OK)
2517 return retval;
2518 retval = cfi_query_u8(bank, 0, 0x12, &cfi_info->qry[2]);
2519 if (retval != ERROR_OK)
2520 return retval;
2521
2522 LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x",
2523 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
2524
2525 if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y')) {
2526 retval = cfi_reset(bank);
2527 if (retval != ERROR_OK)
2528 return retval;
2529 LOG_ERROR("Could not probe bank: no QRY");
2530 return ERROR_FLASH_BANK_INVALID;
2531 }
2532
2533 return ERROR_OK;
2534 }
2535
2536 static int cfi_probe(struct flash_bank *bank)
2537 {
2538 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2539 struct target *target = bank->target;
2540 int num_sectors = 0;
2541 int i;
2542 int sector = 0;
2543 uint32_t unlock1 = 0x555;
2544 uint32_t unlock2 = 0x2aa;
2545 int retval;
2546 uint8_t value_buf0[CFI_MAX_BUS_WIDTH], value_buf1[CFI_MAX_BUS_WIDTH];
2547
2548 if (bank->target->state != TARGET_HALTED) {
2549 LOG_ERROR("Target not halted");
2550 return ERROR_TARGET_NOT_HALTED;
2551 }
2552
2553 cfi_info->probed = 0;
2554 cfi_info->num_erase_regions = 0;
2555 if (bank->sectors) {
2556 free(bank->sectors);
2557 bank->sectors = NULL;
2558 }
2559 if (cfi_info->erase_region_info) {
2560 free(cfi_info->erase_region_info);
2561 cfi_info->erase_region_info = NULL;
2562 }
2563
2564 /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
2565 * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
2566 */
2567 if (cfi_info->jedec_probe) {
2568 unlock1 = 0x5555;
2569 unlock2 = 0x2aaa;
2570 }
2571
2572 /* switch to read identifier codes mode ("AUTOSELECT") */
2573 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, unlock1));
2574 if (retval != ERROR_OK)
2575 return retval;
2576 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, unlock2));
2577 if (retval != ERROR_OK)
2578 return retval;
2579 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, unlock1));
2580 if (retval != ERROR_OK)
2581 return retval;
2582
2583 retval = target_read_memory(target, flash_address(bank, 0, 0x00),
2584 bank->bus_width, 1, value_buf0);
2585 if (retval != ERROR_OK)
2586 return retval;
2587 retval = target_read_memory(target, flash_address(bank, 0, 0x01),
2588 bank->bus_width, 1, value_buf1);
2589 if (retval != ERROR_OK)
2590 return retval;
2591 switch (bank->chip_width) {
2592 case 1:
2593 cfi_info->manufacturer = *value_buf0;
2594 cfi_info->device_id = *value_buf1;
2595 break;
2596 case 2:
2597 cfi_info->manufacturer = target_buffer_get_u16(target, value_buf0);
2598 cfi_info->device_id = target_buffer_get_u16(target, value_buf1);
2599 break;
2600 case 4:
2601 cfi_info->manufacturer = target_buffer_get_u32(target, value_buf0);
2602 cfi_info->device_id = target_buffer_get_u32(target, value_buf1);
2603 break;
2604 default:
2605 LOG_ERROR("Unsupported bank chipwidth %d, can't probe memory",
2606 bank->chip_width);
2607 return ERROR_FLASH_OPERATION_FAILED;
2608 }
2609
2610 LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x",
2611 cfi_info->manufacturer, cfi_info->device_id);
2612 /* switch back to read array mode */
2613 retval = cfi_reset(bank);
2614 if (retval != ERROR_OK)
2615 return retval;
2616
2617 /* check device/manufacturer ID for known non-CFI flashes. */
2618 cfi_fixup_non_cfi(bank);
2619
2620 /* query only if this is a CFI compatible flash,
2621 * otherwise the relevant info has already been filled in
2622 */
2623 if (cfi_info->not_cfi == 0) {
2624 /* enter CFI query mode
2625 * according to JEDEC Standard No. 68.01,
2626 * a single bus sequence with address = 0x55, data = 0x98 should put
2627 * the device into CFI query mode.
2628 *
2629 * SST flashes clearly violate this, and we will consider them incompatbile for now
2630 */
2631
2632 retval = cfi_query_string(bank, 0x55);
2633 if (retval != ERROR_OK) {
2634 /*
2635 * Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
2636 * be harmless enough:
2637 *
2638 * http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
2639 */
2640 LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
2641 retval = cfi_query_string(bank, 0x555);
2642 }
2643 if (retval != ERROR_OK)
2644 return retval;
2645
2646 retval = cfi_query_u16(bank, 0, 0x13, &cfi_info->pri_id);
2647 if (retval != ERROR_OK)
2648 return retval;
2649 retval = cfi_query_u16(bank, 0, 0x15, &cfi_info->pri_addr);
2650 if (retval != ERROR_OK)
2651 return retval;
2652 retval = cfi_query_u16(bank, 0, 0x17, &cfi_info->alt_id);
2653 if (retval != ERROR_OK)
2654 return retval;
2655 retval = cfi_query_u16(bank, 0, 0x19, &cfi_info->alt_addr);
2656 if (retval != ERROR_OK)
2657 return retval;
2658
2659 LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: "
2660 "0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1],
2661 cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr,
2662 cfi_info->alt_id, cfi_info->alt_addr);
2663
2664 retval = cfi_query_u8(bank, 0, 0x1b, &cfi_info->vcc_min);
2665 if (retval != ERROR_OK)
2666 return retval;
2667 retval = cfi_query_u8(bank, 0, 0x1c, &cfi_info->vcc_max);
2668 if (retval != ERROR_OK)
2669 return retval;
2670 retval = cfi_query_u8(bank, 0, 0x1d, &cfi_info->vpp_min);
2671 if (retval != ERROR_OK)
2672 return retval;
2673 retval = cfi_query_u8(bank, 0, 0x1e, &cfi_info->vpp_max);
2674 if (retval != ERROR_OK)
2675 return retval;
2676
2677 retval = cfi_query_u8(bank, 0, 0x1f, &cfi_info->word_write_timeout_typ);
2678 if (retval != ERROR_OK)
2679 return retval;
2680 retval = cfi_query_u8(bank, 0, 0x20, &cfi_info->buf_write_timeout_typ);
2681 if (retval != ERROR_OK)
2682 return retval;
2683 retval = cfi_query_u8(bank, 0, 0x21, &cfi_info->block_erase_timeout_typ);
2684 if (retval != ERROR_OK)
2685 return retval;
2686 retval = cfi_query_u8(bank, 0, 0x22, &cfi_info->chip_erase_timeout_typ);
2687 if (retval != ERROR_OK)
2688 return retval;
2689 retval = cfi_query_u8(bank, 0, 0x23, &cfi_info->word_write_timeout_max);
2690 if (retval != ERROR_OK)
2691 return retval;
2692 retval = cfi_query_u8(bank, 0, 0x24, &cfi_info->buf_write_timeout_max);
2693 if (retval != ERROR_OK)
2694 return retval;
2695 retval = cfi_query_u8(bank, 0, 0x25, &cfi_info->block_erase_timeout_max);
2696 if (retval != ERROR_OK)
2697 return retval;
2698 retval = cfi_query_u8(bank, 0, 0x26, &cfi_info->chip_erase_timeout_max);
2699 if (retval != ERROR_OK)
2700 return retval;
2701
2702 uint8_t data;
2703 retval = cfi_query_u8(bank, 0, 0x27, &data);
2704 if (retval != ERROR_OK)
2705 return retval;
2706 cfi_info->dev_size = 1 << data;
2707
2708 retval = cfi_query_u16(bank, 0, 0x28, &cfi_info->interface_desc);
2709 if (retval != ERROR_OK)
2710 return retval;
2711 retval = cfi_query_u16(bank, 0, 0x2a, &cfi_info->max_buf_write_size);
2712 if (retval != ERROR_OK)
2713 return retval;
2714 retval = cfi_query_u8(bank, 0, 0x2c, &cfi_info->num_erase_regions);
2715 if (retval != ERROR_OK)
2716 return retval;
2717
2718 LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: 0x%x",
2719 cfi_info->dev_size, cfi_info->interface_desc,
2720 (1 << cfi_info->max_buf_write_size));
2721
2722 if (cfi_info->num_erase_regions) {
2723 cfi_info->erase_region_info = malloc(sizeof(*cfi_info->erase_region_info)
2724 * cfi_info->num_erase_regions);
2725 for (i = 0; i < cfi_info->num_erase_regions; i++) {
2726 retval = cfi_query_u32(bank,
2727 0,
2728 0x2d + (4 * i),
2729 &cfi_info->erase_region_info[i]);
2730 if (retval != ERROR_OK)
2731 return retval;
2732 LOG_DEBUG(
2733 "erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "",
2734 i,
2735 (cfi_info->erase_region_info[i] & 0xffff) + 1,
2736 (cfi_info->erase_region_info[i] >> 16) * 256);
2737 }
2738 } else
2739 cfi_info->erase_region_info = NULL;
2740
2741 /* We need to read the primary algorithm extended query table before calculating
2742 * the sector layout to be able to apply fixups
2743 */
2744 switch (cfi_info->pri_id) {
2745 /* Intel command set (standard and extended) */
2746 case 0x0001:
2747 case 0x0003:
2748 cfi_read_intel_pri_ext(bank);
2749 break;
2750 /* AMD/Spansion, Atmel, ... command set */
2751 case 0x0002:
2752 cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /*
2753 *default
2754 *for
2755 *all
2756 *CFI
2757 *flashs
2758 **/
2759 cfi_read_0002_pri_ext(bank);
2760 break;
2761 default:
2762 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2763 break;
2764 }
2765
2766 /* return to read array mode
2767 * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
2768 */
2769 retval = cfi_reset(bank);
2770 if (retval != ERROR_OK)
2771 return retval;
2772 } /* end CFI case */
2773
2774 LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
2775 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2776 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2777 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2778 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2779
2780 LOG_DEBUG("typ. word write timeout: %u us, typ. buf write timeout: %u us, "
2781 "typ. block erase timeout: %u ms, typ. chip erase timeout: %u ms",
2782 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
2783 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
2784
2785 LOG_DEBUG("max. word write timeout: %u us, max. buf write timeout: %u us, "
2786 "max. block erase timeout: %u ms, max. chip erase timeout: %u ms",
2787 (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2788 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2789 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2790 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2791
2792 /* convert timeouts to real values in ms */
2793 cfi_info->word_write_timeout = DIV_ROUND_UP((1L << cfi_info->word_write_timeout_typ) *
2794 (1L << cfi_info->word_write_timeout_max), 1000);
2795 cfi_info->buf_write_timeout = DIV_ROUND_UP((1L << cfi_info->buf_write_timeout_typ) *
2796 (1L << cfi_info->buf_write_timeout_max), 1000);
2797 cfi_info->block_erase_timeout = (1L << cfi_info->block_erase_timeout_typ) *
2798 (1L << cfi_info->block_erase_timeout_max);
2799 cfi_info->chip_erase_timeout = (1L << cfi_info->chip_erase_timeout_typ) *
2800 (1L << cfi_info->chip_erase_timeout_max);
2801
2802 LOG_DEBUG("calculated word write timeout: %u ms, buf write timeout: %u ms, "
2803 "block erase timeout: %u ms, chip erase timeout: %u ms",
2804 cfi_info->word_write_timeout, cfi_info->buf_write_timeout,
2805 cfi_info->block_erase_timeout, cfi_info->chip_erase_timeout);
2806
2807 /* apply fixups depending on the primary command set */
2808 switch (cfi_info->pri_id) {
2809 /* Intel command set (standard and extended) */
2810 case 0x0001:
2811 case 0x0003:
2812 cfi_fixup(bank, cfi_0001_fixups);
2813 break;
2814 /* AMD/Spansion, Atmel, ... command set */
2815 case 0x0002:
2816 cfi_fixup(bank, cfi_0002_fixups);
2817 break;
2818 default:
2819 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2820 break;
2821 }
2822
2823 if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size) {
2824 LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32
2825 " size flash was found", bank->size, cfi_info->dev_size);
2826 }
2827
2828 if (cfi_info->num_erase_regions == 0) {
2829 /* a device might have only one erase block, spanning the whole device */
2830 bank->num_sectors = 1;
2831 bank->sectors = malloc(sizeof(struct flash_sector));
2832
2833 bank->sectors[sector].offset = 0x0;
2834 bank->sectors[sector].size = bank->size;
2835 bank->sectors[sector].is_erased = -1;
2836 bank->sectors[sector].is_protected = -1;
2837 } else {
2838 uint32_t offset = 0;
2839
2840 for (i = 0; i < cfi_info->num_erase_regions; i++)
2841 num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
2842
2843 bank->num_sectors = num_sectors;
2844 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
2845
2846 for (i = 0; i < cfi_info->num_erase_regions; i++) {
2847 uint32_t j;
2848 for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++) {
2849 bank->sectors[sector].offset = offset;
2850 bank->sectors[sector].size =
2851 ((cfi_info->erase_region_info[i] >> 16) * 256)
2852 * bank->bus_width / bank->chip_width;
2853 offset += bank->sectors[sector].size;
2854 bank->sectors[sector].is_erased = -1;
2855 bank->sectors[sector].is_protected = -1;
2856 sector++;
2857 }
2858 }
2859 if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width)) {
2860 LOG_WARNING(
2861 "CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "", \
2862 (cfi_info->dev_size * bank->bus_width / bank->chip_width),
2863 offset);
2864 }
2865 }
2866
2867 cfi_info->probed = 1;
2868
2869 return ERROR_OK;
2870 }
2871
2872 static int cfi_auto_probe(struct flash_bank *bank)
2873 {
2874 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2875 if (cfi_info->probed)
2876 return ERROR_OK;
2877 return cfi_probe(bank);
2878 }
2879
2880 static int cfi_intel_protect_check(struct flash_bank *bank)
2881 {
2882 int retval;
2883 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2884 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
2885 int i;
2886
2887 /* check if block lock bits are supported on this device */
2888 if (!(pri_ext->blk_status_reg_mask & 0x1))
2889 return ERROR_FLASH_OPERATION_FAILED;
2890
2891 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55));
2892 if (retval != ERROR_OK)
2893 return retval;
2894
2895 for (i = 0; i < bank->num_sectors; i++) {
2896 uint8_t block_status;
2897 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2898 if (retval != ERROR_OK)
2899 return retval;
2900
2901 if (block_status & 1)
2902 bank->sectors[i].is_protected = 1;
2903 else
2904 bank->sectors[i].is_protected = 0;
2905 }
2906
2907 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2908 }
2909
2910 static int cfi_spansion_protect_check(struct flash_bank *bank)
2911 {
2912 int retval;
2913 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2914 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2915 int i;
2916
2917 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
2918 if (retval != ERROR_OK)
2919 return retval;
2920
2921 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
2922 if (retval != ERROR_OK)
2923 return retval;
2924
2925 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, pri_ext->_unlock1));
2926 if (retval != ERROR_OK)
2927 return retval;
2928
2929 for (i = 0; i < bank->num_sectors; i++) {
2930 uint8_t block_status;
2931 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2932 if (retval != ERROR_OK)
2933 return retval;
2934
2935 if (block_status & 1)
2936 bank->sectors[i].is_protected = 1;
2937 else
2938 bank->sectors[i].is_protected = 0;
2939 }
2940
2941 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
2942 }
2943
2944 static int cfi_protect_check(struct flash_bank *bank)
2945 {
2946 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2947
2948 if (bank->target->state != TARGET_HALTED) {
2949 LOG_ERROR("Target not halted");
2950 return ERROR_TARGET_NOT_HALTED;
2951 }
2952
2953 if (cfi_info->qry[0] != 'Q')
2954 return ERROR_FLASH_BANK_NOT_PROBED;
2955
2956 switch (cfi_info->pri_id) {
2957 case 1:
2958 case 3:
2959 return cfi_intel_protect_check(bank);
2960 break;
2961 case 2:
2962 return cfi_spansion_protect_check(bank);
2963 break;
2964 default:
2965 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2966 break;
2967 }
2968
2969 return ERROR_OK;
2970 }
2971
2972 static int get_cfi_info(struct flash_bank *bank, char *buf, int buf_size)
2973 {
2974 int printed;
2975 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2976
2977 if (cfi_info->qry[0] == 0xff) {
2978 snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n");
2979 return ERROR_OK;
2980 }
2981
2982 if (cfi_info->not_cfi == 0)
2983 printed = snprintf(buf, buf_size, "\nCFI flash: ");
2984 else
2985 printed = snprintf(buf, buf_size, "\nnon-CFI flash: ");
2986 buf += printed;
2987 buf_size -= printed;
2988
2989 printed = snprintf(buf, buf_size, "mfr: 0x%4.4x, id:0x%4.4x\n\n",
2990 cfi_info->manufacturer, cfi_info->device_id);
2991 buf += printed;
2992 buf_size -= printed;
2993
2994 printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: "
2995 "0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n",
2996 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2],
2997 cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
2998 buf += printed;
2999 buf_size -= printed;
3000
3001 printed = snprintf(buf, buf_size, "Vcc min: %x.%x, Vcc max: %x.%x, "
3002 "Vpp min: %u.%x, Vpp max: %u.%x\n",
3003 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
3004 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
3005 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
3006 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
3007 buf += printed;
3008 buf_size -= printed;
3009
3010 printed = snprintf(buf, buf_size, "typ. word write timeout: %u us, "
3011 "typ. buf write timeout: %u us, "
3012 "typ. block erase timeout: %u ms, "
3013 "typ. chip erase timeout: %u ms\n",
3014 1 << cfi_info->word_write_timeout_typ,
3015 1 << cfi_info->buf_write_timeout_typ,
3016 1 << cfi_info->block_erase_timeout_typ,
3017 1 << cfi_info->chip_erase_timeout_typ);
3018 buf += printed;
3019 buf_size -= printed;
3020
3021 printed = snprintf(buf,
3022 buf_size,
3023 "max. word write timeout: %u us, "
3024 "max. buf write timeout: %u us, max. "
3025 "block erase timeout: %u ms, max. chip erase timeout: %u ms\n",
3026 (1 <<
3027 cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
3028 (1 <<
3029 cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
3030 (1 <<
3031 cfi_info->block_erase_timeout_max) *
3032 (1 << cfi_info->block_erase_timeout_typ),
3033 (1 <<
3034 cfi_info->chip_erase_timeout_max) *
3035 (1 << cfi_info->chip_erase_timeout_typ));
3036 buf += printed;
3037 buf_size -= printed;
3038
3039 printed = snprintf(buf, buf_size, "size: 0x%" PRIx32 ", interface desc: %i, "
3040 "max buffer write size: 0x%x\n",
3041 cfi_info->dev_size,
3042 cfi_info->interface_desc,
3043 1 << cfi_info->max_buf_write_size);
3044 buf += printed;
3045 buf_size -= printed;
3046
3047 switch (cfi_info->pri_id) {
3048 case 1:
3049 case 3:
3050 cfi_intel_info(bank, buf, buf_size);
3051 break;
3052 case 2:
3053 cfi_spansion_info(bank, buf, buf_size);
3054 break;
3055 default:
3056 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
3057 break;
3058 }
3059
3060 return ERROR_OK;
3061 }
3062
3063 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, void *param)
3064 {
3065 struct cfi_flash_bank *cfi_info = bank->driver_priv;
3066
3067 /* disable write buffer for M29W128G */
3068 cfi_info->buf_write_timeout_typ = 0;
3069 }
3070
3071 struct flash_driver cfi_flash = {
3072 .name = "cfi",
3073 .flash_bank_command = cfi_flash_bank_command,
3074 .erase = cfi_erase,
3075 .protect = cfi_protect,
3076 .write = cfi_write,
3077 .read = cfi_read,
3078 .probe = cfi_probe,
3079 .auto_probe = cfi_auto_probe,
3080 /* FIXME: access flash at bus_width size */
3081 .erase_check = default_flash_blank_check,
3082 .protect_check = cfi_protect_check,
3083 .info = get_cfi_info,
3084 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)