coding style: remove useless break after a goto or return
[openocd.git] / src / flash / nor / cfi.c
1 /***************************************************************************
2 * Copyright (C) 2005, 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * Copyright (C) 2009 Michael Schwingen *
5 * michael@schwingen.org *
6 * Copyright (C) 2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
7 * Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General Public License as published by *
11 * the Free Software Foundation; either version 2 of the License, or *
12 * (at your option) any later version. *
13 * *
14 * This program is distributed in the hope that it will be useful, *
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
17 * GNU General Public License for more details. *
18 * *
19 * You should have received a copy of the GNU General Public License *
20 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
21 ***************************************************************************/
22
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "imp.h"
28 #include "cfi.h"
29 #include "non_cfi.h"
30 #include <target/arm.h>
31 #include <target/arm7_9_common.h>
32 #include <target/armv7m.h>
33 #include <target/mips32.h>
34 #include <helper/binarybuffer.h>
35 #include <target/algorithm.h>
36
37 /* defines internal maximum size for code fragment in cfi_intel_write_block() */
38 #define CFI_MAX_INTEL_CODESIZE 256
39
40 /* some id-types with specific handling */
41 #define AT49BV6416 0x00d6
42 #define AT49BV6416T 0x00d2
43
44 static const struct cfi_unlock_addresses cfi_unlock_addresses[] = {
45 [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
46 [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
47 };
48
49 static const int cfi_status_poll_mask_dq6_dq7 = CFI_STATUS_POLL_MASK_DQ6_DQ7;
50
51 /* CFI fixups forward declarations */
52 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, const void *param);
53 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, const void *param);
54 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, const void *param);
55 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, const void *param);
56 static void cfi_fixup_0002_polling_bits(struct flash_bank *bank, const void *param);
57
58 /* fixup after reading cmdset 0002 primary query table */
59 static const struct cfi_fixup cfi_0002_fixups[] = {
60 {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses,
61 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
62 {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses,
63 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
64 {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses,
65 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
66 {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses,
67 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
68 {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses,
69 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
70 {CFI_MFR_SST, 0x274b, cfi_fixup_0002_unlock_addresses,
71 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
72 {CFI_MFR_SST, 0x235f, cfi_fixup_0002_polling_bits, /* 39VF3201C */
73 &cfi_status_poll_mask_dq6_dq7},
74 {CFI_MFR_SST, 0x236d, cfi_fixup_0002_unlock_addresses,
75 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
76 {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_reversed_erase_regions, NULL},
77 {CFI_MFR_ST, 0x22C4, cfi_fixup_reversed_erase_regions, NULL}, /* M29W160ET */
78 {CFI_MFR_FUJITSU, 0x22ea, cfi_fixup_0002_unlock_addresses,
79 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
80 {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses,
81 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
82 {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses,
83 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
84 {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses,
85 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
86 {CFI_MFR_EON, 0x225b, cfi_fixup_0002_unlock_addresses,
87 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
88 {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses,
89 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
90 {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
91 {CFI_MFR_ST, 0x227E, cfi_fixup_0002_write_buffer, NULL},/* M29W128G */
92 {0, 0, NULL, NULL}
93 };
94
95 /* fixup after reading cmdset 0001 primary query table */
96 static const struct cfi_fixup cfi_0001_fixups[] = {
97 {0, 0, NULL, NULL}
98 };
99
100 static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
101 {
102 struct cfi_flash_bank *cfi_info = bank->driver_priv;
103
104 for (const struct cfi_fixup *f = fixups; f->fixup; f++) {
105 if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
106 ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
107 f->fixup(bank, f->param);
108 }
109 }
110
111 uint32_t cfi_flash_address(struct flash_bank *bank, int sector, uint32_t offset)
112 {
113 struct cfi_flash_bank *cfi_info = bank->driver_priv;
114
115 if (cfi_info->x16_as_x8)
116 offset *= 2;
117
118 /* while the sector list isn't built, only accesses to sector 0 work */
119 if (sector == 0)
120 return bank->base + offset * bank->bus_width;
121 else {
122 if (!bank->sectors) {
123 LOG_ERROR("BUG: sector list not yet built");
124 exit(-1);
125 }
126 return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
127 }
128 }
129
130 static int cfi_target_write_memory(struct flash_bank *bank, target_addr_t addr,
131 uint32_t count, const uint8_t *buffer)
132 {
133 struct cfi_flash_bank *cfi_info = bank->driver_priv;
134 if (cfi_info->write_mem) {
135 return cfi_info->write_mem(bank, addr, count, buffer);
136 } else {
137 return target_write_memory(bank->target, addr, bank->bus_width,
138 count, buffer);
139 }
140 }
141
142 int cfi_target_read_memory(struct flash_bank *bank, target_addr_t addr,
143 uint32_t count, uint8_t *buffer)
144 {
145 struct cfi_flash_bank *cfi_info = bank->driver_priv;
146 if (cfi_info->read_mem) {
147 return cfi_info->read_mem(bank, addr, count, buffer);
148 } else {
149 return target_read_memory(bank->target, addr, bank->bus_width,
150 count, buffer);
151 }
152 }
153
154 static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
155 {
156 struct cfi_flash_bank *cfi_info = bank->driver_priv;
157
158 /* clear whole buffer, to ensure bits that exceed the bus_width
159 * are set to zero
160 */
161 for (size_t i = 0; i < CFI_MAX_BUS_WIDTH; i++)
162 cmd_buf[i] = 0;
163
164 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN) {
165 for (int i = bank->bus_width; i > 0; i--)
166 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
167 } else {
168 for (int i = 1; i <= bank->bus_width; i++)
169 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
170 }
171 }
172
173 int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
174 {
175 uint8_t command[CFI_MAX_BUS_WIDTH];
176
177 cfi_command(bank, cmd, command);
178 return cfi_target_write_memory(bank, address, 1, command);
179 }
180
181 /* read unsigned 8-bit value from the bank
182 * flash banks are expected to be made of similar chips
183 * the query result should be the same for all
184 */
185 static int cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
186 {
187 struct cfi_flash_bank *cfi_info = bank->driver_priv;
188 uint8_t data[CFI_MAX_BUS_WIDTH];
189
190 int retval;
191 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
192 1, data);
193 if (retval != ERROR_OK)
194 return retval;
195
196 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
197 *val = data[0];
198 else
199 *val = data[bank->bus_width - 1];
200
201 return ERROR_OK;
202 }
203
204 /* read unsigned 8-bit value from the bank
205 * in case of a bank made of multiple chips,
206 * the individual values are ORed
207 */
208 static int cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
209 {
210 struct cfi_flash_bank *cfi_info = bank->driver_priv;
211 uint8_t data[CFI_MAX_BUS_WIDTH];
212
213 int retval;
214 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
215 1, data);
216 if (retval != ERROR_OK)
217 return retval;
218
219 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN) {
220 for (int i = 0; i < bank->bus_width / bank->chip_width; i++)
221 data[0] |= data[i];
222
223 *val = data[0];
224 } else {
225 uint8_t value = 0;
226 for (int i = 0; i < bank->bus_width / bank->chip_width; i++)
227 value |= data[bank->bus_width - 1 - i];
228
229 *val = value;
230 }
231 return ERROR_OK;
232 }
233
234 static int cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset, uint16_t *val)
235 {
236 struct cfi_flash_bank *cfi_info = bank->driver_priv;
237 uint8_t data[CFI_MAX_BUS_WIDTH * 2];
238 int retval;
239
240 if (cfi_info->x16_as_x8) {
241 for (uint8_t i = 0; i < 2; i++) {
242 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset + i),
243 1, &data[i * bank->bus_width]);
244 if (retval != ERROR_OK)
245 return retval;
246 }
247 } else {
248 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
249 2, data);
250 if (retval != ERROR_OK)
251 return retval;
252 }
253
254 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
255 *val = data[0] | data[bank->bus_width] << 8;
256 else
257 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
258
259 return ERROR_OK;
260 }
261
262 static int cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset, uint32_t *val)
263 {
264 struct cfi_flash_bank *cfi_info = bank->driver_priv;
265 uint8_t data[CFI_MAX_BUS_WIDTH * 4];
266 int retval;
267
268 if (cfi_info->x16_as_x8) {
269 for (uint8_t i = 0; i < 4; i++) {
270 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset + i),
271 1, &data[i * bank->bus_width]);
272 if (retval != ERROR_OK)
273 return retval;
274 }
275 } else {
276 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
277 4, data);
278 if (retval != ERROR_OK)
279 return retval;
280 }
281
282 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
283 *val = data[0] | data[bank->bus_width] << 8 |
284 data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
285 else
286 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8 |
287 data[(3 * bank->bus_width) - 1] << 16 |
288 data[(4 * bank->bus_width) - 1] << 24;
289
290 return ERROR_OK;
291 }
292
293 int cfi_reset(struct flash_bank *bank)
294 {
295 struct cfi_flash_bank *cfi_info = bank->driver_priv;
296 int retval = ERROR_OK;
297
298 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
299 if (retval != ERROR_OK)
300 return retval;
301
302 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
303 if (retval != ERROR_OK)
304 return retval;
305
306 if (cfi_info->manufacturer == 0x20 &&
307 (cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E)) {
308 /* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state
309 * so we send an extra 0xF0 reset to fix the bug */
310 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x00));
311 if (retval != ERROR_OK)
312 return retval;
313 }
314
315 return retval;
316 }
317
318 static void cfi_intel_clear_status_register(struct flash_bank *bank)
319 {
320 cfi_send_command(bank, 0x50, cfi_flash_address(bank, 0, 0x0));
321 }
322
323 static int cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout, uint8_t *val)
324 {
325 uint8_t status;
326
327 int retval = ERROR_OK;
328
329 for (;; ) {
330 if (timeout-- < 0) {
331 LOG_ERROR("timeout while waiting for WSM to become ready");
332 return ERROR_FAIL;
333 }
334
335 retval = cfi_get_u8(bank, 0, 0x0, &status);
336 if (retval != ERROR_OK)
337 return retval;
338
339 if (status & 0x80)
340 break;
341
342 alive_sleep(1);
343 }
344
345 /* mask out bit 0 (reserved) */
346 status = status & 0xfe;
347
348 LOG_DEBUG("status: 0x%x", status);
349
350 if (status != 0x80) {
351 LOG_ERROR("status register: 0x%x", status);
352 if (status & 0x2)
353 LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
354 if (status & 0x4)
355 LOG_ERROR("Program suspended");
356 if (status & 0x8)
357 LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
358 if (status & 0x10)
359 LOG_ERROR("Program Error / Error in Setting Lock-Bit");
360 if (status & 0x20)
361 LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
362 if (status & 0x40)
363 LOG_ERROR("Block Erase Suspended");
364
365 cfi_intel_clear_status_register(bank);
366
367 retval = ERROR_FAIL;
368 }
369
370 *val = status;
371 return retval;
372 }
373
374 int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
375 {
376 uint8_t status, oldstatus;
377 struct cfi_flash_bank *cfi_info = bank->driver_priv;
378 int retval;
379
380 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
381 if (retval != ERROR_OK)
382 return retval;
383
384 do {
385 retval = cfi_get_u8(bank, 0, 0x0, &status);
386
387 if (retval != ERROR_OK)
388 return retval;
389
390 if ((status ^ oldstatus) & 0x40) {
391 if (status & cfi_info->status_poll_mask & 0x20) {
392 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
393 if (retval != ERROR_OK)
394 return retval;
395 retval = cfi_get_u8(bank, 0, 0x0, &status);
396 if (retval != ERROR_OK)
397 return retval;
398 if ((status ^ oldstatus) & 0x40) {
399 LOG_ERROR("dq5 timeout, status: 0x%x", status);
400 return ERROR_FLASH_OPERATION_FAILED;
401 } else {
402 LOG_DEBUG("status: 0x%x", status);
403 return ERROR_OK;
404 }
405 }
406 } else {/* no toggle: finished, OK */
407 LOG_DEBUG("status: 0x%x", status);
408 return ERROR_OK;
409 }
410
411 oldstatus = status;
412 alive_sleep(1);
413 } while (timeout-- > 0);
414
415 LOG_ERROR("timeout, status: 0x%x", status);
416
417 return ERROR_FLASH_BUSY;
418 }
419
420 static int cfi_read_intel_pri_ext(struct flash_bank *bank)
421 {
422 int retval;
423 struct cfi_flash_bank *cfi_info = bank->driver_priv;
424 struct cfi_intel_pri_ext *pri_ext;
425
426 if (cfi_info->pri_ext)
427 free(cfi_info->pri_ext);
428
429 pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
430 if (pri_ext == NULL) {
431 LOG_ERROR("Out of memory");
432 return ERROR_FAIL;
433 }
434 cfi_info->pri_ext = pri_ext;
435
436 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
437 if (retval != ERROR_OK)
438 return retval;
439 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
440 if (retval != ERROR_OK)
441 return retval;
442 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
443 if (retval != ERROR_OK)
444 return retval;
445
446 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
447 retval = cfi_reset(bank);
448 if (retval != ERROR_OK)
449 return retval;
450 LOG_ERROR("Could not read bank flash bank information");
451 return ERROR_FLASH_BANK_INVALID;
452 }
453
454 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
455 if (retval != ERROR_OK)
456 return retval;
457 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
458 if (retval != ERROR_OK)
459 return retval;
460
461 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
462 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
463
464 retval = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5, &pri_ext->feature_support);
465 if (retval != ERROR_OK)
466 return retval;
467 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->suspend_cmd_support);
468 if (retval != ERROR_OK)
469 return retval;
470 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa, &pri_ext->blk_status_reg_mask);
471 if (retval != ERROR_OK)
472 return retval;
473
474 LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: "
475 "0x%x, blk_status_reg_mask: 0x%x",
476 pri_ext->feature_support,
477 pri_ext->suspend_cmd_support,
478 pri_ext->blk_status_reg_mask);
479
480 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc, &pri_ext->vcc_optimal);
481 if (retval != ERROR_OK)
482 return retval;
483 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd, &pri_ext->vpp_optimal);
484 if (retval != ERROR_OK)
485 return retval;
486
487 LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
488 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
489 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
490
491 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe, &pri_ext->num_protection_fields);
492 if (retval != ERROR_OK)
493 return retval;
494 if (pri_ext->num_protection_fields != 1) {
495 LOG_WARNING("expected one protection register field, but found %i",
496 pri_ext->num_protection_fields);
497 }
498
499 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf, &pri_ext->prot_reg_addr);
500 if (retval != ERROR_OK)
501 return retval;
502 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11, &pri_ext->fact_prot_reg_size);
503 if (retval != ERROR_OK)
504 return retval;
505 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12, &pri_ext->user_prot_reg_size);
506 if (retval != ERROR_OK)
507 return retval;
508
509 LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, "
510 "factory pre-programmed: %i, user programmable: %i",
511 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
512 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
513
514 return ERROR_OK;
515 }
516
517 static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
518 {
519 int retval;
520 struct cfi_flash_bank *cfi_info = bank->driver_priv;
521 struct cfi_spansion_pri_ext *pri_ext;
522
523 if (cfi_info->pri_ext)
524 free(cfi_info->pri_ext);
525
526 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
527 if (pri_ext == NULL) {
528 LOG_ERROR("Out of memory");
529 return ERROR_FAIL;
530 }
531 cfi_info->pri_ext = pri_ext;
532
533 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
534 if (retval != ERROR_OK)
535 return retval;
536 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
537 if (retval != ERROR_OK)
538 return retval;
539 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
540 if (retval != ERROR_OK)
541 return retval;
542
543 /* default values for implementation specific workarounds */
544 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
545 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
546 pri_ext->_reversed_geometry = 0;
547
548 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
549 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
550 if (retval != ERROR_OK)
551 return retval;
552 LOG_ERROR("Could not read spansion bank information");
553 return ERROR_FLASH_BANK_INVALID;
554 }
555
556 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
557 if (retval != ERROR_OK)
558 return retval;
559 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
560 if (retval != ERROR_OK)
561 return retval;
562
563 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
564 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
565
566 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &pri_ext->SiliconRevision);
567 if (retval != ERROR_OK)
568 return retval;
569 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &pri_ext->EraseSuspend);
570 if (retval != ERROR_OK)
571 return retval;
572 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &pri_ext->BlkProt);
573 if (retval != ERROR_OK)
574 return retval;
575 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &pri_ext->TmpBlkUnprotect);
576 if (retval != ERROR_OK)
577 return retval;
578 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->BlkProtUnprot);
579 if (retval != ERROR_OK)
580 return retval;
581 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10, &pri_ext->SimultaneousOps);
582 if (retval != ERROR_OK)
583 return retval;
584 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11, &pri_ext->BurstMode);
585 if (retval != ERROR_OK)
586 return retval;
587 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12, &pri_ext->PageMode);
588 if (retval != ERROR_OK)
589 return retval;
590 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13, &pri_ext->VppMin);
591 if (retval != ERROR_OK)
592 return retval;
593 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14, &pri_ext->VppMax);
594 if (retval != ERROR_OK)
595 return retval;
596 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15, &pri_ext->TopBottom);
597 if (retval != ERROR_OK)
598 return retval;
599
600 LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x",
601 pri_ext->SiliconRevision, pri_ext->EraseSuspend, pri_ext->BlkProt);
602
603 LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, "
604 "Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
605 pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
606
607 LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
608
609
610 LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
611 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
612 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
613
614 LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
615
616 return ERROR_OK;
617 }
618
619 static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
620 {
621 int retval;
622 struct cfi_atmel_pri_ext atmel_pri_ext;
623 struct cfi_flash_bank *cfi_info = bank->driver_priv;
624 struct cfi_spansion_pri_ext *pri_ext;
625
626 if (cfi_info->pri_ext)
627 free(cfi_info->pri_ext);
628
629 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
630 if (pri_ext == NULL) {
631 LOG_ERROR("Out of memory");
632 return ERROR_FAIL;
633 }
634
635 /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
636 * but a different primary extended query table.
637 * We read the atmel table, and prepare a valid AMD/Spansion query table.
638 */
639
640 memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
641
642 cfi_info->pri_ext = pri_ext;
643
644 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &atmel_pri_ext.pri[0]);
645 if (retval != ERROR_OK)
646 return retval;
647 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &atmel_pri_ext.pri[1]);
648 if (retval != ERROR_OK)
649 return retval;
650 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &atmel_pri_ext.pri[2]);
651 if (retval != ERROR_OK)
652 return retval;
653
654 if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R')
655 || (atmel_pri_ext.pri[2] != 'I')) {
656 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
657 if (retval != ERROR_OK)
658 return retval;
659 LOG_ERROR("Could not read atmel bank information");
660 return ERROR_FLASH_BANK_INVALID;
661 }
662
663 pri_ext->pri[0] = atmel_pri_ext.pri[0];
664 pri_ext->pri[1] = atmel_pri_ext.pri[1];
665 pri_ext->pri[2] = atmel_pri_ext.pri[2];
666
667 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &atmel_pri_ext.major_version);
668 if (retval != ERROR_OK)
669 return retval;
670 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &atmel_pri_ext.minor_version);
671 if (retval != ERROR_OK)
672 return retval;
673
674 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0],
675 atmel_pri_ext.pri[1], atmel_pri_ext.pri[2],
676 atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
677
678 pri_ext->major_version = atmel_pri_ext.major_version;
679 pri_ext->minor_version = atmel_pri_ext.minor_version;
680
681 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &atmel_pri_ext.features);
682 if (retval != ERROR_OK)
683 return retval;
684 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &atmel_pri_ext.bottom_boot);
685 if (retval != ERROR_OK)
686 return retval;
687 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &atmel_pri_ext.burst_mode);
688 if (retval != ERROR_OK)
689 return retval;
690 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &atmel_pri_ext.page_mode);
691 if (retval != ERROR_OK)
692 return retval;
693
694 LOG_DEBUG(
695 "features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
696 atmel_pri_ext.features,
697 atmel_pri_ext.bottom_boot,
698 atmel_pri_ext.burst_mode,
699 atmel_pri_ext.page_mode);
700
701 if (atmel_pri_ext.features & 0x02)
702 pri_ext->EraseSuspend = 2;
703
704 /* some chips got it backwards... */
705 if (cfi_info->device_id == AT49BV6416 ||
706 cfi_info->device_id == AT49BV6416T) {
707 if (atmel_pri_ext.bottom_boot)
708 pri_ext->TopBottom = 3;
709 else
710 pri_ext->TopBottom = 2;
711 } else {
712 if (atmel_pri_ext.bottom_boot)
713 pri_ext->TopBottom = 2;
714 else
715 pri_ext->TopBottom = 3;
716 }
717
718 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
719 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
720
721 return ERROR_OK;
722 }
723
724 static int cfi_read_0002_pri_ext(struct flash_bank *bank)
725 {
726 struct cfi_flash_bank *cfi_info = bank->driver_priv;
727
728 if (cfi_info->manufacturer == CFI_MFR_ATMEL)
729 return cfi_read_atmel_pri_ext(bank);
730 else
731 return cfi_read_spansion_pri_ext(bank);
732 }
733
734 static int cfi_spansion_info(struct flash_bank *bank, char *buf, int buf_size)
735 {
736 int printed;
737 struct cfi_flash_bank *cfi_info = bank->driver_priv;
738 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
739
740 printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
741 buf += printed;
742 buf_size -= printed;
743
744 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
745 pri_ext->pri[1], pri_ext->pri[2],
746 pri_ext->major_version, pri_ext->minor_version);
747 buf += printed;
748 buf_size -= printed;
749
750 printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
751 (pri_ext->SiliconRevision) >> 2,
752 (pri_ext->SiliconRevision) & 0x03);
753 buf += printed;
754 buf_size -= printed;
755
756 printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
757 pri_ext->EraseSuspend,
758 pri_ext->BlkProt);
759 buf += printed;
760 buf_size -= printed;
761
762 snprintf(buf, buf_size, "VppMin: %u.%x, VppMax: %u.%x\n",
763 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
764 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
765
766 return ERROR_OK;
767 }
768
769 static int cfi_intel_info(struct flash_bank *bank, char *buf, int buf_size)
770 {
771 int printed;
772 struct cfi_flash_bank *cfi_info = bank->driver_priv;
773 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
774
775 printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
776 buf += printed;
777 buf_size -= printed;
778
779 printed = snprintf(buf,
780 buf_size,
781 "pri: '%c%c%c', version: %c.%c\n",
782 pri_ext->pri[0],
783 pri_ext->pri[1],
784 pri_ext->pri[2],
785 pri_ext->major_version,
786 pri_ext->minor_version);
787 buf += printed;
788 buf_size -= printed;
789
790 printed = snprintf(buf,
791 buf_size,
792 "feature_support: 0x%" PRIx32 ", "
793 "suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n",
794 pri_ext->feature_support,
795 pri_ext->suspend_cmd_support,
796 pri_ext->blk_status_reg_mask);
797 buf += printed;
798 buf_size -= printed;
799
800 printed = snprintf(buf, buf_size, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
801 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
802 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
803 buf += printed;
804 buf_size -= printed;
805
806 snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, "
807 "factory pre-programmed: %i, user programmable: %i\n",
808 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
809 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
810
811 return ERROR_OK;
812 }
813
814 int cfi_flash_bank_cmd(struct flash_bank *bank, unsigned int argc, const char **argv)
815 {
816 struct cfi_flash_bank *cfi_info;
817 int bus_swap = 0;
818
819 if (argc < 6)
820 return ERROR_COMMAND_SYNTAX_ERROR;
821
822 /* both widths must:
823 * - not exceed max value;
824 * - not be null;
825 * - be equal to a power of 2.
826 * bus must be wide enough to hold one chip */
827 if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
828 || (bank->bus_width > CFI_MAX_BUS_WIDTH)
829 || (bank->chip_width == 0)
830 || (bank->bus_width == 0)
831 || (bank->chip_width & (bank->chip_width - 1))
832 || (bank->bus_width & (bank->bus_width - 1))
833 || (bank->chip_width > bank->bus_width)) {
834 LOG_ERROR("chip and bus width have to specified in bytes");
835 return ERROR_FLASH_BANK_INVALID;
836 }
837
838 cfi_info = malloc(sizeof(struct cfi_flash_bank));
839 cfi_info->probed = false;
840 cfi_info->erase_region_info = NULL;
841 cfi_info->pri_ext = NULL;
842 bank->driver_priv = cfi_info;
843
844 cfi_info->x16_as_x8 = 0;
845 cfi_info->jedec_probe = 0;
846 cfi_info->not_cfi = 0;
847 cfi_info->data_swap = 0;
848
849 for (unsigned i = 6; i < argc; i++) {
850 if (strcmp(argv[i], "x16_as_x8") == 0)
851 cfi_info->x16_as_x8 = 1;
852 else if (strcmp(argv[i], "data_swap") == 0)
853 cfi_info->data_swap = 1;
854 else if (strcmp(argv[i], "bus_swap") == 0)
855 bus_swap = 1;
856 else if (strcmp(argv[i], "jedec_probe") == 0)
857 cfi_info->jedec_probe = 1;
858 }
859
860 if (bus_swap)
861 cfi_info->endianness =
862 bank->target->endianness == TARGET_LITTLE_ENDIAN ?
863 TARGET_BIG_ENDIAN : TARGET_LITTLE_ENDIAN;
864 else
865 cfi_info->endianness = bank->target->endianness;
866
867 /* bank wasn't probed yet */
868 cfi_info->qry[0] = 0xff;
869
870 return ERROR_OK;
871 }
872
873 /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
874 */
875 FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
876 {
877 return cfi_flash_bank_cmd(bank, CMD_ARGC, CMD_ARGV);
878 }
879
880 static int cfi_intel_erase(struct flash_bank *bank, int first, int last)
881 {
882 int retval;
883 struct cfi_flash_bank *cfi_info = bank->driver_priv;
884
885 cfi_intel_clear_status_register(bank);
886
887 for (int i = first; i <= last; i++) {
888 retval = cfi_send_command(bank, 0x20, cfi_flash_address(bank, i, 0x0));
889 if (retval != ERROR_OK)
890 return retval;
891
892 retval = cfi_send_command(bank, 0xd0, cfi_flash_address(bank, i, 0x0));
893 if (retval != ERROR_OK)
894 return retval;
895
896 uint8_t status;
897 retval = cfi_intel_wait_status_busy(bank, cfi_info->block_erase_timeout, &status);
898 if (retval != ERROR_OK)
899 return retval;
900
901 if (status == 0x80)
902 bank->sectors[i].is_erased = 1;
903 else {
904 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
905 if (retval != ERROR_OK)
906 return retval;
907
908 LOG_ERROR("couldn't erase block %i of flash bank at base "
909 TARGET_ADDR_FMT, i, bank->base);
910 return ERROR_FLASH_OPERATION_FAILED;
911 }
912 }
913
914 return cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
915 }
916
917 int cfi_spansion_unlock_seq(struct flash_bank *bank)
918 {
919 int retval;
920 struct cfi_flash_bank *cfi_info = bank->driver_priv;
921 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
922
923 retval = cfi_send_command(bank, 0xaa, cfi_flash_address(bank, 0, pri_ext->_unlock1));
924 if (retval != ERROR_OK)
925 return retval;
926
927 retval = cfi_send_command(bank, 0x55, cfi_flash_address(bank, 0, pri_ext->_unlock2));
928 if (retval != ERROR_OK)
929 return retval;
930
931 return ERROR_OK;
932 }
933
934 static int cfi_spansion_erase(struct flash_bank *bank, int first, int last)
935 {
936 int retval;
937 struct cfi_flash_bank *cfi_info = bank->driver_priv;
938 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
939
940 for (int i = first; i <= last; i++) {
941 retval = cfi_spansion_unlock_seq(bank);
942 if (retval != ERROR_OK)
943 return retval;
944
945 retval = cfi_send_command(bank, 0x80, cfi_flash_address(bank, 0, pri_ext->_unlock1));
946 if (retval != ERROR_OK)
947 return retval;
948
949 retval = cfi_spansion_unlock_seq(bank);
950 if (retval != ERROR_OK)
951 return retval;
952
953 retval = cfi_send_command(bank, 0x30, cfi_flash_address(bank, i, 0x0));
954 if (retval != ERROR_OK)
955 return retval;
956
957 if (cfi_spansion_wait_status_busy(bank, cfi_info->block_erase_timeout) == ERROR_OK)
958 bank->sectors[i].is_erased = 1;
959 else {
960 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
961 if (retval != ERROR_OK)
962 return retval;
963
964 LOG_ERROR("couldn't erase block %i of flash bank at base "
965 TARGET_ADDR_FMT, i, bank->base);
966 return ERROR_FLASH_OPERATION_FAILED;
967 }
968 }
969
970 return cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
971 }
972
973 int cfi_erase(struct flash_bank *bank, int first, int last)
974 {
975 struct cfi_flash_bank *cfi_info = bank->driver_priv;
976
977 if (bank->target->state != TARGET_HALTED) {
978 LOG_ERROR("Target not halted");
979 return ERROR_TARGET_NOT_HALTED;
980 }
981
982 if ((first < 0) || (last < first) || (last >= bank->num_sectors))
983 return ERROR_FLASH_SECTOR_INVALID;
984
985 if (cfi_info->qry[0] != 'Q')
986 return ERROR_FLASH_BANK_NOT_PROBED;
987
988 switch (cfi_info->pri_id) {
989 case 1:
990 case 3:
991 return cfi_intel_erase(bank, first, last);
992 case 2:
993 return cfi_spansion_erase(bank, first, last);
994 default:
995 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
996 break;
997 }
998
999 return ERROR_OK;
1000 }
1001
1002 static int cfi_intel_protect(struct flash_bank *bank, int set, int first, int last)
1003 {
1004 int retval;
1005 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1006 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
1007 int retry = 0;
1008
1009 /* if the device supports neither legacy lock/unlock (bit 3) nor
1010 * instant individual block locking (bit 5).
1011 */
1012 if (!(pri_ext->feature_support & 0x28)) {
1013 LOG_ERROR("lock/unlock not supported on flash");
1014 return ERROR_FLASH_OPERATION_FAILED;
1015 }
1016
1017 cfi_intel_clear_status_register(bank);
1018
1019 for (int i = first; i <= last; i++) {
1020 retval = cfi_send_command(bank, 0x60, cfi_flash_address(bank, i, 0x0));
1021 if (retval != ERROR_OK)
1022 return retval;
1023 if (set) {
1024 retval = cfi_send_command(bank, 0x01, cfi_flash_address(bank, i, 0x0));
1025 if (retval != ERROR_OK)
1026 return retval;
1027 bank->sectors[i].is_protected = 1;
1028 } else {
1029 retval = cfi_send_command(bank, 0xd0, cfi_flash_address(bank, i, 0x0));
1030 if (retval != ERROR_OK)
1031 return retval;
1032 bank->sectors[i].is_protected = 0;
1033 }
1034
1035 /* instant individual block locking doesn't require reading of the status register
1036 **/
1037 if (!(pri_ext->feature_support & 0x20)) {
1038 /* Clear lock bits operation may take up to 1.4s */
1039 uint8_t status;
1040 retval = cfi_intel_wait_status_busy(bank, 1400, &status);
1041 if (retval != ERROR_OK)
1042 return retval;
1043 } else {
1044 uint8_t block_status;
1045 /* read block lock bit, to verify status */
1046 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, 0x55));
1047 if (retval != ERROR_OK)
1048 return retval;
1049 retval = cfi_get_u8(bank, i, 0x2, &block_status);
1050 if (retval != ERROR_OK)
1051 return retval;
1052
1053 if ((block_status & 0x1) != set) {
1054 LOG_ERROR(
1055 "couldn't change block lock status (set = %i, block_status = 0x%2.2x)",
1056 set, block_status);
1057 retval = cfi_send_command(bank, 0x70, cfi_flash_address(bank, 0, 0x55));
1058 if (retval != ERROR_OK)
1059 return retval;
1060 uint8_t status;
1061 retval = cfi_intel_wait_status_busy(bank, 10, &status);
1062 if (retval != ERROR_OK)
1063 return retval;
1064
1065 if (retry > 10)
1066 return ERROR_FLASH_OPERATION_FAILED;
1067 else {
1068 i--;
1069 retry++;
1070 }
1071 }
1072 }
1073 }
1074
1075 /* if the device doesn't support individual block lock bits set/clear,
1076 * all blocks have been unlocked in parallel, so we set those that should be protected
1077 */
1078 if ((!set) && (!(pri_ext->feature_support & 0x20))) {
1079 /* FIX!!! this code path is broken!!!
1080 *
1081 * The correct approach is:
1082 *
1083 * 1. read out current protection status
1084 *
1085 * 2. override read out protection status w/unprotected.
1086 *
1087 * 3. re-protect what should be protected.
1088 *
1089 */
1090 for (int i = 0; i < bank->num_sectors; i++) {
1091 if (bank->sectors[i].is_protected == 1) {
1092 cfi_intel_clear_status_register(bank);
1093
1094 retval = cfi_send_command(bank, 0x60, cfi_flash_address(bank, i, 0x0));
1095 if (retval != ERROR_OK)
1096 return retval;
1097
1098 retval = cfi_send_command(bank, 0x01, cfi_flash_address(bank, i, 0x0));
1099 if (retval != ERROR_OK)
1100 return retval;
1101
1102 uint8_t status;
1103 retval = cfi_intel_wait_status_busy(bank, 100, &status);
1104 if (retval != ERROR_OK)
1105 return retval;
1106 }
1107 }
1108 }
1109
1110 return cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
1111 }
1112
1113 int cfi_protect(struct flash_bank *bank, int set, int first, int last)
1114 {
1115 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1116
1117 if (bank->target->state != TARGET_HALTED) {
1118 LOG_ERROR("Target not halted");
1119 return ERROR_TARGET_NOT_HALTED;
1120 }
1121
1122 if (cfi_info->qry[0] != 'Q')
1123 return ERROR_FLASH_BANK_NOT_PROBED;
1124
1125 switch (cfi_info->pri_id) {
1126 case 1:
1127 case 3:
1128 return cfi_intel_protect(bank, set, first, last);
1129 default:
1130 LOG_WARNING("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
1131 return ERROR_OK;
1132 }
1133 }
1134
1135 static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
1136 {
1137 struct target *target = bank->target;
1138
1139 uint8_t buf[CFI_MAX_BUS_WIDTH];
1140 cfi_command(bank, cmd, buf);
1141 switch (bank->bus_width) {
1142 case 1:
1143 return buf[0];
1144 case 2:
1145 return target_buffer_get_u16(target, buf);
1146 case 4:
1147 return target_buffer_get_u32(target, buf);
1148 default:
1149 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1150 bank->bus_width);
1151 return 0;
1152 }
1153 }
1154
1155 static int cfi_intel_write_block(struct flash_bank *bank, const uint8_t *buffer,
1156 uint32_t address, uint32_t count)
1157 {
1158 struct target *target = bank->target;
1159 struct reg_param reg_params[7];
1160 struct arm_algorithm arm_algo;
1161 struct working_area *write_algorithm;
1162 struct working_area *source = NULL;
1163 uint32_t buffer_size = 32768;
1164 uint32_t write_command_val, busy_pattern_val, error_pattern_val;
1165
1166 /* algorithm register usage:
1167 * r0: source address (in RAM)
1168 * r1: target address (in Flash)
1169 * r2: count
1170 * r3: flash write command
1171 * r4: status byte (returned to host)
1172 * r5: busy test pattern
1173 * r6: error test pattern
1174 */
1175
1176 /* see contib/loaders/flash/armv4_5_cfi_intel_32.s for src */
1177 static const uint32_t word_32_code[] = {
1178 0xe4904004, /* loop: ldr r4, [r0], #4 */
1179 0xe5813000, /* str r3, [r1] */
1180 0xe5814000, /* str r4, [r1] */
1181 0xe5914000, /* busy: ldr r4, [r1] */
1182 0xe0047005, /* and r7, r4, r5 */
1183 0xe1570005, /* cmp r7, r5 */
1184 0x1afffffb, /* bne busy */
1185 0xe1140006, /* tst r4, r6 */
1186 0x1a000003, /* bne done */
1187 0xe2522001, /* subs r2, r2, #1 */
1188 0x0a000001, /* beq done */
1189 0xe2811004, /* add r1, r1 #4 */
1190 0xeafffff2, /* b loop */
1191 0xeafffffe /* done: b -2 */
1192 };
1193
1194 /* see contib/loaders/flash/armv4_5_cfi_intel_16.s for src */
1195 static const uint32_t word_16_code[] = {
1196 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
1197 0xe1c130b0, /* strh r3, [r1] */
1198 0xe1c140b0, /* strh r4, [r1] */
1199 0xe1d140b0, /* busy ldrh r4, [r1] */
1200 0xe0047005, /* and r7, r4, r5 */
1201 0xe1570005, /* cmp r7, r5 */
1202 0x1afffffb, /* bne busy */
1203 0xe1140006, /* tst r4, r6 */
1204 0x1a000003, /* bne done */
1205 0xe2522001, /* subs r2, r2, #1 */
1206 0x0a000001, /* beq done */
1207 0xe2811002, /* add r1, r1 #2 */
1208 0xeafffff2, /* b loop */
1209 0xeafffffe /* done: b -2 */
1210 };
1211
1212 /* see contib/loaders/flash/armv4_5_cfi_intel_8.s for src */
1213 static const uint32_t word_8_code[] = {
1214 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
1215 0xe5c13000, /* strb r3, [r1] */
1216 0xe5c14000, /* strb r4, [r1] */
1217 0xe5d14000, /* busy ldrb r4, [r1] */
1218 0xe0047005, /* and r7, r4, r5 */
1219 0xe1570005, /* cmp r7, r5 */
1220 0x1afffffb, /* bne busy */
1221 0xe1140006, /* tst r4, r6 */
1222 0x1a000003, /* bne done */
1223 0xe2522001, /* subs r2, r2, #1 */
1224 0x0a000001, /* beq done */
1225 0xe2811001, /* add r1, r1 #1 */
1226 0xeafffff2, /* b loop */
1227 0xeafffffe /* done: b -2 */
1228 };
1229 uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
1230 const uint32_t *target_code_src;
1231 uint32_t target_code_size;
1232 int retval = ERROR_OK;
1233
1234 /* check we have a supported arch */
1235 if (is_arm(target_to_arm(target))) {
1236 /* All other ARM CPUs have 32 bit instructions */
1237 arm_algo.common_magic = ARM_COMMON_MAGIC;
1238 arm_algo.core_mode = ARM_MODE_SVC;
1239 arm_algo.core_state = ARM_STATE_ARM;
1240 } else {
1241 LOG_ERROR("Unknown architecture");
1242 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1243 }
1244
1245 cfi_intel_clear_status_register(bank);
1246
1247 /* If we are setting up the write_algorith, we need target_code_src
1248 * if not we only need target_code_size. */
1249
1250 /* However, we don't want to create multiple code paths, so we
1251 * do the unnecessary evaluation of target_code_src, which the
1252 * compiler will probably nicely optimize away if not needed */
1253
1254 /* prepare algorithm code for target endian */
1255 switch (bank->bus_width) {
1256 case 1:
1257 target_code_src = word_8_code;
1258 target_code_size = sizeof(word_8_code);
1259 break;
1260 case 2:
1261 target_code_src = word_16_code;
1262 target_code_size = sizeof(word_16_code);
1263 break;
1264 case 4:
1265 target_code_src = word_32_code;
1266 target_code_size = sizeof(word_32_code);
1267 break;
1268 default:
1269 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1270 bank->bus_width);
1271 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1272 }
1273
1274 /* flash write code */
1275 if (target_code_size > sizeof(target_code)) {
1276 LOG_WARNING("Internal error - target code buffer to small. "
1277 "Increase CFI_MAX_INTEL_CODESIZE and recompile.");
1278 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1279 }
1280
1281 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1282
1283 /* Get memory for block write handler */
1284 retval = target_alloc_working_area(target,
1285 target_code_size,
1286 &write_algorithm);
1287 if (retval != ERROR_OK) {
1288 LOG_WARNING("No working area available, can't do block memory writes");
1289 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1290 }
1291
1292 /* write algorithm code to working area */
1293 retval = target_write_buffer(target, write_algorithm->address,
1294 target_code_size, target_code);
1295 if (retval != ERROR_OK) {
1296 LOG_ERROR("Unable to write block write code to target");
1297 goto cleanup;
1298 }
1299
1300 /* Get a workspace buffer for the data to flash starting with 32k size.
1301 * Half size until buffer would be smaller 256 Bytes then fail back */
1302 /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
1303 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1304 buffer_size /= 2;
1305 if (buffer_size <= 256) {
1306 LOG_WARNING(
1307 "no large enough working area available, can't do block memory writes");
1308 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1309 goto cleanup;
1310 }
1311 }
1312
1313 /* setup algo registers */
1314 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1315 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1316 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1317 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1318 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
1319 init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
1320 init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
1321
1322 /* prepare command and status register patterns */
1323 write_command_val = cfi_command_val(bank, 0x40);
1324 busy_pattern_val = cfi_command_val(bank, 0x80);
1325 error_pattern_val = cfi_command_val(bank, 0x7e);
1326
1327 LOG_DEBUG("Using target buffer at " TARGET_ADDR_FMT " and of size 0x%04" PRIx32,
1328 source->address, buffer_size);
1329
1330 /* Programming main loop */
1331 while (count > 0) {
1332 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1333 uint32_t wsm_error;
1334
1335 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1336 if (retval != ERROR_OK)
1337 goto cleanup;
1338
1339 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1340 buf_set_u32(reg_params[1].value, 0, 32, address);
1341 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1342
1343 buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
1344 buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
1345 buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
1346
1347 LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32,
1348 thisrun_count, address);
1349
1350 /* Execute algorithm, assume breakpoint for last instruction */
1351 retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
1352 write_algorithm->address,
1353 write_algorithm->address + target_code_size -
1354 sizeof(uint32_t),
1355 10000, /* 10s should be enough for max. 32k of data */
1356 &arm_algo);
1357
1358 /* On failure try a fall back to direct word writes */
1359 if (retval != ERROR_OK) {
1360 cfi_intel_clear_status_register(bank);
1361 LOG_ERROR(
1362 "Execution of flash algorythm failed. Can't fall back. Please report.");
1363 retval = ERROR_FLASH_OPERATION_FAILED;
1364 /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
1365 /* FIXME To allow fall back or recovery, we must save the actual status
1366 * somewhere, so that a higher level code can start recovery. */
1367 goto cleanup;
1368 }
1369
1370 /* Check return value from algo code */
1371 wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
1372 if (wsm_error) {
1373 /* read status register (outputs debug information) */
1374 uint8_t status;
1375 cfi_intel_wait_status_busy(bank, 100, &status);
1376 cfi_intel_clear_status_register(bank);
1377 retval = ERROR_FLASH_OPERATION_FAILED;
1378 goto cleanup;
1379 }
1380
1381 buffer += thisrun_count;
1382 address += thisrun_count;
1383 count -= thisrun_count;
1384
1385 keep_alive();
1386 }
1387
1388 /* free up resources */
1389 cleanup:
1390 if (source)
1391 target_free_working_area(target, source);
1392
1393 target_free_working_area(target, write_algorithm);
1394
1395 destroy_reg_param(&reg_params[0]);
1396 destroy_reg_param(&reg_params[1]);
1397 destroy_reg_param(&reg_params[2]);
1398 destroy_reg_param(&reg_params[3]);
1399 destroy_reg_param(&reg_params[4]);
1400 destroy_reg_param(&reg_params[5]);
1401 destroy_reg_param(&reg_params[6]);
1402
1403 return retval;
1404 }
1405
1406 static int cfi_spansion_write_block_mips(struct flash_bank *bank, const uint8_t *buffer,
1407 uint32_t address, uint32_t count)
1408 {
1409 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1410 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1411 struct target *target = bank->target;
1412 struct reg_param reg_params[10];
1413 struct mips32_algorithm mips32_info;
1414 struct working_area *write_algorithm;
1415 struct working_area *source;
1416 uint32_t buffer_size = 32768;
1417 uint32_t status;
1418 int retval = ERROR_OK;
1419
1420 /* input parameters -
1421 * 4 A0 = source address
1422 * 5 A1 = destination address
1423 * 6 A2 = number of writes
1424 * 7 A3 = flash write command
1425 * 8 T0 = constant to mask DQ7 bits (also used for Dq5 with shift)
1426 * output parameters -
1427 * 9 T1 = 0x80 ok 0x00 bad
1428 * temp registers -
1429 * 10 T2 = value read from flash to test status
1430 * 11 T3 = holding register
1431 * unlock registers -
1432 * 12 T4 = unlock1_addr
1433 * 13 T5 = unlock1_cmd
1434 * 14 T6 = unlock2_addr
1435 * 15 T7 = unlock2_cmd */
1436
1437 static const uint32_t mips_word_16_code[] = {
1438 /* start: */
1439 MIPS32_LHU(0, 9, 0, 4), /* lhu $t1, ($a0) ; out = &saddr */
1440 MIPS32_ADDI(0, 4, 4, 2), /* addi $a0, $a0, 2 ; saddr += 2 */
1441 MIPS32_SH(0, 13, 0, 12), /* sh $t5, ($t4) ; *fl_unl_addr1 = fl_unl_cmd1 */
1442 MIPS32_SH(0, 15, 0, 14), /* sh $t7, ($t6) ; *fl_unl_addr2 = fl_unl_cmd2 */
1443 MIPS32_SH(0, 7, 0, 12), /* sh $a3, ($t4) ; *fl_unl_addr1 = fl_write_cmd */
1444 MIPS32_SH(0, 9, 0, 5), /* sh $t1, ($a1) ; *daddr = out */
1445 MIPS32_NOP, /* nop */
1446 /* busy: */
1447 MIPS32_LHU(0, 10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1448 MIPS32_XOR(0, 11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
1449 MIPS32_AND(0, 11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
1450 MIPS32_BNE(0, 11, 8, 13), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
1451 MIPS32_NOP, /* nop */
1452
1453 MIPS32_SRL(0, 10, 8, 2), /* srl $t2,$t0,2 ; temp1 = DQ7mask >> 2 */
1454 MIPS32_AND(0, 11, 10, 11), /* and $t3, $t2, $t3 ; temp2 = temp2 & temp1 */
1455 MIPS32_BNE(0, 11, 10, NEG16(8)), /* bne $t3, $t2, busy ; if (temp2 != temp1) goto busy */
1456 MIPS32_NOP, /* nop */
1457
1458 MIPS32_LHU(0, 10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1459 MIPS32_XOR(0, 11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
1460 MIPS32_AND(0, 11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
1461 MIPS32_BNE(0, 11, 8, 4), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
1462 MIPS32_NOP, /* nop */
1463
1464 MIPS32_XOR(0, 9, 9, 9), /* xor $t1, $t1, $t1 ; out = 0 */
1465 MIPS32_BEQ(0, 9, 0, 11), /* beq $t1, $zero, done ; if (out == 0) goto done */
1466 MIPS32_NOP, /* nop */
1467 /* cont: */
1468 MIPS32_ADDI(0, 6, 6, NEG16(1)), /* addi, $a2, $a2, -1 ; numwrites-- */
1469 MIPS32_BNE(0, 6, 0, 5), /* bne $a2, $zero, cont2 ; if (numwrite != 0) goto cont2 */
1470 MIPS32_NOP, /* nop */
1471
1472 MIPS32_LUI(0, 9, 0), /* lui $t1, 0 */
1473 MIPS32_ORI(0, 9, 9, 0x80), /* ori $t1, $t1, 0x80 ; out = 0x80 */
1474
1475 MIPS32_B(0, 4), /* b done ; goto done */
1476 MIPS32_NOP, /* nop */
1477 /* cont2: */
1478 MIPS32_ADDI(0, 5, 5, 2), /* addi $a0, $a0, 2 ; daddr += 2 */
1479 MIPS32_B(0, NEG16(33)), /* b start ; goto start */
1480 MIPS32_NOP, /* nop */
1481 /* done: */
1482 MIPS32_SDBBP(0), /* sdbbp ; break(); */
1483 };
1484
1485 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
1486 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
1487
1488 int target_code_size = 0;
1489 const uint32_t *target_code_src = NULL;
1490
1491 switch (bank->bus_width) {
1492 case 2:
1493 /* Check for DQ5 support */
1494 if (cfi_info->status_poll_mask & (1 << 5)) {
1495 target_code_src = mips_word_16_code;
1496 target_code_size = sizeof(mips_word_16_code);
1497 } else {
1498 LOG_ERROR("Need DQ5 support");
1499 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1500 /* target_code_src = mips_word_16_code_dq7only; */
1501 /* target_code_size = sizeof(mips_word_16_code_dq7only); */
1502 }
1503 break;
1504 default:
1505 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1506 bank->bus_width);
1507 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1508 }
1509
1510 /* flash write code */
1511 uint8_t *target_code;
1512
1513 /* convert bus-width dependent algorithm code to correct endianness */
1514 target_code = malloc(target_code_size);
1515 if (target_code == NULL) {
1516 LOG_ERROR("Out of memory");
1517 return ERROR_FAIL;
1518 }
1519
1520 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1521
1522 /* allocate working area */
1523 retval = target_alloc_working_area(target, target_code_size,
1524 &write_algorithm);
1525 if (retval != ERROR_OK) {
1526 free(target_code);
1527 return retval;
1528 }
1529
1530 /* write algorithm code to working area */
1531 retval = target_write_buffer(target, write_algorithm->address,
1532 target_code_size, target_code);
1533 if (retval != ERROR_OK) {
1534 free(target_code);
1535 return retval;
1536 }
1537
1538 free(target_code);
1539
1540 /* the following code still assumes target code is fixed 24*4 bytes */
1541
1542 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1543 buffer_size /= 2;
1544 if (buffer_size <= 256) {
1545 /* we already allocated the writing code, but failed to get a
1546 * buffer, free the algorithm */
1547 target_free_working_area(target, write_algorithm);
1548
1549 LOG_WARNING(
1550 "not enough working area available, can't do block memory writes");
1551 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1552 }
1553 }
1554
1555 init_reg_param(&reg_params[0], "r4", 32, PARAM_OUT);
1556 init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
1557 init_reg_param(&reg_params[2], "r6", 32, PARAM_OUT);
1558 init_reg_param(&reg_params[3], "r7", 32, PARAM_OUT);
1559 init_reg_param(&reg_params[4], "r8", 32, PARAM_OUT);
1560 init_reg_param(&reg_params[5], "r9", 32, PARAM_IN);
1561 init_reg_param(&reg_params[6], "r12", 32, PARAM_OUT);
1562 init_reg_param(&reg_params[7], "r13", 32, PARAM_OUT);
1563 init_reg_param(&reg_params[8], "r14", 32, PARAM_OUT);
1564 init_reg_param(&reg_params[9], "r15", 32, PARAM_OUT);
1565
1566 while (count > 0) {
1567 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1568
1569 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1570 if (retval != ERROR_OK)
1571 break;
1572
1573 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1574 buf_set_u32(reg_params[1].value, 0, 32, address);
1575 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1576 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1577 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1578 buf_set_u32(reg_params[6].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock1));
1579 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1580 buf_set_u32(reg_params[8].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock2));
1581 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1582
1583 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1584 write_algorithm->address,
1585 write_algorithm->address + ((target_code_size) - 4),
1586 10000, &mips32_info);
1587 if (retval != ERROR_OK)
1588 break;
1589
1590 status = buf_get_u32(reg_params[5].value, 0, 32);
1591 if (status != 0x80) {
1592 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1593 retval = ERROR_FLASH_OPERATION_FAILED;
1594 break;
1595 }
1596
1597 buffer += thisrun_count;
1598 address += thisrun_count;
1599 count -= thisrun_count;
1600 }
1601
1602 target_free_all_working_areas(target);
1603
1604 destroy_reg_param(&reg_params[0]);
1605 destroy_reg_param(&reg_params[1]);
1606 destroy_reg_param(&reg_params[2]);
1607 destroy_reg_param(&reg_params[3]);
1608 destroy_reg_param(&reg_params[4]);
1609 destroy_reg_param(&reg_params[5]);
1610 destroy_reg_param(&reg_params[6]);
1611 destroy_reg_param(&reg_params[7]);
1612 destroy_reg_param(&reg_params[8]);
1613 destroy_reg_param(&reg_params[9]);
1614
1615 return retval;
1616 }
1617
1618 static int cfi_spansion_write_block(struct flash_bank *bank, const uint8_t *buffer,
1619 uint32_t address, uint32_t count)
1620 {
1621 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1622 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1623 struct target *target = bank->target;
1624 struct reg_param reg_params[10];
1625 void *arm_algo;
1626 struct arm_algorithm armv4_5_algo;
1627 struct armv7m_algorithm armv7m_algo;
1628 struct working_area *write_algorithm;
1629 struct working_area *source;
1630 uint32_t buffer_size = 32768;
1631 uint32_t status;
1632 int retval = ERROR_OK;
1633
1634 /* input parameters -
1635 * R0 = source address
1636 * R1 = destination address
1637 * R2 = number of writes
1638 * R3 = flash write command
1639 * R4 = constant to mask DQ7 bits (also used for Dq5 with shift)
1640 * output parameters -
1641 * R5 = 0x80 ok 0x00 bad
1642 * temp registers -
1643 * R6 = value read from flash to test status
1644 * R7 = holding register
1645 * unlock registers -
1646 * R8 = unlock1_addr
1647 * R9 = unlock1_cmd
1648 * R10 = unlock2_addr
1649 * R11 = unlock2_cmd */
1650
1651 /* see contib/loaders/flash/armv4_5_cfi_span_32.s for src */
1652 static const uint32_t armv4_5_word_32_code[] = {
1653 /* 00008100 <sp_32_code>: */
1654 0xe4905004, /* ldr r5, [r0], #4 */
1655 0xe5889000, /* str r9, [r8] */
1656 0xe58ab000, /* str r11, [r10] */
1657 0xe5883000, /* str r3, [r8] */
1658 0xe5815000, /* str r5, [r1] */
1659 0xe1a00000, /* nop */
1660 /* 00008110 <sp_32_busy>: */
1661 0xe5916000, /* ldr r6, [r1] */
1662 0xe0257006, /* eor r7, r5, r6 */
1663 0xe0147007, /* ands r7, r4, r7 */
1664 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1665 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1666 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
1667 0xe5916000, /* ldr r6, [r1] */
1668 0xe0257006, /* eor r7, r5, r6 */
1669 0xe0147007, /* ands r7, r4, r7 */
1670 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1671 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
1672 0x1a000004, /* bne 8154 <sp_32_done> */
1673 /* 00008140 <sp_32_cont>: */
1674 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1675 0x03a05080, /* moveq r5, #128 ; 0x80 */
1676 0x0a000001, /* beq 8154 <sp_32_done> */
1677 0xe2811004, /* add r1, r1, #4 ; 0x4 */
1678 0xeaffffe8, /* b 8100 <sp_32_code> */
1679 /* 00008154 <sp_32_done>: */
1680 0xeafffffe /* b 8154 <sp_32_done> */
1681 };
1682
1683 /* see contib/loaders/flash/armv4_5_cfi_span_16.s for src */
1684 static const uint32_t armv4_5_word_16_code[] = {
1685 /* 00008158 <sp_16_code>: */
1686 0xe0d050b2, /* ldrh r5, [r0], #2 */
1687 0xe1c890b0, /* strh r9, [r8] */
1688 0xe1cab0b0, /* strh r11, [r10] */
1689 0xe1c830b0, /* strh r3, [r8] */
1690 0xe1c150b0, /* strh r5, [r1] */
1691 0xe1a00000, /* nop (mov r0,r0) */
1692 /* 00008168 <sp_16_busy>: */
1693 0xe1d160b0, /* ldrh r6, [r1] */
1694 0xe0257006, /* eor r7, r5, r6 */
1695 0xe0147007, /* ands r7, r4, r7 */
1696 0x0a000007, /* beq 8198 <sp_16_cont> */
1697 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1698 0x0afffff9, /* beq 8168 <sp_16_busy> */
1699 0xe1d160b0, /* ldrh r6, [r1] */
1700 0xe0257006, /* eor r7, r5, r6 */
1701 0xe0147007, /* ands r7, r4, r7 */
1702 0x0a000001, /* beq 8198 <sp_16_cont> */
1703 0xe3a05000, /* mov r5, #0 ; 0x0 */
1704 0x1a000004, /* bne 81ac <sp_16_done> */
1705 /* 00008198 <sp_16_cont>: */
1706 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1707 0x03a05080, /* moveq r5, #128 ; 0x80 */
1708 0x0a000001, /* beq 81ac <sp_16_done> */
1709 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1710 0xeaffffe8, /* b 8158 <sp_16_code> */
1711 /* 000081ac <sp_16_done>: */
1712 0xeafffffe /* b 81ac <sp_16_done> */
1713 };
1714
1715 /* see contrib/loaders/flash/armv7m_cfi_span_16.s for src */
1716 static const uint32_t armv7m_word_16_code[] = {
1717 0x5B02F830,
1718 0x9000F8A8,
1719 0xB000F8AA,
1720 0x3000F8A8,
1721 0xBF00800D,
1722 0xEA85880E,
1723 0x40270706,
1724 0xEA16D00A,
1725 0xD0F70694,
1726 0xEA85880E,
1727 0x40270706,
1728 0xF04FD002,
1729 0xD1070500,
1730 0xD0023A01,
1731 0x0102F101,
1732 0xF04FE7E0,
1733 0xE7FF0580,
1734 0x0000BE00
1735 };
1736
1737 /* see contrib/loaders/flash/armv7m_cfi_span_16_dq7.s for src */
1738 static const uint32_t armv7m_word_16_code_dq7only[] = {
1739 /* 00000000 <code>: */
1740 0x5B02F830, /* ldrh.w r5, [r0], #2 */
1741 0x9000F8A8, /* strh.w r9, [r8] */
1742 0xB000F8AA, /* strh.w fp, [sl] */
1743 0x3000F8A8, /* strh.w r3, [r8] */
1744 0xBF00800D, /* strh r5, [r1, #0] */
1745 /* nop */
1746
1747 /* 00000014 <busy>: */
1748 0xEA85880E, /* ldrh r6, [r1, #0] */
1749 /* eor.w r7, r5, r6 */
1750 0x40270706, /* ands r7, r4 */
1751 0x3A01D1FA, /* bne.n 14 <busy> */
1752 /* subs r2, #1 */
1753 0xF101D002, /* beq.n 28 <success> */
1754 0xE7EB0102, /* add.w r1, r1, #2 */
1755 /* b.n 0 <code> */
1756
1757 /* 00000028 <success>: */
1758 0x0580F04F, /* mov.w r5, #128 */
1759 0xBF00E7FF, /* b.n 30 <done> */
1760 /* nop (for alignment purposes) */
1761
1762 /* 00000030 <done>: */
1763 0x0000BE00 /* bkpt 0x0000 */
1764 };
1765
1766 /* see contrib/loaders/flash/armv4_5_cfi_span_16_dq7.s for src */
1767 static const uint32_t armv4_5_word_16_code_dq7only[] = {
1768 /* <sp_16_code>: */
1769 0xe0d050b2, /* ldrh r5, [r0], #2 */
1770 0xe1c890b0, /* strh r9, [r8] */
1771 0xe1cab0b0, /* strh r11, [r10] */
1772 0xe1c830b0, /* strh r3, [r8] */
1773 0xe1c150b0, /* strh r5, [r1] */
1774 0xe1a00000, /* nop (mov r0,r0) */
1775 /* <sp_16_busy>: */
1776 0xe1d160b0, /* ldrh r6, [r1] */
1777 0xe0257006, /* eor r7, r5, r6 */
1778 0xe2177080, /* ands r7, #0x80 */
1779 0x1afffffb, /* bne 8168 <sp_16_busy> */
1780 /* */
1781 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1782 0x03a05080, /* moveq r5, #128 ; 0x80 */
1783 0x0a000001, /* beq 81ac <sp_16_done> */
1784 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1785 0xeafffff0, /* b 8158 <sp_16_code> */
1786 /* 000081ac <sp_16_done>: */
1787 0xeafffffe /* b 81ac <sp_16_done> */
1788 };
1789
1790 /* see contrib/loaders/flash/armv4_5_cfi_span_8.s for src */
1791 static const uint32_t armv4_5_word_8_code[] = {
1792 /* 000081b0 <sp_16_code_end>: */
1793 0xe4d05001, /* ldrb r5, [r0], #1 */
1794 0xe5c89000, /* strb r9, [r8] */
1795 0xe5cab000, /* strb r11, [r10] */
1796 0xe5c83000, /* strb r3, [r8] */
1797 0xe5c15000, /* strb r5, [r1] */
1798 0xe1a00000, /* nop (mov r0,r0) */
1799 /* 000081c0 <sp_8_busy>: */
1800 0xe5d16000, /* ldrb r6, [r1] */
1801 0xe0257006, /* eor r7, r5, r6 */
1802 0xe0147007, /* ands r7, r4, r7 */
1803 0x0a000007, /* beq 81f0 <sp_8_cont> */
1804 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1805 0x0afffff9, /* beq 81c0 <sp_8_busy> */
1806 0xe5d16000, /* ldrb r6, [r1] */
1807 0xe0257006, /* eor r7, r5, r6 */
1808 0xe0147007, /* ands r7, r4, r7 */
1809 0x0a000001, /* beq 81f0 <sp_8_cont> */
1810 0xe3a05000, /* mov r5, #0 ; 0x0 */
1811 0x1a000004, /* bne 8204 <sp_8_done> */
1812 /* 000081f0 <sp_8_cont>: */
1813 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1814 0x03a05080, /* moveq r5, #128 ; 0x80 */
1815 0x0a000001, /* beq 8204 <sp_8_done> */
1816 0xe2811001, /* add r1, r1, #1 ; 0x1 */
1817 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
1818 /* 00008204 <sp_8_done>: */
1819 0xeafffffe /* b 8204 <sp_8_done> */
1820 };
1821
1822 if (strncmp(target_type_name(target), "mips_m4k", 8) == 0)
1823 return cfi_spansion_write_block_mips(bank, buffer, address, count);
1824
1825 if (is_armv7m(target_to_armv7m(target))) { /* armv7m target */
1826 armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
1827 armv7m_algo.core_mode = ARM_MODE_THREAD;
1828 arm_algo = &armv7m_algo;
1829 } else if (is_arm(target_to_arm(target))) {
1830 /* All other ARM CPUs have 32 bit instructions */
1831 armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
1832 armv4_5_algo.core_mode = ARM_MODE_SVC;
1833 armv4_5_algo.core_state = ARM_STATE_ARM;
1834 arm_algo = &armv4_5_algo;
1835 } else {
1836 LOG_ERROR("Unknown architecture");
1837 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1838 }
1839
1840 int target_code_size = 0;
1841 const uint32_t *target_code_src = NULL;
1842
1843 switch (bank->bus_width) {
1844 case 1:
1845 if (is_armv7m(target_to_armv7m(target))) {
1846 LOG_ERROR("Unknown ARM architecture");
1847 return ERROR_FAIL;
1848 }
1849 target_code_src = armv4_5_word_8_code;
1850 target_code_size = sizeof(armv4_5_word_8_code);
1851 break;
1852 case 2:
1853 /* Check for DQ5 support */
1854 if (cfi_info->status_poll_mask & (1 << 5)) {
1855 if (is_armv7m(target_to_armv7m(target))) {
1856 /* armv7m target */
1857 target_code_src = armv7m_word_16_code;
1858 target_code_size = sizeof(armv7m_word_16_code);
1859 } else { /* armv4_5 target */
1860 target_code_src = armv4_5_word_16_code;
1861 target_code_size = sizeof(armv4_5_word_16_code);
1862 }
1863 } else {
1864 /* No DQ5 support. Use DQ7 DATA# polling only. */
1865 if (is_armv7m(target_to_armv7m(target))) {
1866 /* armv7m target */
1867 target_code_src = armv7m_word_16_code_dq7only;
1868 target_code_size = sizeof(armv7m_word_16_code_dq7only);
1869 } else { /* armv4_5 target */
1870 target_code_src = armv4_5_word_16_code_dq7only;
1871 target_code_size = sizeof(armv4_5_word_16_code_dq7only);
1872 }
1873 }
1874 break;
1875 case 4:
1876 if (is_armv7m(target_to_armv7m(target))) {
1877 LOG_ERROR("Unknown ARM architecture");
1878 return ERROR_FAIL;
1879 }
1880 target_code_src = armv4_5_word_32_code;
1881 target_code_size = sizeof(armv4_5_word_32_code);
1882 break;
1883 default:
1884 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1885 bank->bus_width);
1886 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1887 }
1888
1889 /* flash write code */
1890 uint8_t *target_code;
1891
1892 /* convert bus-width dependent algorithm code to correct endianness */
1893 target_code = malloc(target_code_size);
1894 if (target_code == NULL) {
1895 LOG_ERROR("Out of memory");
1896 return ERROR_FAIL;
1897 }
1898
1899 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1900
1901 /* allocate working area */
1902 retval = target_alloc_working_area(target, target_code_size,
1903 &write_algorithm);
1904 if (retval != ERROR_OK) {
1905 free(target_code);
1906 return retval;
1907 }
1908
1909 /* write algorithm code to working area */
1910 retval = target_write_buffer(target, write_algorithm->address,
1911 target_code_size, target_code);
1912 if (retval != ERROR_OK) {
1913 free(target_code);
1914 return retval;
1915 }
1916
1917 free(target_code);
1918
1919 /* the following code still assumes target code is fixed 24*4 bytes */
1920
1921 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1922 buffer_size /= 2;
1923 if (buffer_size <= 256) {
1924 /* we already allocated the writing code, but failed to get a
1925 * buffer, free the algorithm */
1926 target_free_working_area(target, write_algorithm);
1927
1928 LOG_WARNING(
1929 "not enough working area available, can't do block memory writes");
1930 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1931 }
1932 }
1933
1934 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1935 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1936 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1937 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1938 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1939 init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
1940 init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
1941 init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
1942 init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
1943 init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
1944
1945 while (count > 0) {
1946 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1947
1948 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1949 if (retval != ERROR_OK)
1950 break;
1951
1952 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1953 buf_set_u32(reg_params[1].value, 0, 32, address);
1954 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1955 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1956 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1957 buf_set_u32(reg_params[6].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock1));
1958 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1959 buf_set_u32(reg_params[8].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock2));
1960 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1961
1962 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1963 write_algorithm->address,
1964 write_algorithm->address + ((target_code_size) - 4),
1965 10000, arm_algo);
1966 if (retval != ERROR_OK)
1967 break;
1968
1969 status = buf_get_u32(reg_params[5].value, 0, 32);
1970 if (status != 0x80) {
1971 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1972 retval = ERROR_FLASH_OPERATION_FAILED;
1973 break;
1974 }
1975
1976 buffer += thisrun_count;
1977 address += thisrun_count;
1978 count -= thisrun_count;
1979 }
1980
1981 target_free_all_working_areas(target);
1982
1983 destroy_reg_param(&reg_params[0]);
1984 destroy_reg_param(&reg_params[1]);
1985 destroy_reg_param(&reg_params[2]);
1986 destroy_reg_param(&reg_params[3]);
1987 destroy_reg_param(&reg_params[4]);
1988 destroy_reg_param(&reg_params[5]);
1989 destroy_reg_param(&reg_params[6]);
1990 destroy_reg_param(&reg_params[7]);
1991 destroy_reg_param(&reg_params[8]);
1992 destroy_reg_param(&reg_params[9]);
1993
1994 return retval;
1995 }
1996
1997 static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1998 {
1999 int retval;
2000 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2001
2002 cfi_intel_clear_status_register(bank);
2003 retval = cfi_send_command(bank, 0x40, address);
2004 if (retval != ERROR_OK)
2005 return retval;
2006
2007 retval = cfi_target_write_memory(bank, address, 1, word);
2008 if (retval != ERROR_OK)
2009 return retval;
2010
2011 uint8_t status;
2012 retval = cfi_intel_wait_status_busy(bank, cfi_info->word_write_timeout, &status);
2013 if (retval != ERROR_OK)
2014 return retval;
2015 if (status != 0x80) {
2016 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
2017 if (retval != ERROR_OK)
2018 return retval;
2019
2020 LOG_ERROR("couldn't write word at base " TARGET_ADDR_FMT
2021 ", address 0x%" PRIx32,
2022 bank->base, address);
2023 return ERROR_FLASH_OPERATION_FAILED;
2024 }
2025
2026 return ERROR_OK;
2027 }
2028
2029 static int cfi_intel_write_words(struct flash_bank *bank, const uint8_t *word,
2030 uint32_t wordcount, uint32_t address)
2031 {
2032 int retval;
2033 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2034
2035 /* Calculate buffer size and boundary mask
2036 * buffersize is (buffer size per chip) * (number of chips)
2037 * bufferwsize is buffersize in words */
2038 uint32_t buffersize =
2039 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2040 uint32_t buffermask = buffersize-1;
2041 uint32_t bufferwsize = buffersize / bank->bus_width;
2042
2043 /* Check for valid range */
2044 if (address & buffermask) {
2045 LOG_ERROR("Write address at base " TARGET_ADDR_FMT ", address 0x%"
2046 PRIx32 " not aligned to 2^%d boundary",
2047 bank->base, address, cfi_info->max_buf_write_size);
2048 return ERROR_FLASH_OPERATION_FAILED;
2049 }
2050
2051 /* Check for valid size */
2052 if (wordcount > bufferwsize) {
2053 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32,
2054 wordcount, buffersize);
2055 return ERROR_FLASH_OPERATION_FAILED;
2056 }
2057
2058 /* Write to flash buffer */
2059 cfi_intel_clear_status_register(bank);
2060
2061 /* Initiate buffer operation _*/
2062 retval = cfi_send_command(bank, 0xe8, address);
2063 if (retval != ERROR_OK)
2064 return retval;
2065 uint8_t status;
2066 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2067 if (retval != ERROR_OK)
2068 return retval;
2069 if (status != 0x80) {
2070 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
2071 if (retval != ERROR_OK)
2072 return retval;
2073
2074 LOG_ERROR(
2075 "couldn't start buffer write operation at base " TARGET_ADDR_FMT
2076 ", address 0x%" PRIx32,
2077 bank->base,
2078 address);
2079 return ERROR_FLASH_OPERATION_FAILED;
2080 }
2081
2082 /* Write buffer wordcount-1 and data words */
2083 retval = cfi_send_command(bank, bufferwsize-1, address);
2084 if (retval != ERROR_OK)
2085 return retval;
2086
2087 retval = cfi_target_write_memory(bank, address, bufferwsize, word);
2088 if (retval != ERROR_OK)
2089 return retval;
2090
2091 /* Commit write operation */
2092 retval = cfi_send_command(bank, 0xd0, address);
2093 if (retval != ERROR_OK)
2094 return retval;
2095
2096 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2097 if (retval != ERROR_OK)
2098 return retval;
2099
2100 if (status != 0x80) {
2101 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
2102 if (retval != ERROR_OK)
2103 return retval;
2104
2105 LOG_ERROR("Buffer write at base " TARGET_ADDR_FMT
2106 ", address 0x%" PRIx32 " failed.", bank->base, address);
2107 return ERROR_FLASH_OPERATION_FAILED;
2108 }
2109
2110 return ERROR_OK;
2111 }
2112
2113 static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2114 {
2115 int retval;
2116 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2117 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2118
2119 retval = cfi_spansion_unlock_seq(bank);
2120 if (retval != ERROR_OK)
2121 return retval;
2122
2123 retval = cfi_send_command(bank, 0xa0, cfi_flash_address(bank, 0, pri_ext->_unlock1));
2124 if (retval != ERROR_OK)
2125 return retval;
2126
2127 retval = cfi_target_write_memory(bank, address, 1, word);
2128 if (retval != ERROR_OK)
2129 return retval;
2130
2131 if (cfi_spansion_wait_status_busy(bank, cfi_info->word_write_timeout) != ERROR_OK) {
2132 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
2133 if (retval != ERROR_OK)
2134 return retval;
2135
2136 LOG_ERROR("couldn't write word at base " TARGET_ADDR_FMT
2137 ", address 0x%" PRIx32, bank->base, address);
2138 return ERROR_FLASH_OPERATION_FAILED;
2139 }
2140
2141 return ERROR_OK;
2142 }
2143
2144 static int cfi_spansion_write_words(struct flash_bank *bank, const uint8_t *word,
2145 uint32_t wordcount, uint32_t address)
2146 {
2147 int retval;
2148 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2149
2150 /* Calculate buffer size and boundary mask
2151 * buffersize is (buffer size per chip) * (number of chips)
2152 * bufferwsize is buffersize in words */
2153 uint32_t buffersize =
2154 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2155 uint32_t buffermask = buffersize-1;
2156 uint32_t bufferwsize = buffersize / bank->bus_width;
2157
2158 /* Check for valid range */
2159 if (address & buffermask) {
2160 LOG_ERROR("Write address at base " TARGET_ADDR_FMT
2161 ", address 0x%" PRIx32 " not aligned to 2^%d boundary",
2162 bank->base, address, cfi_info->max_buf_write_size);
2163 return ERROR_FLASH_OPERATION_FAILED;
2164 }
2165
2166 /* Check for valid size */
2167 if (wordcount > bufferwsize) {
2168 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %"
2169 PRId32, wordcount, buffersize);
2170 return ERROR_FLASH_OPERATION_FAILED;
2171 }
2172
2173 /* Unlock */
2174 retval = cfi_spansion_unlock_seq(bank);
2175 if (retval != ERROR_OK)
2176 return retval;
2177
2178 /* Buffer load command */
2179 retval = cfi_send_command(bank, 0x25, address);
2180 if (retval != ERROR_OK)
2181 return retval;
2182
2183 /* Write buffer wordcount-1 and data words */
2184 retval = cfi_send_command(bank, bufferwsize-1, address);
2185 if (retval != ERROR_OK)
2186 return retval;
2187
2188 retval = cfi_target_write_memory(bank, address, bufferwsize, word);
2189 if (retval != ERROR_OK)
2190 return retval;
2191
2192 /* Commit write operation */
2193 retval = cfi_send_command(bank, 0x29, address);
2194 if (retval != ERROR_OK)
2195 return retval;
2196
2197 if (cfi_spansion_wait_status_busy(bank, cfi_info->buf_write_timeout) != ERROR_OK) {
2198 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
2199 if (retval != ERROR_OK)
2200 return retval;
2201
2202 LOG_ERROR("couldn't write block at base " TARGET_ADDR_FMT
2203 ", address 0x%" PRIx32 ", size 0x%" PRIx32, bank->base, address,
2204 bufferwsize);
2205 return ERROR_FLASH_OPERATION_FAILED;
2206 }
2207
2208 return ERROR_OK;
2209 }
2210
2211 int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2212 {
2213 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2214
2215 switch (cfi_info->pri_id) {
2216 case 1:
2217 case 3:
2218 return cfi_intel_write_word(bank, word, address);
2219 case 2:
2220 return cfi_spansion_write_word(bank, word, address);
2221 default:
2222 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2223 break;
2224 }
2225
2226 return ERROR_FLASH_OPERATION_FAILED;
2227 }
2228
2229 static int cfi_write_words(struct flash_bank *bank, const uint8_t *word,
2230 uint32_t wordcount, uint32_t address)
2231 {
2232 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2233
2234 if (cfi_info->buf_write_timeout_typ == 0) {
2235 /* buffer writes are not supported */
2236 LOG_DEBUG("Buffer Writes Not Supported");
2237 return ERROR_FLASH_OPER_UNSUPPORTED;
2238 }
2239
2240 switch (cfi_info->pri_id) {
2241 case 1:
2242 case 3:
2243 return cfi_intel_write_words(bank, word, wordcount, address);
2244 case 2:
2245 return cfi_spansion_write_words(bank, word, wordcount, address);
2246 default:
2247 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2248 break;
2249 }
2250
2251 return ERROR_FLASH_OPERATION_FAILED;
2252 }
2253
2254 static int cfi_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
2255 {
2256 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2257 uint32_t address = bank->base + offset;
2258 uint32_t read_p;
2259 int align; /* number of unaligned bytes */
2260 uint8_t current_word[CFI_MAX_BUS_WIDTH];
2261 int retval;
2262
2263 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2264 (int)count, (unsigned)offset);
2265
2266 if (bank->target->state != TARGET_HALTED) {
2267 LOG_ERROR("Target not halted");
2268 return ERROR_TARGET_NOT_HALTED;
2269 }
2270
2271 if (offset + count > bank->size)
2272 return ERROR_FLASH_DST_OUT_OF_BANK;
2273
2274 if (cfi_info->qry[0] != 'Q')
2275 return ERROR_FLASH_BANK_NOT_PROBED;
2276
2277 /* start at the first byte of the first word (bus_width size) */
2278 read_p = address & ~(bank->bus_width - 1);
2279 align = address - read_p;
2280 if (align != 0) {
2281 LOG_INFO("Fixup %d unaligned read head bytes", align);
2282
2283 /* read a complete word from flash */
2284 retval = cfi_target_read_memory(bank, read_p, 1, current_word);
2285 if (retval != ERROR_OK)
2286 return retval;
2287
2288 /* take only bytes we need */
2289 for (int i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2290 *buffer++ = current_word[i];
2291
2292 read_p += bank->bus_width;
2293 }
2294
2295 align = count / bank->bus_width;
2296 if (align) {
2297 retval = cfi_target_read_memory(bank, read_p, align, buffer);
2298 if (retval != ERROR_OK)
2299 return retval;
2300
2301 read_p += align * bank->bus_width;
2302 buffer += align * bank->bus_width;
2303 count -= align * bank->bus_width;
2304 }
2305
2306 if (count) {
2307 LOG_INFO("Fixup %" PRIu32 " unaligned read tail bytes", count);
2308
2309 /* read a complete word from flash */
2310 retval = cfi_target_read_memory(bank, read_p, 1, current_word);
2311 if (retval != ERROR_OK)
2312 return retval;
2313
2314 /* take only bytes we need */
2315 for (int i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2316 *buffer++ = current_word[i];
2317 }
2318
2319 return ERROR_OK;
2320 }
2321
2322 static int cfi_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count)
2323 {
2324 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2325 uint32_t address = bank->base + offset; /* address of first byte to be programmed */
2326 uint32_t write_p;
2327 int align; /* number of unaligned bytes */
2328 int blk_count; /* number of bus_width bytes for block copy */
2329 uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being
2330 *programmed */
2331 uint8_t *swapped_buffer = NULL;
2332 const uint8_t *real_buffer = NULL;
2333 int retval;
2334
2335 if (bank->target->state != TARGET_HALTED) {
2336 LOG_ERROR("Target not halted");
2337 return ERROR_TARGET_NOT_HALTED;
2338 }
2339
2340 if (offset + count > bank->size)
2341 return ERROR_FLASH_DST_OUT_OF_BANK;
2342
2343 if (cfi_info->qry[0] != 'Q')
2344 return ERROR_FLASH_BANK_NOT_PROBED;
2345
2346 /* start at the first byte of the first word (bus_width size) */
2347 write_p = address & ~(bank->bus_width - 1);
2348 align = address - write_p;
2349 if (align != 0) {
2350 LOG_INFO("Fixup %d unaligned head bytes", align);
2351
2352 /* read a complete word from flash */
2353 retval = cfi_target_read_memory(bank, write_p, 1, current_word);
2354 if (retval != ERROR_OK)
2355 return retval;
2356
2357 /* replace only bytes that must be written */
2358 for (int i = align;
2359 (i < bank->bus_width) && (count > 0);
2360 i++, count--)
2361 if (cfi_info->data_swap)
2362 /* data bytes are swapped (reverse endianness) */
2363 current_word[bank->bus_width - i] = *buffer++;
2364 else
2365 current_word[i] = *buffer++;
2366
2367 retval = cfi_write_word(bank, current_word, write_p);
2368 if (retval != ERROR_OK)
2369 return retval;
2370 write_p += bank->bus_width;
2371 }
2372
2373 if (cfi_info->data_swap && count) {
2374 swapped_buffer = malloc(count & ~(bank->bus_width - 1));
2375 switch (bank->bus_width) {
2376 case 2:
2377 buf_bswap16(swapped_buffer, buffer,
2378 count & ~(bank->bus_width - 1));
2379 break;
2380 case 4:
2381 buf_bswap32(swapped_buffer, buffer,
2382 count & ~(bank->bus_width - 1));
2383 break;
2384 }
2385 real_buffer = buffer;
2386 buffer = swapped_buffer;
2387 }
2388
2389 /* handle blocks of bus_size aligned bytes */
2390 blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
2391 switch (cfi_info->pri_id) {
2392 /* try block writes (fails without working area) */
2393 case 1:
2394 case 3:
2395 retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
2396 break;
2397 case 2:
2398 retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
2399 break;
2400 default:
2401 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2402 retval = ERROR_FLASH_OPERATION_FAILED;
2403 break;
2404 }
2405 if (retval == ERROR_OK) {
2406 /* Increment pointers and decrease count on succesful block write */
2407 buffer += blk_count;
2408 write_p += blk_count;
2409 count -= blk_count;
2410 } else {
2411 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
2412 /* Calculate buffer size and boundary mask
2413 * buffersize is (buffer size per chip) * (number of chips)
2414 * bufferwsize is buffersize in words */
2415 uint32_t buffersize =
2416 (1UL <<
2417 cfi_info->max_buf_write_size) *
2418 (bank->bus_width / bank->chip_width);
2419 uint32_t buffermask = buffersize-1;
2420 uint32_t bufferwsize = buffersize / bank->bus_width;
2421
2422 /* fall back to memory writes */
2423 while (count >= (uint32_t)bank->bus_width) {
2424 bool fallback;
2425 if ((write_p & 0xff) == 0) {
2426 LOG_INFO("Programming at 0x%08" PRIx32 ", count 0x%08"
2427 PRIx32 " bytes remaining", write_p, count);
2428 }
2429 fallback = true;
2430 if ((bufferwsize > 0) && (count >= buffersize) &&
2431 !(write_p & buffermask)) {
2432 retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
2433 if (retval == ERROR_OK) {
2434 buffer += buffersize;
2435 write_p += buffersize;
2436 count -= buffersize;
2437 fallback = false;
2438 } else if (retval != ERROR_FLASH_OPER_UNSUPPORTED)
2439 return retval;
2440 }
2441 /* try the slow way? */
2442 if (fallback) {
2443 for (int i = 0; i < bank->bus_width; i++)
2444 current_word[i] = *buffer++;
2445
2446 retval = cfi_write_word(bank, current_word, write_p);
2447 if (retval != ERROR_OK)
2448 return retval;
2449
2450 write_p += bank->bus_width;
2451 count -= bank->bus_width;
2452 }
2453 }
2454 } else
2455 return retval;
2456 }
2457
2458 if (swapped_buffer) {
2459 buffer = real_buffer + (buffer - swapped_buffer);
2460 free(swapped_buffer);
2461 }
2462
2463 /* return to read array mode, so we can read from flash again for padding */
2464 retval = cfi_reset(bank);
2465 if (retval != ERROR_OK)
2466 return retval;
2467
2468 /* handle unaligned tail bytes */
2469 if (count > 0) {
2470 LOG_INFO("Fixup %" PRId32 " unaligned tail bytes", count);
2471
2472 /* read a complete word from flash */
2473 retval = cfi_target_read_memory(bank, write_p, 1, current_word);
2474 if (retval != ERROR_OK)
2475 return retval;
2476
2477 /* replace only bytes that must be written */
2478 for (int i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2479 if (cfi_info->data_swap)
2480 /* data bytes are swapped (reverse endianness) */
2481 current_word[bank->bus_width - i] = *buffer++;
2482 else
2483 current_word[i] = *buffer++;
2484
2485 retval = cfi_write_word(bank, current_word, write_p);
2486 if (retval != ERROR_OK)
2487 return retval;
2488 }
2489
2490 /* return to read array mode */
2491 return cfi_reset(bank);
2492 }
2493
2494 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, const void *param)
2495 {
2496 (void) param;
2497 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2498 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2499
2500 pri_ext->_reversed_geometry = 1;
2501 }
2502
2503 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, const void *param)
2504 {
2505 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2506 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2507 (void) param;
2508
2509 if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3)) {
2510 LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
2511
2512 for (unsigned int i = 0; i < cfi_info->num_erase_regions / 2; i++) {
2513 int j = (cfi_info->num_erase_regions - 1) - i;
2514 uint32_t swap;
2515
2516 swap = cfi_info->erase_region_info[i];
2517 cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
2518 cfi_info->erase_region_info[j] = swap;
2519 }
2520 }
2521 }
2522
2523 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, const void *param)
2524 {
2525 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2526 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2527 const struct cfi_unlock_addresses *unlock_addresses = param;
2528
2529 pri_ext->_unlock1 = unlock_addresses->unlock1;
2530 pri_ext->_unlock2 = unlock_addresses->unlock2;
2531 }
2532
2533 static void cfi_fixup_0002_polling_bits(struct flash_bank *bank, const void *param)
2534 {
2535 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2536 const int *status_poll_mask = param;
2537
2538 cfi_info->status_poll_mask = *status_poll_mask;
2539 }
2540
2541
2542 static int cfi_query_string(struct flash_bank *bank, int address)
2543 {
2544 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2545 int retval;
2546
2547 retval = cfi_send_command(bank, 0x98, cfi_flash_address(bank, 0, address));
2548 if (retval != ERROR_OK)
2549 return retval;
2550
2551 retval = cfi_query_u8(bank, 0, 0x10, &cfi_info->qry[0]);
2552 if (retval != ERROR_OK)
2553 return retval;
2554 retval = cfi_query_u8(bank, 0, 0x11, &cfi_info->qry[1]);
2555 if (retval != ERROR_OK)
2556 return retval;
2557 retval = cfi_query_u8(bank, 0, 0x12, &cfi_info->qry[2]);
2558 if (retval != ERROR_OK)
2559 return retval;
2560
2561 LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x",
2562 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
2563
2564 if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y')) {
2565 retval = cfi_reset(bank);
2566 if (retval != ERROR_OK)
2567 return retval;
2568 LOG_ERROR("Could not probe bank: no QRY");
2569 return ERROR_FLASH_BANK_INVALID;
2570 }
2571
2572 return ERROR_OK;
2573 }
2574
2575 int cfi_probe(struct flash_bank *bank)
2576 {
2577 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2578 struct target *target = bank->target;
2579 int num_sectors = 0;
2580 int sector = 0;
2581 uint32_t unlock1 = 0x555;
2582 uint32_t unlock2 = 0x2aa;
2583 int retval;
2584 uint8_t value_buf0[CFI_MAX_BUS_WIDTH], value_buf1[CFI_MAX_BUS_WIDTH];
2585
2586 if (bank->target->state != TARGET_HALTED) {
2587 LOG_ERROR("Target not halted");
2588 return ERROR_TARGET_NOT_HALTED;
2589 }
2590
2591 cfi_info->probed = false;
2592 cfi_info->num_erase_regions = 0;
2593 if (bank->sectors) {
2594 free(bank->sectors);
2595 bank->sectors = NULL;
2596 }
2597 if (cfi_info->erase_region_info) {
2598 free(cfi_info->erase_region_info);
2599 cfi_info->erase_region_info = NULL;
2600 }
2601
2602 /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
2603 * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
2604 */
2605 if (cfi_info->jedec_probe) {
2606 unlock1 = 0x5555;
2607 unlock2 = 0x2aaa;
2608 }
2609
2610 /* switch to read identifier codes mode ("AUTOSELECT") */
2611 retval = cfi_send_command(bank, 0xaa, cfi_flash_address(bank, 0, unlock1));
2612 if (retval != ERROR_OK)
2613 return retval;
2614 retval = cfi_send_command(bank, 0x55, cfi_flash_address(bank, 0, unlock2));
2615 if (retval != ERROR_OK)
2616 return retval;
2617 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, unlock1));
2618 if (retval != ERROR_OK)
2619 return retval;
2620
2621 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, 0, 0x00),
2622 1, value_buf0);
2623 if (retval != ERROR_OK)
2624 return retval;
2625 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, 0, 0x01),
2626 1, value_buf1);
2627 if (retval != ERROR_OK)
2628 return retval;
2629 switch (bank->chip_width) {
2630 case 1:
2631 cfi_info->manufacturer = *value_buf0;
2632 cfi_info->device_id = *value_buf1;
2633 break;
2634 case 2:
2635 cfi_info->manufacturer = target_buffer_get_u16(target, value_buf0);
2636 cfi_info->device_id = target_buffer_get_u16(target, value_buf1);
2637 break;
2638 case 4:
2639 cfi_info->manufacturer = target_buffer_get_u32(target, value_buf0);
2640 cfi_info->device_id = target_buffer_get_u32(target, value_buf1);
2641 break;
2642 default:
2643 LOG_ERROR("Unsupported bank chipwidth %d, can't probe memory",
2644 bank->chip_width);
2645 return ERROR_FLASH_OPERATION_FAILED;
2646 }
2647
2648 LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x",
2649 cfi_info->manufacturer, cfi_info->device_id);
2650 /* switch back to read array mode */
2651 retval = cfi_reset(bank);
2652 if (retval != ERROR_OK)
2653 return retval;
2654
2655 /* check device/manufacturer ID for known non-CFI flashes. */
2656 cfi_fixup_non_cfi(bank);
2657
2658 /* query only if this is a CFI compatible flash,
2659 * otherwise the relevant info has already been filled in
2660 */
2661 if (cfi_info->not_cfi == 0) {
2662 /* enter CFI query mode
2663 * according to JEDEC Standard No. 68.01,
2664 * a single bus sequence with address = 0x55, data = 0x98 should put
2665 * the device into CFI query mode.
2666 *
2667 * SST flashes clearly violate this, and we will consider them incompatible for now
2668 */
2669
2670 retval = cfi_query_string(bank, 0x55);
2671 if (retval != ERROR_OK) {
2672 /*
2673 * Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
2674 * be harmless enough:
2675 *
2676 * http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
2677 */
2678 LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
2679 retval = cfi_query_string(bank, 0x555);
2680 }
2681 if (retval != ERROR_OK)
2682 return retval;
2683
2684 retval = cfi_query_u16(bank, 0, 0x13, &cfi_info->pri_id);
2685 if (retval != ERROR_OK)
2686 return retval;
2687 retval = cfi_query_u16(bank, 0, 0x15, &cfi_info->pri_addr);
2688 if (retval != ERROR_OK)
2689 return retval;
2690 retval = cfi_query_u16(bank, 0, 0x17, &cfi_info->alt_id);
2691 if (retval != ERROR_OK)
2692 return retval;
2693 retval = cfi_query_u16(bank, 0, 0x19, &cfi_info->alt_addr);
2694 if (retval != ERROR_OK)
2695 return retval;
2696
2697 LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: "
2698 "0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1],
2699 cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr,
2700 cfi_info->alt_id, cfi_info->alt_addr);
2701
2702 retval = cfi_query_u8(bank, 0, 0x1b, &cfi_info->vcc_min);
2703 if (retval != ERROR_OK)
2704 return retval;
2705 retval = cfi_query_u8(bank, 0, 0x1c, &cfi_info->vcc_max);
2706 if (retval != ERROR_OK)
2707 return retval;
2708 retval = cfi_query_u8(bank, 0, 0x1d, &cfi_info->vpp_min);
2709 if (retval != ERROR_OK)
2710 return retval;
2711 retval = cfi_query_u8(bank, 0, 0x1e, &cfi_info->vpp_max);
2712 if (retval != ERROR_OK)
2713 return retval;
2714
2715 retval = cfi_query_u8(bank, 0, 0x1f, &cfi_info->word_write_timeout_typ);
2716 if (retval != ERROR_OK)
2717 return retval;
2718 retval = cfi_query_u8(bank, 0, 0x20, &cfi_info->buf_write_timeout_typ);
2719 if (retval != ERROR_OK)
2720 return retval;
2721 retval = cfi_query_u8(bank, 0, 0x21, &cfi_info->block_erase_timeout_typ);
2722 if (retval != ERROR_OK)
2723 return retval;
2724 retval = cfi_query_u8(bank, 0, 0x22, &cfi_info->chip_erase_timeout_typ);
2725 if (retval != ERROR_OK)
2726 return retval;
2727 retval = cfi_query_u8(bank, 0, 0x23, &cfi_info->word_write_timeout_max);
2728 if (retval != ERROR_OK)
2729 return retval;
2730 retval = cfi_query_u8(bank, 0, 0x24, &cfi_info->buf_write_timeout_max);
2731 if (retval != ERROR_OK)
2732 return retval;
2733 retval = cfi_query_u8(bank, 0, 0x25, &cfi_info->block_erase_timeout_max);
2734 if (retval != ERROR_OK)
2735 return retval;
2736 retval = cfi_query_u8(bank, 0, 0x26, &cfi_info->chip_erase_timeout_max);
2737 if (retval != ERROR_OK)
2738 return retval;
2739
2740 uint8_t data;
2741 retval = cfi_query_u8(bank, 0, 0x27, &data);
2742 if (retval != ERROR_OK)
2743 return retval;
2744 cfi_info->dev_size = 1 << data;
2745
2746 retval = cfi_query_u16(bank, 0, 0x28, &cfi_info->interface_desc);
2747 if (retval != ERROR_OK)
2748 return retval;
2749 retval = cfi_query_u16(bank, 0, 0x2a, &cfi_info->max_buf_write_size);
2750 if (retval != ERROR_OK)
2751 return retval;
2752 retval = cfi_query_u8(bank, 0, 0x2c, &cfi_info->num_erase_regions);
2753 if (retval != ERROR_OK)
2754 return retval;
2755
2756 LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: 0x%x",
2757 cfi_info->dev_size, cfi_info->interface_desc,
2758 (1 << cfi_info->max_buf_write_size));
2759
2760 if (cfi_info->num_erase_regions) {
2761 cfi_info->erase_region_info = malloc(sizeof(*cfi_info->erase_region_info)
2762 * cfi_info->num_erase_regions);
2763 for (unsigned int i = 0; i < cfi_info->num_erase_regions; i++) {
2764 retval = cfi_query_u32(bank,
2765 0,
2766 0x2d + (4 * i),
2767 &cfi_info->erase_region_info[i]);
2768 if (retval != ERROR_OK)
2769 return retval;
2770 LOG_DEBUG(
2771 "erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "",
2772 i,
2773 (cfi_info->erase_region_info[i] & 0xffff) + 1,
2774 (cfi_info->erase_region_info[i] >> 16) * 256);
2775 }
2776 } else
2777 cfi_info->erase_region_info = NULL;
2778
2779 /* We need to read the primary algorithm extended query table before calculating
2780 * the sector layout to be able to apply fixups
2781 */
2782 switch (cfi_info->pri_id) {
2783 /* Intel command set (standard and extended) */
2784 case 0x0001:
2785 case 0x0003:
2786 cfi_read_intel_pri_ext(bank);
2787 break;
2788 /* AMD/Spansion, Atmel, ... command set */
2789 case 0x0002:
2790 cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /*
2791 *default
2792 *for
2793 *all
2794 *CFI
2795 *flashs
2796 **/
2797 cfi_read_0002_pri_ext(bank);
2798 break;
2799 default:
2800 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2801 break;
2802 }
2803
2804 /* return to read array mode
2805 * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
2806 */
2807 retval = cfi_reset(bank);
2808 if (retval != ERROR_OK)
2809 return retval;
2810 } /* end CFI case */
2811
2812 LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
2813 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2814 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2815 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2816 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2817
2818 LOG_DEBUG("typ. word write timeout: %u us, typ. buf write timeout: %u us, "
2819 "typ. block erase timeout: %u ms, typ. chip erase timeout: %u ms",
2820 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
2821 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
2822
2823 LOG_DEBUG("max. word write timeout: %u us, max. buf write timeout: %u us, "
2824 "max. block erase timeout: %u ms, max. chip erase timeout: %u ms",
2825 (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2826 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2827 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2828 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2829
2830 /* convert timeouts to real values in ms */
2831 cfi_info->word_write_timeout = DIV_ROUND_UP((1L << cfi_info->word_write_timeout_typ) *
2832 (1L << cfi_info->word_write_timeout_max), 1000);
2833 cfi_info->buf_write_timeout = DIV_ROUND_UP((1L << cfi_info->buf_write_timeout_typ) *
2834 (1L << cfi_info->buf_write_timeout_max), 1000);
2835 cfi_info->block_erase_timeout = (1L << cfi_info->block_erase_timeout_typ) *
2836 (1L << cfi_info->block_erase_timeout_max);
2837 cfi_info->chip_erase_timeout = (1L << cfi_info->chip_erase_timeout_typ) *
2838 (1L << cfi_info->chip_erase_timeout_max);
2839
2840 LOG_DEBUG("calculated word write timeout: %u ms, buf write timeout: %u ms, "
2841 "block erase timeout: %u ms, chip erase timeout: %u ms",
2842 cfi_info->word_write_timeout, cfi_info->buf_write_timeout,
2843 cfi_info->block_erase_timeout, cfi_info->chip_erase_timeout);
2844
2845 /* apply fixups depending on the primary command set */
2846 switch (cfi_info->pri_id) {
2847 /* Intel command set (standard and extended) */
2848 case 0x0001:
2849 case 0x0003:
2850 cfi_fixup(bank, cfi_0001_fixups);
2851 break;
2852 /* AMD/Spansion, Atmel, ... command set */
2853 case 0x0002:
2854 cfi_fixup(bank, cfi_0002_fixups);
2855 break;
2856 default:
2857 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2858 break;
2859 }
2860
2861 if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size) {
2862 LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32
2863 " size flash was found", bank->size, cfi_info->dev_size);
2864 }
2865
2866 if (cfi_info->num_erase_regions == 0) {
2867 /* a device might have only one erase block, spanning the whole device */
2868 bank->num_sectors = 1;
2869 bank->sectors = malloc(sizeof(struct flash_sector));
2870
2871 bank->sectors[sector].offset = 0x0;
2872 bank->sectors[sector].size = bank->size;
2873 bank->sectors[sector].is_erased = -1;
2874 bank->sectors[sector].is_protected = -1;
2875 } else {
2876 uint32_t offset = 0;
2877
2878 for (unsigned int i = 0; i < cfi_info->num_erase_regions; i++)
2879 num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
2880
2881 bank->num_sectors = num_sectors;
2882 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
2883
2884 for (unsigned int i = 0; i < cfi_info->num_erase_regions; i++) {
2885 for (uint32_t j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++) {
2886 bank->sectors[sector].offset = offset;
2887 bank->sectors[sector].size =
2888 ((cfi_info->erase_region_info[i] >> 16) * 256)
2889 * bank->bus_width / bank->chip_width;
2890 offset += bank->sectors[sector].size;
2891 bank->sectors[sector].is_erased = -1;
2892 bank->sectors[sector].is_protected = -1;
2893 sector++;
2894 }
2895 }
2896 if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width)) {
2897 LOG_WARNING(
2898 "CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "", \
2899 (cfi_info->dev_size * bank->bus_width / bank->chip_width),
2900 offset);
2901 }
2902 }
2903
2904 cfi_info->probed = true;
2905
2906 return ERROR_OK;
2907 }
2908
2909 int cfi_auto_probe(struct flash_bank *bank)
2910 {
2911 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2912 if (cfi_info->probed)
2913 return ERROR_OK;
2914 return cfi_probe(bank);
2915 }
2916
2917 static int cfi_intel_protect_check(struct flash_bank *bank)
2918 {
2919 int retval;
2920 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2921 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
2922
2923 /* check if block lock bits are supported on this device */
2924 if (!(pri_ext->blk_status_reg_mask & 0x1))
2925 return ERROR_FLASH_OPERATION_FAILED;
2926
2927 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, 0x55));
2928 if (retval != ERROR_OK)
2929 return retval;
2930
2931 for (int i = 0; i < bank->num_sectors; i++) {
2932 uint8_t block_status;
2933 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2934 if (retval != ERROR_OK)
2935 return retval;
2936
2937 if (block_status & 1)
2938 bank->sectors[i].is_protected = 1;
2939 else
2940 bank->sectors[i].is_protected = 0;
2941 }
2942
2943 return cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
2944 }
2945
2946 static int cfi_spansion_protect_check(struct flash_bank *bank)
2947 {
2948 int retval;
2949 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2950 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2951
2952 retval = cfi_spansion_unlock_seq(bank);
2953 if (retval != ERROR_OK)
2954 return retval;
2955
2956 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, pri_ext->_unlock1));
2957 if (retval != ERROR_OK)
2958 return retval;
2959
2960 for (int i = 0; i < bank->num_sectors; i++) {
2961 uint8_t block_status;
2962 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2963 if (retval != ERROR_OK)
2964 return retval;
2965
2966 if (block_status & 1)
2967 bank->sectors[i].is_protected = 1;
2968 else
2969 bank->sectors[i].is_protected = 0;
2970 }
2971
2972 return cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
2973 }
2974
2975 int cfi_protect_check(struct flash_bank *bank)
2976 {
2977 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2978
2979 if (bank->target->state != TARGET_HALTED) {
2980 LOG_ERROR("Target not halted");
2981 return ERROR_TARGET_NOT_HALTED;
2982 }
2983
2984 if (cfi_info->qry[0] != 'Q')
2985 return ERROR_FLASH_BANK_NOT_PROBED;
2986
2987 switch (cfi_info->pri_id) {
2988 case 1:
2989 case 3:
2990 return cfi_intel_protect_check(bank);
2991 case 2:
2992 return cfi_spansion_protect_check(bank);
2993 default:
2994 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2995 break;
2996 }
2997
2998 return ERROR_OK;
2999 }
3000
3001 int cfi_get_info(struct flash_bank *bank, char *buf, int buf_size)
3002 {
3003 int printed;
3004 struct cfi_flash_bank *cfi_info = bank->driver_priv;
3005
3006 if (cfi_info->qry[0] == 0xff) {
3007 snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n");
3008 return ERROR_OK;
3009 }
3010
3011 if (cfi_info->not_cfi == 0)
3012 printed = snprintf(buf, buf_size, "\nCFI flash: ");
3013 else
3014 printed = snprintf(buf, buf_size, "\nnon-CFI flash: ");
3015 buf += printed;
3016 buf_size -= printed;
3017
3018 printed = snprintf(buf, buf_size, "mfr: 0x%4.4x, id:0x%4.4x\n\n",
3019 cfi_info->manufacturer, cfi_info->device_id);
3020 buf += printed;
3021 buf_size -= printed;
3022
3023 printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: "
3024 "0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n",
3025 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2],
3026 cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
3027 buf += printed;
3028 buf_size -= printed;
3029
3030 printed = snprintf(buf, buf_size, "Vcc min: %x.%x, Vcc max: %x.%x, "
3031 "Vpp min: %u.%x, Vpp max: %u.%x\n",
3032 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
3033 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
3034 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
3035 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
3036 buf += printed;
3037 buf_size -= printed;
3038
3039 printed = snprintf(buf, buf_size, "typ. word write timeout: %u us, "
3040 "typ. buf write timeout: %u us, "
3041 "typ. block erase timeout: %u ms, "
3042 "typ. chip erase timeout: %u ms\n",
3043 1 << cfi_info->word_write_timeout_typ,
3044 1 << cfi_info->buf_write_timeout_typ,
3045 1 << cfi_info->block_erase_timeout_typ,
3046 1 << cfi_info->chip_erase_timeout_typ);
3047 buf += printed;
3048 buf_size -= printed;
3049
3050 printed = snprintf(buf,
3051 buf_size,
3052 "max. word write timeout: %u us, "
3053 "max. buf write timeout: %u us, max. "
3054 "block erase timeout: %u ms, max. chip erase timeout: %u ms\n",
3055 (1 <<
3056 cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
3057 (1 <<
3058 cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
3059 (1 <<
3060 cfi_info->block_erase_timeout_max) *
3061 (1 << cfi_info->block_erase_timeout_typ),
3062 (1 <<
3063 cfi_info->chip_erase_timeout_max) *
3064 (1 << cfi_info->chip_erase_timeout_typ));
3065 buf += printed;
3066 buf_size -= printed;
3067
3068 printed = snprintf(buf, buf_size, "size: 0x%" PRIx32 ", interface desc: %i, "
3069 "max buffer write size: 0x%x\n",
3070 cfi_info->dev_size,
3071 cfi_info->interface_desc,
3072 1 << cfi_info->max_buf_write_size);
3073 buf += printed;
3074 buf_size -= printed;
3075
3076 switch (cfi_info->pri_id) {
3077 case 1:
3078 case 3:
3079 cfi_intel_info(bank, buf, buf_size);
3080 break;
3081 case 2:
3082 cfi_spansion_info(bank, buf, buf_size);
3083 break;
3084 default:
3085 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
3086 break;
3087 }
3088
3089 return ERROR_OK;
3090 }
3091
3092 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, const void *param)
3093 {
3094 struct cfi_flash_bank *cfi_info = bank->driver_priv;
3095
3096 /* disable write buffer for M29W128G */
3097 cfi_info->buf_write_timeout_typ = 0;
3098 }
3099
3100 const struct flash_driver cfi_flash = {
3101 .name = "cfi",
3102 .flash_bank_command = cfi_flash_bank_command,
3103 .erase = cfi_erase,
3104 .protect = cfi_protect,
3105 .write = cfi_write,
3106 .read = cfi_read,
3107 .probe = cfi_probe,
3108 .auto_probe = cfi_auto_probe,
3109 /* FIXME: access flash at bus_width size */
3110 .erase_check = default_flash_blank_check,
3111 .protect_check = cfi_protect_check,
3112 .info = cfi_get_info,
3113 .free_driver_priv = default_flash_free_driver_priv,
3114 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)