cfi: fix type-punning warnings in cfi_spansion_write_block
[openocd.git] / src / flash / nor / cfi.c
1 /***************************************************************************
2 * Copyright (C) 2005, 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * Copyright (C) 2009 Michael Schwingen *
5 * michael@schwingen.org *
6 * Copyright (C) 2010 √ėyvind Harboe <oyvind.harboe@zylin.com> *
7 * Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General Public License as published by *
11 * the Free Software Foundation; either version 2 of the License, or *
12 * (at your option) any later version. *
13 * *
14 * This program is distributed in the hope that it will be useful, *
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
17 * GNU General Public License for more details. *
18 * *
19 * You should have received a copy of the GNU General Public License *
20 * along with this program; if not, write to the *
21 * Free Software Foundation, Inc., *
22 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
23 ***************************************************************************/
24
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "imp.h"
30 #include "cfi.h"
31 #include "non_cfi.h"
32 #include <target/arm.h>
33 #include <target/arm7_9_common.h>
34 #include <target/armv7m.h>
35 #include <target/mips32.h>
36 #include <helper/binarybuffer.h>
37 #include <target/algorithm.h>
38
39 #define CFI_MAX_BUS_WIDTH 4
40 #define CFI_MAX_CHIP_WIDTH 4
41
42 /* defines internal maximum size for code fragment in cfi_intel_write_block() */
43 #define CFI_MAX_INTEL_CODESIZE 256
44
45 /* some id-types with specific handling */
46 #define AT49BV6416 0x00d6
47 #define AT49BV6416T 0x00d2
48
49 static struct cfi_unlock_addresses cfi_unlock_addresses[] = {
50 [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
51 [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
52 };
53
54 /* CFI fixups foward declarations */
55 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, void *param);
56 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, void *param);
57 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, void *param);
58 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, void *param);
59
60 /* fixup after reading cmdset 0002 primary query table */
61 static const struct cfi_fixup cfi_0002_fixups[] = {
62 {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses,
63 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
64 {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses,
65 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
66 {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses,
67 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
68 {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses,
69 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
70 {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses,
71 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
72 {CFI_MFR_SST, 0x274b, cfi_fixup_0002_unlock_addresses,
73 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
74 {CFI_MFR_SST, 0x236d, cfi_fixup_0002_unlock_addresses,
75 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
76 {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_reversed_erase_regions, NULL},
77 {CFI_MFR_ST, 0x22C4, cfi_fixup_reversed_erase_regions, NULL}, /* M29W160ET */
78 {CFI_MFR_FUJITSU, 0x22ea, cfi_fixup_0002_unlock_addresses,
79 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
80 {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses,
81 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
82 {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses,
83 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
84 {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses,
85 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
86 {CFI_MFR_EON, 0x225b, cfi_fixup_0002_unlock_addresses,
87 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
88 {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses,
89 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
90 {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
91 {CFI_MFR_ST, 0x227E, cfi_fixup_0002_write_buffer, NULL},/* M29W128G */
92 {0, 0, NULL, NULL}
93 };
94
95 /* fixup after reading cmdset 0001 primary query table */
96 static const struct cfi_fixup cfi_0001_fixups[] = {
97 {0, 0, NULL, NULL}
98 };
99
100 static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
101 {
102 struct cfi_flash_bank *cfi_info = bank->driver_priv;
103 const struct cfi_fixup *f;
104
105 for (f = fixups; f->fixup; f++) {
106 if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
107 ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
108 f->fixup(bank, f->param);
109 }
110 }
111
112 /* inline uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset) */
113 static inline uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset)
114 {
115 struct cfi_flash_bank *cfi_info = bank->driver_priv;
116
117 if (cfi_info->x16_as_x8)
118 offset *= 2;
119
120 /* while the sector list isn't built, only accesses to sector 0 work */
121 if (sector == 0)
122 return bank->base + offset * bank->bus_width;
123 else {
124 if (!bank->sectors) {
125 LOG_ERROR("BUG: sector list not yet built");
126 exit(-1);
127 }
128 return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
129 }
130 }
131
132 static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
133 {
134 int i;
135
136 /* clear whole buffer, to ensure bits that exceed the bus_width
137 * are set to zero
138 */
139 for (i = 0; i < CFI_MAX_BUS_WIDTH; i++)
140 cmd_buf[i] = 0;
141
142 if (bank->target->endianness == TARGET_LITTLE_ENDIAN) {
143 for (i = bank->bus_width; i > 0; i--)
144 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
145 } else {
146 for (i = 1; i <= bank->bus_width; i++)
147 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
148 }
149 }
150
151 static int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
152 {
153 uint8_t command[CFI_MAX_BUS_WIDTH];
154
155 cfi_command(bank, cmd, command);
156 return target_write_memory(bank->target, address, bank->bus_width, 1, command);
157 }
158
159 /* read unsigned 8-bit value from the bank
160 * flash banks are expected to be made of similar chips
161 * the query result should be the same for all
162 */
163 static int cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
164 {
165 struct target *target = bank->target;
166 uint8_t data[CFI_MAX_BUS_WIDTH];
167
168 int retval;
169 retval = target_read_memory(target, flash_address(bank, sector, offset),
170 bank->bus_width, 1, data);
171 if (retval != ERROR_OK)
172 return retval;
173
174 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
175 *val = data[0];
176 else
177 *val = data[bank->bus_width - 1];
178
179 return ERROR_OK;
180 }
181
182 /* read unsigned 8-bit value from the bank
183 * in case of a bank made of multiple chips,
184 * the individual values are ORed
185 */
186 static int cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
187 {
188 struct target *target = bank->target;
189 uint8_t data[CFI_MAX_BUS_WIDTH];
190 int i;
191
192 int retval;
193 retval = target_read_memory(target, flash_address(bank, sector, offset),
194 bank->bus_width, 1, data);
195 if (retval != ERROR_OK)
196 return retval;
197
198 if (bank->target->endianness == TARGET_LITTLE_ENDIAN) {
199 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
200 data[0] |= data[i];
201
202 *val = data[0];
203 } else {
204 uint8_t value = 0;
205 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
206 value |= data[bank->bus_width - 1 - i];
207
208 *val = value;
209 }
210 return ERROR_OK;
211 }
212
213 static int cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset, uint16_t *val)
214 {
215 struct target *target = bank->target;
216 struct cfi_flash_bank *cfi_info = bank->driver_priv;
217 uint8_t data[CFI_MAX_BUS_WIDTH * 2];
218 int retval;
219
220 if (cfi_info->x16_as_x8) {
221 uint8_t i;
222 for (i = 0; i < 2; i++) {
223 retval = target_read_memory(target, flash_address(bank, sector, offset + i),
224 bank->bus_width, 1, &data[i * bank->bus_width]);
225 if (retval != ERROR_OK)
226 return retval;
227 }
228 } else {
229 retval = target_read_memory(target, flash_address(bank, sector, offset),
230 bank->bus_width, 2, data);
231 if (retval != ERROR_OK)
232 return retval;
233 }
234
235 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
236 *val = data[0] | data[bank->bus_width] << 8;
237 else
238 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
239
240 return ERROR_OK;
241 }
242
243 static int cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset, uint32_t *val)
244 {
245 struct target *target = bank->target;
246 struct cfi_flash_bank *cfi_info = bank->driver_priv;
247 uint8_t data[CFI_MAX_BUS_WIDTH * 4];
248 int retval;
249
250 if (cfi_info->x16_as_x8) {
251 uint8_t i;
252 for (i = 0; i < 4; i++) {
253 retval = target_read_memory(target, flash_address(bank, sector, offset + i),
254 bank->bus_width, 1, &data[i * bank->bus_width]);
255 if (retval != ERROR_OK)
256 return retval;
257 }
258 } else {
259 retval = target_read_memory(target, flash_address(bank, sector, offset),
260 bank->bus_width, 4, data);
261 if (retval != ERROR_OK)
262 return retval;
263 }
264
265 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
266 *val = data[0] | data[bank->bus_width] << 8 |
267 data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
268 else
269 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8 |
270 data[(3 * bank->bus_width) - 1] << 16 |
271 data[(4 * bank->bus_width) - 1] << 24;
272
273 return ERROR_OK;
274 }
275
276 static int cfi_reset(struct flash_bank *bank)
277 {
278 struct cfi_flash_bank *cfi_info = bank->driver_priv;
279 int retval = ERROR_OK;
280
281 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
282 if (retval != ERROR_OK)
283 return retval;
284
285 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
286 if (retval != ERROR_OK)
287 return retval;
288
289 if (cfi_info->manufacturer == 0x20 &&
290 (cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E)) {
291 /* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state
292 * so we send an extra 0xF0 reset to fix the bug */
293 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x00));
294 if (retval != ERROR_OK)
295 return retval;
296 }
297
298 return retval;
299 }
300
301 static void cfi_intel_clear_status_register(struct flash_bank *bank)
302 {
303 cfi_send_command(bank, 0x50, flash_address(bank, 0, 0x0));
304 }
305
306 static int cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout, uint8_t *val)
307 {
308 uint8_t status;
309
310 int retval = ERROR_OK;
311
312 for (;; ) {
313 if (timeout-- < 0) {
314 LOG_ERROR("timeout while waiting for WSM to become ready");
315 return ERROR_FAIL;
316 }
317
318 retval = cfi_get_u8(bank, 0, 0x0, &status);
319 if (retval != ERROR_OK)
320 return retval;
321
322 if (status & 0x80)
323 break;
324
325 alive_sleep(1);
326 }
327
328 /* mask out bit 0 (reserved) */
329 status = status & 0xfe;
330
331 LOG_DEBUG("status: 0x%x", status);
332
333 if (status != 0x80) {
334 LOG_ERROR("status register: 0x%x", status);
335 if (status & 0x2)
336 LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
337 if (status & 0x4)
338 LOG_ERROR("Program suspended");
339 if (status & 0x8)
340 LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
341 if (status & 0x10)
342 LOG_ERROR("Program Error / Error in Setting Lock-Bit");
343 if (status & 0x20)
344 LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
345 if (status & 0x40)
346 LOG_ERROR("Block Erase Suspended");
347
348 cfi_intel_clear_status_register(bank);
349
350 retval = ERROR_FAIL;
351 }
352
353 *val = status;
354 return retval;
355 }
356
357 static int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
358 {
359 uint8_t status, oldstatus;
360 struct cfi_flash_bank *cfi_info = bank->driver_priv;
361 int retval;
362
363 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
364 if (retval != ERROR_OK)
365 return retval;
366
367 do {
368 retval = cfi_get_u8(bank, 0, 0x0, &status);
369
370 if (retval != ERROR_OK)
371 return retval;
372
373 if ((status ^ oldstatus) & 0x40) {
374 if (status & cfi_info->status_poll_mask & 0x20) {
375 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
376 if (retval != ERROR_OK)
377 return retval;
378 retval = cfi_get_u8(bank, 0, 0x0, &status);
379 if (retval != ERROR_OK)
380 return retval;
381 if ((status ^ oldstatus) & 0x40) {
382 LOG_ERROR("dq5 timeout, status: 0x%x", status);
383 return ERROR_FLASH_OPERATION_FAILED;
384 } else {
385 LOG_DEBUG("status: 0x%x", status);
386 return ERROR_OK;
387 }
388 }
389 } else {/* no toggle: finished, OK */
390 LOG_DEBUG("status: 0x%x", status);
391 return ERROR_OK;
392 }
393
394 oldstatus = status;
395 alive_sleep(1);
396 } while (timeout-- > 0);
397
398 LOG_ERROR("timeout, status: 0x%x", status);
399
400 return ERROR_FLASH_BUSY;
401 }
402
403 static int cfi_read_intel_pri_ext(struct flash_bank *bank)
404 {
405 int retval;
406 struct cfi_flash_bank *cfi_info = bank->driver_priv;
407 struct cfi_intel_pri_ext *pri_ext;
408
409 if (cfi_info->pri_ext)
410 free(cfi_info->pri_ext);
411
412 pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
413 if (pri_ext == NULL) {
414 LOG_ERROR("Out of memory");
415 return ERROR_FAIL;
416 }
417 cfi_info->pri_ext = pri_ext;
418
419 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
420 if (retval != ERROR_OK)
421 return retval;
422 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
423 if (retval != ERROR_OK)
424 return retval;
425 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
426 if (retval != ERROR_OK)
427 return retval;
428
429 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
430 retval = cfi_reset(bank);
431 if (retval != ERROR_OK)
432 return retval;
433 LOG_ERROR("Could not read bank flash bank information");
434 return ERROR_FLASH_BANK_INVALID;
435 }
436
437 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
438 if (retval != ERROR_OK)
439 return retval;
440 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
441 if (retval != ERROR_OK)
442 return retval;
443
444 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
445 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
446
447 retval = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5, &pri_ext->feature_support);
448 if (retval != ERROR_OK)
449 return retval;
450 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->suspend_cmd_support);
451 if (retval != ERROR_OK)
452 return retval;
453 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa, &pri_ext->blk_status_reg_mask);
454 if (retval != ERROR_OK)
455 return retval;
456
457 LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: "
458 "0x%x, blk_status_reg_mask: 0x%x",
459 pri_ext->feature_support,
460 pri_ext->suspend_cmd_support,
461 pri_ext->blk_status_reg_mask);
462
463 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc, &pri_ext->vcc_optimal);
464 if (retval != ERROR_OK)
465 return retval;
466 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd, &pri_ext->vpp_optimal);
467 if (retval != ERROR_OK)
468 return retval;
469
470 LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
471 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
472 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
473
474 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe, &pri_ext->num_protection_fields);
475 if (retval != ERROR_OK)
476 return retval;
477 if (pri_ext->num_protection_fields != 1) {
478 LOG_WARNING("expected one protection register field, but found %i",
479 pri_ext->num_protection_fields);
480 }
481
482 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf, &pri_ext->prot_reg_addr);
483 if (retval != ERROR_OK)
484 return retval;
485 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11, &pri_ext->fact_prot_reg_size);
486 if (retval != ERROR_OK)
487 return retval;
488 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12, &pri_ext->user_prot_reg_size);
489 if (retval != ERROR_OK)
490 return retval;
491
492 LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, "
493 "factory pre-programmed: %i, user programmable: %i",
494 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
495 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
496
497 return ERROR_OK;
498 }
499
500 static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
501 {
502 int retval;
503 struct cfi_flash_bank *cfi_info = bank->driver_priv;
504 struct cfi_spansion_pri_ext *pri_ext;
505
506 if (cfi_info->pri_ext)
507 free(cfi_info->pri_ext);
508
509 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
510 if (pri_ext == NULL) {
511 LOG_ERROR("Out of memory");
512 return ERROR_FAIL;
513 }
514 cfi_info->pri_ext = pri_ext;
515
516 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
517 if (retval != ERROR_OK)
518 return retval;
519 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
520 if (retval != ERROR_OK)
521 return retval;
522 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
523 if (retval != ERROR_OK)
524 return retval;
525
526 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
527 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
528 if (retval != ERROR_OK)
529 return retval;
530 LOG_ERROR("Could not read spansion bank information");
531 return ERROR_FLASH_BANK_INVALID;
532 }
533
534 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
535 if (retval != ERROR_OK)
536 return retval;
537 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
538 if (retval != ERROR_OK)
539 return retval;
540
541 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
542 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
543
544 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &pri_ext->SiliconRevision);
545 if (retval != ERROR_OK)
546 return retval;
547 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &pri_ext->EraseSuspend);
548 if (retval != ERROR_OK)
549 return retval;
550 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &pri_ext->BlkProt);
551 if (retval != ERROR_OK)
552 return retval;
553 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &pri_ext->TmpBlkUnprotect);
554 if (retval != ERROR_OK)
555 return retval;
556 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->BlkProtUnprot);
557 if (retval != ERROR_OK)
558 return retval;
559 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10, &pri_ext->SimultaneousOps);
560 if (retval != ERROR_OK)
561 return retval;
562 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11, &pri_ext->BurstMode);
563 if (retval != ERROR_OK)
564 return retval;
565 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12, &pri_ext->PageMode);
566 if (retval != ERROR_OK)
567 return retval;
568 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13, &pri_ext->VppMin);
569 if (retval != ERROR_OK)
570 return retval;
571 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14, &pri_ext->VppMax);
572 if (retval != ERROR_OK)
573 return retval;
574 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15, &pri_ext->TopBottom);
575 if (retval != ERROR_OK)
576 return retval;
577
578 LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x",
579 pri_ext->SiliconRevision, pri_ext->EraseSuspend, pri_ext->BlkProt);
580
581 LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, "
582 "Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
583 pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
584
585 LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
586
587
588 LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
589 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
590 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
591
592 LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
593
594 /* default values for implementation specific workarounds */
595 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
596 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
597 pri_ext->_reversed_geometry = 0;
598
599 return ERROR_OK;
600 }
601
602 static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
603 {
604 int retval;
605 struct cfi_atmel_pri_ext atmel_pri_ext;
606 struct cfi_flash_bank *cfi_info = bank->driver_priv;
607 struct cfi_spansion_pri_ext *pri_ext;
608
609 if (cfi_info->pri_ext)
610 free(cfi_info->pri_ext);
611
612 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
613 if (pri_ext == NULL) {
614 LOG_ERROR("Out of memory");
615 return ERROR_FAIL;
616 }
617
618 /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
619 * but a different primary extended query table.
620 * We read the atmel table, and prepare a valid AMD/Spansion query table.
621 */
622
623 memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
624
625 cfi_info->pri_ext = pri_ext;
626
627 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &atmel_pri_ext.pri[0]);
628 if (retval != ERROR_OK)
629 return retval;
630 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &atmel_pri_ext.pri[1]);
631 if (retval != ERROR_OK)
632 return retval;
633 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &atmel_pri_ext.pri[2]);
634 if (retval != ERROR_OK)
635 return retval;
636
637 if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R')
638 || (atmel_pri_ext.pri[2] != 'I')) {
639 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
640 if (retval != ERROR_OK)
641 return retval;
642 LOG_ERROR("Could not read atmel bank information");
643 return ERROR_FLASH_BANK_INVALID;
644 }
645
646 pri_ext->pri[0] = atmel_pri_ext.pri[0];
647 pri_ext->pri[1] = atmel_pri_ext.pri[1];
648 pri_ext->pri[2] = atmel_pri_ext.pri[2];
649
650 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &atmel_pri_ext.major_version);
651 if (retval != ERROR_OK)
652 return retval;
653 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &atmel_pri_ext.minor_version);
654 if (retval != ERROR_OK)
655 return retval;
656
657 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0],
658 atmel_pri_ext.pri[1], atmel_pri_ext.pri[2],
659 atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
660
661 pri_ext->major_version = atmel_pri_ext.major_version;
662 pri_ext->minor_version = atmel_pri_ext.minor_version;
663
664 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &atmel_pri_ext.features);
665 if (retval != ERROR_OK)
666 return retval;
667 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &atmel_pri_ext.bottom_boot);
668 if (retval != ERROR_OK)
669 return retval;
670 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &atmel_pri_ext.burst_mode);
671 if (retval != ERROR_OK)
672 return retval;
673 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &atmel_pri_ext.page_mode);
674 if (retval != ERROR_OK)
675 return retval;
676
677 LOG_DEBUG(
678 "features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
679 atmel_pri_ext.features,
680 atmel_pri_ext.bottom_boot,
681 atmel_pri_ext.burst_mode,
682 atmel_pri_ext.page_mode);
683
684 if (atmel_pri_ext.features & 0x02)
685 pri_ext->EraseSuspend = 2;
686
687 /* some chips got it backwards... */
688 if (cfi_info->device_id == AT49BV6416 ||
689 cfi_info->device_id == AT49BV6416T) {
690 if (atmel_pri_ext.bottom_boot)
691 pri_ext->TopBottom = 3;
692 else
693 pri_ext->TopBottom = 2;
694 } else {
695 if (atmel_pri_ext.bottom_boot)
696 pri_ext->TopBottom = 2;
697 else
698 pri_ext->TopBottom = 3;
699 }
700
701 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
702 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
703
704 return ERROR_OK;
705 }
706
707 static int cfi_read_0002_pri_ext(struct flash_bank *bank)
708 {
709 struct cfi_flash_bank *cfi_info = bank->driver_priv;
710
711 if (cfi_info->manufacturer == CFI_MFR_ATMEL)
712 return cfi_read_atmel_pri_ext(bank);
713 else
714 return cfi_read_spansion_pri_ext(bank);
715 }
716
717 static int cfi_spansion_info(struct flash_bank *bank, char *buf, int buf_size)
718 {
719 int printed;
720 struct cfi_flash_bank *cfi_info = bank->driver_priv;
721 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
722
723 printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
724 buf += printed;
725 buf_size -= printed;
726
727 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
728 pri_ext->pri[1], pri_ext->pri[2],
729 pri_ext->major_version, pri_ext->minor_version);
730 buf += printed;
731 buf_size -= printed;
732
733 printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
734 (pri_ext->SiliconRevision) >> 2,
735 (pri_ext->SiliconRevision) & 0x03);
736 buf += printed;
737 buf_size -= printed;
738
739 printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
740 pri_ext->EraseSuspend,
741 pri_ext->BlkProt);
742 buf += printed;
743 buf_size -= printed;
744
745 snprintf(buf, buf_size, "VppMin: %u.%x, VppMax: %u.%x\n",
746 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
747 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
748
749 return ERROR_OK;
750 }
751
752 static int cfi_intel_info(struct flash_bank *bank, char *buf, int buf_size)
753 {
754 int printed;
755 struct cfi_flash_bank *cfi_info = bank->driver_priv;
756 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
757
758 printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
759 buf += printed;
760 buf_size -= printed;
761
762 printed = snprintf(buf,
763 buf_size,
764 "pri: '%c%c%c', version: %c.%c\n",
765 pri_ext->pri[0],
766 pri_ext->pri[1],
767 pri_ext->pri[2],
768 pri_ext->major_version,
769 pri_ext->minor_version);
770 buf += printed;
771 buf_size -= printed;
772
773 printed = snprintf(buf,
774 buf_size,
775 "feature_support: 0x%" PRIx32 ", "
776 "suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n",
777 pri_ext->feature_support,
778 pri_ext->suspend_cmd_support,
779 pri_ext->blk_status_reg_mask);
780 buf += printed;
781 buf_size -= printed;
782
783 printed = snprintf(buf, buf_size, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
784 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
785 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
786 buf += printed;
787 buf_size -= printed;
788
789 snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, "
790 "factory pre-programmed: %i, user programmable: %i\n",
791 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
792 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
793
794 return ERROR_OK;
795 }
796
797 /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
798 */
799 FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
800 {
801 struct cfi_flash_bank *cfi_info;
802
803 if (CMD_ARGC < 6)
804 return ERROR_COMMAND_SYNTAX_ERROR;
805
806 /* both widths must:
807 * - not exceed max value;
808 * - not be null;
809 * - be equal to a power of 2.
810 * bus must be wide enought to hold one chip */
811 if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
812 || (bank->bus_width > CFI_MAX_BUS_WIDTH)
813 || (bank->chip_width == 0)
814 || (bank->bus_width == 0)
815 || (bank->chip_width & (bank->chip_width - 1))
816 || (bank->bus_width & (bank->bus_width - 1))
817 || (bank->chip_width > bank->bus_width)) {
818 LOG_ERROR("chip and bus width have to specified in bytes");
819 return ERROR_FLASH_BANK_INVALID;
820 }
821
822 cfi_info = malloc(sizeof(struct cfi_flash_bank));
823 cfi_info->probed = 0;
824 cfi_info->erase_region_info = NULL;
825 cfi_info->pri_ext = NULL;
826 bank->driver_priv = cfi_info;
827
828 cfi_info->write_algorithm = NULL;
829
830 cfi_info->x16_as_x8 = 0;
831 cfi_info->jedec_probe = 0;
832 cfi_info->not_cfi = 0;
833
834 for (unsigned i = 6; i < CMD_ARGC; i++) {
835 if (strcmp(CMD_ARGV[i], "x16_as_x8") == 0)
836 cfi_info->x16_as_x8 = 1;
837 else if (strcmp(CMD_ARGV[i], "jedec_probe") == 0)
838 cfi_info->jedec_probe = 1;
839 }
840
841 cfi_info->write_algorithm = NULL;
842
843 /* bank wasn't probed yet */
844 cfi_info->qry[0] = 0xff;
845
846 return ERROR_OK;
847 }
848
849 static int cfi_intel_erase(struct flash_bank *bank, int first, int last)
850 {
851 int retval;
852 struct cfi_flash_bank *cfi_info = bank->driver_priv;
853 int i;
854
855 cfi_intel_clear_status_register(bank);
856
857 for (i = first; i <= last; i++) {
858 retval = cfi_send_command(bank, 0x20, flash_address(bank, i, 0x0));
859 if (retval != ERROR_OK)
860 return retval;
861
862 retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0));
863 if (retval != ERROR_OK)
864 return retval;
865
866 uint8_t status;
867 retval = cfi_intel_wait_status_busy(bank, cfi_info->block_erase_timeout, &status);
868 if (retval != ERROR_OK)
869 return retval;
870
871 if (status == 0x80)
872 bank->sectors[i].is_erased = 1;
873 else {
874 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
875 if (retval != ERROR_OK)
876 return retval;
877
878 LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32,
879 i,
880 bank->base);
881 return ERROR_FLASH_OPERATION_FAILED;
882 }
883 }
884
885 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
886 }
887
888 static int cfi_spansion_erase(struct flash_bank *bank, int first, int last)
889 {
890 int retval;
891 struct cfi_flash_bank *cfi_info = bank->driver_priv;
892 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
893 int i;
894
895 for (i = first; i <= last; i++) {
896 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
897 if (retval != ERROR_OK)
898 return retval;
899
900 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
901 if (retval != ERROR_OK)
902 return retval;
903
904 retval = cfi_send_command(bank, 0x80, flash_address(bank, 0, pri_ext->_unlock1));
905 if (retval != ERROR_OK)
906 return retval;
907
908 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
909 if (retval != ERROR_OK)
910 return retval;
911
912 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
913 if (retval != ERROR_OK)
914 return retval;
915
916 retval = cfi_send_command(bank, 0x30, flash_address(bank, i, 0x0));
917 if (retval != ERROR_OK)
918 return retval;
919
920 if (cfi_spansion_wait_status_busy(bank, cfi_info->block_erase_timeout) == ERROR_OK)
921 bank->sectors[i].is_erased = 1;
922 else {
923 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
924 if (retval != ERROR_OK)
925 return retval;
926
927 LOG_ERROR("couldn't erase block %i of flash bank at base 0x%"
928 PRIx32, i, bank->base);
929 return ERROR_FLASH_OPERATION_FAILED;
930 }
931 }
932
933 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
934 }
935
936 static int cfi_erase(struct flash_bank *bank, int first, int last)
937 {
938 struct cfi_flash_bank *cfi_info = bank->driver_priv;
939
940 if (bank->target->state != TARGET_HALTED) {
941 LOG_ERROR("Target not halted");
942 return ERROR_TARGET_NOT_HALTED;
943 }
944
945 if ((first < 0) || (last < first) || (last >= bank->num_sectors))
946 return ERROR_FLASH_SECTOR_INVALID;
947
948 if (cfi_info->qry[0] != 'Q')
949 return ERROR_FLASH_BANK_NOT_PROBED;
950
951 switch (cfi_info->pri_id) {
952 case 1:
953 case 3:
954 return cfi_intel_erase(bank, first, last);
955 break;
956 case 2:
957 return cfi_spansion_erase(bank, first, last);
958 break;
959 default:
960 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
961 break;
962 }
963
964 return ERROR_OK;
965 }
966
967 static int cfi_intel_protect(struct flash_bank *bank, int set, int first, int last)
968 {
969 int retval;
970 struct cfi_flash_bank *cfi_info = bank->driver_priv;
971 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
972 int retry = 0;
973 int i;
974
975 /* if the device supports neither legacy lock/unlock (bit 3) nor
976 * instant individual block locking (bit 5).
977 */
978 if (!(pri_ext->feature_support & 0x28)) {
979 LOG_ERROR("lock/unlock not supported on flash");
980 return ERROR_FLASH_OPERATION_FAILED;
981 }
982
983 cfi_intel_clear_status_register(bank);
984
985 for (i = first; i <= last; i++) {
986 retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0));
987 if (retval != ERROR_OK)
988 return retval;
989 if (set) {
990 retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0));
991 if (retval != ERROR_OK)
992 return retval;
993 bank->sectors[i].is_protected = 1;
994 } else {
995 retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0));
996 if (retval != ERROR_OK)
997 return retval;
998 bank->sectors[i].is_protected = 0;
999 }
1000
1001 /* instant individual block locking doesn't require reading of the status register
1002 **/
1003 if (!(pri_ext->feature_support & 0x20)) {
1004 /* Clear lock bits operation may take up to 1.4s */
1005 uint8_t status;
1006 retval = cfi_intel_wait_status_busy(bank, 1400, &status);
1007 if (retval != ERROR_OK)
1008 return retval;
1009 } else {
1010 uint8_t block_status;
1011 /* read block lock bit, to verify status */
1012 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55));
1013 if (retval != ERROR_OK)
1014 return retval;
1015 retval = cfi_get_u8(bank, i, 0x2, &block_status);
1016 if (retval != ERROR_OK)
1017 return retval;
1018
1019 if ((block_status & 0x1) != set) {
1020 LOG_ERROR(
1021 "couldn't change block lock status (set = %i, block_status = 0x%2.2x)",
1022 set, block_status);
1023 retval = cfi_send_command(bank, 0x70, flash_address(bank, 0, 0x55));
1024 if (retval != ERROR_OK)
1025 return retval;
1026 uint8_t status;
1027 retval = cfi_intel_wait_status_busy(bank, 10, &status);
1028 if (retval != ERROR_OK)
1029 return retval;
1030
1031 if (retry > 10)
1032 return ERROR_FLASH_OPERATION_FAILED;
1033 else {
1034 i--;
1035 retry++;
1036 }
1037 }
1038 }
1039 }
1040
1041 /* if the device doesn't support individual block lock bits set/clear,
1042 * all blocks have been unlocked in parallel, so we set those that should be protected
1043 */
1044 if ((!set) && (!(pri_ext->feature_support & 0x20))) {
1045 /* FIX!!! this code path is broken!!!
1046 *
1047 * The correct approach is:
1048 *
1049 * 1. read out current protection status
1050 *
1051 * 2. override read out protection status w/unprotected.
1052 *
1053 * 3. re-protect what should be protected.
1054 *
1055 */
1056 for (i = 0; i < bank->num_sectors; i++) {
1057 if (bank->sectors[i].is_protected == 1) {
1058 cfi_intel_clear_status_register(bank);
1059
1060 retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0));
1061 if (retval != ERROR_OK)
1062 return retval;
1063
1064 retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0));
1065 if (retval != ERROR_OK)
1066 return retval;
1067
1068 uint8_t status;
1069 retval = cfi_intel_wait_status_busy(bank, 100, &status);
1070 if (retval != ERROR_OK)
1071 return retval;
1072 }
1073 }
1074 }
1075
1076 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
1077 }
1078
1079 static int cfi_protect(struct flash_bank *bank, int set, int first, int last)
1080 {
1081 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1082
1083 if (bank->target->state != TARGET_HALTED) {
1084 LOG_ERROR("Target not halted");
1085 return ERROR_TARGET_NOT_HALTED;
1086 }
1087
1088 if ((first < 0) || (last < first) || (last >= bank->num_sectors)) {
1089 LOG_ERROR("Invalid sector range");
1090 return ERROR_FLASH_SECTOR_INVALID;
1091 }
1092
1093 if (cfi_info->qry[0] != 'Q')
1094 return ERROR_FLASH_BANK_NOT_PROBED;
1095
1096 switch (cfi_info->pri_id) {
1097 case 1:
1098 case 3:
1099 return cfi_intel_protect(bank, set, first, last);
1100 break;
1101 default:
1102 LOG_WARNING("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
1103 return ERROR_OK;
1104 }
1105 }
1106
1107 /* Convert code image to target endian
1108 * FIXME create general block conversion fcts in target.c?) */
1109 static void cfi_fix_code_endian(struct target *target, uint8_t *dest,
1110 const uint32_t *src, uint32_t count)
1111 {
1112 uint32_t i;
1113 for (i = 0; i < count; i++) {
1114 target_buffer_set_u32(target, dest, *src);
1115 dest += 4;
1116 src++;
1117 }
1118 }
1119
1120 static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
1121 {
1122 struct target *target = bank->target;
1123
1124 uint8_t buf[CFI_MAX_BUS_WIDTH];
1125 cfi_command(bank, cmd, buf);
1126 switch (bank->bus_width) {
1127 case 1:
1128 return buf[0];
1129 break;
1130 case 2:
1131 return target_buffer_get_u16(target, buf);
1132 break;
1133 case 4:
1134 return target_buffer_get_u32(target, buf);
1135 break;
1136 default:
1137 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1138 bank->bus_width);
1139 return 0;
1140 }
1141 }
1142
1143 static int cfi_intel_write_block(struct flash_bank *bank, uint8_t *buffer,
1144 uint32_t address, uint32_t count)
1145 {
1146 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1147 struct target *target = bank->target;
1148 struct reg_param reg_params[7];
1149 struct arm_algorithm arm_algo;
1150 struct working_area *source = NULL;
1151 uint32_t buffer_size = 32768;
1152 uint32_t write_command_val, busy_pattern_val, error_pattern_val;
1153
1154 /* algorithm register usage:
1155 * r0: source address (in RAM)
1156 * r1: target address (in Flash)
1157 * r2: count
1158 * r3: flash write command
1159 * r4: status byte (returned to host)
1160 * r5: busy test pattern
1161 * r6: error test pattern
1162 */
1163
1164 /* see contib/loaders/flash/armv4_5_cfi_intel_32.s for src */
1165 static const uint32_t word_32_code[] = {
1166 0xe4904004, /* loop: ldr r4, [r0], #4 */
1167 0xe5813000, /* str r3, [r1] */
1168 0xe5814000, /* str r4, [r1] */
1169 0xe5914000, /* busy: ldr r4, [r1] */
1170 0xe0047005, /* and r7, r4, r5 */
1171 0xe1570005, /* cmp r7, r5 */
1172 0x1afffffb, /* bne busy */
1173 0xe1140006, /* tst r4, r6 */
1174 0x1a000003, /* bne done */
1175 0xe2522001, /* subs r2, r2, #1 */
1176 0x0a000001, /* beq done */
1177 0xe2811004, /* add r1, r1 #4 */
1178 0xeafffff2, /* b loop */
1179 0xeafffffe /* done: b -2 */
1180 };
1181
1182 /* see contib/loaders/flash/armv4_5_cfi_intel_16.s for src */
1183 static const uint32_t word_16_code[] = {
1184 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
1185 0xe1c130b0, /* strh r3, [r1] */
1186 0xe1c140b0, /* strh r4, [r1] */
1187 0xe1d140b0, /* busy ldrh r4, [r1] */
1188 0xe0047005, /* and r7, r4, r5 */
1189 0xe1570005, /* cmp r7, r5 */
1190 0x1afffffb, /* bne busy */
1191 0xe1140006, /* tst r4, r6 */
1192 0x1a000003, /* bne done */
1193 0xe2522001, /* subs r2, r2, #1 */
1194 0x0a000001, /* beq done */
1195 0xe2811002, /* add r1, r1 #2 */
1196 0xeafffff2, /* b loop */
1197 0xeafffffe /* done: b -2 */
1198 };
1199
1200 /* see contib/loaders/flash/armv4_5_cfi_intel_8.s for src */
1201 static const uint32_t word_8_code[] = {
1202 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
1203 0xe5c13000, /* strb r3, [r1] */
1204 0xe5c14000, /* strb r4, [r1] */
1205 0xe5d14000, /* busy ldrb r4, [r1] */
1206 0xe0047005, /* and r7, r4, r5 */
1207 0xe1570005, /* cmp r7, r5 */
1208 0x1afffffb, /* bne busy */
1209 0xe1140006, /* tst r4, r6 */
1210 0x1a000003, /* bne done */
1211 0xe2522001, /* subs r2, r2, #1 */
1212 0x0a000001, /* beq done */
1213 0xe2811001, /* add r1, r1 #1 */
1214 0xeafffff2, /* b loop */
1215 0xeafffffe /* done: b -2 */
1216 };
1217 uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
1218 const uint32_t *target_code_src;
1219 uint32_t target_code_size;
1220 int retval = ERROR_OK;
1221
1222 /* check we have a supported arch */
1223 if (is_arm(target_to_arm(target))) {
1224 /* All other ARM CPUs have 32 bit instructions */
1225 arm_algo.common_magic = ARM_COMMON_MAGIC;
1226 arm_algo.core_mode = ARM_MODE_SVC;
1227 arm_algo.core_state = ARM_STATE_ARM;
1228 } else {
1229 LOG_ERROR("Unknown architecture");
1230 return ERROR_FAIL;
1231 }
1232
1233 cfi_intel_clear_status_register(bank);
1234
1235 /* If we are setting up the write_algorith, we need target_code_src
1236 * if not we only need target_code_size. */
1237
1238 /* However, we don't want to create multiple code paths, so we
1239 * do the unecessary evaluation of target_code_src, which the
1240 * compiler will probably nicely optimize away if not needed */
1241
1242 /* prepare algorithm code for target endian */
1243 switch (bank->bus_width) {
1244 case 1:
1245 target_code_src = word_8_code;
1246 target_code_size = sizeof(word_8_code);
1247 break;
1248 case 2:
1249 target_code_src = word_16_code;
1250 target_code_size = sizeof(word_16_code);
1251 break;
1252 case 4:
1253 target_code_src = word_32_code;
1254 target_code_size = sizeof(word_32_code);
1255 break;
1256 default:
1257 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1258 bank->bus_width);
1259 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1260 }
1261
1262 /* flash write code */
1263 if (!cfi_info->write_algorithm) {
1264 if (target_code_size > sizeof(target_code)) {
1265 LOG_WARNING("Internal error - target code buffer to small. "
1266 "Increase CFI_MAX_INTEL_CODESIZE and recompile.");
1267 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1268 }
1269 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1270
1271 /* Get memory for block write handler */
1272 retval = target_alloc_working_area(target,
1273 target_code_size,
1274 &cfi_info->write_algorithm);
1275 if (retval != ERROR_OK) {
1276 LOG_WARNING("No working area available, can't do block memory writes");
1277 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1278 }
1279 ;
1280
1281 /* write algorithm code to working area */
1282 retval = target_write_buffer(target, cfi_info->write_algorithm->address,
1283 target_code_size, target_code);
1284 if (retval != ERROR_OK) {
1285 LOG_ERROR("Unable to write block write code to target");
1286 goto cleanup;
1287 }
1288 }
1289
1290 /* Get a workspace buffer for the data to flash starting with 32k size.
1291 Half size until buffer would be smaller 256 Bytem then fail back */
1292 /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
1293 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1294 buffer_size /= 2;
1295 if (buffer_size <= 256) {
1296 LOG_WARNING(
1297 "no large enough working area available, can't do block memory writes");
1298 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1299 goto cleanup;
1300 }
1301 }
1302 ;
1303
1304 /* setup algo registers */
1305 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1306 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1307 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1308 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1309 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
1310 init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
1311 init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
1312
1313 /* prepare command and status register patterns */
1314 write_command_val = cfi_command_val(bank, 0x40);
1315 busy_pattern_val = cfi_command_val(bank, 0x80);
1316 error_pattern_val = cfi_command_val(bank, 0x7e);
1317
1318 LOG_DEBUG("Using target buffer at 0x%08" PRIx32 " and of size 0x%04" PRIx32,
1319 source->address, buffer_size);
1320
1321 /* Programming main loop */
1322 while (count > 0) {
1323 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1324 uint32_t wsm_error;
1325
1326 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1327 if (retval != ERROR_OK)
1328 goto cleanup;
1329
1330 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1331 buf_set_u32(reg_params[1].value, 0, 32, address);
1332 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1333
1334 buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
1335 buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
1336 buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
1337
1338 LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32,
1339 thisrun_count, address);
1340
1341 /* Execute algorithm, assume breakpoint for last instruction */
1342 retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
1343 cfi_info->write_algorithm->address,
1344 cfi_info->write_algorithm->address + target_code_size -
1345 sizeof(uint32_t),
1346 10000, /* 10s should be enough for max. 32k of data */
1347 &arm_algo);
1348
1349 /* On failure try a fall back to direct word writes */
1350 if (retval != ERROR_OK) {
1351 cfi_intel_clear_status_register(bank);
1352 LOG_ERROR(
1353 "Execution of flash algorythm failed. Can't fall back. Please report.");
1354 retval = ERROR_FLASH_OPERATION_FAILED;
1355 /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
1356 /* FIXME To allow fall back or recovery, we must save the actual status
1357 * somewhere, so that a higher level code can start recovery. */
1358 goto cleanup;
1359 }
1360
1361 /* Check return value from algo code */
1362 wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
1363 if (wsm_error) {
1364 /* read status register (outputs debug inforation) */
1365 uint8_t status;
1366 cfi_intel_wait_status_busy(bank, 100, &status);
1367 cfi_intel_clear_status_register(bank);
1368 retval = ERROR_FLASH_OPERATION_FAILED;
1369 goto cleanup;
1370 }
1371
1372 buffer += thisrun_count;
1373 address += thisrun_count;
1374 count -= thisrun_count;
1375
1376 keep_alive();
1377 }
1378
1379 /* free up resources */
1380 cleanup:
1381 if (source)
1382 target_free_working_area(target, source);
1383
1384 if (cfi_info->write_algorithm) {
1385 target_free_working_area(target, cfi_info->write_algorithm);
1386 cfi_info->write_algorithm = NULL;
1387 }
1388
1389 destroy_reg_param(&reg_params[0]);
1390 destroy_reg_param(&reg_params[1]);
1391 destroy_reg_param(&reg_params[2]);
1392 destroy_reg_param(&reg_params[3]);
1393 destroy_reg_param(&reg_params[4]);
1394 destroy_reg_param(&reg_params[5]);
1395 destroy_reg_param(&reg_params[6]);
1396
1397 return retval;
1398 }
1399
1400 static int cfi_spansion_write_block_mips(struct flash_bank *bank, uint8_t *buffer,
1401 uint32_t address, uint32_t count)
1402 {
1403 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1404 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1405 struct target *target = bank->target;
1406 struct reg_param reg_params[10];
1407 struct mips32_algorithm mips32_info;
1408 struct working_area *source;
1409 uint32_t buffer_size = 32768;
1410 uint32_t status;
1411 int retval = ERROR_OK;
1412
1413 /* input parameters -
1414 * 4 A0 = source address
1415 * 5 A1 = destination address
1416 * 6 A2 = number of writes
1417 * 7 A3 = flash write command
1418 * 8 T0 = constant to mask DQ7 bits (also used for Dq5 with shift)
1419 * output parameters -
1420 * 9 T1 = 0x80 ok 0x00 bad
1421 * temp registers -
1422 * 10 T2 = value read from flash to test status
1423 * 11 T3 = holding register
1424 * unlock registers -
1425 * 12 T4 = unlock1_addr
1426 * 13 T5 = unlock1_cmd
1427 * 14 T6 = unlock2_addr
1428 * 15 T7 = unlock2_cmd */
1429
1430 static const uint32_t mips_word_16_code[] = {
1431 /* start: */
1432 MIPS32_LHU(9, 0, 4), /* lhu $t1, ($a0) ; out = &saddr */
1433 MIPS32_ADDI(4, 4, 2), /* addi $a0, $a0, 2 ; saddr += 2 */
1434 MIPS32_SH(13, 0, 12), /* sh $t5, ($t4) ; *fl_unl_addr1 =
1435 *fl_unl_cmd1 */
1436 MIPS32_SH(15, 0, 14), /* sh $t7, ($t6) ; *fl_unl_addr2 =
1437 *fl_unl_cmd2 */
1438 MIPS32_SH(7, 0, 12), /* sh $a3, ($t4) ; *fl_unl_addr1 =
1439 *fl_write_cmd */
1440 MIPS32_SH(9, 0, 5), /* sh $t1, ($a1) ; *daddr = out */
1441 MIPS32_NOP, /* nop */
1442 /* busy: */
1443 MIPS32_LHU(10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1444 MIPS32_XOR(11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^
1445 *temp1; */
1446 MIPS32_AND(11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 &
1447 *DQ7mask */
1448 MIPS32_BNE(11, 8, 13), /* bne $t3, $t0, cont ; if (temp2 !=
1449 *DQ7mask) goto cont */
1450 MIPS32_NOP, /* nop */
1451
1452 MIPS32_SRL(10, 8, 2), /* srl $t2,$t0,2 ; temp1 = DQ7mask >>
1453 *2 */
1454 MIPS32_AND(11, 10, 11), /* and $t3, $t2, $t3 ; temp2 = temp2 &
1455 *temp1 */
1456 MIPS32_BNE(11, 10, NEG16(8)), /* bne $t3, $t2, busy ; if (temp2 !=
1457 *temp1) goto busy */
1458 MIPS32_NOP, /* nop */
1459
1460 MIPS32_LHU(10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1461 MIPS32_XOR(11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^
1462 *temp1; */
1463 MIPS32_AND(11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 &
1464 *DQ7mask */
1465 MIPS32_BNE(11, 8, 4), /* bne $t3, $t0, cont ; if (temp2 !=
1466 *DQ7mask) goto cont */
1467 MIPS32_NOP, /* nop */
1468
1469 MIPS32_XOR(9, 9, 9), /* xor $t1, $t1, $t1 ; out = 0 */
1470 MIPS32_BEQ(9, 0, 11), /* beq $t1, $zero, done ; if (out == 0) goto
1471 *done */
1472 MIPS32_NOP, /* nop */
1473 /* cont: */
1474 MIPS32_ADDI(6, 6, NEG16(1)), /* addi, $a2, $a2, -1 ; numwrites-- */
1475 MIPS32_BNE(6, 0, 5), /* bne $a2, $zero, cont2 ; if (numwrite != 0)
1476 *goto cont2 */
1477 MIPS32_NOP, /* nop */
1478
1479 MIPS32_LUI(9, 0), /* lui $t1, 0 */
1480 MIPS32_ORI(9, 9, 0x80), /* ori $t1, $t1, 0x80 ; out = 0x80 */
1481
1482 MIPS32_B(4), /* b done ; goto done */
1483 MIPS32_NOP, /* nop */
1484 /* cont2: */
1485 MIPS32_ADDI(5, 5, 2), /* addi $a0, $a0, 2 ; daddr += 2 */
1486 MIPS32_B(NEG16(33)), /* b start ; goto start */
1487 MIPS32_NOP, /* nop */
1488 /* done:
1489 *MIPS32_B(NEG16(1)), */ /* b done ; goto done */
1490 MIPS32_SDBBP, /* sdbbp ; break(); */
1491 /*MIPS32_B(NEG16(33)), */ /* b start ; goto start
1492 * MIPS32_NOP, */
1493 };
1494
1495 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
1496 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
1497
1498 int target_code_size = 0;
1499 const uint32_t *target_code_src = NULL;
1500
1501 switch (bank->bus_width) {
1502 case 2:
1503 /* Check for DQ5 support */
1504 if (cfi_info->status_poll_mask & (1 << 5)) {
1505 target_code_src = mips_word_16_code;
1506 target_code_size = sizeof(mips_word_16_code);
1507 } else {
1508 LOG_ERROR("Need DQ5 support");
1509 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1510 /* target_code_src = mips_word_16_code_dq7only; */
1511 /* target_code_size = sizeof(mips_word_16_code_dq7only); */
1512 }
1513 break;
1514 default:
1515 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1516 bank->bus_width);
1517 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1518 }
1519
1520 /* flash write code */
1521 if (!cfi_info->write_algorithm) {
1522 uint8_t *target_code;
1523
1524 /* convert bus-width dependent algorithm code to correct endiannes */
1525 target_code = malloc(target_code_size);
1526 if (target_code == NULL) {
1527 LOG_ERROR("Out of memory");
1528 return ERROR_FAIL;
1529 }
1530 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1531
1532 /* allocate working area */
1533 retval = target_alloc_working_area(target, target_code_size,
1534 &cfi_info->write_algorithm);
1535 if (retval != ERROR_OK) {
1536 free(target_code);
1537 return retval;
1538 }
1539
1540 /* write algorithm code to working area */
1541 retval = target_write_buffer(target, cfi_info->write_algorithm->address,
1542 target_code_size, target_code);
1543 if (retval != ERROR_OK) {
1544 free(target_code);
1545 return retval;
1546 }
1547
1548 free(target_code);
1549 }
1550 /* the following code still assumes target code is fixed 24*4 bytes */
1551
1552 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1553 buffer_size /= 2;
1554 if (buffer_size <= 256) {
1555 /* if we already allocated the writing code, but failed to get a
1556 * buffer, free the algorithm */
1557 if (cfi_info->write_algorithm)
1558 target_free_working_area(target, cfi_info->write_algorithm);
1559
1560 LOG_WARNING(
1561 "not enough working area available, can't do block memory writes");
1562 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1563 }
1564 }
1565 ;
1566
1567 init_reg_param(&reg_params[0], "a0", 32, PARAM_OUT);
1568 init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
1569 init_reg_param(&reg_params[2], "a2", 32, PARAM_OUT);
1570 init_reg_param(&reg_params[3], "a3", 32, PARAM_OUT);
1571 init_reg_param(&reg_params[4], "t0", 32, PARAM_OUT);
1572 init_reg_param(&reg_params[5], "t1", 32, PARAM_IN);
1573 init_reg_param(&reg_params[6], "t4", 32, PARAM_OUT);
1574 init_reg_param(&reg_params[7], "t5", 32, PARAM_OUT);
1575 init_reg_param(&reg_params[8], "t6", 32, PARAM_OUT);
1576 init_reg_param(&reg_params[9], "t7", 32, PARAM_OUT);
1577
1578 while (count > 0) {
1579 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1580
1581 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1582 if (retval != ERROR_OK)
1583 break;
1584
1585 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1586 buf_set_u32(reg_params[1].value, 0, 32, address);
1587 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1588 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1589 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1590 buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
1591 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1592 buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
1593 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1594
1595 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1596 cfi_info->write_algorithm->address,
1597 cfi_info->write_algorithm->address + ((target_code_size) - 4),
1598 10000, &mips32_info);
1599 if (retval != ERROR_OK)
1600 break;
1601
1602 status = buf_get_u32(reg_params[5].value, 0, 32);
1603 if (status != 0x80) {
1604 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1605 retval = ERROR_FLASH_OPERATION_FAILED;
1606 break;
1607 }
1608
1609 buffer += thisrun_count;
1610 address += thisrun_count;
1611 count -= thisrun_count;
1612 }
1613
1614 target_free_all_working_areas(target);
1615
1616 destroy_reg_param(&reg_params[0]);
1617 destroy_reg_param(&reg_params[1]);
1618 destroy_reg_param(&reg_params[2]);
1619 destroy_reg_param(&reg_params[3]);
1620 destroy_reg_param(&reg_params[4]);
1621 destroy_reg_param(&reg_params[5]);
1622 destroy_reg_param(&reg_params[6]);
1623 destroy_reg_param(&reg_params[7]);
1624 destroy_reg_param(&reg_params[8]);
1625 destroy_reg_param(&reg_params[9]);
1626
1627 return retval;
1628 }
1629
1630 static int cfi_spansion_write_block(struct flash_bank *bank, uint8_t *buffer,
1631 uint32_t address, uint32_t count)
1632 {
1633 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1634 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1635 struct target *target = bank->target;
1636 struct reg_param reg_params[10];
1637 void *arm_algo;
1638 struct arm_algorithm armv4_5_algo;
1639 struct armv7m_algorithm armv7m_algo;
1640 struct working_area *source;
1641 uint32_t buffer_size = 32768;
1642 uint32_t status;
1643 int retval = ERROR_OK;
1644
1645 /* input parameters -
1646 * R0 = source address
1647 * R1 = destination address
1648 * R2 = number of writes
1649 * R3 = flash write command
1650 * R4 = constant to mask DQ7 bits (also used for Dq5 with shift)
1651 * output parameters -
1652 * R5 = 0x80 ok 0x00 bad
1653 * temp registers -
1654 * R6 = value read from flash to test status
1655 * R7 = holding register
1656 * unlock registers -
1657 * R8 = unlock1_addr
1658 * R9 = unlock1_cmd
1659 * R10 = unlock2_addr
1660 * R11 = unlock2_cmd */
1661
1662 /* see contib/loaders/flash/armv4_5_cfi_span_32.s for src */
1663 static const uint32_t armv4_5_word_32_code[] = {
1664 /* 00008100 <sp_32_code>: */
1665 0xe4905004, /* ldr r5, [r0], #4 */
1666 0xe5889000, /* str r9, [r8] */
1667 0xe58ab000, /* str r11, [r10] */
1668 0xe5883000, /* str r3, [r8] */
1669 0xe5815000, /* str r5, [r1] */
1670 0xe1a00000, /* nop */
1671 /*
1672 * 00008110 <sp_32_busy>: */
1673 0xe5916000, /* ldr r6, [r1] */
1674 0xe0257006, /* eor r7, r5, r6 */
1675 0xe0147007, /* ands r7, r4, r7 */
1676 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1677 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1678 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
1679 0xe5916000, /* ldr r6, [r1] */
1680 0xe0257006, /* eor r7, r5, r6 */
1681 0xe0147007, /* ands r7, r4, r7 */
1682 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1683 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
1684 0x1a000004, /* bne 8154 <sp_32_done> */
1685 /*
1686 * 00008140 <sp_32_cont>: */
1687 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1688 0x03a05080, /* moveq r5, #128 ; 0x80 */
1689 0x0a000001, /* beq 8154 <sp_32_done> */
1690 0xe2811004, /* add r1, r1, #4 ; 0x4 */
1691 0xeaffffe8, /* b 8100 <sp_32_code> */
1692 /*
1693 * 00008154 <sp_32_done>: */
1694 0xeafffffe /* b 8154 <sp_32_done> */
1695 };
1696
1697 /* see contib/loaders/flash/armv4_5_cfi_span_16.s for src */
1698 static const uint32_t armv4_5_word_16_code[] = {
1699 /* 00008158 <sp_16_code>: */
1700 0xe0d050b2, /* ldrh r5, [r0], #2 */
1701 0xe1c890b0, /* strh r9, [r8] */
1702 0xe1cab0b0, /* strh r11, [r10] */
1703 0xe1c830b0, /* strh r3, [r8] */
1704 0xe1c150b0, /* strh r5, [r1] */
1705 0xe1a00000, /* nop (mov r0,r0) */
1706 /*
1707 * 00008168 <sp_16_busy>: */
1708 0xe1d160b0, /* ldrh r6, [r1] */
1709 0xe0257006, /* eor r7, r5, r6 */
1710 0xe0147007, /* ands r7, r4, r7 */
1711 0x0a000007, /* beq 8198 <sp_16_cont> */
1712 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1713 0x0afffff9, /* beq 8168 <sp_16_busy> */
1714 0xe1d160b0, /* ldrh r6, [r1] */
1715 0xe0257006, /* eor r7, r5, r6 */
1716 0xe0147007, /* ands r7, r4, r7 */
1717 0x0a000001, /* beq 8198 <sp_16_cont> */
1718 0xe3a05000, /* mov r5, #0 ; 0x0 */
1719 0x1a000004, /* bne 81ac <sp_16_done> */
1720 /*
1721 * 00008198 <sp_16_cont>: */
1722 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1723 0x03a05080, /* moveq r5, #128 ; 0x80 */
1724 0x0a000001, /* beq 81ac <sp_16_done> */
1725 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1726 0xeaffffe8, /* b 8158 <sp_16_code> */
1727 /*
1728 * 000081ac <sp_16_done>: */
1729 0xeafffffe /* b 81ac <sp_16_done> */
1730 };
1731
1732 /* see contib/loaders/flash/armv7m_cfi_span_16.s for src */
1733 static const uint32_t armv7m_word_16_code[] = {
1734 0x5B02F830,
1735 0x9000F8A8,
1736 0xB000F8AA,
1737 0x3000F8A8,
1738 0xBF00800D,
1739 0xEA85880E,
1740 0x40270706,
1741 0xEA16D00A,
1742 0xD0F70694,
1743 0xEA85880E,
1744 0x40270706,
1745 0xF04FD002,
1746 0xD1070500,
1747 0xD0023A01,
1748 0x0102F101,
1749 0xF04FE7E0,
1750 0xE7FF0580,
1751 0x0000BE00
1752 };
1753
1754 /* see contib/loaders/flash/armv4_5_cfi_span_16_dq7.s for src */
1755 static const uint32_t armv4_5_word_16_code_dq7only[] = {
1756 /* <sp_16_code>: */
1757 0xe0d050b2, /* ldrh r5, [r0], #2 */
1758 0xe1c890b0, /* strh r9, [r8] */
1759 0xe1cab0b0, /* strh r11, [r10] */
1760 0xe1c830b0, /* strh r3, [r8] */
1761 0xe1c150b0, /* strh r5, [r1] */
1762 0xe1a00000, /* nop (mov r0,r0) */
1763 /*
1764 * <sp_16_busy>: */
1765 0xe1d160b0, /* ldrh r6, [r1] */
1766 0xe0257006, /* eor r7, r5, r6 */
1767 0xe2177080, /* ands r7, #0x80 */
1768 0x1afffffb, /* bne 8168 <sp_16_busy> */
1769 /* */
1770 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1771 0x03a05080, /* moveq r5, #128 ; 0x80 */
1772 0x0a000001, /* beq 81ac <sp_16_done> */
1773 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1774 0xeafffff0, /* b 8158 <sp_16_code> */
1775 /*
1776 * 000081ac <sp_16_done>: */
1777 0xeafffffe /* b 81ac <sp_16_done> */
1778 };
1779
1780 /* see contib/loaders/flash/armv4_5_cfi_span_8.s for src */
1781 static const uint32_t armv4_5_word_8_code[] = {
1782 /* 000081b0 <sp_16_code_end>: */
1783 0xe4d05001, /* ldrb r5, [r0], #1 */
1784 0xe5c89000, /* strb r9, [r8] */
1785 0xe5cab000, /* strb r11, [r10] */
1786 0xe5c83000, /* strb r3, [r8] */
1787 0xe5c15000, /* strb r5, [r1] */
1788 0xe1a00000, /* nop (mov r0,r0) */
1789 /*
1790 * 000081c0 <sp_8_busy>: */
1791 0xe5d16000, /* ldrb r6, [r1] */
1792 0xe0257006, /* eor r7, r5, r6 */
1793 0xe0147007, /* ands r7, r4, r7 */
1794 0x0a000007, /* beq 81f0 <sp_8_cont> */
1795 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1796 0x0afffff9, /* beq 81c0 <sp_8_busy> */
1797 0xe5d16000, /* ldrb r6, [r1] */
1798 0xe0257006, /* eor r7, r5, r6 */
1799 0xe0147007, /* ands r7, r4, r7 */
1800 0x0a000001, /* beq 81f0 <sp_8_cont> */
1801 0xe3a05000, /* mov r5, #0 ; 0x0 */
1802 0x1a000004, /* bne 8204 <sp_8_done> */
1803 /*
1804 * 000081f0 <sp_8_cont>: */
1805 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1806 0x03a05080, /* moveq r5, #128 ; 0x80 */
1807 0x0a000001, /* beq 8204 <sp_8_done> */
1808 0xe2811001, /* add r1, r1, #1 ; 0x1 */
1809 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
1810 /*
1811 * 00008204 <sp_8_done>: */
1812 0xeafffffe /* b 8204 <sp_8_done> */
1813 };
1814
1815 if (strncmp(target_type_name(target), "mips_m4k", 8) == 0)
1816 return cfi_spansion_write_block_mips(bank, buffer, address, count);
1817
1818 if (is_armv7m(target_to_armv7m(target))) { /* Cortex-M3 target */
1819 armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
1820 armv7m_algo.core_mode = ARMV7M_MODE_HANDLER;
1821 arm_algo = &armv7m_algo;
1822 } else if (is_arm(target_to_arm(target))) {
1823 /* All other ARM CPUs have 32 bit instructions */
1824 armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
1825 armv4_5_algo.core_mode = ARM_MODE_SVC;
1826 armv4_5_algo.core_state = ARM_STATE_ARM;
1827 arm_algo = &armv4_5_algo;
1828 } else {
1829 LOG_ERROR("Unknown architecture");
1830 return ERROR_FAIL;
1831 }
1832
1833 int target_code_size = 0;
1834 const uint32_t *target_code_src = NULL;
1835
1836 switch (bank->bus_width) {
1837 case 1:
1838 if (is_armv7m(target_to_armv7m(target))) {
1839 LOG_ERROR("Unknown ARM architecture");
1840 return ERROR_FAIL;
1841 }
1842 target_code_src = armv4_5_word_8_code;
1843 target_code_size = sizeof(armv4_5_word_8_code);
1844 break;
1845 case 2:
1846 /* Check for DQ5 support */
1847 if (cfi_info->status_poll_mask & (1 << 5)) {
1848 if (is_armv7m(target_to_armv7m(target))) { /*
1849 *cortex-m3
1850 *target
1851 **/
1852 target_code_src = armv7m_word_16_code;
1853 target_code_size = sizeof(armv7m_word_16_code);
1854 } else { /* armv4_5 target */
1855 target_code_src = armv4_5_word_16_code;
1856 target_code_size = sizeof(armv4_5_word_16_code);
1857 }
1858 } else {
1859 /* No DQ5 support. Use DQ7 DATA# polling only. */
1860 if (is_armv7m(target_to_armv7m(target))) {
1861 LOG_ERROR("Unknown ARM architecture");
1862 return ERROR_FAIL;
1863 }
1864 target_code_src = armv4_5_word_16_code_dq7only;
1865 target_code_size = sizeof(armv4_5_word_16_code_dq7only);
1866 }
1867 break;
1868 case 4:
1869 if (is_armv7m(target_to_armv7m(target))) {
1870 LOG_ERROR("Unknown ARM architecture");
1871 return ERROR_FAIL;
1872 }
1873 target_code_src = armv4_5_word_32_code;
1874 target_code_size = sizeof(armv4_5_word_32_code);
1875 break;
1876 default:
1877 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1878 bank->bus_width);
1879 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1880 }
1881
1882 /* flash write code */
1883 if (!cfi_info->write_algorithm) {
1884 uint8_t *target_code;
1885
1886 /* convert bus-width dependent algorithm code to correct endiannes */
1887 target_code = malloc(target_code_size);
1888 if (target_code == NULL) {
1889 LOG_ERROR("Out of memory");
1890 return ERROR_FAIL;
1891 }
1892 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1893
1894 /* allocate working area */
1895 retval = target_alloc_working_area(target, target_code_size,
1896 &cfi_info->write_algorithm);
1897 if (retval != ERROR_OK) {
1898 free(target_code);
1899 return retval;
1900 }
1901
1902 /* write algorithm code to working area */
1903 retval = target_write_buffer(target, cfi_info->write_algorithm->address,
1904 target_code_size, target_code);
1905 if (retval != ERROR_OK) {
1906 free(target_code);
1907 return retval;
1908 }
1909
1910 free(target_code);
1911 }
1912 /* the following code still assumes target code is fixed 24*4 bytes */
1913
1914 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1915 buffer_size /= 2;
1916 if (buffer_size <= 256) {
1917 /* if we already allocated the writing code, but failed to get a
1918 * buffer, free the algorithm */
1919 if (cfi_info->write_algorithm)
1920 target_free_working_area(target, cfi_info->write_algorithm);
1921
1922 LOG_WARNING(
1923 "not enough working area available, can't do block memory writes");
1924 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1925 }
1926 }
1927 ;
1928
1929 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1930 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1931 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1932 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1933 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1934 init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
1935 init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
1936 init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
1937 init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
1938 init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
1939
1940 while (count > 0) {
1941 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1942
1943 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1944 if (retval != ERROR_OK)
1945 break;
1946
1947 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1948 buf_set_u32(reg_params[1].value, 0, 32, address);
1949 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1950 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1951 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1952 buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
1953 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1954 buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
1955 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1956
1957 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1958 cfi_info->write_algorithm->address,
1959 cfi_info->write_algorithm->address + ((target_code_size) - 4),
1960 10000, arm_algo);
1961 if (retval != ERROR_OK)
1962 break;
1963
1964 status = buf_get_u32(reg_params[5].value, 0, 32);
1965 if (status != 0x80) {
1966 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1967 retval = ERROR_FLASH_OPERATION_FAILED;
1968 break;
1969 }
1970
1971 buffer += thisrun_count;
1972 address += thisrun_count;
1973 count -= thisrun_count;
1974 }
1975
1976 target_free_all_working_areas(target);
1977
1978 destroy_reg_param(&reg_params[0]);
1979 destroy_reg_param(&reg_params[1]);
1980 destroy_reg_param(&reg_params[2]);
1981 destroy_reg_param(&reg_params[3]);
1982 destroy_reg_param(&reg_params[4]);
1983 destroy_reg_param(&reg_params[5]);
1984 destroy_reg_param(&reg_params[6]);
1985 destroy_reg_param(&reg_params[7]);
1986 destroy_reg_param(&reg_params[8]);
1987 destroy_reg_param(&reg_params[9]);
1988
1989 return retval;
1990 }
1991
1992 static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1993 {
1994 int retval;
1995 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1996 struct target *target = bank->target;
1997
1998 cfi_intel_clear_status_register(bank);
1999 retval = cfi_send_command(bank, 0x40, address);
2000 if (retval != ERROR_OK)
2001 return retval;
2002
2003 retval = target_write_memory(target, address, bank->bus_width, 1, word);
2004 if (retval != ERROR_OK)
2005 return retval;
2006
2007 uint8_t status;
2008 retval = cfi_intel_wait_status_busy(bank, cfi_info->word_write_timeout, &status);
2009 if (retval != 0x80) {
2010 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2011 if (retval != ERROR_OK)
2012 return retval;
2013
2014 LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address 0x%" PRIx32,
2015 bank->base, address);
2016 return ERROR_FLASH_OPERATION_FAILED;
2017 }
2018
2019 return ERROR_OK;
2020 }
2021
2022 static int cfi_intel_write_words(struct flash_bank *bank, uint8_t *word,
2023 uint32_t wordcount, uint32_t address)
2024 {
2025 int retval;
2026 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2027 struct target *target = bank->target;
2028
2029 /* Calculate buffer size and boundary mask
2030 * buffersize is (buffer size per chip) * (number of chips)
2031 * bufferwsize is buffersize in words */
2032 uint32_t buffersize =
2033 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2034 uint32_t buffermask = buffersize-1;
2035 uint32_t bufferwsize = buffersize / bank->bus_width;
2036
2037 /* Check for valid range */
2038 if (address & buffermask) {
2039 LOG_ERROR("Write address at base 0x%" PRIx32 ", address 0x%" PRIx32
2040 " not aligned to 2^%d boundary",
2041 bank->base, address, cfi_info->max_buf_write_size);
2042 return ERROR_FLASH_OPERATION_FAILED;
2043 }
2044
2045 /* Check for valid size */
2046 if (wordcount > bufferwsize) {
2047 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32,
2048 wordcount, buffersize);
2049 return ERROR_FLASH_OPERATION_FAILED;
2050 }
2051
2052 /* Write to flash buffer */
2053 cfi_intel_clear_status_register(bank);
2054
2055 /* Initiate buffer operation _*/
2056 retval = cfi_send_command(bank, 0xe8, address);
2057 if (retval != ERROR_OK)
2058 return retval;
2059 uint8_t status;
2060 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2061 if (retval != ERROR_OK)
2062 return retval;
2063 if (status != 0x80) {
2064 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2065 if (retval != ERROR_OK)
2066 return retval;
2067
2068 LOG_ERROR(
2069 "couldn't start buffer write operation at base 0x%" PRIx32 ", address 0x%" PRIx32,
2070 bank->base,
2071 address);
2072 return ERROR_FLASH_OPERATION_FAILED;
2073 }
2074
2075 /* Write buffer wordcount-1 and data words */
2076 retval = cfi_send_command(bank, bufferwsize-1, address);
2077 if (retval != ERROR_OK)
2078 return retval;
2079
2080 retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word);
2081 if (retval != ERROR_OK)
2082 return retval;
2083
2084 /* Commit write operation */
2085 retval = cfi_send_command(bank, 0xd0, address);
2086 if (retval != ERROR_OK)
2087 return retval;
2088
2089 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2090 if (retval != ERROR_OK)
2091 return retval;
2092
2093 if (status != 0x80) {
2094 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2095 if (retval != ERROR_OK)
2096 return retval;
2097
2098 LOG_ERROR("Buffer write at base 0x%" PRIx32
2099 ", address 0x%" PRIx32 " failed.", bank->base, address);
2100 return ERROR_FLASH_OPERATION_FAILED;
2101 }
2102
2103 return ERROR_OK;
2104 }
2105
2106 static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2107 {
2108 int retval;
2109 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2110 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2111 struct target *target = bank->target;
2112
2113 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
2114 if (retval != ERROR_OK)
2115 return retval;
2116
2117 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
2118 if (retval != ERROR_OK)
2119 return retval;
2120
2121 retval = cfi_send_command(bank, 0xa0, flash_address(bank, 0, pri_ext->_unlock1));
2122 if (retval != ERROR_OK)
2123 return retval;
2124
2125 retval = target_write_memory(target, address, bank->bus_width, 1, word);
2126 if (retval != ERROR_OK)
2127 return retval;
2128
2129 if (cfi_spansion_wait_status_busy(bank, cfi_info->word_write_timeout) != ERROR_OK) {
2130 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
2131 if (retval != ERROR_OK)
2132 return retval;
2133
2134 LOG_ERROR("couldn't write word at base 0x%" PRIx32
2135 ", address 0x%" PRIx32, bank->base, address);
2136 return ERROR_FLASH_OPERATION_FAILED;
2137 }
2138
2139 return ERROR_OK;
2140 }
2141
2142 static int cfi_spansion_write_words(struct flash_bank *bank, uint8_t *word,
2143 uint32_t wordcount, uint32_t address)
2144 {
2145 int retval;
2146 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2147 struct target *target = bank->target;
2148 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2149
2150 /* Calculate buffer size and boundary mask
2151 * buffersize is (buffer size per chip) * (number of chips)
2152 * bufferwsize is buffersize in words */
2153 uint32_t buffersize =
2154 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2155 uint32_t buffermask = buffersize-1;
2156 uint32_t bufferwsize = buffersize / bank->bus_width;
2157
2158 /* Check for valid range */
2159 if (address & buffermask) {
2160 LOG_ERROR("Write address at base 0x%" PRIx32
2161 ", address 0x%" PRIx32 " not aligned to 2^%d boundary",
2162 bank->base, address, cfi_info->max_buf_write_size);
2163 return ERROR_FLASH_OPERATION_FAILED;
2164 }
2165
2166 /* Check for valid size */
2167 if (wordcount > bufferwsize) {
2168 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %"
2169 PRId32, wordcount, buffersize);
2170 return ERROR_FLASH_OPERATION_FAILED;
2171 }
2172
2173 /* Unlock */
2174 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
2175 if (retval != ERROR_OK)
2176 return retval;
2177
2178 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
2179 if (retval != ERROR_OK)
2180 return retval;
2181
2182 /* Buffer load command */
2183 retval = cfi_send_command(bank, 0x25, address);
2184 if (retval != ERROR_OK)
2185 return retval;
2186
2187 /* Write buffer wordcount-1 and data words */
2188 retval = cfi_send_command(bank, bufferwsize-1, address);
2189 if (retval != ERROR_OK)
2190 return retval;
2191
2192 retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word);
2193 if (retval != ERROR_OK)
2194 return retval;
2195
2196 /* Commit write operation */
2197 retval = cfi_send_command(bank, 0x29, address);
2198 if (retval != ERROR_OK)
2199 return retval;
2200
2201 if (cfi_spansion_wait_status_busy(bank, cfi_info->buf_write_timeout) != ERROR_OK) {
2202 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
2203 if (retval != ERROR_OK)
2204 return retval;
2205
2206 LOG_ERROR("couldn't write block at base 0x%" PRIx32
2207 ", address 0x%" PRIx32 ", size 0x%" PRIx32, bank->base, address,
2208 bufferwsize);
2209 return ERROR_FLASH_OPERATION_FAILED;
2210 }
2211
2212 return ERROR_OK;
2213 }
2214
2215 static int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2216 {
2217 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2218
2219 switch (cfi_info->pri_id) {
2220 case 1:
2221 case 3:
2222 return cfi_intel_write_word(bank, word, address);
2223 break;
2224 case 2:
2225 return cfi_spansion_write_word(bank, word, address);
2226 break;
2227 default:
2228 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2229 break;
2230 }
2231
2232 return ERROR_FLASH_OPERATION_FAILED;
2233 }
2234
2235 static int cfi_write_words(struct flash_bank *bank, uint8_t *word,
2236 uint32_t wordcount, uint32_t address)
2237 {
2238 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2239
2240 if (cfi_info->buf_write_timeout_typ == 0) {
2241 /* buffer writes are not supported */
2242 LOG_DEBUG("Buffer Writes Not Supported");
2243 return ERROR_FLASH_OPER_UNSUPPORTED;
2244 }
2245
2246 switch (cfi_info->pri_id) {
2247 case 1:
2248 case 3:
2249 return cfi_intel_write_words(bank, word, wordcount, address);
2250 break;
2251 case 2:
2252 return cfi_spansion_write_words(bank, word, wordcount, address);
2253 break;
2254 default:
2255 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2256 break;
2257 }
2258
2259 return ERROR_FLASH_OPERATION_FAILED;
2260 }
2261
2262 static int cfi_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
2263 {
2264 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2265 struct target *target = bank->target;
2266 uint32_t address = bank->base + offset;
2267 uint32_t read_p;
2268 int align; /* number of unaligned bytes */
2269 uint8_t current_word[CFI_MAX_BUS_WIDTH];
2270 int i;
2271 int retval;
2272
2273 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2274 (int)count, (unsigned)offset);
2275
2276 if (bank->target->state != TARGET_HALTED) {
2277 LOG_ERROR("Target not halted");
2278 return ERROR_TARGET_NOT_HALTED;
2279 }
2280
2281 if (offset + count > bank->size)
2282 return ERROR_FLASH_DST_OUT_OF_BANK;
2283
2284 if (cfi_info->qry[0] != 'Q')
2285 return ERROR_FLASH_BANK_NOT_PROBED;
2286
2287 /* start at the first byte of the first word (bus_width size) */
2288 read_p = address & ~(bank->bus_width - 1);
2289 align = address - read_p;
2290 if (align != 0) {
2291 LOG_INFO("Fixup %d unaligned read head bytes", align);
2292
2293 /* read a complete word from flash */
2294 retval = target_read_memory(target, read_p, bank->bus_width, 1, current_word);
2295 if (retval != ERROR_OK)
2296 return retval;
2297
2298 /* take only bytes we need */
2299 for (i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2300 *buffer++ = current_word[i];
2301
2302 read_p += bank->bus_width;
2303 }
2304
2305 align = count / bank->bus_width;
2306 if (align) {
2307 retval = target_read_memory(target, read_p, bank->bus_width, align, buffer);
2308 if (retval != ERROR_OK)
2309 return retval;
2310
2311 read_p += align * bank->bus_width;
2312 buffer += align * bank->bus_width;
2313 count -= align * bank->bus_width;
2314 }
2315
2316 if (count) {
2317 LOG_INFO("Fixup %d unaligned read tail bytes", count);
2318
2319 /* read a complete word from flash */
2320 retval = target_read_memory(target, read_p, bank->bus_width, 1, current_word);
2321 if (retval != ERROR_OK)
2322 return retval;
2323
2324 /* take only bytes we need */
2325 for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2326 *buffer++ = current_word[i];
2327 }
2328
2329 return ERROR_OK;
2330 }
2331
2332 static int cfi_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
2333 {
2334 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2335 struct target *target = bank->target;
2336 uint32_t address = bank->base + offset; /* address of first byte to be programmed */
2337 uint32_t write_p;
2338 int align; /* number of unaligned bytes */
2339 int blk_count; /* number of bus_width bytes for block copy */
2340 uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being
2341 *programmed */
2342 int i;
2343 int retval;
2344
2345 if (bank->target->state != TARGET_HALTED) {
2346 LOG_ERROR("Target not halted");
2347 return ERROR_TARGET_NOT_HALTED;
2348 }
2349
2350 if (offset + count > bank->size)
2351 return ERROR_FLASH_DST_OUT_OF_BANK;
2352
2353 if (cfi_info->qry[0] != 'Q')
2354 return ERROR_FLASH_BANK_NOT_PROBED;
2355
2356 /* start at the first byte of the first word (bus_width size) */
2357 write_p = address & ~(bank->bus_width - 1);
2358 align = address - write_p;
2359 if (align != 0) {
2360 LOG_INFO("Fixup %d unaligned head bytes", align);
2361
2362 /* read a complete word from flash */
2363 retval = target_read_memory(target, write_p, bank->bus_width, 1, current_word);
2364 if (retval != ERROR_OK)
2365 return retval;
2366
2367 /* replace only bytes that must be written */
2368 for (i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2369 current_word[i] = *buffer++;
2370
2371 retval = cfi_write_word(bank, current_word, write_p);
2372 if (retval != ERROR_OK)
2373 return retval;
2374 write_p += bank->bus_width;
2375 }
2376
2377 /* handle blocks of bus_size aligned bytes */
2378 blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
2379 switch (cfi_info->pri_id) {
2380 /* try block writes (fails without working area) */
2381 case 1:
2382 case 3:
2383 retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
2384 break;
2385 case 2:
2386 retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
2387 break;
2388 default:
2389 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2390 retval = ERROR_FLASH_OPERATION_FAILED;
2391 break;
2392 }
2393 if (retval == ERROR_OK) {
2394 /* Increment pointers and decrease count on succesful block write */
2395 buffer += blk_count;
2396 write_p += blk_count;
2397 count -= blk_count;
2398 } else {
2399 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
2400 /* Calculate buffer size and boundary mask
2401 * buffersize is (buffer size per chip) * (number of chips)
2402 * bufferwsize is buffersize in words */
2403 uint32_t buffersize =
2404 (1UL <<
2405 cfi_info->max_buf_write_size) *
2406 (bank->bus_width / bank->chip_width);
2407 uint32_t buffermask = buffersize-1;
2408 uint32_t bufferwsize = buffersize / bank->bus_width;
2409
2410 /* fall back to memory writes */
2411 while (count >= (uint32_t)bank->bus_width) {
2412 int fallback;
2413 if ((write_p & 0xff) == 0) {
2414 LOG_INFO("Programming at 0x%08" PRIx32 ", count 0x%08"
2415 PRIx32 " bytes remaining", write_p, count);
2416 }
2417 fallback = 1;
2418 if ((bufferwsize > 0) && (count >= buffersize) &&
2419 !(write_p & buffermask)) {
2420 retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
2421 if (retval == ERROR_OK) {
2422 buffer += buffersize;
2423 write_p += buffersize;
2424 count -= buffersize;
2425 fallback = 0;
2426 } else if (retval != ERROR_FLASH_OPER_UNSUPPORTED)
2427 return retval;
2428 }
2429 /* try the slow way? */
2430 if (fallback) {
2431 for (i = 0; i < bank->bus_width; i++)
2432 current_word[i] = *buffer++;
2433
2434 retval = cfi_write_word(bank, current_word, write_p);
2435 if (retval != ERROR_OK)
2436 return retval;
2437
2438 write_p += bank->bus_width;
2439 count -= bank->bus_width;
2440 }
2441 }
2442 } else
2443 return retval;
2444 }
2445
2446 /* return to read array mode, so we can read from flash again for padding */
2447 retval = cfi_reset(bank);
2448 if (retval != ERROR_OK)
2449 return retval;
2450
2451 /* handle unaligned tail bytes */
2452 if (count > 0) {
2453 LOG_INFO("Fixup %" PRId32 " unaligned tail bytes", count);
2454
2455 /* read a complete word from flash */
2456 retval = target_read_memory(target, write_p, bank->bus_width, 1, current_word);
2457 if (retval != ERROR_OK)
2458 return retval;
2459
2460 /* replace only bytes that must be written */
2461 for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2462 current_word[i] = *buffer++;
2463
2464 retval = cfi_write_word(bank, current_word, write_p);
2465 if (retval != ERROR_OK)
2466 return retval;
2467 }
2468
2469 /* return to read array mode */
2470 return cfi_reset(bank);
2471 }
2472
2473 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, void *param)
2474 {
2475 (void) param;
2476 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2477 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2478
2479 pri_ext->_reversed_geometry = 1;
2480 }
2481
2482 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, void *param)
2483 {
2484 int i;
2485 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2486 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2487 (void) param;
2488
2489 if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3)) {
2490 LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
2491
2492 for (i = 0; i < cfi_info->num_erase_regions / 2; i++) {
2493 int j = (cfi_info->num_erase_regions - 1) - i;
2494 uint32_t swap;
2495
2496 swap = cfi_info->erase_region_info[i];
2497 cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
2498 cfi_info->erase_region_info[j] = swap;
2499 }
2500 }
2501 }
2502
2503 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, void *param)
2504 {
2505 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2506 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2507 struct cfi_unlock_addresses *unlock_addresses = param;
2508
2509 pri_ext->_unlock1 = unlock_addresses->unlock1;
2510 pri_ext->_unlock2 = unlock_addresses->unlock2;
2511 }
2512
2513
2514 static int cfi_query_string(struct flash_bank *bank, int address)
2515 {
2516 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2517 int retval;
2518
2519 retval = cfi_send_command(bank, 0x98, flash_address(bank, 0, address));
2520 if (retval != ERROR_OK)
2521 return retval;
2522
2523 retval = cfi_query_u8(bank, 0, 0x10, &cfi_info->qry[0]);
2524 if (retval != ERROR_OK)
2525 return retval;
2526 retval = cfi_query_u8(bank, 0, 0x11, &cfi_info->qry[1]);
2527 if (retval != ERROR_OK)
2528 return retval;
2529 retval = cfi_query_u8(bank, 0, 0x12, &cfi_info->qry[2]);
2530 if (retval != ERROR_OK)
2531 return retval;
2532
2533 LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x",
2534 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
2535
2536 if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y')) {
2537 retval = cfi_reset(bank);
2538 if (retval != ERROR_OK)
2539 return retval;
2540 LOG_ERROR("Could not probe bank: no QRY");
2541 return ERROR_FLASH_BANK_INVALID;
2542 }
2543
2544 return ERROR_OK;
2545 }
2546
2547 static int cfi_probe(struct flash_bank *bank)
2548 {
2549 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2550 struct target *target = bank->target;
2551 int num_sectors = 0;
2552 int i;
2553 int sector = 0;
2554 uint32_t unlock1 = 0x555;
2555 uint32_t unlock2 = 0x2aa;
2556 int retval;
2557 uint8_t value_buf0[CFI_MAX_BUS_WIDTH], value_buf1[CFI_MAX_BUS_WIDTH];
2558
2559 if (bank->target->state != TARGET_HALTED) {
2560 LOG_ERROR("Target not halted");
2561 return ERROR_TARGET_NOT_HALTED;
2562 }
2563
2564 cfi_info->probed = 0;
2565 cfi_info->num_erase_regions = 0;
2566 if (bank->sectors) {
2567 free(bank->sectors);
2568 bank->sectors = NULL;
2569 }
2570 if (cfi_info->erase_region_info) {
2571 free(cfi_info->erase_region_info);
2572 cfi_info->erase_region_info = NULL;
2573 }
2574
2575 /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
2576 * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
2577 */
2578 if (cfi_info->jedec_probe) {
2579 unlock1 = 0x5555;
2580 unlock2 = 0x2aaa;
2581 }
2582
2583 /* switch to read identifier codes mode ("AUTOSELECT") */
2584 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, unlock1));
2585 if (retval != ERROR_OK)
2586 return retval;
2587 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, unlock2));
2588 if (retval != ERROR_OK)
2589 return retval;
2590 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, unlock1));
2591 if (retval != ERROR_OK)
2592 return retval;
2593
2594 retval = target_read_memory(target, flash_address(bank, 0, 0x00),
2595 bank->bus_width, 1, value_buf0);
2596 if (retval != ERROR_OK)
2597 return retval;
2598 retval = target_read_memory(target, flash_address(bank, 0, 0x01),
2599 bank->bus_width, 1, value_buf1);
2600 if (retval != ERROR_OK)
2601 return retval;
2602 switch (bank->chip_width) {
2603 case 1:
2604 cfi_info->manufacturer = *value_buf0;
2605 cfi_info->device_id = *value_buf1;
2606 break;
2607 case 2:
2608 cfi_info->manufacturer = target_buffer_get_u16(target, value_buf0);
2609 cfi_info->device_id = target_buffer_get_u16(target, value_buf1);
2610 break;
2611 case 4:
2612 cfi_info->manufacturer = target_buffer_get_u32(target, value_buf0);
2613 cfi_info->device_id = target_buffer_get_u32(target, value_buf1);
2614 break;
2615 default:
2616 LOG_ERROR("Unsupported bank chipwidth %d, can't probe memory",
2617 bank->chip_width);
2618 return ERROR_FLASH_OPERATION_FAILED;
2619 }
2620
2621 LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x",
2622 cfi_info->manufacturer, cfi_info->device_id);
2623 /* switch back to read array mode */
2624 retval = cfi_reset(bank);
2625 if (retval != ERROR_OK)
2626 return retval;
2627
2628 /* check device/manufacturer ID for known non-CFI flashes. */
2629 cfi_fixup_non_cfi(bank);
2630
2631 /* query only if this is a CFI compatible flash,
2632 * otherwise the relevant info has already been filled in
2633 */
2634 if (cfi_info->not_cfi == 0) {
2635 /* enter CFI query mode
2636 * according to JEDEC Standard No. 68.01,
2637 * a single bus sequence with address = 0x55, data = 0x98 should put
2638 * the device into CFI query mode.
2639 *
2640 * SST flashes clearly violate this, and we will consider them incompatbile for now
2641 */
2642
2643 retval = cfi_query_string(bank, 0x55);
2644 if (retval != ERROR_OK) {
2645 /*
2646 * Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
2647 * be harmless enough:
2648 *
2649 * http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
2650 */
2651 LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
2652 retval = cfi_query_string(bank, 0x555);
2653 }
2654 if (retval != ERROR_OK)
2655 return retval;
2656
2657 retval = cfi_query_u16(bank, 0, 0x13, &cfi_info->pri_id);
2658 if (retval != ERROR_OK)
2659 return retval;
2660 retval = cfi_query_u16(bank, 0, 0x15, &cfi_info->pri_addr);
2661 if (retval != ERROR_OK)
2662 return retval;
2663 retval = cfi_query_u16(bank, 0, 0x17, &cfi_info->alt_id);
2664 if (retval != ERROR_OK)
2665 return retval;
2666 retval = cfi_query_u16(bank, 0, 0x19, &cfi_info->alt_addr);
2667 if (retval != ERROR_OK)
2668 return retval;
2669
2670 LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: "
2671 "0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1],
2672 cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr,
2673 cfi_info->alt_id, cfi_info->alt_addr);
2674
2675 retval = cfi_query_u8(bank, 0, 0x1b, &cfi_info->vcc_min);
2676 if (retval != ERROR_OK)
2677 return retval;
2678 retval = cfi_query_u8(bank, 0, 0x1c, &cfi_info->vcc_max);
2679 if (retval != ERROR_OK)
2680 return retval;
2681 retval = cfi_query_u8(bank, 0, 0x1d, &cfi_info->vpp_min);
2682 if (retval != ERROR_OK)
2683 return retval;
2684 retval = cfi_query_u8(bank, 0, 0x1e, &cfi_info->vpp_max);
2685 if (retval != ERROR_OK)
2686 return retval;
2687
2688 retval = cfi_query_u8(bank, 0, 0x1f, &cfi_info->word_write_timeout_typ);
2689 if (retval != ERROR_OK)
2690 return retval;
2691 retval = cfi_query_u8(bank, 0, 0x20, &cfi_info->buf_write_timeout_typ);
2692 if (retval != ERROR_OK)
2693 return retval;
2694 retval = cfi_query_u8(bank, 0, 0x21, &cfi_info->block_erase_timeout_typ);
2695 if (retval != ERROR_OK)
2696 return retval;
2697 retval = cfi_query_u8(bank, 0, 0x22, &cfi_info->chip_erase_timeout_typ);
2698 if (retval != ERROR_OK)
2699 return retval;
2700 retval = cfi_query_u8(bank, 0, 0x23, &cfi_info->word_write_timeout_max);
2701 if (retval != ERROR_OK)
2702 return retval;
2703 retval = cfi_query_u8(bank, 0, 0x24, &cfi_info->buf_write_timeout_max);
2704 if (retval != ERROR_OK)
2705 return retval;
2706 retval = cfi_query_u8(bank, 0, 0x25, &cfi_info->block_erase_timeout_max);
2707 if (retval != ERROR_OK)
2708 return retval;
2709 retval = cfi_query_u8(bank, 0, 0x26, &cfi_info->chip_erase_timeout_max);
2710 if (retval != ERROR_OK)
2711 return retval;
2712
2713 uint8_t data;
2714 retval = cfi_query_u8(bank, 0, 0x27, &data);
2715 if (retval != ERROR_OK)
2716 return retval;
2717 cfi_info->dev_size = 1 << data;
2718
2719 retval = cfi_query_u16(bank, 0, 0x28, &cfi_info->interface_desc);
2720 if (retval != ERROR_OK)
2721 return retval;
2722 retval = cfi_query_u16(bank, 0, 0x2a, &cfi_info->max_buf_write_size);
2723 if (retval != ERROR_OK)
2724 return retval;
2725 retval = cfi_query_u8(bank, 0, 0x2c, &cfi_info->num_erase_regions);
2726 if (retval != ERROR_OK)
2727 return retval;
2728
2729 LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: 0x%x",
2730 cfi_info->dev_size, cfi_info->interface_desc,
2731 (1 << cfi_info->max_buf_write_size));
2732
2733 if (cfi_info->num_erase_regions) {
2734 cfi_info->erase_region_info = malloc(sizeof(*cfi_info->erase_region_info)
2735 * cfi_info->num_erase_regions);
2736 for (i = 0; i < cfi_info->num_erase_regions; i++) {
2737 retval = cfi_query_u32(bank,
2738 0,
2739 0x2d + (4 * i),
2740 &cfi_info->erase_region_info[i]);
2741 if (retval != ERROR_OK)
2742 return retval;
2743 LOG_DEBUG(
2744 "erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "",
2745 i,
2746 (cfi_info->erase_region_info[i] & 0xffff) + 1,
2747 (cfi_info->erase_region_info[i] >> 16) * 256);
2748 }
2749 } else
2750 cfi_info->erase_region_info = NULL;
2751
2752 /* We need to read the primary algorithm extended query table before calculating
2753 * the sector layout to be able to apply fixups
2754 */
2755 switch (cfi_info->pri_id) {
2756 /* Intel command set (standard and extended) */
2757 case 0x0001:
2758 case 0x0003:
2759 cfi_read_intel_pri_ext(bank);
2760 break;
2761 /* AMD/Spansion, Atmel, ... command set */
2762 case 0x0002:
2763 cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /*
2764 *default
2765 *for
2766 *all
2767 *CFI
2768 *flashs
2769 **/
2770 cfi_read_0002_pri_ext(bank);
2771 break;
2772 default:
2773 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2774 break;
2775 }
2776
2777 /* return to read array mode
2778 * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
2779 */
2780 retval = cfi_reset(bank);
2781 if (retval != ERROR_OK)
2782 return retval;
2783 } /* end CFI case */
2784
2785 LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
2786 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2787 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2788 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2789 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2790
2791 LOG_DEBUG("typ. word write timeout: %u us, typ. buf write timeout: %u us, "
2792 "typ. block erase timeout: %u ms, typ. chip erase timeout: %u ms",
2793 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
2794 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
2795
2796 LOG_DEBUG("max. word write timeout: %u us, max. buf write timeout: %u us, "
2797 "max. block erase timeout: %u ms, max. chip erase timeout: %u ms",
2798 (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2799 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2800 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2801 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2802
2803 /* convert timeouts to real values in ms */
2804 cfi_info->word_write_timeout = DIV_ROUND_UP((1L << cfi_info->word_write_timeout_typ) *
2805 (1L << cfi_info->word_write_timeout_max), 1000);
2806 cfi_info->buf_write_timeout = DIV_ROUND_UP((1L << cfi_info->buf_write_timeout_typ) *
2807 (1L << cfi_info->buf_write_timeout_max), 1000);
2808 cfi_info->block_erase_timeout = (1L << cfi_info->block_erase_timeout_typ) *
2809 (1L << cfi_info->block_erase_timeout_max);
2810 cfi_info->chip_erase_timeout = (1L << cfi_info->chip_erase_timeout_typ) *
2811 (1L << cfi_info->chip_erase_timeout_max);
2812
2813 LOG_DEBUG("calculated word write timeout: %u ms, buf write timeout: %u ms, "
2814 "block erase timeout: %u ms, chip erase timeout: %u ms",
2815 cfi_info->word_write_timeout, cfi_info->buf_write_timeout,
2816 cfi_info->block_erase_timeout, cfi_info->chip_erase_timeout);
2817
2818 /* apply fixups depending on the primary command set */
2819 switch (cfi_info->pri_id) {
2820 /* Intel command set (standard and extended) */
2821 case 0x0001:
2822 case 0x0003:
2823 cfi_fixup(bank, cfi_0001_fixups);
2824 break;
2825 /* AMD/Spansion, Atmel, ... command set */
2826 case 0x0002:
2827 cfi_fixup(bank, cfi_0002_fixups);
2828 break;
2829 default:
2830 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2831 break;
2832 }
2833
2834 if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size) {
2835 LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32
2836 " size flash was found", bank->size, cfi_info->dev_size);
2837 }
2838
2839 if (cfi_info->num_erase_regions == 0) {
2840 /* a device might have only one erase block, spanning the whole device */
2841 bank->num_sectors = 1;
2842 bank->sectors = malloc(sizeof(struct flash_sector));
2843
2844 bank->sectors[sector].offset = 0x0;
2845 bank->sectors[sector].size = bank->size;
2846 bank->sectors[sector].is_erased = -1;
2847 bank->sectors[sector].is_protected = -1;
2848 } else {
2849 uint32_t offset = 0;
2850
2851 for (i = 0; i < cfi_info->num_erase_regions; i++)
2852 num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
2853
2854 bank->num_sectors = num_sectors;
2855 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
2856
2857 for (i = 0; i < cfi_info->num_erase_regions; i++) {
2858 uint32_t j;
2859 for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++) {
2860 bank->sectors[sector].offset = offset;
2861 bank->sectors[sector].size =
2862 ((cfi_info->erase_region_info[i] >> 16) * 256)
2863 * bank->bus_width / bank->chip_width;
2864 offset += bank->sectors[sector].size;
2865 bank->sectors[sector].is_erased = -1;
2866 bank->sectors[sector].is_protected = -1;
2867 sector++;
2868 }
2869 }
2870 if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width)) {
2871 LOG_WARNING(
2872 "CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "", \
2873 (cfi_info->dev_size * bank->bus_width / bank->chip_width),
2874 offset);
2875 }
2876 }
2877
2878 cfi_info->probed = 1;
2879
2880 return ERROR_OK;
2881 }
2882
2883 static int cfi_auto_probe(struct flash_bank *bank)
2884 {
2885 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2886 if (cfi_info->probed)
2887 return ERROR_OK;
2888 return cfi_probe(bank);
2889 }
2890
2891 static int cfi_intel_protect_check(struct flash_bank *bank)
2892 {
2893 int retval;
2894 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2895 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
2896 int i;
2897
2898 /* check if block lock bits are supported on this device */
2899 if (!(pri_ext->blk_status_reg_mask & 0x1))
2900 return ERROR_FLASH_OPERATION_FAILED;
2901
2902 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55));
2903 if (retval != ERROR_OK)
2904 return retval;
2905
2906 for (i = 0; i < bank->num_sectors; i++) {
2907 uint8_t block_status;
2908 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2909 if (retval != ERROR_OK)
2910 return retval;
2911
2912 if (block_status & 1)
2913 bank->sectors[i].is_protected = 1;
2914 else
2915 bank->sectors[i].is_protected = 0;
2916 }
2917
2918 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2919 }
2920
2921 static int cfi_spansion_protect_check(struct flash_bank *bank)
2922 {
2923 int retval;
2924 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2925 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2926 int i;
2927
2928 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
2929 if (retval != ERROR_OK)
2930 return retval;
2931
2932 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
2933 if (retval != ERROR_OK)
2934 return retval;
2935
2936 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, pri_ext->_unlock1));
2937 if (retval != ERROR_OK)
2938 return retval;
2939
2940 for (i = 0; i < bank->num_sectors; i++) {
2941 uint8_t block_status;
2942 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2943 if (retval != ERROR_OK)
2944 return retval;
2945
2946 if (block_status & 1)
2947 bank->sectors[i].is_protected = 1;
2948 else
2949 bank->sectors[i].is_protected = 0;