flash/nor: Pass flash_bank to memory accessors
[openocd.git] / src / flash / nor / cfi.c
1 /***************************************************************************
2 * Copyright (C) 2005, 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * Copyright (C) 2009 Michael Schwingen *
5 * michael@schwingen.org *
6 * Copyright (C) 2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
7 * Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General Public License as published by *
11 * the Free Software Foundation; either version 2 of the License, or *
12 * (at your option) any later version. *
13 * *
14 * This program is distributed in the hope that it will be useful, *
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
17 * GNU General Public License for more details. *
18 * *
19 * You should have received a copy of the GNU General Public License *
20 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
21 ***************************************************************************/
22
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "imp.h"
28 #include "cfi.h"
29 #include "non_cfi.h"
30 #include <target/arm.h>
31 #include <target/arm7_9_common.h>
32 #include <target/armv7m.h>
33 #include <target/mips32.h>
34 #include <helper/binarybuffer.h>
35 #include <target/algorithm.h>
36
37 #define CFI_MAX_BUS_WIDTH 4
38 #define CFI_MAX_CHIP_WIDTH 4
39
40 /* defines internal maximum size for code fragment in cfi_intel_write_block() */
41 #define CFI_MAX_INTEL_CODESIZE 256
42
43 /* some id-types with specific handling */
44 #define AT49BV6416 0x00d6
45 #define AT49BV6416T 0x00d2
46
47 static const struct cfi_unlock_addresses cfi_unlock_addresses[] = {
48 [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
49 [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
50 };
51
52 static const int cfi_status_poll_mask_dq6_dq7 = CFI_STATUS_POLL_MASK_DQ6_DQ7;
53
54 /* CFI fixups forward declarations */
55 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, const void *param);
56 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, const void *param);
57 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, const void *param);
58 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, const void *param);
59 static void cfi_fixup_0002_polling_bits(struct flash_bank *bank, const void *param);
60
61 /* fixup after reading cmdset 0002 primary query table */
62 static const struct cfi_fixup cfi_0002_fixups[] = {
63 {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses,
64 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
65 {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses,
66 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
67 {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses,
68 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
69 {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses,
70 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
71 {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses,
72 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
73 {CFI_MFR_SST, 0x274b, cfi_fixup_0002_unlock_addresses,
74 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
75 {CFI_MFR_SST, 0x235f, cfi_fixup_0002_polling_bits, /* 39VF3201C */
76 &cfi_status_poll_mask_dq6_dq7},
77 {CFI_MFR_SST, 0x236d, cfi_fixup_0002_unlock_addresses,
78 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
79 {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_reversed_erase_regions, NULL},
80 {CFI_MFR_ST, 0x22C4, cfi_fixup_reversed_erase_regions, NULL}, /* M29W160ET */
81 {CFI_MFR_FUJITSU, 0x22ea, cfi_fixup_0002_unlock_addresses,
82 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
83 {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses,
84 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
85 {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses,
86 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
87 {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses,
88 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
89 {CFI_MFR_EON, 0x225b, cfi_fixup_0002_unlock_addresses,
90 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
91 {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses,
92 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
93 {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
94 {CFI_MFR_ST, 0x227E, cfi_fixup_0002_write_buffer, NULL},/* M29W128G */
95 {0, 0, NULL, NULL}
96 };
97
98 /* fixup after reading cmdset 0001 primary query table */
99 static const struct cfi_fixup cfi_0001_fixups[] = {
100 {0, 0, NULL, NULL}
101 };
102
103 static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
104 {
105 struct cfi_flash_bank *cfi_info = bank->driver_priv;
106 const struct cfi_fixup *f;
107
108 for (f = fixups; f->fixup; f++) {
109 if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
110 ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
111 f->fixup(bank, f->param);
112 }
113 }
114
115 static inline uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset)
116 {
117 struct cfi_flash_bank *cfi_info = bank->driver_priv;
118
119 if (cfi_info->x16_as_x8)
120 offset *= 2;
121
122 /* while the sector list isn't built, only accesses to sector 0 work */
123 if (sector == 0)
124 return bank->base + offset * bank->bus_width;
125 else {
126 if (!bank->sectors) {
127 LOG_ERROR("BUG: sector list not yet built");
128 exit(-1);
129 }
130 return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
131 }
132 }
133
134 static int cfi_target_write_memory(struct flash_bank *bank, target_addr_t addr,
135 uint32_t size, uint32_t count,
136 const uint8_t *buffer)
137 {
138 return target_write_memory(bank->target, addr, size, count, buffer);
139 }
140
141 static int cfi_target_read_memory(struct flash_bank *bank, target_addr_t addr,
142 uint32_t size, uint32_t count,
143 uint8_t *buffer)
144 {
145 return target_read_memory(bank->target, addr, size, count, buffer);
146 }
147
148 static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
149 {
150 int i;
151 struct cfi_flash_bank *cfi_info = bank->driver_priv;
152
153 /* clear whole buffer, to ensure bits that exceed the bus_width
154 * are set to zero
155 */
156 for (i = 0; i < CFI_MAX_BUS_WIDTH; i++)
157 cmd_buf[i] = 0;
158
159 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN) {
160 for (i = bank->bus_width; i > 0; i--)
161 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
162 } else {
163 for (i = 1; i <= bank->bus_width; i++)
164 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
165 }
166 }
167
168 static int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
169 {
170 uint8_t command[CFI_MAX_BUS_WIDTH];
171
172 cfi_command(bank, cmd, command);
173 return cfi_target_write_memory(bank, address, bank->bus_width, 1, command);
174 }
175
176 /* read unsigned 8-bit value from the bank
177 * flash banks are expected to be made of similar chips
178 * the query result should be the same for all
179 */
180 static int cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
181 {
182 struct cfi_flash_bank *cfi_info = bank->driver_priv;
183 uint8_t data[CFI_MAX_BUS_WIDTH];
184
185 int retval;
186 retval = cfi_target_read_memory(bank, flash_address(bank, sector, offset),
187 bank->bus_width, 1, data);
188 if (retval != ERROR_OK)
189 return retval;
190
191 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
192 *val = data[0];
193 else
194 *val = data[bank->bus_width - 1];
195
196 return ERROR_OK;
197 }
198
199 /* read unsigned 8-bit value from the bank
200 * in case of a bank made of multiple chips,
201 * the individual values are ORed
202 */
203 static int cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
204 {
205 struct cfi_flash_bank *cfi_info = bank->driver_priv;
206 uint8_t data[CFI_MAX_BUS_WIDTH];
207 int i;
208
209 int retval;
210 retval = cfi_target_read_memory(bank, flash_address(bank, sector, offset),
211 bank->bus_width, 1, data);
212 if (retval != ERROR_OK)
213 return retval;
214
215 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN) {
216 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
217 data[0] |= data[i];
218
219 *val = data[0];
220 } else {
221 uint8_t value = 0;
222 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
223 value |= data[bank->bus_width - 1 - i];
224
225 *val = value;
226 }
227 return ERROR_OK;
228 }
229
230 static int cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset, uint16_t *val)
231 {
232 struct cfi_flash_bank *cfi_info = bank->driver_priv;
233 uint8_t data[CFI_MAX_BUS_WIDTH * 2];
234 int retval;
235
236 if (cfi_info->x16_as_x8) {
237 uint8_t i;
238 for (i = 0; i < 2; i++) {
239 retval = cfi_target_read_memory(bank, flash_address(bank, sector, offset + i),
240 bank->bus_width, 1, &data[i * bank->bus_width]);
241 if (retval != ERROR_OK)
242 return retval;
243 }
244 } else {
245 retval = cfi_target_read_memory(bank, flash_address(bank, sector, offset),
246 bank->bus_width, 2, data);
247 if (retval != ERROR_OK)
248 return retval;
249 }
250
251 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
252 *val = data[0] | data[bank->bus_width] << 8;
253 else
254 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
255
256 return ERROR_OK;
257 }
258
259 static int cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset, uint32_t *val)
260 {
261 struct cfi_flash_bank *cfi_info = bank->driver_priv;
262 uint8_t data[CFI_MAX_BUS_WIDTH * 4];
263 int retval;
264
265 if (cfi_info->x16_as_x8) {
266 uint8_t i;
267 for (i = 0; i < 4; i++) {
268 retval = cfi_target_read_memory(bank, flash_address(bank, sector, offset + i),
269 bank->bus_width, 1, &data[i * bank->bus_width]);
270 if (retval != ERROR_OK)
271 return retval;
272 }
273 } else {
274 retval = cfi_target_read_memory(bank, flash_address(bank, sector, offset),
275 bank->bus_width, 4, data);
276 if (retval != ERROR_OK)
277 return retval;
278 }
279
280 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
281 *val = data[0] | data[bank->bus_width] << 8 |
282 data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
283 else
284 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8 |
285 data[(3 * bank->bus_width) - 1] << 16 |
286 data[(4 * bank->bus_width) - 1] << 24;
287
288 return ERROR_OK;
289 }
290
291 static int cfi_reset(struct flash_bank *bank)
292 {
293 struct cfi_flash_bank *cfi_info = bank->driver_priv;
294 int retval = ERROR_OK;
295
296 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
297 if (retval != ERROR_OK)
298 return retval;
299
300 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
301 if (retval != ERROR_OK)
302 return retval;
303
304 if (cfi_info->manufacturer == 0x20 &&
305 (cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E)) {
306 /* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state
307 * so we send an extra 0xF0 reset to fix the bug */
308 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x00));
309 if (retval != ERROR_OK)
310 return retval;
311 }
312
313 return retval;
314 }
315
316 static void cfi_intel_clear_status_register(struct flash_bank *bank)
317 {
318 cfi_send_command(bank, 0x50, flash_address(bank, 0, 0x0));
319 }
320
321 static int cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout, uint8_t *val)
322 {
323 uint8_t status;
324
325 int retval = ERROR_OK;
326
327 for (;; ) {
328 if (timeout-- < 0) {
329 LOG_ERROR("timeout while waiting for WSM to become ready");
330 return ERROR_FAIL;
331 }
332
333 retval = cfi_get_u8(bank, 0, 0x0, &status);
334 if (retval != ERROR_OK)
335 return retval;
336
337 if (status & 0x80)
338 break;
339
340 alive_sleep(1);
341 }
342
343 /* mask out bit 0 (reserved) */
344 status = status & 0xfe;
345
346 LOG_DEBUG("status: 0x%x", status);
347
348 if (status != 0x80) {
349 LOG_ERROR("status register: 0x%x", status);
350 if (status & 0x2)
351 LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
352 if (status & 0x4)
353 LOG_ERROR("Program suspended");
354 if (status & 0x8)
355 LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
356 if (status & 0x10)
357 LOG_ERROR("Program Error / Error in Setting Lock-Bit");
358 if (status & 0x20)
359 LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
360 if (status & 0x40)
361 LOG_ERROR("Block Erase Suspended");
362
363 cfi_intel_clear_status_register(bank);
364
365 retval = ERROR_FAIL;
366 }
367
368 *val = status;
369 return retval;
370 }
371
372 static int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
373 {
374 uint8_t status, oldstatus;
375 struct cfi_flash_bank *cfi_info = bank->driver_priv;
376 int retval;
377
378 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
379 if (retval != ERROR_OK)
380 return retval;
381
382 do {
383 retval = cfi_get_u8(bank, 0, 0x0, &status);
384
385 if (retval != ERROR_OK)
386 return retval;
387
388 if ((status ^ oldstatus) & 0x40) {
389 if (status & cfi_info->status_poll_mask & 0x20) {
390 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
391 if (retval != ERROR_OK)
392 return retval;
393 retval = cfi_get_u8(bank, 0, 0x0, &status);
394 if (retval != ERROR_OK)
395 return retval;
396 if ((status ^ oldstatus) & 0x40) {
397 LOG_ERROR("dq5 timeout, status: 0x%x", status);
398 return ERROR_FLASH_OPERATION_FAILED;
399 } else {
400 LOG_DEBUG("status: 0x%x", status);
401 return ERROR_OK;
402 }
403 }
404 } else {/* no toggle: finished, OK */
405 LOG_DEBUG("status: 0x%x", status);
406 return ERROR_OK;
407 }
408
409 oldstatus = status;
410 alive_sleep(1);
411 } while (timeout-- > 0);
412
413 LOG_ERROR("timeout, status: 0x%x", status);
414
415 return ERROR_FLASH_BUSY;
416 }
417
418 static int cfi_read_intel_pri_ext(struct flash_bank *bank)
419 {
420 int retval;
421 struct cfi_flash_bank *cfi_info = bank->driver_priv;
422 struct cfi_intel_pri_ext *pri_ext;
423
424 if (cfi_info->pri_ext)
425 free(cfi_info->pri_ext);
426
427 pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
428 if (pri_ext == NULL) {
429 LOG_ERROR("Out of memory");
430 return ERROR_FAIL;
431 }
432 cfi_info->pri_ext = pri_ext;
433
434 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
435 if (retval != ERROR_OK)
436 return retval;
437 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
438 if (retval != ERROR_OK)
439 return retval;
440 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
441 if (retval != ERROR_OK)
442 return retval;
443
444 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
445 retval = cfi_reset(bank);
446 if (retval != ERROR_OK)
447 return retval;
448 LOG_ERROR("Could not read bank flash bank information");
449 return ERROR_FLASH_BANK_INVALID;
450 }
451
452 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
453 if (retval != ERROR_OK)
454 return retval;
455 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
456 if (retval != ERROR_OK)
457 return retval;
458
459 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
460 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
461
462 retval = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5, &pri_ext->feature_support);
463 if (retval != ERROR_OK)
464 return retval;
465 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->suspend_cmd_support);
466 if (retval != ERROR_OK)
467 return retval;
468 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa, &pri_ext->blk_status_reg_mask);
469 if (retval != ERROR_OK)
470 return retval;
471
472 LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: "
473 "0x%x, blk_status_reg_mask: 0x%x",
474 pri_ext->feature_support,
475 pri_ext->suspend_cmd_support,
476 pri_ext->blk_status_reg_mask);
477
478 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc, &pri_ext->vcc_optimal);
479 if (retval != ERROR_OK)
480 return retval;
481 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd, &pri_ext->vpp_optimal);
482 if (retval != ERROR_OK)
483 return retval;
484
485 LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
486 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
487 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
488
489 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe, &pri_ext->num_protection_fields);
490 if (retval != ERROR_OK)
491 return retval;
492 if (pri_ext->num_protection_fields != 1) {
493 LOG_WARNING("expected one protection register field, but found %i",
494 pri_ext->num_protection_fields);
495 }
496
497 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf, &pri_ext->prot_reg_addr);
498 if (retval != ERROR_OK)
499 return retval;
500 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11, &pri_ext->fact_prot_reg_size);
501 if (retval != ERROR_OK)
502 return retval;
503 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12, &pri_ext->user_prot_reg_size);
504 if (retval != ERROR_OK)
505 return retval;
506
507 LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, "
508 "factory pre-programmed: %i, user programmable: %i",
509 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
510 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
511
512 return ERROR_OK;
513 }
514
515 static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
516 {
517 int retval;
518 struct cfi_flash_bank *cfi_info = bank->driver_priv;
519 struct cfi_spansion_pri_ext *pri_ext;
520
521 if (cfi_info->pri_ext)
522 free(cfi_info->pri_ext);
523
524 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
525 if (pri_ext == NULL) {
526 LOG_ERROR("Out of memory");
527 return ERROR_FAIL;
528 }
529 cfi_info->pri_ext = pri_ext;
530
531 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
532 if (retval != ERROR_OK)
533 return retval;
534 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
535 if (retval != ERROR_OK)
536 return retval;
537 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
538 if (retval != ERROR_OK)
539 return retval;
540
541 /* default values for implementation specific workarounds */
542 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
543 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
544 pri_ext->_reversed_geometry = 0;
545
546 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
547 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
548 if (retval != ERROR_OK)
549 return retval;
550 LOG_ERROR("Could not read spansion bank information");
551 return ERROR_FLASH_BANK_INVALID;
552 }
553
554 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
555 if (retval != ERROR_OK)
556 return retval;
557 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
558 if (retval != ERROR_OK)
559 return retval;
560
561 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
562 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
563
564 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &pri_ext->SiliconRevision);
565 if (retval != ERROR_OK)
566 return retval;
567 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &pri_ext->EraseSuspend);
568 if (retval != ERROR_OK)
569 return retval;
570 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &pri_ext->BlkProt);
571 if (retval != ERROR_OK)
572 return retval;
573 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &pri_ext->TmpBlkUnprotect);
574 if (retval != ERROR_OK)
575 return retval;
576 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->BlkProtUnprot);
577 if (retval != ERROR_OK)
578 return retval;
579 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10, &pri_ext->SimultaneousOps);
580 if (retval != ERROR_OK)
581 return retval;
582 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11, &pri_ext->BurstMode);
583 if (retval != ERROR_OK)
584 return retval;
585 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12, &pri_ext->PageMode);
586 if (retval != ERROR_OK)
587 return retval;
588 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13, &pri_ext->VppMin);
589 if (retval != ERROR_OK)
590 return retval;
591 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14, &pri_ext->VppMax);
592 if (retval != ERROR_OK)
593 return retval;
594 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15, &pri_ext->TopBottom);
595 if (retval != ERROR_OK)
596 return retval;
597
598 LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x",
599 pri_ext->SiliconRevision, pri_ext->EraseSuspend, pri_ext->BlkProt);
600
601 LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, "
602 "Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
603 pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
604
605 LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
606
607
608 LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
609 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
610 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
611
612 LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
613
614 return ERROR_OK;
615 }
616
617 static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
618 {
619 int retval;
620 struct cfi_atmel_pri_ext atmel_pri_ext;
621 struct cfi_flash_bank *cfi_info = bank->driver_priv;
622 struct cfi_spansion_pri_ext *pri_ext;
623
624 if (cfi_info->pri_ext)
625 free(cfi_info->pri_ext);
626
627 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
628 if (pri_ext == NULL) {
629 LOG_ERROR("Out of memory");
630 return ERROR_FAIL;
631 }
632
633 /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
634 * but a different primary extended query table.
635 * We read the atmel table, and prepare a valid AMD/Spansion query table.
636 */
637
638 memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
639
640 cfi_info->pri_ext = pri_ext;
641
642 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &atmel_pri_ext.pri[0]);
643 if (retval != ERROR_OK)
644 return retval;
645 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &atmel_pri_ext.pri[1]);
646 if (retval != ERROR_OK)
647 return retval;
648 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &atmel_pri_ext.pri[2]);
649 if (retval != ERROR_OK)
650 return retval;
651
652 if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R')
653 || (atmel_pri_ext.pri[2] != 'I')) {
654 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
655 if (retval != ERROR_OK)
656 return retval;
657 LOG_ERROR("Could not read atmel bank information");
658 return ERROR_FLASH_BANK_INVALID;
659 }
660
661 pri_ext->pri[0] = atmel_pri_ext.pri[0];
662 pri_ext->pri[1] = atmel_pri_ext.pri[1];
663 pri_ext->pri[2] = atmel_pri_ext.pri[2];
664
665 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &atmel_pri_ext.major_version);
666 if (retval != ERROR_OK)
667 return retval;
668 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &atmel_pri_ext.minor_version);
669 if (retval != ERROR_OK)
670 return retval;
671
672 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0],
673 atmel_pri_ext.pri[1], atmel_pri_ext.pri[2],
674 atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
675
676 pri_ext->major_version = atmel_pri_ext.major_version;
677 pri_ext->minor_version = atmel_pri_ext.minor_version;
678
679 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &atmel_pri_ext.features);
680 if (retval != ERROR_OK)
681 return retval;
682 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &atmel_pri_ext.bottom_boot);
683 if (retval != ERROR_OK)
684 return retval;
685 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &atmel_pri_ext.burst_mode);
686 if (retval != ERROR_OK)
687 return retval;
688 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &atmel_pri_ext.page_mode);
689 if (retval != ERROR_OK)
690 return retval;
691
692 LOG_DEBUG(
693 "features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
694 atmel_pri_ext.features,
695 atmel_pri_ext.bottom_boot,
696 atmel_pri_ext.burst_mode,
697 atmel_pri_ext.page_mode);
698
699 if (atmel_pri_ext.features & 0x02)
700 pri_ext->EraseSuspend = 2;
701
702 /* some chips got it backwards... */
703 if (cfi_info->device_id == AT49BV6416 ||
704 cfi_info->device_id == AT49BV6416T) {
705 if (atmel_pri_ext.bottom_boot)
706 pri_ext->TopBottom = 3;
707 else
708 pri_ext->TopBottom = 2;
709 } else {
710 if (atmel_pri_ext.bottom_boot)
711 pri_ext->TopBottom = 2;
712 else
713 pri_ext->TopBottom = 3;
714 }
715
716 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
717 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
718
719 return ERROR_OK;
720 }
721
722 static int cfi_read_0002_pri_ext(struct flash_bank *bank)
723 {
724 struct cfi_flash_bank *cfi_info = bank->driver_priv;
725
726 if (cfi_info->manufacturer == CFI_MFR_ATMEL)
727 return cfi_read_atmel_pri_ext(bank);
728 else
729 return cfi_read_spansion_pri_ext(bank);
730 }
731
732 static int cfi_spansion_info(struct flash_bank *bank, char *buf, int buf_size)
733 {
734 int printed;
735 struct cfi_flash_bank *cfi_info = bank->driver_priv;
736 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
737
738 printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
739 buf += printed;
740 buf_size -= printed;
741
742 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
743 pri_ext->pri[1], pri_ext->pri[2],
744 pri_ext->major_version, pri_ext->minor_version);
745 buf += printed;
746 buf_size -= printed;
747
748 printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
749 (pri_ext->SiliconRevision) >> 2,
750 (pri_ext->SiliconRevision) & 0x03);
751 buf += printed;
752 buf_size -= printed;
753
754 printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
755 pri_ext->EraseSuspend,
756 pri_ext->BlkProt);
757 buf += printed;
758 buf_size -= printed;
759
760 snprintf(buf, buf_size, "VppMin: %u.%x, VppMax: %u.%x\n",
761 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
762 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
763
764 return ERROR_OK;
765 }
766
767 static int cfi_intel_info(struct flash_bank *bank, char *buf, int buf_size)
768 {
769 int printed;
770 struct cfi_flash_bank *cfi_info = bank->driver_priv;
771 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
772
773 printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
774 buf += printed;
775 buf_size -= printed;
776
777 printed = snprintf(buf,
778 buf_size,
779 "pri: '%c%c%c', version: %c.%c\n",
780 pri_ext->pri[0],
781 pri_ext->pri[1],
782 pri_ext->pri[2],
783 pri_ext->major_version,
784 pri_ext->minor_version);
785 buf += printed;
786 buf_size -= printed;
787
788 printed = snprintf(buf,
789 buf_size,
790 "feature_support: 0x%" PRIx32 ", "
791 "suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n",
792 pri_ext->feature_support,
793 pri_ext->suspend_cmd_support,
794 pri_ext->blk_status_reg_mask);
795 buf += printed;
796 buf_size -= printed;
797
798 printed = snprintf(buf, buf_size, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
799 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
800 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
801 buf += printed;
802 buf_size -= printed;
803
804 snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, "
805 "factory pre-programmed: %i, user programmable: %i\n",
806 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
807 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
808
809 return ERROR_OK;
810 }
811
812 /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
813 */
814 FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
815 {
816 struct cfi_flash_bank *cfi_info;
817 int bus_swap = 0;
818
819 if (CMD_ARGC < 6)
820 return ERROR_COMMAND_SYNTAX_ERROR;
821
822 /* both widths must:
823 * - not exceed max value;
824 * - not be null;
825 * - be equal to a power of 2.
826 * bus must be wide enough to hold one chip */
827 if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
828 || (bank->bus_width > CFI_MAX_BUS_WIDTH)
829 || (bank->chip_width == 0)
830 || (bank->bus_width == 0)
831 || (bank->chip_width & (bank->chip_width - 1))
832 || (bank->bus_width & (bank->bus_width - 1))
833 || (bank->chip_width > bank->bus_width)) {
834 LOG_ERROR("chip and bus width have to specified in bytes");
835 return ERROR_FLASH_BANK_INVALID;
836 }
837
838 cfi_info = malloc(sizeof(struct cfi_flash_bank));
839 cfi_info->probed = 0;
840 cfi_info->erase_region_info = NULL;
841 cfi_info->pri_ext = NULL;
842 bank->driver_priv = cfi_info;
843
844 cfi_info->x16_as_x8 = 0;
845 cfi_info->jedec_probe = 0;
846 cfi_info->not_cfi = 0;
847 cfi_info->data_swap = 0;
848
849 for (unsigned i = 6; i < CMD_ARGC; i++) {
850 if (strcmp(CMD_ARGV[i], "x16_as_x8") == 0)
851 cfi_info->x16_as_x8 = 1;
852 else if (strcmp(CMD_ARGV[i], "data_swap") == 0)
853 cfi_info->data_swap = 1;
854 else if (strcmp(CMD_ARGV[i], "bus_swap") == 0)
855 bus_swap = 1;
856 else if (strcmp(CMD_ARGV[i], "jedec_probe") == 0)
857 cfi_info->jedec_probe = 1;
858 }
859
860 if (bus_swap)
861 cfi_info->endianness =
862 bank->target->endianness == TARGET_LITTLE_ENDIAN ?
863 TARGET_BIG_ENDIAN : TARGET_LITTLE_ENDIAN;
864 else
865 cfi_info->endianness = bank->target->endianness;
866
867 /* bank wasn't probed yet */
868 cfi_info->qry[0] = 0xff;
869
870 return ERROR_OK;
871 }
872
873 static int cfi_intel_erase(struct flash_bank *bank, int first, int last)
874 {
875 int retval;
876 struct cfi_flash_bank *cfi_info = bank->driver_priv;
877 int i;
878
879 cfi_intel_clear_status_register(bank);
880
881 for (i = first; i <= last; i++) {
882 retval = cfi_send_command(bank, 0x20, flash_address(bank, i, 0x0));
883 if (retval != ERROR_OK)
884 return retval;
885
886 retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0));
887 if (retval != ERROR_OK)
888 return retval;
889
890 uint8_t status;
891 retval = cfi_intel_wait_status_busy(bank, cfi_info->block_erase_timeout, &status);
892 if (retval != ERROR_OK)
893 return retval;
894
895 if (status == 0x80)
896 bank->sectors[i].is_erased = 1;
897 else {
898 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
899 if (retval != ERROR_OK)
900 return retval;
901
902 LOG_ERROR("couldn't erase block %i of flash bank at base "
903 TARGET_ADDR_FMT, i, bank->base);
904 return ERROR_FLASH_OPERATION_FAILED;
905 }
906 }
907
908 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
909 }
910
911 static int cfi_spansion_unlock_seq(struct flash_bank *bank)
912 {
913 int retval;
914 struct cfi_flash_bank *cfi_info = bank->driver_priv;
915 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
916
917 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
918 if (retval != ERROR_OK)
919 return retval;
920
921 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
922 if (retval != ERROR_OK)
923 return retval;
924
925 return ERROR_OK;
926 }
927
928 static int cfi_spansion_erase(struct flash_bank *bank, int first, int last)
929 {
930 int retval;
931 struct cfi_flash_bank *cfi_info = bank->driver_priv;
932 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
933 int i;
934
935 for (i = first; i <= last; i++) {
936 retval = cfi_spansion_unlock_seq(bank);
937 if (retval != ERROR_OK)
938 return retval;
939
940 retval = cfi_send_command(bank, 0x80, flash_address(bank, 0, pri_ext->_unlock1));
941 if (retval != ERROR_OK)
942 return retval;
943
944 retval = cfi_spansion_unlock_seq(bank);
945 if (retval != ERROR_OK)
946 return retval;
947
948 retval = cfi_send_command(bank, 0x30, flash_address(bank, i, 0x0));
949 if (retval != ERROR_OK)
950 return retval;
951
952 if (cfi_spansion_wait_status_busy(bank, cfi_info->block_erase_timeout) == ERROR_OK)
953 bank->sectors[i].is_erased = 1;
954 else {
955 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
956 if (retval != ERROR_OK)
957 return retval;
958
959 LOG_ERROR("couldn't erase block %i of flash bank at base "
960 TARGET_ADDR_FMT, i, bank->base);
961 return ERROR_FLASH_OPERATION_FAILED;
962 }
963 }
964
965 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
966 }
967
968 static int cfi_erase(struct flash_bank *bank, int first, int last)
969 {
970 struct cfi_flash_bank *cfi_info = bank->driver_priv;
971
972 if (bank->target->state != TARGET_HALTED) {
973 LOG_ERROR("Target not halted");
974 return ERROR_TARGET_NOT_HALTED;
975 }
976
977 if ((first < 0) || (last < first) || (last >= bank->num_sectors))
978 return ERROR_FLASH_SECTOR_INVALID;
979
980 if (cfi_info->qry[0] != 'Q')
981 return ERROR_FLASH_BANK_NOT_PROBED;
982
983 switch (cfi_info->pri_id) {
984 case 1:
985 case 3:
986 return cfi_intel_erase(bank, first, last);
987 break;
988 case 2:
989 return cfi_spansion_erase(bank, first, last);
990 break;
991 default:
992 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
993 break;
994 }
995
996 return ERROR_OK;
997 }
998
999 static int cfi_intel_protect(struct flash_bank *bank, int set, int first, int last)
1000 {
1001 int retval;
1002 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1003 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
1004 int retry = 0;
1005 int i;
1006
1007 /* if the device supports neither legacy lock/unlock (bit 3) nor
1008 * instant individual block locking (bit 5).
1009 */
1010 if (!(pri_ext->feature_support & 0x28)) {
1011 LOG_ERROR("lock/unlock not supported on flash");
1012 return ERROR_FLASH_OPERATION_FAILED;
1013 }
1014
1015 cfi_intel_clear_status_register(bank);
1016
1017 for (i = first; i <= last; i++) {
1018 retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0));
1019 if (retval != ERROR_OK)
1020 return retval;
1021 if (set) {
1022 retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0));
1023 if (retval != ERROR_OK)
1024 return retval;
1025 bank->sectors[i].is_protected = 1;
1026 } else {
1027 retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0));
1028 if (retval != ERROR_OK)
1029 return retval;
1030 bank->sectors[i].is_protected = 0;
1031 }
1032
1033 /* instant individual block locking doesn't require reading of the status register
1034 **/
1035 if (!(pri_ext->feature_support & 0x20)) {
1036 /* Clear lock bits operation may take up to 1.4s */
1037 uint8_t status;
1038 retval = cfi_intel_wait_status_busy(bank, 1400, &status);
1039 if (retval != ERROR_OK)
1040 return retval;
1041 } else {
1042 uint8_t block_status;
1043 /* read block lock bit, to verify status */
1044 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55));
1045 if (retval != ERROR_OK)
1046 return retval;
1047 retval = cfi_get_u8(bank, i, 0x2, &block_status);
1048 if (retval != ERROR_OK)
1049 return retval;
1050
1051 if ((block_status & 0x1) != set) {
1052 LOG_ERROR(
1053 "couldn't change block lock status (set = %i, block_status = 0x%2.2x)",
1054 set, block_status);
1055 retval = cfi_send_command(bank, 0x70, flash_address(bank, 0, 0x55));
1056 if (retval != ERROR_OK)
1057 return retval;
1058 uint8_t status;
1059 retval = cfi_intel_wait_status_busy(bank, 10, &status);
1060 if (retval != ERROR_OK)
1061 return retval;
1062
1063 if (retry > 10)
1064 return ERROR_FLASH_OPERATION_FAILED;
1065 else {
1066 i--;
1067 retry++;
1068 }
1069 }
1070 }
1071 }
1072
1073 /* if the device doesn't support individual block lock bits set/clear,
1074 * all blocks have been unlocked in parallel, so we set those that should be protected
1075 */
1076 if ((!set) && (!(pri_ext->feature_support & 0x20))) {
1077 /* FIX!!! this code path is broken!!!
1078 *
1079 * The correct approach is:
1080 *
1081 * 1. read out current protection status
1082 *
1083 * 2. override read out protection status w/unprotected.
1084 *
1085 * 3. re-protect what should be protected.
1086 *
1087 */
1088 for (i = 0; i < bank->num_sectors; i++) {
1089 if (bank->sectors[i].is_protected == 1) {
1090 cfi_intel_clear_status_register(bank);
1091
1092 retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0));
1093 if (retval != ERROR_OK)
1094 return retval;
1095
1096 retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0));
1097 if (retval != ERROR_OK)
1098 return retval;
1099
1100 uint8_t status;
1101 retval = cfi_intel_wait_status_busy(bank, 100, &status);
1102 if (retval != ERROR_OK)
1103 return retval;
1104 }
1105 }
1106 }
1107
1108 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
1109 }
1110
1111 static int cfi_protect(struct flash_bank *bank, int set, int first, int last)
1112 {
1113 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1114
1115 if (bank->target->state != TARGET_HALTED) {
1116 LOG_ERROR("Target not halted");
1117 return ERROR_TARGET_NOT_HALTED;
1118 }
1119
1120 if (cfi_info->qry[0] != 'Q')
1121 return ERROR_FLASH_BANK_NOT_PROBED;
1122
1123 switch (cfi_info->pri_id) {
1124 case 1:
1125 case 3:
1126 return cfi_intel_protect(bank, set, first, last);
1127 break;
1128 default:
1129 LOG_WARNING("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
1130 return ERROR_OK;
1131 }
1132 }
1133
1134 static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
1135 {
1136 struct target *target = bank->target;
1137
1138 uint8_t buf[CFI_MAX_BUS_WIDTH];
1139 cfi_command(bank, cmd, buf);
1140 switch (bank->bus_width) {
1141 case 1:
1142 return buf[0];
1143 break;
1144 case 2:
1145 return target_buffer_get_u16(target, buf);
1146 break;
1147 case 4:
1148 return target_buffer_get_u32(target, buf);
1149 break;
1150 default:
1151 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1152 bank->bus_width);
1153 return 0;
1154 }
1155 }
1156
1157 static int cfi_intel_write_block(struct flash_bank *bank, const uint8_t *buffer,
1158 uint32_t address, uint32_t count)
1159 {
1160 struct target *target = bank->target;
1161 struct reg_param reg_params[7];
1162 struct arm_algorithm arm_algo;
1163 struct working_area *write_algorithm;
1164 struct working_area *source = NULL;
1165 uint32_t buffer_size = 32768;
1166 uint32_t write_command_val, busy_pattern_val, error_pattern_val;
1167
1168 /* algorithm register usage:
1169 * r0: source address (in RAM)
1170 * r1: target address (in Flash)
1171 * r2: count
1172 * r3: flash write command
1173 * r4: status byte (returned to host)
1174 * r5: busy test pattern
1175 * r6: error test pattern
1176 */
1177
1178 /* see contib/loaders/flash/armv4_5_cfi_intel_32.s for src */
1179 static const uint32_t word_32_code[] = {
1180 0xe4904004, /* loop: ldr r4, [r0], #4 */
1181 0xe5813000, /* str r3, [r1] */
1182 0xe5814000, /* str r4, [r1] */
1183 0xe5914000, /* busy: ldr r4, [r1] */
1184 0xe0047005, /* and r7, r4, r5 */
1185 0xe1570005, /* cmp r7, r5 */
1186 0x1afffffb, /* bne busy */
1187 0xe1140006, /* tst r4, r6 */
1188 0x1a000003, /* bne done */
1189 0xe2522001, /* subs r2, r2, #1 */
1190 0x0a000001, /* beq done */
1191 0xe2811004, /* add r1, r1 #4 */
1192 0xeafffff2, /* b loop */
1193 0xeafffffe /* done: b -2 */
1194 };
1195
1196 /* see contib/loaders/flash/armv4_5_cfi_intel_16.s for src */
1197 static const uint32_t word_16_code[] = {
1198 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
1199 0xe1c130b0, /* strh r3, [r1] */
1200 0xe1c140b0, /* strh r4, [r1] */
1201 0xe1d140b0, /* busy ldrh r4, [r1] */
1202 0xe0047005, /* and r7, r4, r5 */
1203 0xe1570005, /* cmp r7, r5 */
1204 0x1afffffb, /* bne busy */
1205 0xe1140006, /* tst r4, r6 */
1206 0x1a000003, /* bne done */
1207 0xe2522001, /* subs r2, r2, #1 */
1208 0x0a000001, /* beq done */
1209 0xe2811002, /* add r1, r1 #2 */
1210 0xeafffff2, /* b loop */
1211 0xeafffffe /* done: b -2 */
1212 };
1213
1214 /* see contib/loaders/flash/armv4_5_cfi_intel_8.s for src */
1215 static const uint32_t word_8_code[] = {
1216 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
1217 0xe5c13000, /* strb r3, [r1] */
1218 0xe5c14000, /* strb r4, [r1] */
1219 0xe5d14000, /* busy ldrb r4, [r1] */
1220 0xe0047005, /* and r7, r4, r5 */
1221 0xe1570005, /* cmp r7, r5 */
1222 0x1afffffb, /* bne busy */
1223 0xe1140006, /* tst r4, r6 */
1224 0x1a000003, /* bne done */
1225 0xe2522001, /* subs r2, r2, #1 */
1226 0x0a000001, /* beq done */
1227 0xe2811001, /* add r1, r1 #1 */
1228 0xeafffff2, /* b loop */
1229 0xeafffffe /* done: b -2 */
1230 };
1231 uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
1232 const uint32_t *target_code_src;
1233 uint32_t target_code_size;
1234 int retval = ERROR_OK;
1235
1236 /* check we have a supported arch */
1237 if (is_arm(target_to_arm(target))) {
1238 /* All other ARM CPUs have 32 bit instructions */
1239 arm_algo.common_magic = ARM_COMMON_MAGIC;
1240 arm_algo.core_mode = ARM_MODE_SVC;
1241 arm_algo.core_state = ARM_STATE_ARM;
1242 } else {
1243 LOG_ERROR("Unknown architecture");
1244 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1245 }
1246
1247 cfi_intel_clear_status_register(bank);
1248
1249 /* If we are setting up the write_algorith, we need target_code_src
1250 * if not we only need target_code_size. */
1251
1252 /* However, we don't want to create multiple code paths, so we
1253 * do the unnecessary evaluation of target_code_src, which the
1254 * compiler will probably nicely optimize away if not needed */
1255
1256 /* prepare algorithm code for target endian */
1257 switch (bank->bus_width) {
1258 case 1:
1259 target_code_src = word_8_code;
1260 target_code_size = sizeof(word_8_code);
1261 break;
1262 case 2:
1263 target_code_src = word_16_code;
1264 target_code_size = sizeof(word_16_code);
1265 break;
1266 case 4:
1267 target_code_src = word_32_code;
1268 target_code_size = sizeof(word_32_code);
1269 break;
1270 default:
1271 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1272 bank->bus_width);
1273 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1274 }
1275
1276 /* flash write code */
1277 if (target_code_size > sizeof(target_code)) {
1278 LOG_WARNING("Internal error - target code buffer to small. "
1279 "Increase CFI_MAX_INTEL_CODESIZE and recompile.");
1280 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1281 }
1282
1283 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1284
1285 /* Get memory for block write handler */
1286 retval = target_alloc_working_area(target,
1287 target_code_size,
1288 &write_algorithm);
1289 if (retval != ERROR_OK) {
1290 LOG_WARNING("No working area available, can't do block memory writes");
1291 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1292 }
1293
1294 /* write algorithm code to working area */
1295 retval = target_write_buffer(target, write_algorithm->address,
1296 target_code_size, target_code);
1297 if (retval != ERROR_OK) {
1298 LOG_ERROR("Unable to write block write code to target");
1299 goto cleanup;
1300 }
1301
1302 /* Get a workspace buffer for the data to flash starting with 32k size.
1303 * Half size until buffer would be smaller 256 Bytes then fail back */
1304 /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
1305 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1306 buffer_size /= 2;
1307 if (buffer_size <= 256) {
1308 LOG_WARNING(
1309 "no large enough working area available, can't do block memory writes");
1310 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1311 goto cleanup;
1312 }
1313 }
1314
1315 /* setup algo registers */
1316 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1317 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1318 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1319 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1320 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
1321 init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
1322 init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
1323
1324 /* prepare command and status register patterns */
1325 write_command_val = cfi_command_val(bank, 0x40);
1326 busy_pattern_val = cfi_command_val(bank, 0x80);
1327 error_pattern_val = cfi_command_val(bank, 0x7e);
1328
1329 LOG_DEBUG("Using target buffer at " TARGET_ADDR_FMT " and of size 0x%04" PRIx32,
1330 source->address, buffer_size);
1331
1332 /* Programming main loop */
1333 while (count > 0) {
1334 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1335 uint32_t wsm_error;
1336
1337 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1338 if (retval != ERROR_OK)
1339 goto cleanup;
1340
1341 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1342 buf_set_u32(reg_params[1].value, 0, 32, address);
1343 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1344
1345 buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
1346 buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
1347 buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
1348
1349 LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32,
1350 thisrun_count, address);
1351
1352 /* Execute algorithm, assume breakpoint for last instruction */
1353 retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
1354 write_algorithm->address,
1355 write_algorithm->address + target_code_size -
1356 sizeof(uint32_t),
1357 10000, /* 10s should be enough for max. 32k of data */
1358 &arm_algo);
1359
1360 /* On failure try a fall back to direct word writes */
1361 if (retval != ERROR_OK) {
1362 cfi_intel_clear_status_register(bank);
1363 LOG_ERROR(
1364 "Execution of flash algorythm failed. Can't fall back. Please report.");
1365 retval = ERROR_FLASH_OPERATION_FAILED;
1366 /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
1367 /* FIXME To allow fall back or recovery, we must save the actual status
1368 * somewhere, so that a higher level code can start recovery. */
1369 goto cleanup;
1370 }
1371
1372 /* Check return value from algo code */
1373 wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
1374 if (wsm_error) {
1375 /* read status register (outputs debug information) */
1376 uint8_t status;
1377 cfi_intel_wait_status_busy(bank, 100, &status);
1378 cfi_intel_clear_status_register(bank);
1379 retval = ERROR_FLASH_OPERATION_FAILED;
1380 goto cleanup;
1381 }
1382
1383 buffer += thisrun_count;
1384 address += thisrun_count;
1385 count -= thisrun_count;
1386
1387 keep_alive();
1388 }
1389
1390 /* free up resources */
1391 cleanup:
1392 if (source)
1393 target_free_working_area(target, source);
1394
1395 target_free_working_area(target, write_algorithm);
1396
1397 destroy_reg_param(&reg_params[0]);
1398 destroy_reg_param(&reg_params[1]);
1399 destroy_reg_param(&reg_params[2]);
1400 destroy_reg_param(&reg_params[3]);
1401 destroy_reg_param(&reg_params[4]);
1402 destroy_reg_param(&reg_params[5]);
1403 destroy_reg_param(&reg_params[6]);
1404
1405 return retval;
1406 }
1407
1408 static int cfi_spansion_write_block_mips(struct flash_bank *bank, const uint8_t *buffer,
1409 uint32_t address, uint32_t count)
1410 {
1411 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1412 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1413 struct target *target = bank->target;
1414 struct reg_param reg_params[10];
1415 struct mips32_algorithm mips32_info;
1416 struct working_area *write_algorithm;
1417 struct working_area *source;
1418 uint32_t buffer_size = 32768;
1419 uint32_t status;
1420 int retval = ERROR_OK;
1421
1422 /* input parameters -
1423 * 4 A0 = source address
1424 * 5 A1 = destination address
1425 * 6 A2 = number of writes
1426 * 7 A3 = flash write command
1427 * 8 T0 = constant to mask DQ7 bits (also used for Dq5 with shift)
1428 * output parameters -
1429 * 9 T1 = 0x80 ok 0x00 bad
1430 * temp registers -
1431 * 10 T2 = value read from flash to test status
1432 * 11 T3 = holding register
1433 * unlock registers -
1434 * 12 T4 = unlock1_addr
1435 * 13 T5 = unlock1_cmd
1436 * 14 T6 = unlock2_addr
1437 * 15 T7 = unlock2_cmd */
1438
1439 static const uint32_t mips_word_16_code[] = {
1440 /* start: */
1441 MIPS32_LHU(0, 9, 0, 4), /* lhu $t1, ($a0) ; out = &saddr */
1442 MIPS32_ADDI(0, 4, 4, 2), /* addi $a0, $a0, 2 ; saddr += 2 */
1443 MIPS32_SH(0, 13, 0, 12), /* sh $t5, ($t4) ; *fl_unl_addr1 = fl_unl_cmd1 */
1444 MIPS32_SH(0, 15, 0, 14), /* sh $t7, ($t6) ; *fl_unl_addr2 = fl_unl_cmd2 */
1445 MIPS32_SH(0, 7, 0, 12), /* sh $a3, ($t4) ; *fl_unl_addr1 = fl_write_cmd */
1446 MIPS32_SH(0, 9, 0, 5), /* sh $t1, ($a1) ; *daddr = out */
1447 MIPS32_NOP, /* nop */
1448 /* busy: */
1449 MIPS32_LHU(0, 10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1450 MIPS32_XOR(0, 11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
1451 MIPS32_AND(0, 11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
1452 MIPS32_BNE(0, 11, 8, 13), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
1453 MIPS32_NOP, /* nop */
1454
1455 MIPS32_SRL(0, 10, 8, 2), /* srl $t2,$t0,2 ; temp1 = DQ7mask >> 2 */
1456 MIPS32_AND(0, 11, 10, 11), /* and $t3, $t2, $t3 ; temp2 = temp2 & temp1 */
1457 MIPS32_BNE(0, 11, 10, NEG16(8)), /* bne $t3, $t2, busy ; if (temp2 != temp1) goto busy */
1458 MIPS32_NOP, /* nop */
1459
1460 MIPS32_LHU(0, 10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1461 MIPS32_XOR(0, 11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
1462 MIPS32_AND(0, 11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
1463 MIPS32_BNE(0, 11, 8, 4), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
1464 MIPS32_NOP, /* nop */
1465
1466 MIPS32_XOR(0, 9, 9, 9), /* xor $t1, $t1, $t1 ; out = 0 */
1467 MIPS32_BEQ(0, 9, 0, 11), /* beq $t1, $zero, done ; if (out == 0) goto done */
1468 MIPS32_NOP, /* nop */
1469 /* cont: */
1470 MIPS32_ADDI(0, 6, 6, NEG16(1)), /* addi, $a2, $a2, -1 ; numwrites-- */
1471 MIPS32_BNE(0, 6, 0, 5), /* bne $a2, $zero, cont2 ; if (numwrite != 0) goto cont2 */
1472 MIPS32_NOP, /* nop */
1473
1474 MIPS32_LUI(0, 9, 0), /* lui $t1, 0 */
1475 MIPS32_ORI(0, 9, 9, 0x80), /* ori $t1, $t1, 0x80 ; out = 0x80 */
1476
1477 MIPS32_B(0, 4), /* b done ; goto done */
1478 MIPS32_NOP, /* nop */
1479 /* cont2: */
1480 MIPS32_ADDI(0, 5, 5, 2), /* addi $a0, $a0, 2 ; daddr += 2 */
1481 MIPS32_B(0, NEG16(33)), /* b start ; goto start */
1482 MIPS32_NOP, /* nop */
1483 /* done: */
1484 MIPS32_SDBBP(0), /* sdbbp ; break(); */
1485 };
1486
1487 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
1488 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
1489
1490 int target_code_size = 0;
1491 const uint32_t *target_code_src = NULL;
1492
1493 switch (bank->bus_width) {
1494 case 2:
1495 /* Check for DQ5 support */
1496 if (cfi_info->status_poll_mask & (1 << 5)) {
1497 target_code_src = mips_word_16_code;
1498 target_code_size = sizeof(mips_word_16_code);
1499 } else {
1500 LOG_ERROR("Need DQ5 support");
1501 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1502 /* target_code_src = mips_word_16_code_dq7only; */
1503 /* target_code_size = sizeof(mips_word_16_code_dq7only); */
1504 }
1505 break;
1506 default:
1507 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1508 bank->bus_width);
1509 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1510 }
1511
1512 /* flash write code */
1513 uint8_t *target_code;
1514
1515 /* convert bus-width dependent algorithm code to correct endianness */
1516 target_code = malloc(target_code_size);
1517 if (target_code == NULL) {
1518 LOG_ERROR("Out of memory");
1519 return ERROR_FAIL;
1520 }
1521
1522 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1523
1524 /* allocate working area */
1525 retval = target_alloc_working_area(target, target_code_size,
1526 &write_algorithm);
1527 if (retval != ERROR_OK) {
1528 free(target_code);
1529 return retval;
1530 }
1531
1532 /* write algorithm code to working area */
1533 retval = target_write_buffer(target, write_algorithm->address,
1534 target_code_size, target_code);
1535 if (retval != ERROR_OK) {
1536 free(target_code);
1537 return retval;
1538 }
1539
1540 free(target_code);
1541
1542 /* the following code still assumes target code is fixed 24*4 bytes */
1543
1544 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1545 buffer_size /= 2;
1546 if (buffer_size <= 256) {
1547 /* we already allocated the writing code, but failed to get a
1548 * buffer, free the algorithm */
1549 target_free_working_area(target, write_algorithm);
1550
1551 LOG_WARNING(
1552 "not enough working area available, can't do block memory writes");
1553 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1554 }
1555 }
1556
1557 init_reg_param(&reg_params[0], "r4", 32, PARAM_OUT);
1558 init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
1559 init_reg_param(&reg_params[2], "r6", 32, PARAM_OUT);
1560 init_reg_param(&reg_params[3], "r7", 32, PARAM_OUT);
1561 init_reg_param(&reg_params[4], "r8", 32, PARAM_OUT);
1562 init_reg_param(&reg_params[5], "r9", 32, PARAM_IN);
1563 init_reg_param(&reg_params[6], "r12", 32, PARAM_OUT);
1564 init_reg_param(&reg_params[7], "r13", 32, PARAM_OUT);
1565 init_reg_param(&reg_params[8], "r14", 32, PARAM_OUT);
1566 init_reg_param(&reg_params[9], "r15", 32, PARAM_OUT);
1567
1568 while (count > 0) {
1569 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1570
1571 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1572 if (retval != ERROR_OK)
1573 break;
1574
1575 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1576 buf_set_u32(reg_params[1].value, 0, 32, address);
1577 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1578 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1579 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1580 buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
1581 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1582 buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
1583 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1584
1585 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1586 write_algorithm->address,
1587 write_algorithm->address + ((target_code_size) - 4),
1588 10000, &mips32_info);
1589 if (retval != ERROR_OK)
1590 break;
1591
1592 status = buf_get_u32(reg_params[5].value, 0, 32);
1593 if (status != 0x80) {
1594 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1595 retval = ERROR_FLASH_OPERATION_FAILED;
1596 break;
1597 }
1598
1599 buffer += thisrun_count;
1600 address += thisrun_count;
1601 count -= thisrun_count;
1602 }
1603
1604 target_free_all_working_areas(target);
1605
1606 destroy_reg_param(&reg_params[0]);
1607 destroy_reg_param(&reg_params[1]);
1608 destroy_reg_param(&reg_params[2]);
1609 destroy_reg_param(&reg_params[3]);
1610 destroy_reg_param(&reg_params[4]);
1611 destroy_reg_param(&reg_params[5]);
1612 destroy_reg_param(&reg_params[6]);
1613 destroy_reg_param(&reg_params[7]);
1614 destroy_reg_param(&reg_params[8]);
1615 destroy_reg_param(&reg_params[9]);
1616
1617 return retval;
1618 }
1619
1620 static int cfi_spansion_write_block(struct flash_bank *bank, const uint8_t *buffer,
1621 uint32_t address, uint32_t count)
1622 {
1623 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1624 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1625 struct target *target = bank->target;
1626 struct reg_param reg_params[10];
1627 void *arm_algo;
1628 struct arm_algorithm armv4_5_algo;
1629 struct armv7m_algorithm armv7m_algo;
1630 struct working_area *write_algorithm;
1631 struct working_area *source;
1632 uint32_t buffer_size = 32768;
1633 uint32_t status;
1634 int retval = ERROR_OK;
1635
1636 /* input parameters -
1637 * R0 = source address
1638 * R1 = destination address
1639 * R2 = number of writes
1640 * R3 = flash write command
1641 * R4 = constant to mask DQ7 bits (also used for Dq5 with shift)
1642 * output parameters -
1643 * R5 = 0x80 ok 0x00 bad
1644 * temp registers -
1645 * R6 = value read from flash to test status
1646 * R7 = holding register
1647 * unlock registers -
1648 * R8 = unlock1_addr
1649 * R9 = unlock1_cmd
1650 * R10 = unlock2_addr
1651 * R11 = unlock2_cmd */
1652
1653 /* see contib/loaders/flash/armv4_5_cfi_span_32.s for src */
1654 static const uint32_t armv4_5_word_32_code[] = {
1655 /* 00008100 <sp_32_code>: */
1656 0xe4905004, /* ldr r5, [r0], #4 */
1657 0xe5889000, /* str r9, [r8] */
1658 0xe58ab000, /* str r11, [r10] */
1659 0xe5883000, /* str r3, [r8] */
1660 0xe5815000, /* str r5, [r1] */
1661 0xe1a00000, /* nop */
1662 /* 00008110 <sp_32_busy>: */
1663 0xe5916000, /* ldr r6, [r1] */
1664 0xe0257006, /* eor r7, r5, r6 */
1665 0xe0147007, /* ands r7, r4, r7 */
1666 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1667 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1668 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
1669 0xe5916000, /* ldr r6, [r1] */
1670 0xe0257006, /* eor r7, r5, r6 */
1671 0xe0147007, /* ands r7, r4, r7 */
1672 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1673 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
1674 0x1a000004, /* bne 8154 <sp_32_done> */
1675 /* 00008140 <sp_32_cont>: */
1676 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1677 0x03a05080, /* moveq r5, #128 ; 0x80 */
1678 0x0a000001, /* beq 8154 <sp_32_done> */
1679 0xe2811004, /* add r1, r1, #4 ; 0x4 */
1680 0xeaffffe8, /* b 8100 <sp_32_code> */
1681 /* 00008154 <sp_32_done>: */
1682 0xeafffffe /* b 8154 <sp_32_done> */
1683 };
1684
1685 /* see contib/loaders/flash/armv4_5_cfi_span_16.s for src */
1686 static const uint32_t armv4_5_word_16_code[] = {
1687 /* 00008158 <sp_16_code>: */
1688 0xe0d050b2, /* ldrh r5, [r0], #2 */
1689 0xe1c890b0, /* strh r9, [r8] */
1690 0xe1cab0b0, /* strh r11, [r10] */
1691 0xe1c830b0, /* strh r3, [r8] */
1692 0xe1c150b0, /* strh r5, [r1] */
1693 0xe1a00000, /* nop (mov r0,r0) */
1694 /* 00008168 <sp_16_busy>: */
1695 0xe1d160b0, /* ldrh r6, [r1] */
1696 0xe0257006, /* eor r7, r5, r6 */
1697 0xe0147007, /* ands r7, r4, r7 */
1698 0x0a000007, /* beq 8198 <sp_16_cont> */
1699 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1700 0x0afffff9, /* beq 8168 <sp_16_busy> */
1701 0xe1d160b0, /* ldrh r6, [r1] */
1702 0xe0257006, /* eor r7, r5, r6 */
1703 0xe0147007, /* ands r7, r4, r7 */
1704 0x0a000001, /* beq 8198 <sp_16_cont> */
1705 0xe3a05000, /* mov r5, #0 ; 0x0 */
1706 0x1a000004, /* bne 81ac <sp_16_done> */
1707 /* 00008198 <sp_16_cont>: */
1708 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1709 0x03a05080, /* moveq r5, #128 ; 0x80 */
1710 0x0a000001, /* beq 81ac <sp_16_done> */
1711 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1712 0xeaffffe8, /* b 8158 <sp_16_code> */
1713 /* 000081ac <sp_16_done>: */
1714 0xeafffffe /* b 81ac <sp_16_done> */
1715 };
1716
1717 /* see contrib/loaders/flash/armv7m_cfi_span_16.s for src */
1718 static const uint32_t armv7m_word_16_code[] = {
1719 0x5B02F830,
1720 0x9000F8A8,
1721 0xB000F8AA,
1722 0x3000F8A8,
1723 0xBF00800D,
1724 0xEA85880E,
1725 0x40270706,
1726 0xEA16D00A,
1727 0xD0F70694,
1728 0xEA85880E,
1729 0x40270706,
1730 0xF04FD002,
1731 0xD1070500,
1732 0xD0023A01,
1733 0x0102F101,
1734 0xF04FE7E0,
1735 0xE7FF0580,
1736 0x0000BE00
1737 };
1738
1739 /* see contrib/loaders/flash/armv7m_cfi_span_16_dq7.s for src */
1740 static const uint32_t armv7m_word_16_code_dq7only[] = {
1741 /* 00000000 <code>: */
1742 0x5B02F830, /* ldrh.w r5, [r0], #2 */
1743 0x9000F8A8, /* strh.w r9, [r8] */
1744 0xB000F8AA, /* strh.w fp, [sl] */
1745 0x3000F8A8, /* strh.w r3, [r8] */
1746 0xBF00800D, /* strh r5, [r1, #0] */
1747 /* nop */
1748
1749 /* 00000014 <busy>: */
1750 0xEA85880E, /* ldrh r6, [r1, #0] */
1751 /* eor.w r7, r5, r6 */
1752 0x40270706, /* ands r7, r4 */
1753 0x3A01D1FA, /* bne.n 14 <busy> */
1754 /* subs r2, #1 */
1755 0xF101D002, /* beq.n 28 <success> */
1756 0xE7EB0102, /* add.w r1, r1, #2 */
1757 /* b.n 0 <code> */
1758
1759 /* 00000028 <success>: */
1760 0x0580F04F, /* mov.w r5, #128 */
1761 0xBF00E7FF, /* b.n 30 <done> */
1762 /* nop (for alignment purposes) */
1763
1764 /* 00000030 <done>: */
1765 0x0000BE00 /* bkpt 0x0000 */
1766 };
1767
1768 /* see contrib/loaders/flash/armv4_5_cfi_span_16_dq7.s for src */
1769 static const uint32_t armv4_5_word_16_code_dq7only[] = {
1770 /* <sp_16_code>: */
1771 0xe0d050b2, /* ldrh r5, [r0], #2 */
1772 0xe1c890b0, /* strh r9, [r8] */
1773 0xe1cab0b0, /* strh r11, [r10] */
1774 0xe1c830b0, /* strh r3, [r8] */
1775 0xe1c150b0, /* strh r5, [r1] */
1776 0xe1a00000, /* nop (mov r0,r0) */
1777 /* <sp_16_busy>: */
1778 0xe1d160b0, /* ldrh r6, [r1] */
1779 0xe0257006, /* eor r7, r5, r6 */
1780 0xe2177080, /* ands r7, #0x80 */
1781 0x1afffffb, /* bne 8168 <sp_16_busy> */
1782 /* */
1783 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1784 0x03a05080, /* moveq r5, #128 ; 0x80 */
1785 0x0a000001, /* beq 81ac <sp_16_done> */
1786 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1787 0xeafffff0, /* b 8158 <sp_16_code> */
1788 /* 000081ac <sp_16_done>: */
1789 0xeafffffe /* b 81ac <sp_16_done> */
1790 };
1791
1792 /* see contrib/loaders/flash/armv4_5_cfi_span_8.s for src */
1793 static const uint32_t armv4_5_word_8_code[] = {
1794 /* 000081b0 <sp_16_code_end>: */
1795 0xe4d05001, /* ldrb r5, [r0], #1 */
1796 0xe5c89000, /* strb r9, [r8] */
1797 0xe5cab000, /* strb r11, [r10] */
1798 0xe5c83000, /* strb r3, [r8] */
1799 0xe5c15000, /* strb r5, [r1] */
1800 0xe1a00000, /* nop (mov r0,r0) */
1801 /* 000081c0 <sp_8_busy>: */
1802 0xe5d16000, /* ldrb r6, [r1] */
1803 0xe0257006, /* eor r7, r5, r6 */
1804 0xe0147007, /* ands r7, r4, r7 */
1805 0x0a000007, /* beq 81f0 <sp_8_cont> */
1806 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1807 0x0afffff9, /* beq 81c0 <sp_8_busy> */
1808 0xe5d16000, /* ldrb r6, [r1] */
1809 0xe0257006, /* eor r7, r5, r6 */
1810 0xe0147007, /* ands r7, r4, r7 */
1811 0x0a000001, /* beq 81f0 <sp_8_cont> */
1812 0xe3a05000, /* mov r5, #0 ; 0x0 */
1813 0x1a000004, /* bne 8204 <sp_8_done> */
1814 /* 000081f0 <sp_8_cont>: */
1815 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1816 0x03a05080, /* moveq r5, #128 ; 0x80 */
1817 0x0a000001, /* beq 8204 <sp_8_done> */
1818 0xe2811001, /* add r1, r1, #1 ; 0x1 */
1819 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
1820 /* 00008204 <sp_8_done>: */
1821 0xeafffffe /* b 8204 <sp_8_done> */
1822 };
1823
1824 if (strncmp(target_type_name(target), "mips_m4k", 8) == 0)
1825 return cfi_spansion_write_block_mips(bank, buffer, address, count);
1826
1827 if (is_armv7m(target_to_armv7m(target))) { /* armv7m target */
1828 armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
1829 armv7m_algo.core_mode = ARM_MODE_THREAD;
1830 arm_algo = &armv7m_algo;
1831 } else if (is_arm(target_to_arm(target))) {
1832 /* All other ARM CPUs have 32 bit instructions */
1833 armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
1834 armv4_5_algo.core_mode = ARM_MODE_SVC;
1835 armv4_5_algo.core_state = ARM_STATE_ARM;
1836 arm_algo = &armv4_5_algo;
1837 } else {
1838 LOG_ERROR("Unknown architecture");
1839 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1840 }
1841
1842 int target_code_size = 0;
1843 const uint32_t *target_code_src = NULL;
1844
1845 switch (bank->bus_width) {
1846 case 1:
1847 if (is_armv7m(target_to_armv7m(target))) {
1848 LOG_ERROR("Unknown ARM architecture");
1849 return ERROR_FAIL;
1850 }
1851 target_code_src = armv4_5_word_8_code;
1852 target_code_size = sizeof(armv4_5_word_8_code);
1853 break;
1854 case 2:
1855 /* Check for DQ5 support */
1856 if (cfi_info->status_poll_mask & (1 << 5)) {
1857 if (is_armv7m(target_to_armv7m(target))) {
1858 /* armv7m target */
1859 target_code_src = armv7m_word_16_code;
1860 target_code_size = sizeof(armv7m_word_16_code);
1861 } else { /* armv4_5 target */
1862 target_code_src = armv4_5_word_16_code;
1863 target_code_size = sizeof(armv4_5_word_16_code);
1864 }
1865 } else {
1866 /* No DQ5 support. Use DQ7 DATA# polling only. */
1867 if (is_armv7m(target_to_armv7m(target))) {
1868 /* armv7m target */
1869 target_code_src = armv7m_word_16_code_dq7only;
1870 target_code_size = sizeof(armv7m_word_16_code_dq7only);
1871 } else { /* armv4_5 target */
1872 target_code_src = armv4_5_word_16_code_dq7only;
1873 target_code_size = sizeof(armv4_5_word_16_code_dq7only);
1874 }
1875 }
1876 break;
1877 case 4:
1878 if (is_armv7m(target_to_armv7m(target))) {
1879 LOG_ERROR("Unknown ARM architecture");
1880 return ERROR_FAIL;
1881 }
1882 target_code_src = armv4_5_word_32_code;
1883 target_code_size = sizeof(armv4_5_word_32_code);
1884 break;
1885 default:
1886 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1887 bank->bus_width);
1888 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1889 }
1890
1891 /* flash write code */
1892 uint8_t *target_code;
1893
1894 /* convert bus-width dependent algorithm code to correct endianness */
1895 target_code = malloc(target_code_size);
1896 if (target_code == NULL) {
1897 LOG_ERROR("Out of memory");
1898 return ERROR_FAIL;
1899 }
1900
1901 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1902
1903 /* allocate working area */
1904 retval = target_alloc_working_area(target, target_code_size,
1905 &write_algorithm);
1906 if (retval != ERROR_OK) {
1907 free(target_code);
1908 return retval;
1909 }
1910
1911 /* write algorithm code to working area */
1912 retval = target_write_buffer(target, write_algorithm->address,
1913 target_code_size, target_code);
1914 if (retval != ERROR_OK) {
1915 free(target_code);
1916 return retval;
1917 }
1918
1919 free(target_code);
1920
1921 /* the following code still assumes target code is fixed 24*4 bytes */
1922
1923 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1924 buffer_size /= 2;
1925 if (buffer_size <= 256) {
1926 /* we already allocated the writing code, but failed to get a
1927 * buffer, free the algorithm */
1928 target_free_working_area(target, write_algorithm);
1929
1930 LOG_WARNING(
1931 "not enough working area available, can't do block memory writes");
1932 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1933 }
1934 }
1935
1936 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1937 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1938 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1939 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1940 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1941 init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
1942 init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
1943 init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
1944 init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
1945 init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
1946
1947 while (count > 0) {
1948 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1949
1950 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1951 if (retval != ERROR_OK)
1952 break;
1953
1954 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1955 buf_set_u32(reg_params[1].value, 0, 32, address);
1956 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1957 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1958 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1959 buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
1960 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1961 buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
1962 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1963
1964 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1965 write_algorithm->address,
1966 write_algorithm->address + ((target_code_size) - 4),
1967 10000, arm_algo);
1968 if (retval != ERROR_OK)
1969 break;
1970
1971 status = buf_get_u32(reg_params[5].value, 0, 32);
1972 if (status != 0x80) {
1973 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1974 retval = ERROR_FLASH_OPERATION_FAILED;
1975 break;
1976 }
1977
1978 buffer += thisrun_count;
1979 address += thisrun_count;
1980 count -= thisrun_count;
1981 }
1982
1983 target_free_all_working_areas(target);
1984
1985 destroy_reg_param(&reg_params[0]);
1986 destroy_reg_param(&reg_params[1]);
1987 destroy_reg_param(&reg_params[2]);
1988 destroy_reg_param(&reg_params[3]);
1989 destroy_reg_param(&reg_params[4]);
1990 destroy_reg_param(&reg_params[5]);
1991 destroy_reg_param(&reg_params[6]);
1992 destroy_reg_param(&reg_params[7]);
1993 destroy_reg_param(&reg_params[8]);
1994 destroy_reg_param(&reg_params[9]);
1995
1996 return retval;
1997 }
1998
1999 static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2000 {
2001 int retval;
2002 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2003
2004 cfi_intel_clear_status_register(bank);
2005 retval = cfi_send_command(bank, 0x40, address);
2006 if (retval != ERROR_OK)
2007 return retval;
2008
2009 retval = cfi_target_write_memory(bank, address, bank->bus_width, 1, word);
2010 if (retval != ERROR_OK)
2011 return retval;
2012
2013 uint8_t status;
2014 retval = cfi_intel_wait_status_busy(bank, cfi_info->word_write_timeout, &status);
2015 if (retval != ERROR_OK)
2016 return retval;
2017 if (status != 0x80) {
2018 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2019 if (retval != ERROR_OK)
2020 return retval;
2021
2022 LOG_ERROR("couldn't write word at base " TARGET_ADDR_FMT
2023 ", address 0x%" PRIx32,
2024 bank->base, address);
2025 return ERROR_FLASH_OPERATION_FAILED;
2026 }
2027
2028 return ERROR_OK;
2029 }
2030
2031 static int cfi_intel_write_words(struct flash_bank *bank, const uint8_t *word,
2032 uint32_t wordcount, uint32_t address)
2033 {
2034 int retval;
2035 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2036
2037 /* Calculate buffer size and boundary mask
2038 * buffersize is (buffer size per chip) * (number of chips)
2039 * bufferwsize is buffersize in words */
2040 uint32_t buffersize =
2041 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2042 uint32_t buffermask = buffersize-1;
2043 uint32_t bufferwsize = buffersize / bank->bus_width;
2044
2045 /* Check for valid range */
2046 if (address & buffermask) {
2047 LOG_ERROR("Write address at base " TARGET_ADDR_FMT ", address 0x%"
2048 PRIx32 " not aligned to 2^%d boundary",
2049 bank->base, address, cfi_info->max_buf_write_size);
2050 return ERROR_FLASH_OPERATION_FAILED;
2051 }
2052
2053 /* Check for valid size */
2054 if (wordcount > bufferwsize) {
2055 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32,
2056 wordcount, buffersize);
2057 return ERROR_FLASH_OPERATION_FAILED;
2058 }
2059
2060 /* Write to flash buffer */
2061 cfi_intel_clear_status_register(bank);
2062
2063 /* Initiate buffer operation _*/
2064 retval = cfi_send_command(bank, 0xe8, address);
2065 if (retval != ERROR_OK)
2066 return retval;
2067 uint8_t status;
2068 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2069 if (retval != ERROR_OK)
2070 return retval;
2071 if (status != 0x80) {
2072 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2073 if (retval != ERROR_OK)
2074 return retval;
2075
2076 LOG_ERROR(
2077 "couldn't start buffer write operation at base " TARGET_ADDR_FMT
2078 ", address 0x%" PRIx32,
2079 bank->base,
2080 address);
2081 return ERROR_FLASH_OPERATION_FAILED;
2082 }
2083
2084 /* Write buffer wordcount-1 and data words */
2085 retval = cfi_send_command(bank, bufferwsize-1, address);
2086 if (retval != ERROR_OK)
2087 return retval;
2088
2089 retval = cfi_target_write_memory(bank, address, bank->bus_width, bufferwsize, word);
2090 if (retval != ERROR_OK)
2091 return retval;
2092
2093 /* Commit write operation */
2094 retval = cfi_send_command(bank, 0xd0, address);
2095 if (retval != ERROR_OK)
2096 return retval;
2097
2098 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2099 if (retval != ERROR_OK)
2100 return retval;
2101
2102 if (status != 0x80) {
2103 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2104 if (retval != ERROR_OK)
2105 return retval;
2106
2107 LOG_ERROR("Buffer write at base " TARGET_ADDR_FMT
2108 ", address 0x%" PRIx32 " failed.", bank->base, address);
2109 return ERROR_FLASH_OPERATION_FAILED;
2110 }
2111
2112 return ERROR_OK;
2113 }
2114
2115 static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2116 {
2117 int retval;
2118 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2119 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2120
2121 retval = cfi_spansion_unlock_seq(bank);
2122 if (retval != ERROR_OK)
2123 return retval;
2124
2125 retval = cfi_send_command(bank, 0xa0, flash_address(bank, 0, pri_ext->_unlock1));
2126 if (retval != ERROR_OK)
2127 return retval;
2128
2129 retval = cfi_target_write_memory(bank, address, bank->bus_width, 1, word);
2130 if (retval != ERROR_OK)
2131 return retval;
2132
2133 if (cfi_spansion_wait_status_busy(bank, cfi_info->word_write_timeout) != ERROR_OK) {
2134 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
2135 if (retval != ERROR_OK)
2136 return retval;
2137
2138 LOG_ERROR("couldn't write word at base " TARGET_ADDR_FMT
2139 ", address 0x%" PRIx32, bank->base, address);
2140 return ERROR_FLASH_OPERATION_FAILED;
2141 }
2142
2143 return ERROR_OK;
2144 }
2145
2146 static int cfi_spansion_write_words(struct flash_bank *bank, const uint8_t *word,
2147 uint32_t wordcount, uint32_t address)
2148 {
2149 int retval;
2150 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2151
2152 /* Calculate buffer size and boundary mask
2153 * buffersize is (buffer size per chip) * (number of chips)
2154 * bufferwsize is buffersize in words */
2155 uint32_t buffersize =
2156 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2157 uint32_t buffermask = buffersize-1;
2158 uint32_t bufferwsize = buffersize / bank->bus_width;
2159
2160 /* Check for valid range */
2161 if (address & buffermask) {
2162 LOG_ERROR("Write address at base " TARGET_ADDR_FMT
2163 ", address 0x%" PRIx32 " not aligned to 2^%d boundary",
2164 bank->base, address, cfi_info->max_buf_write_size);
2165 return ERROR_FLASH_OPERATION_FAILED;
2166 }
2167
2168 /* Check for valid size */
2169 if (wordcount > bufferwsize) {
2170 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %"
2171 PRId32, wordcount, buffersize);
2172 return ERROR_FLASH_OPERATION_FAILED;
2173 }
2174
2175 /* Unlock */
2176 retval = cfi_spansion_unlock_seq(bank);
2177 if (retval != ERROR_OK)
2178 return retval;
2179
2180 /* Buffer load command */
2181 retval = cfi_send_command(bank, 0x25, address);
2182 if (retval != ERROR_OK)
2183 return retval;
2184
2185 /* Write buffer wordcount-1 and data words */
2186 retval = cfi_send_command(bank, bufferwsize-1, address);
2187 if (retval != ERROR_OK)
2188 return retval;
2189
2190 retval = cfi_target_write_memory(bank, address, bank->bus_width, bufferwsize, word);
2191 if (retval != ERROR_OK)
2192 return retval;
2193
2194 /* Commit write operation */
2195 retval = cfi_send_command(bank, 0x29, address);
2196 if (retval != ERROR_OK)
2197 return retval;
2198
2199 if (cfi_spansion_wait_status_busy(bank, cfi_info->buf_write_timeout) != ERROR_OK) {
2200 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
2201 if (retval != ERROR_OK)
2202 return retval;
2203
2204 LOG_ERROR("couldn't write block at base " TARGET_ADDR_FMT
2205 ", address 0x%" PRIx32 ", size 0x%" PRIx32, bank->base, address,
2206 bufferwsize);
2207 return ERROR_FLASH_OPERATION_FAILED;
2208 }
2209
2210 return ERROR_OK;
2211 }
2212
2213 static int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2214 {
2215 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2216
2217 switch (cfi_info->pri_id) {
2218 case 1:
2219 case 3:
2220 return cfi_intel_write_word(bank, word, address);
2221 break;
2222 case 2:
2223 return cfi_spansion_write_word(bank, word, address);
2224 break;
2225 default:
2226 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2227 break;
2228 }
2229
2230 return ERROR_FLASH_OPERATION_FAILED;
2231 }
2232
2233 static int cfi_write_words(struct flash_bank *bank, const uint8_t *word,
2234 uint32_t wordcount, uint32_t address)
2235 {
2236 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2237
2238 if (cfi_info->buf_write_timeout_typ == 0) {
2239 /* buffer writes are not supported */
2240 LOG_DEBUG("Buffer Writes Not Supported");
2241 return ERROR_FLASH_OPER_UNSUPPORTED;
2242 }
2243
2244 switch (cfi_info->pri_id) {
2245 case 1:
2246 case 3:
2247 return cfi_intel_write_words(bank, word, wordcount, address);
2248 break;
2249 case 2:
2250 return cfi_spansion_write_words(bank, word, wordcount, address);
2251 break;
2252 default:
2253 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2254 break;
2255 }
2256
2257 return ERROR_FLASH_OPERATION_FAILED;
2258 }
2259
2260 static int cfi_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
2261 {
2262 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2263 uint32_t address = bank->base + offset;
2264 uint32_t read_p;
2265 int align; /* number of unaligned bytes */
2266 uint8_t current_word[CFI_MAX_BUS_WIDTH];
2267 int i;
2268 int retval;
2269
2270 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2271 (int)count, (unsigned)offset);
2272
2273 if (bank->target->state != TARGET_HALTED) {
2274 LOG_ERROR("Target not halted");
2275 return ERROR_TARGET_NOT_HALTED;
2276 }
2277
2278 if (offset + count > bank->size)
2279 return ERROR_FLASH_DST_OUT_OF_BANK;
2280
2281 if (cfi_info->qry[0] != 'Q')
2282 return ERROR_FLASH_BANK_NOT_PROBED;
2283
2284 /* start at the first byte of the first word (bus_width size) */
2285 read_p = address & ~(bank->bus_width - 1);
2286 align = address - read_p;
2287 if (align != 0) {
2288 LOG_INFO("Fixup %d unaligned read head bytes", align);
2289
2290 /* read a complete word from flash */
2291 retval = cfi_target_read_memory(bank, read_p, bank->bus_width, 1, current_word);
2292 if (retval != ERROR_OK)
2293 return retval;
2294
2295 /* take only bytes we need */
2296 for (i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2297 *buffer++ = current_word[i];
2298
2299 read_p += bank->bus_width;
2300 }
2301
2302 align = count / bank->bus_width;
2303 if (align) {
2304 retval = cfi_target_read_memory(bank, read_p, bank->bus_width, align, buffer);
2305 if (retval != ERROR_OK)
2306 return retval;
2307
2308 read_p += align * bank->bus_width;
2309 buffer += align * bank->bus_width;
2310 count -= align * bank->bus_width;
2311 }
2312
2313 if (count) {
2314 LOG_INFO("Fixup %" PRIu32 " unaligned read tail bytes", count);
2315
2316 /* read a complete word from flash */
2317 retval = cfi_target_read_memory(bank, read_p, bank->bus_width, 1, current_word);
2318 if (retval != ERROR_OK)
2319 return retval;
2320
2321 /* take only bytes we need */
2322 for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2323 *buffer++ = current_word[i];
2324 }
2325
2326 return ERROR_OK;
2327 }
2328
2329 static int cfi_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count)
2330 {
2331 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2332 uint32_t address = bank->base + offset; /* address of first byte to be programmed */
2333 uint32_t write_p;
2334 int align; /* number of unaligned bytes */
2335 int blk_count; /* number of bus_width bytes for block copy */
2336 uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being
2337 *programmed */
2338 uint8_t *swapped_buffer = NULL;
2339 const uint8_t *real_buffer = NULL;
2340 int i;
2341 int retval;
2342
2343 if (bank->target->state != TARGET_HALTED) {
2344 LOG_ERROR("Target not halted");
2345 return ERROR_TARGET_NOT_HALTED;
2346 }
2347
2348 if (offset + count > bank->size)
2349 return ERROR_FLASH_DST_OUT_OF_BANK;
2350
2351 if (cfi_info->qry[0] != 'Q')
2352 return ERROR_FLASH_BANK_NOT_PROBED;
2353
2354 /* start at the first byte of the first word (bus_width size) */
2355 write_p = address & ~(bank->bus_width - 1);
2356 align = address - write_p;
2357 if (align != 0) {
2358 LOG_INFO("Fixup %d unaligned head bytes", align);
2359
2360 /* read a complete word from flash */
2361 retval = cfi_target_read_memory(bank, write_p, bank->bus_width, 1, current_word);
2362 if (retval != ERROR_OK)
2363 return retval;
2364
2365 /* replace only bytes that must be written */
2366 for (i = align;
2367 (i < bank->bus_width) && (count > 0);
2368 i++, count--)
2369 if (cfi_info->data_swap)
2370 /* data bytes are swapped (reverse endianness) */
2371 current_word[bank->bus_width - i] = *buffer++;
2372 else
2373 current_word[i] = *buffer++;
2374
2375 retval = cfi_write_word(bank, current_word, write_p);
2376 if (retval != ERROR_OK)
2377 return retval;
2378 write_p += bank->bus_width;
2379 }
2380
2381 if (cfi_info->data_swap && count) {
2382 swapped_buffer = malloc(count & ~(bank->bus_width - 1));
2383 switch (bank->bus_width) {
2384 case 2:
2385 buf_bswap16(swapped_buffer, buffer,
2386 count & ~(bank->bus_width - 1));
2387 break;
2388 case 4:
2389 buf_bswap32(swapped_buffer, buffer,
2390 count & ~(bank->bus_width - 1));
2391 break;
2392 }
2393 real_buffer = buffer;
2394 buffer = swapped_buffer;
2395 }
2396
2397 /* handle blocks of bus_size aligned bytes */
2398 blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
2399 switch (cfi_info->pri_id) {
2400 /* try block writes (fails without working area) */
2401 case 1:
2402 case 3:
2403 retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
2404 break;
2405 case 2:
2406 retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
2407 break;
2408 default:
2409 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2410 retval = ERROR_FLASH_OPERATION_FAILED;
2411 break;
2412 }
2413 if (retval == ERROR_OK) {
2414 /* Increment pointers and decrease count on succesful block write */
2415 buffer += blk_count;
2416 write_p += blk_count;
2417 count -= blk_count;
2418 } else {
2419 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
2420 /* Calculate buffer size and boundary mask
2421 * buffersize is (buffer size per chip) * (number of chips)
2422 * bufferwsize is buffersize in words */
2423 uint32_t buffersize =
2424 (1UL <<
2425 cfi_info->max_buf_write_size) *
2426 (bank->bus_width / bank->chip_width);
2427 uint32_t buffermask = buffersize-1;
2428 uint32_t bufferwsize = buffersize / bank->bus_width;
2429
2430 /* fall back to memory writes */
2431 while (count >= (uint32_t)bank->bus_width) {
2432 int fallback;
2433 if ((write_p & 0xff) == 0) {
2434 LOG_INFO("Programming at 0x%08" PRIx32 ", count 0x%08"
2435 PRIx32 " bytes remaining", write_p, count);
2436 }
2437 fallback = 1;
2438 if ((bufferwsize > 0) && (count >= buffersize) &&
2439 !(write_p & buffermask)) {
2440 retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
2441 if (retval == ERROR_OK) {
2442 buffer += buffersize;
2443 write_p += buffersize;
2444 count -= buffersize;
2445 fallback = 0;
2446 } else if (retval != ERROR_FLASH_OPER_UNSUPPORTED)
2447 return retval;
2448 }
2449 /* try the slow way? */
2450 if (fallback) {
2451 for (i = 0; i < bank->bus_width; i++)
2452 current_word[i] = *buffer++;
2453
2454 retval = cfi_write_word(bank, current_word, write_p);
2455 if (retval != ERROR_OK)
2456 return retval;
2457
2458 write_p += bank->bus_width;
2459 count -= bank->bus_width;
2460 }
2461 }
2462 } else
2463 return retval;
2464 }
2465
2466 if (swapped_buffer) {
2467 buffer = real_buffer + (buffer - swapped_buffer);
2468 free(swapped_buffer);
2469 }
2470
2471 /* return to read array mode, so we can read from flash again for padding */
2472 retval = cfi_reset(bank);
2473 if (retval != ERROR_OK)
2474 return retval;
2475
2476 /* handle unaligned tail bytes */
2477 if (count > 0) {
2478 LOG_INFO("Fixup %" PRId32 " unaligned tail bytes", count);
2479
2480 /* read a complete word from flash */
2481 retval = cfi_target_read_memory(bank, write_p, bank->bus_width, 1, current_word);
2482 if (retval != ERROR_OK)
2483 return retval;
2484
2485 /* replace only bytes that must be written */
2486 for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2487 if (cfi_info->data_swap)
2488 /* data bytes are swapped (reverse endianness) */
2489 current_word[bank->bus_width - i] = *buffer++;
2490 else
2491 current_word[i] = *buffer++;
2492
2493 retval = cfi_write_word(bank, current_word, write_p);
2494 if (retval != ERROR_OK)
2495 return retval;
2496 }
2497
2498 /* return to read array mode */
2499 return cfi_reset(bank);
2500 }
2501
2502 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, const void *param)
2503 {
2504 (void) param;
2505 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2506 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2507
2508 pri_ext->_reversed_geometry = 1;
2509 }
2510
2511 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, const void *param)
2512 {
2513 int i;
2514 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2515 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2516 (void) param;
2517
2518 if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3)) {
2519 LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
2520
2521 for (i = 0; i < cfi_info->num_erase_regions / 2; i++) {
2522 int j = (cfi_info->num_erase_regions - 1) - i;
2523 uint32_t swap;
2524
2525 swap = cfi_info->erase_region_info[i];
2526 cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
2527 cfi_info->erase_region_info[j] = swap;
2528 }
2529 }
2530 }
2531
2532 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, const void *param)
2533 {
2534 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2535 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2536 const struct cfi_unlock_addresses *unlock_addresses = param;
2537
2538 pri_ext->_unlock1 = unlock_addresses->unlock1;
2539 pri_ext->_unlock2 = unlock_addresses->unlock2;
2540 }
2541
2542 static void cfi_fixup_0002_polling_bits(struct flash_bank *bank, const void *param)
2543 {
2544 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2545 const int *status_poll_mask = param;
2546
2547 cfi_info->status_poll_mask = *status_poll_mask;
2548 }
2549
2550
2551 static int cfi_query_string(struct flash_bank *bank, int address)
2552 {
2553 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2554 int retval;
2555
2556 retval = cfi_send_command(bank, 0x98, flash_address(bank, 0, address));
2557 if (retval != ERROR_OK)
2558 return retval;
2559
2560 retval = cfi_query_u8(bank, 0, 0x10, &cfi_info->qry[0]);
2561 if (retval != ERROR_OK)
2562 return retval;
2563 retval = cfi_query_u8(bank, 0, 0x11, &cfi_info->qry[1]);
2564 if (retval != ERROR_OK)
2565 return retval;
2566 retval = cfi_query_u8(bank, 0, 0x12, &cfi_info->qry[2]);
2567 if (retval != ERROR_OK)
2568 return retval;
2569
2570 LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x",
2571 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
2572
2573 if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y')) {
2574 retval = cfi_reset(bank);
2575 if (retval != ERROR_OK)
2576 return retval;
2577 LOG_ERROR("Could not probe bank: no QRY");
2578 return ERROR_FLASH_BANK_INVALID;
2579 }
2580
2581 return ERROR_OK;
2582 }
2583
2584 static int cfi_probe(struct flash_bank *bank)
2585 {
2586 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2587 struct target *target = bank->target;
2588 int num_sectors = 0;
2589 int i;
2590 int sector = 0;
2591 uint32_t unlock1 = 0x555;
2592 uint32_t unlock2 = 0x2aa;
2593 int retval;
2594 uint8_t value_buf0[CFI_MAX_BUS_WIDTH], value_buf1[CFI_MAX_BUS_WIDTH];
2595
2596 if (bank->target->state != TARGET_HALTED) {
2597 LOG_ERROR("Target not halted");
2598 return ERROR_TARGET_NOT_HALTED;
2599 }
2600
2601 cfi_info->probed = 0;
2602 cfi_info->num_erase_regions = 0;
2603 if (bank->sectors) {
2604 free(bank->sectors);
2605 bank->sectors = NULL;
2606 }
2607 if (cfi_info->erase_region_info) {
2608 free(cfi_info->erase_region_info);
2609 cfi_info->erase_region_info = NULL;
2610 }
2611
2612 /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
2613 * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
2614 */
2615 if (cfi_info->jedec_probe) {
2616 unlock1 = 0x5555;
2617 unlock2 = 0x2aaa;
2618 }
2619
2620 /* switch to read identifier codes mode ("AUTOSELECT") */
2621 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, unlock1));
2622 if (retval != ERROR_OK)
2623 return retval;
2624 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, unlock2));
2625 if (retval != ERROR_OK)
2626 return retval;
2627 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, unlock1));
2628 if (retval != ERROR_OK)
2629 return retval;
2630
2631 retval = cfi_target_read_memory(bank, flash_address(bank, 0, 0x00),
2632 bank->bus_width, 1, value_buf0);
2633 if (retval != ERROR_OK)
2634 return retval;
2635 retval = cfi_target_read_memory(bank, flash_address(bank, 0, 0x01),
2636 bank->bus_width, 1, value_buf1);
2637 if (retval != ERROR_OK)
2638 return retval;
2639 switch (bank->chip_width) {
2640 case 1:
2641 cfi_info->manufacturer = *value_buf0;
2642 cfi_info->device_id = *value_buf1;
2643 break;
2644 case 2:
2645 cfi_info->manufacturer = target_buffer_get_u16(target, value_buf0);
2646 cfi_info->device_id = target_buffer_get_u16(target, value_buf1);
2647 break;
2648 case 4:
2649 cfi_info->manufacturer = target_buffer_get_u32(target, value_buf0);
2650 cfi_info->device_id = target_buffer_get_u32(target, value_buf1);
2651 break;
2652 default:
2653 LOG_ERROR("Unsupported bank chipwidth %d, can't probe memory",
2654 bank->chip_width);
2655 return ERROR_FLASH_OPERATION_FAILED;
2656 }
2657
2658 LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x",
2659 cfi_info->manufacturer, cfi_info->device_id);
2660 /* switch back to read array mode */
2661 retval = cfi_reset(bank);
2662 if (retval != ERROR_OK)
2663 return retval;
2664
2665 /* check device/manufacturer ID for known non-CFI flashes. */
2666 cfi_fixup_non_cfi(bank);
2667
2668 /* query only if this is a CFI compatible flash,
2669 * otherwise the relevant info has already been filled in
2670 */
2671 if (cfi_info->not_cfi == 0) {
2672 /* enter CFI query mode
2673 * according to JEDEC Standard No. 68.01,
2674 * a single bus sequence with address = 0x55, data = 0x98 should put
2675 * the device into CFI query mode.
2676 *
2677 * SST flashes clearly violate this, and we will consider them incompatible for now
2678 */
2679
2680 retval = cfi_query_string(bank, 0x55);
2681 if (retval != ERROR_OK) {
2682 /*
2683 * Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
2684 * be harmless enough:
2685 *
2686 * http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
2687 */
2688 LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
2689 retval = cfi_query_string(bank, 0x555);
2690 }
2691 if (retval != ERROR_OK)
2692 return retval;
2693
2694 retval = cfi_query_u16(bank, 0, 0x13, &cfi_info->pri_id);
2695 if (retval != ERROR_OK)
2696 return retval;
2697 retval = cfi_query_u16(bank, 0, 0x15, &cfi_info->pri_addr);
2698 if (retval != ERROR_OK)
2699 return retval;
2700 retval = cfi_query_u16(bank, 0, 0x17, &cfi_info->alt_id);
2701 if (retval != ERROR_OK)
2702 return retval;
2703 retval = cfi_query_u16(bank, 0, 0x19, &cfi_info->alt_addr);
2704 if (retval != ERROR_OK)
2705 return retval;
2706
2707 LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: "
2708 "0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1],
2709 cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr,
2710 cfi_info->alt_id, cfi_info->alt_addr);
2711
2712 retval = cfi_query_u8(bank, 0, 0x1b, &cfi_info->vcc_min);
2713 if (retval != ERROR_OK)
2714 return retval;
2715 retval = cfi_query_u8(bank, 0, 0x1c, &cfi_info->vcc_max);
2716 if (retval != ERROR_OK)
2717 return retval;
2718 retval = cfi_query_u8(bank, 0, 0x1d, &cfi_info->vpp_min);
2719 if (retval != ERROR_OK)
2720 return retval;
2721 retval = cfi_query_u8(bank, 0, 0x1e, &cfi_info->vpp_max);
2722 if (retval != ERROR_OK)
2723 return retval;
2724
2725 retval = cfi_query_u8(bank, 0, 0x1f, &cfi_info->word_write_timeout_typ);
2726 if (retval != ERROR_OK)
2727 return retval;
2728 retval = cfi_query_u8(bank, 0, 0x20, &cfi_info->buf_write_timeout_typ);
2729 if (retval != ERROR_OK)
2730 return retval;
2731 retval = cfi_query_u8(bank, 0, 0x21, &cfi_info->block_erase_timeout_typ);
2732 if (retval != ERROR_OK)
2733 return retval;
2734 retval = cfi_query_u8(bank, 0, 0x22, &cfi_info->chip_erase_timeout_typ);
2735 if (retval != ERROR_OK)
2736 return retval;
2737 retval = cfi_query_u8(bank, 0, 0x23, &cfi_info->word_write_timeout_max);
2738 if (retval != ERROR_OK)
2739 return retval;
2740 retval = cfi_query_u8(bank, 0, 0x24, &cfi_info->buf_write_timeout_max);
2741 if (retval != ERROR_OK)
2742 return retval;
2743 retval = cfi_query_u8(bank, 0, 0x25, &cfi_info->block_erase_timeout_max);
2744 if (retval != ERROR_OK)
2745 return retval;
2746 retval = cfi_query_u8(bank, 0, 0x26, &cfi_info->chip_erase_timeout_max);
2747 if (retval != ERROR_OK)
2748 return retval;
2749
2750 uint8_t data;
2751 retval = cfi_query_u8(bank, 0, 0x27, &data);
2752 if (retval != ERROR_OK)
2753 return retval;
2754 cfi_info->dev_size = 1 << data;
2755
2756 retval = cfi_query_u16(bank, 0, 0x28, &cfi_info->interface_desc);
2757 if (retval != ERROR_OK)
2758 return retval;
2759 retval = cfi_query_u16(bank, 0, 0x2a, &cfi_info->max_buf_write_size);
2760 if (retval != ERROR_OK)
2761 return retval;
2762 retval = cfi_query_u8(bank, 0, 0x2c, &cfi_info->num_erase_regions);
2763 if (retval != ERROR_OK)
2764 return retval;
2765
2766 LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: 0x%x",
2767 cfi_info->dev_size, cfi_info->interface_desc,
2768 (1 << cfi_info->max_buf_write_size));
2769
2770 if (cfi_info->num_erase_regions) {
2771 cfi_info->erase_region_info = malloc(sizeof(*cfi_info->erase_region_info)
2772 * cfi_info->num_erase_regions);
2773 for (i = 0; i < cfi_info->num_erase_regions; i++) {
2774 retval = cfi_query_u32(bank,
2775 0,
2776 0x2d + (4 * i),
2777 &cfi_info->erase_region_info[i]);
2778 if (retval != ERROR_OK)
2779 return retval;
2780 LOG_DEBUG(
2781 "erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "",
2782 i,
2783 (cfi_info->erase_region_info[i] & 0xffff) + 1,
2784 (cfi_info->erase_region_info[i] >> 16) * 256);
2785 }
2786 } else
2787 cfi_info->erase_region_info = NULL;
2788
2789 /* We need to read the primary algorithm extended query table before calculating
2790 * the sector layout to be able to apply fixups
2791 */
2792 switch (cfi_info->pri_id) {
2793 /* Intel command set (standard and extended) */
2794 case 0x0001:
2795 case 0x0003:
2796 cfi_read_intel_pri_ext(bank);
2797 break;
2798 /* AMD/Spansion, Atmel, ... command set */
2799 case 0x0002:
2800 cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /*
2801 *default
2802 *for
2803 *all
2804 *CFI
2805 *flashs
2806 **/
2807 cfi_read_0002_pri_ext(bank);
2808 break;
2809 default:
2810 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2811 break;
2812 }
2813
2814 /* return to read array mode
2815 * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
2816 */
2817 retval = cfi_reset(bank);
2818 if (retval != ERROR_OK)
2819 return retval;
2820 } /* end CFI case */
2821
2822 LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
2823 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2824 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2825 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2826 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2827
2828 LOG_DEBUG("typ. word write timeout: %u us, typ. buf write timeout: %u us, "
2829 "typ. block erase timeout: %u ms, typ. chip erase timeout: %u ms",
2830 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
2831 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
2832
2833 LOG_DEBUG("max. word write timeout: %u us, max. buf write timeout: %u us, "
2834 "max. block erase timeout: %u ms, max. chip erase timeout: %u ms",
2835 (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2836 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2837 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2838 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2839
2840 /* convert timeouts to real values in ms */
2841 cfi_info->word_write_timeout = DIV_ROUND_UP((1L << cfi_info->word_write_timeout_typ) *
2842 (1L << cfi_info->word_write_timeout_max), 1000);
2843 cfi_info->buf_write_timeout = DIV_ROUND_UP((1L << cfi_info->buf_write_timeout_typ) *
2844 (1L << cfi_info->buf_write_timeout_max), 1000);
2845 cfi_info->block_erase_timeout = (1L << cfi_info->block_erase_timeout_typ) *
2846 (1L << cfi_info->block_erase_timeout_max);
2847 cfi_info->chip_erase_timeout = (1L << cfi_info->chip_erase_timeout_typ) *
2848 (1L << cfi_info->chip_erase_timeout_max);
2849
2850 LOG_DEBUG("calculated word write timeout: %u ms, buf write timeout: %u ms, "
2851 "block erase timeout: %u ms, chip erase timeout: %u ms",
2852 cfi_info->word_write_timeout, cfi_info->buf_write_timeout,
2853 cfi_info->block_erase_timeout, cfi_info->chip_erase_timeout);
2854
2855 /* apply fixups depending on the primary command set */
2856 switch (cfi_info->pri_id) {
2857 /* Intel command set (standard and extended) */
2858 case 0x0001:
2859 case 0x0003:
2860 cfi_fixup(bank, cfi_0001_fixups);
2861 break;
2862 /* AMD/Spansion, Atmel, ... command set */
2863 case 0x0002:
2864 cfi_fixup(bank, cfi_0002_fixups);
2865 break;
2866 default:
2867 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2868 break;
2869 }
2870
2871 if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size) {
2872 LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32
2873 " size flash was found", bank->size, cfi_info->dev_size);
2874 }
2875
2876 if (cfi_info->num_erase_regions == 0) {
2877 /* a device might have only one erase block, spanning the whole device */
2878 bank->num_sectors = 1;
2879 bank->sectors = malloc(sizeof(struct flash_sector));
2880
2881 bank->sectors[sector].offset = 0x0;
2882 bank->sectors[sector].size = bank->size;
2883 bank->sectors[sector].is_erased = -1;
2884 bank->sectors[sector].is_protected = -1;
2885 } else {
2886 uint32_t offset = 0;
2887
2888 for (i = 0; i < cfi_info->num_erase_regions; i++)
2889 num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
2890
2891 bank->num_sectors = num_sectors;
2892 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
2893
2894 for (i = 0; i < cfi_info->num_erase_regions; i++) {
2895 uint32_t j;
2896 for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++) {
2897 bank->sectors[sector].offset = offset;
2898 bank->sectors[sector].size =
2899 ((cfi_info->erase_region_info[i] >> 16) * 256)
2900 * bank->bus_width / bank->chip_width;
2901 offset += bank->sectors[sector].size;
2902 bank->sectors[sector].is_erased = -1;
2903 bank->sectors[sector].is_protected = -1;
2904 sector++;
2905 }
2906 }
2907 if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width)) {
2908 LOG_WARNING(
2909 "CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "", \
2910 (cfi_info->dev_size * bank->bus_width / bank->chip_width),
2911 offset);
2912 }
2913 }
2914
2915 cfi_info->probed = 1;
2916
2917 return ERROR_OK;
2918 }
2919
2920 static int cfi_auto_probe(struct flash_bank *bank)
2921 {
2922 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2923 if (cfi_info->probed)
2924 return ERROR_OK;
2925 return cfi_probe(bank);
2926 }
2927
2928 static int cfi_intel_protect_check(struct flash_bank *bank)
2929 {
2930 int retval;
2931 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2932 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
2933 int i;
2934
2935 /* check if block lock bits are supported on this device */
2936 if (!(pri_ext->blk_status_reg_mask & 0x1))
2937 return ERROR_FLASH_OPERATION_FAILED;
2938
2939 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55));
2940 if (retval != ERROR_OK)
2941 return retval;
2942
2943 for (i = 0; i < bank->num_sectors; i++) {
2944 uint8_t block_status;
2945 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2946 if (retval != ERROR_OK)
2947 return retval;
2948
2949 if (block_status & 1)
2950 bank->sectors[i].is_protected = 1;
2951 else
2952 bank->sectors[i].is_protected = 0;
2953 }
2954
2955 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2956 }
2957
2958 static int cfi_spansion_protect_check(struct flash_bank *bank)
2959 {
2960 int retval;
2961 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2962 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2963 int i;
2964
2965 retval = cfi_spansion_unlock_seq(bank);
2966 if (retval != ERROR_OK)
2967 return retval;
2968
2969 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, pri_ext->_unlock1));
2970 if (retval != ERROR_OK)
2971 return retval;
2972
2973 for (i = 0; i < bank->num_sectors; i++) {
2974 uint8_t block_status;
2975 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2976 if (retval != ERROR_OK)
2977 return retval;
2978
2979 if (block_status & 1)
2980 bank->sectors[i].is_protected = 1;
2981 else
2982 bank->sectors[i].is_protected = 0;
2983 }
2984
2985 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
2986 }
2987
2988 static int cfi_protect_check(struct flash_bank *bank)
2989 {
2990 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2991
2992 if (bank->target->state != TARGET_HALTED) {
2993 LOG_ERROR("Target not halted");
2994 return ERROR_TARGET_NOT_HALTED;
2995 }
2996
2997 if (cfi_info->qry[0] != 'Q')
2998 return ERROR_FLASH_BANK_NOT_PROBED;
2999
3000 switch (cfi_info->pri_id) {
3001 case 1:
3002 case 3:
3003 return cfi_intel_protect_check(bank);
3004 break;
3005 case 2:
3006 return cfi_spansion_protect_check(bank);
3007 break;
3008 default:
3009 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
3010 break;
3011 }
3012
3013 return ERROR_OK;
3014 }
3015
3016 static int get_cfi_info(struct flash_bank *bank, char *buf, int buf_size)
3017 {
3018 int printed;
3019 struct cfi_flash_bank *cfi_info = bank->driver_priv;
3020
3021 if (cfi_info->qry[0] == 0xff) {
3022 snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n");
3023 return ERROR_OK;
3024 }
3025
3026 if (cfi_info->not_cfi == 0)
3027 printed = snprintf(buf, buf_size, "\nCFI flash: ");
3028 else
3029 printed = snprintf(buf, buf_size, "\nnon-CFI flash: ");
3030 buf += printed;
3031 buf_size -= printed;
3032
3033 printed = snprintf(buf, buf_size, "mfr: 0x%4.4x, id:0x%4.4x\n\n",
3034 cfi_info->manufacturer, cfi_info->device_id);
3035 buf += printed;
3036 buf_size -= printed;
3037
3038 printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: "
3039 "0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n",
3040 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2],
3041 cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
3042 buf += printed;
3043 buf_size -= printed;
3044
3045 printed = snprintf(buf, buf_size, "Vcc min: %x.%x, Vcc max: %x.%x, "
3046 "Vpp min: %u.%x, Vpp max: %u.%x\n",
3047 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
3048 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
3049 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
3050 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
3051 buf += printed;
3052 buf_size -= printed;
3053
3054 printed = snprintf(buf, buf_size, "typ. word write timeout: %u us, "
3055 "typ. buf write timeout: %u us, "
3056 "typ. block erase timeout: %u ms, "
3057 "typ. chip erase timeout: %u ms\n",
3058 1 << cfi_info->word_write_timeout_typ,
3059 1 << cfi_info->buf_write_timeout_typ,
3060 1 << cfi_info->block_erase_timeout_typ,
3061 1 << cfi_info->chip_erase_timeout_typ);
3062 buf += printed;
3063 buf_size -= printed;
3064
3065 printed = snprintf(buf,
3066 buf_size,
3067 "max. word write timeout: %u us, "
3068 "max. buf write timeout: %u us, max. "
3069 "block erase timeout: %u ms, max. chip erase timeout: %u ms\n",
3070 (1 <<
3071 cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
3072 (1 <<
3073 cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
3074 (1 <<
3075 cfi_info->block_erase_timeout_max) *
3076 (1 << cfi_info->block_erase_timeout_typ),
3077 (1 <<
3078 cfi_info->chip_erase_timeout_max) *
3079 (1 << cfi_info->chip_erase_timeout_typ));
3080 buf += printed;
3081 buf_size -= printed;
3082
3083 printed = snprintf(buf, buf_size, "size: 0x%" PRIx32 ", interface desc: %i, "
3084 "max buffer write size: 0x%x\n",
3085 cfi_info->dev_size,
3086 cfi_info->interface_desc,
3087 1 << cfi_info->max_buf_write_size);
3088 buf += printed;
3089 buf_size -= printed;
3090
3091 switch (cfi_info->pri_id) {
3092 case 1:
3093 case 3:
3094 cfi_intel_info(bank, buf, buf_size);
3095 break;
3096 case 2:
3097 cfi_spansion_info(bank, buf, buf_size);
3098 break;
3099 default:
3100 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
3101 break;
3102 }
3103
3104 return ERROR_OK;
3105 }
3106
3107 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, const void *param)
3108 {
3109 struct cfi_flash_bank *cfi_info = bank->driver_priv;
3110
3111 /* disable write buffer for M29W128G */
3112 cfi_info->buf_write_timeout_typ = 0;
3113 }
3114
3115 const struct flash_driver cfi_flash = {
3116 .name = "cfi",
3117 .flash_bank_command = cfi_flash_bank_command,
3118 .erase = cfi_erase,
3119 .protect = cfi_protect,
3120 .write = cfi_write,
3121 .read = cfi_read,
3122 .probe = cfi_probe,
3123 .auto_probe = cfi_auto_probe,
3124 /* FIXME: access flash at bus_width size */
3125 .erase_check = default_flash_blank_check,
3126 .protect_check = cfi_protect_check,
3127 .info = get_cfi_info,
3128 .free_driver_priv = default_flash_free_driver_priv,
3129 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)