flash/nor: use target_addr_t for flash bank base
[openocd.git] / src / flash / nor / cfi.c
1 /***************************************************************************
2 * Copyright (C) 2005, 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * Copyright (C) 2009 Michael Schwingen *
5 * michael@schwingen.org *
6 * Copyright (C) 2010 √ėyvind Harboe <oyvind.harboe@zylin.com> *
7 * Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General Public License as published by *
11 * the Free Software Foundation; either version 2 of the License, or *
12 * (at your option) any later version. *
13 * *
14 * This program is distributed in the hope that it will be useful, *
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
17 * GNU General Public License for more details. *
18 * *
19 * You should have received a copy of the GNU General Public License *
20 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
21 ***************************************************************************/
22
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "imp.h"
28 #include "cfi.h"
29 #include "non_cfi.h"
30 #include <target/arm.h>
31 #include <target/arm7_9_common.h>
32 #include <target/armv7m.h>
33 #include <target/mips32.h>
34 #include <helper/binarybuffer.h>
35 #include <target/algorithm.h>
36
37 #define CFI_MAX_BUS_WIDTH 4
38 #define CFI_MAX_CHIP_WIDTH 4
39
40 /* defines internal maximum size for code fragment in cfi_intel_write_block() */
41 #define CFI_MAX_INTEL_CODESIZE 256
42
43 /* some id-types with specific handling */
44 #define AT49BV6416 0x00d6
45 #define AT49BV6416T 0x00d2
46
47 static const struct cfi_unlock_addresses cfi_unlock_addresses[] = {
48 [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
49 [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
50 };
51
52 static const int cfi_status_poll_mask_dq6_dq7 = CFI_STATUS_POLL_MASK_DQ6_DQ7;
53
54 /* CFI fixups forward declarations */
55 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, const void *param);
56 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, const void *param);
57 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, const void *param);
58 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, const void *param);
59 static void cfi_fixup_0002_polling_bits(struct flash_bank *bank, const void *param);
60
61 /* fixup after reading cmdset 0002 primary query table */
62 static const struct cfi_fixup cfi_0002_fixups[] = {
63 {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses,
64 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
65 {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses,
66 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
67 {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses,
68 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
69 {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses,
70 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
71 {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses,
72 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
73 {CFI_MFR_SST, 0x274b, cfi_fixup_0002_unlock_addresses,
74 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
75 {CFI_MFR_SST, 0x235f, cfi_fixup_0002_polling_bits, /* 39VF3201C */
76 &cfi_status_poll_mask_dq6_dq7},
77 {CFI_MFR_SST, 0x236d, cfi_fixup_0002_unlock_addresses,
78 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
79 {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_reversed_erase_regions, NULL},
80 {CFI_MFR_ST, 0x22C4, cfi_fixup_reversed_erase_regions, NULL}, /* M29W160ET */
81 {CFI_MFR_FUJITSU, 0x22ea, cfi_fixup_0002_unlock_addresses,
82 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
83 {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses,
84 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
85 {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses,
86 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
87 {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses,
88 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
89 {CFI_MFR_EON, 0x225b, cfi_fixup_0002_unlock_addresses,
90 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
91 {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses,
92 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
93 {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
94 {CFI_MFR_ST, 0x227E, cfi_fixup_0002_write_buffer, NULL},/* M29W128G */
95 {0, 0, NULL, NULL}
96 };
97
98 /* fixup after reading cmdset 0001 primary query table */
99 static const struct cfi_fixup cfi_0001_fixups[] = {
100 {0, 0, NULL, NULL}
101 };
102
103 static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
104 {
105 struct cfi_flash_bank *cfi_info = bank->driver_priv;
106 const struct cfi_fixup *f;
107
108 for (f = fixups; f->fixup; f++) {
109 if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
110 ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
111 f->fixup(bank, f->param);
112 }
113 }
114
115 static inline uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset)
116 {
117 struct cfi_flash_bank *cfi_info = bank->driver_priv;
118
119 if (cfi_info->x16_as_x8)
120 offset *= 2;
121
122 /* while the sector list isn't built, only accesses to sector 0 work */
123 if (sector == 0)
124 return bank->base + offset * bank->bus_width;
125 else {
126 if (!bank->sectors) {
127 LOG_ERROR("BUG: sector list not yet built");
128 exit(-1);
129 }
130 return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
131 }
132 }
133
134 static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
135 {
136 int i;
137 struct cfi_flash_bank *cfi_info = bank->driver_priv;
138
139 /* clear whole buffer, to ensure bits that exceed the bus_width
140 * are set to zero
141 */
142 for (i = 0; i < CFI_MAX_BUS_WIDTH; i++)
143 cmd_buf[i] = 0;
144
145 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN) {
146 for (i = bank->bus_width; i > 0; i--)
147 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
148 } else {
149 for (i = 1; i <= bank->bus_width; i++)
150 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
151 }
152 }
153
154 static int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
155 {
156 uint8_t command[CFI_MAX_BUS_WIDTH];
157
158 cfi_command(bank, cmd, command);
159 return target_write_memory(bank->target, address, bank->bus_width, 1, command);
160 }
161
162 /* read unsigned 8-bit value from the bank
163 * flash banks are expected to be made of similar chips
164 * the query result should be the same for all
165 */
166 static int cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
167 {
168 struct target *target = bank->target;
169 struct cfi_flash_bank *cfi_info = bank->driver_priv;
170 uint8_t data[CFI_MAX_BUS_WIDTH];
171
172 int retval;
173 retval = target_read_memory(target, flash_address(bank, sector, offset),
174 bank->bus_width, 1, data);
175 if (retval != ERROR_OK)
176 return retval;
177
178 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
179 *val = data[0];
180 else
181 *val = data[bank->bus_width - 1];
182
183 return ERROR_OK;
184 }
185
186 /* read unsigned 8-bit value from the bank
187 * in case of a bank made of multiple chips,
188 * the individual values are ORed
189 */
190 static int cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
191 {
192 struct target *target = bank->target;
193 struct cfi_flash_bank *cfi_info = bank->driver_priv;
194 uint8_t data[CFI_MAX_BUS_WIDTH];
195 int i;
196
197 int retval;
198 retval = target_read_memory(target, flash_address(bank, sector, offset),
199 bank->bus_width, 1, data);
200 if (retval != ERROR_OK)
201 return retval;
202
203 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN) {
204 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
205 data[0] |= data[i];
206
207 *val = data[0];
208 } else {
209 uint8_t value = 0;
210 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
211 value |= data[bank->bus_width - 1 - i];
212
213 *val = value;
214 }
215 return ERROR_OK;
216 }
217
218 static int cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset, uint16_t *val)
219 {
220 struct target *target = bank->target;
221 struct cfi_flash_bank *cfi_info = bank->driver_priv;
222 uint8_t data[CFI_MAX_BUS_WIDTH * 2];
223 int retval;
224
225 if (cfi_info->x16_as_x8) {
226 uint8_t i;
227 for (i = 0; i < 2; i++) {
228 retval = target_read_memory(target, flash_address(bank, sector, offset + i),
229 bank->bus_width, 1, &data[i * bank->bus_width]);
230 if (retval != ERROR_OK)
231 return retval;
232 }
233 } else {
234 retval = target_read_memory(target, flash_address(bank, sector, offset),
235 bank->bus_width, 2, data);
236 if (retval != ERROR_OK)
237 return retval;
238 }
239
240 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
241 *val = data[0] | data[bank->bus_width] << 8;
242 else
243 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
244
245 return ERROR_OK;
246 }
247
248 static int cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset, uint32_t *val)
249 {
250 struct target *target = bank->target;
251 struct cfi_flash_bank *cfi_info = bank->driver_priv;
252 uint8_t data[CFI_MAX_BUS_WIDTH * 4];
253 int retval;
254
255 if (cfi_info->x16_as_x8) {
256 uint8_t i;
257 for (i = 0; i < 4; i++) {
258 retval = target_read_memory(target, flash_address(bank, sector, offset + i),
259 bank->bus_width, 1, &data[i * bank->bus_width]);
260 if (retval != ERROR_OK)
261 return retval;
262 }
263 } else {
264 retval = target_read_memory(target, flash_address(bank, sector, offset),
265 bank->bus_width, 4, data);
266 if (retval != ERROR_OK)
267 return retval;
268 }
269
270 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
271 *val = data[0] | data[bank->bus_width] << 8 |
272 data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
273 else
274 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8 |
275 data[(3 * bank->bus_width) - 1] << 16 |
276 data[(4 * bank->bus_width) - 1] << 24;
277
278 return ERROR_OK;
279 }
280
281 static int cfi_reset(struct flash_bank *bank)
282 {
283 struct cfi_flash_bank *cfi_info = bank->driver_priv;
284 int retval = ERROR_OK;
285
286 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
287 if (retval != ERROR_OK)
288 return retval;
289
290 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
291 if (retval != ERROR_OK)
292 return retval;
293
294 if (cfi_info->manufacturer == 0x20 &&
295 (cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E)) {
296 /* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state
297 * so we send an extra 0xF0 reset to fix the bug */
298 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x00));
299 if (retval != ERROR_OK)
300 return retval;
301 }
302
303 return retval;
304 }
305
306 static void cfi_intel_clear_status_register(struct flash_bank *bank)
307 {
308 cfi_send_command(bank, 0x50, flash_address(bank, 0, 0x0));
309 }
310
311 static int cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout, uint8_t *val)
312 {
313 uint8_t status;
314
315 int retval = ERROR_OK;
316
317 for (;; ) {
318 if (timeout-- < 0) {
319 LOG_ERROR("timeout while waiting for WSM to become ready");
320 return ERROR_FAIL;
321 }
322
323 retval = cfi_get_u8(bank, 0, 0x0, &status);
324 if (retval != ERROR_OK)
325 return retval;
326
327 if (status & 0x80)
328 break;
329
330 alive_sleep(1);
331 }
332
333 /* mask out bit 0 (reserved) */
334 status = status & 0xfe;
335
336 LOG_DEBUG("status: 0x%x", status);
337
338 if (status != 0x80) {
339 LOG_ERROR("status register: 0x%x", status);
340 if (status & 0x2)
341 LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
342 if (status & 0x4)
343 LOG_ERROR("Program suspended");
344 if (status & 0x8)
345 LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
346 if (status & 0x10)
347 LOG_ERROR("Program Error / Error in Setting Lock-Bit");
348 if (status & 0x20)
349 LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
350 if (status & 0x40)
351 LOG_ERROR("Block Erase Suspended");
352
353 cfi_intel_clear_status_register(bank);
354
355 retval = ERROR_FAIL;
356 }
357
358 *val = status;
359 return retval;
360 }
361
362 static int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
363 {
364 uint8_t status, oldstatus;
365 struct cfi_flash_bank *cfi_info = bank->driver_priv;
366 int retval;
367
368 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
369 if (retval != ERROR_OK)
370 return retval;
371
372 do {
373 retval = cfi_get_u8(bank, 0, 0x0, &status);
374
375 if (retval != ERROR_OK)
376 return retval;
377
378 if ((status ^ oldstatus) & 0x40) {
379 if (status & cfi_info->status_poll_mask & 0x20) {
380 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
381 if (retval != ERROR_OK)
382 return retval;
383 retval = cfi_get_u8(bank, 0, 0x0, &status);
384 if (retval != ERROR_OK)
385 return retval;
386 if ((status ^ oldstatus) & 0x40) {
387 LOG_ERROR("dq5 timeout, status: 0x%x", status);
388 return ERROR_FLASH_OPERATION_FAILED;
389 } else {
390 LOG_DEBUG("status: 0x%x", status);
391 return ERROR_OK;
392 }
393 }
394 } else {/* no toggle: finished, OK */
395 LOG_DEBUG("status: 0x%x", status);
396 return ERROR_OK;
397 }
398
399 oldstatus = status;
400 alive_sleep(1);
401 } while (timeout-- > 0);
402
403 LOG_ERROR("timeout, status: 0x%x", status);
404
405 return ERROR_FLASH_BUSY;
406 }
407
408 static int cfi_read_intel_pri_ext(struct flash_bank *bank)
409 {
410 int retval;
411 struct cfi_flash_bank *cfi_info = bank->driver_priv;
412 struct cfi_intel_pri_ext *pri_ext;
413
414 if (cfi_info->pri_ext)
415 free(cfi_info->pri_ext);
416
417 pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
418 if (pri_ext == NULL) {
419 LOG_ERROR("Out of memory");
420 return ERROR_FAIL;
421 }
422 cfi_info->pri_ext = pri_ext;
423
424 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
425 if (retval != ERROR_OK)
426 return retval;
427 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
428 if (retval != ERROR_OK)
429 return retval;
430 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
431 if (retval != ERROR_OK)
432 return retval;
433
434 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
435 retval = cfi_reset(bank);
436 if (retval != ERROR_OK)
437 return retval;
438 LOG_ERROR("Could not read bank flash bank information");
439 return ERROR_FLASH_BANK_INVALID;
440 }
441
442 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
443 if (retval != ERROR_OK)
444 return retval;
445 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
446 if (retval != ERROR_OK)
447 return retval;
448
449 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
450 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
451
452 retval = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5, &pri_ext->feature_support);
453 if (retval != ERROR_OK)
454 return retval;
455 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->suspend_cmd_support);
456 if (retval != ERROR_OK)
457 return retval;
458 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa, &pri_ext->blk_status_reg_mask);
459 if (retval != ERROR_OK)
460 return retval;
461
462 LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: "
463 "0x%x, blk_status_reg_mask: 0x%x",
464 pri_ext->feature_support,
465 pri_ext->suspend_cmd_support,
466 pri_ext->blk_status_reg_mask);
467
468 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc, &pri_ext->vcc_optimal);
469 if (retval != ERROR_OK)
470 return retval;
471 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd, &pri_ext->vpp_optimal);
472 if (retval != ERROR_OK)
473 return retval;
474
475 LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
476 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
477 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
478
479 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe, &pri_ext->num_protection_fields);
480 if (retval != ERROR_OK)
481 return retval;
482 if (pri_ext->num_protection_fields != 1) {
483 LOG_WARNING("expected one protection register field, but found %i",
484 pri_ext->num_protection_fields);
485 }
486
487 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf, &pri_ext->prot_reg_addr);
488 if (retval != ERROR_OK)
489 return retval;
490 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11, &pri_ext->fact_prot_reg_size);
491 if (retval != ERROR_OK)
492 return retval;
493 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12, &pri_ext->user_prot_reg_size);
494 if (retval != ERROR_OK)
495 return retval;
496
497 LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, "
498 "factory pre-programmed: %i, user programmable: %i",
499 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
500 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
501
502 return ERROR_OK;
503 }
504
505 static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
506 {
507 int retval;
508 struct cfi_flash_bank *cfi_info = bank->driver_priv;
509 struct cfi_spansion_pri_ext *pri_ext;
510
511 if (cfi_info->pri_ext)
512 free(cfi_info->pri_ext);
513
514 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
515 if (pri_ext == NULL) {
516 LOG_ERROR("Out of memory");
517 return ERROR_FAIL;
518 }
519 cfi_info->pri_ext = pri_ext;
520
521 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
522 if (retval != ERROR_OK)
523 return retval;
524 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
525 if (retval != ERROR_OK)
526 return retval;
527 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
528 if (retval != ERROR_OK)
529 return retval;
530
531 /* default values for implementation specific workarounds */
532 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
533 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
534 pri_ext->_reversed_geometry = 0;
535
536 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
537 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
538 if (retval != ERROR_OK)
539 return retval;
540 LOG_ERROR("Could not read spansion bank information");
541 return ERROR_FLASH_BANK_INVALID;
542 }
543
544 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
545 if (retval != ERROR_OK)
546 return retval;
547 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
548 if (retval != ERROR_OK)
549 return retval;
550
551 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
552 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
553
554 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &pri_ext->SiliconRevision);
555 if (retval != ERROR_OK)
556 return retval;
557 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &pri_ext->EraseSuspend);
558 if (retval != ERROR_OK)
559 return retval;
560 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &pri_ext->BlkProt);
561 if (retval != ERROR_OK)
562 return retval;
563 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &pri_ext->TmpBlkUnprotect);
564 if (retval != ERROR_OK)
565 return retval;
566 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->BlkProtUnprot);
567 if (retval != ERROR_OK)
568 return retval;
569 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10, &pri_ext->SimultaneousOps);
570 if (retval != ERROR_OK)
571 return retval;
572 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11, &pri_ext->BurstMode);
573 if (retval != ERROR_OK)
574 return retval;
575 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12, &pri_ext->PageMode);
576 if (retval != ERROR_OK)
577 return retval;
578 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13, &pri_ext->VppMin);
579 if (retval != ERROR_OK)
580 return retval;
581 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14, &pri_ext->VppMax);
582 if (retval != ERROR_OK)
583 return retval;
584 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15, &pri_ext->TopBottom);
585 if (retval != ERROR_OK)
586 return retval;
587
588 LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x",
589 pri_ext->SiliconRevision, pri_ext->EraseSuspend, pri_ext->BlkProt);
590
591 LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, "
592 "Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
593 pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
594
595 LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
596
597
598 LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
599 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
600 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
601
602 LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
603
604 return ERROR_OK;
605 }
606
607 static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
608 {
609 int retval;
610 struct cfi_atmel_pri_ext atmel_pri_ext;
611 struct cfi_flash_bank *cfi_info = bank->driver_priv;
612 struct cfi_spansion_pri_ext *pri_ext;
613
614 if (cfi_info->pri_ext)
615 free(cfi_info->pri_ext);
616
617 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
618 if (pri_ext == NULL) {
619 LOG_ERROR("Out of memory");
620 return ERROR_FAIL;
621 }
622
623 /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
624 * but a different primary extended query table.
625 * We read the atmel table, and prepare a valid AMD/Spansion query table.
626 */
627
628 memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
629
630 cfi_info->pri_ext = pri_ext;
631
632 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &atmel_pri_ext.pri[0]);
633 if (retval != ERROR_OK)
634 return retval;
635 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &atmel_pri_ext.pri[1]);
636 if (retval != ERROR_OK)
637 return retval;
638 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &atmel_pri_ext.pri[2]);
639 if (retval != ERROR_OK)
640 return retval;
641
642 if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R')
643 || (atmel_pri_ext.pri[2] != 'I')) {
644 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
645 if (retval != ERROR_OK)
646 return retval;
647 LOG_ERROR("Could not read atmel bank information");
648 return ERROR_FLASH_BANK_INVALID;
649 }
650
651 pri_ext->pri[0] = atmel_pri_ext.pri[0];
652 pri_ext->pri[1] = atmel_pri_ext.pri[1];
653 pri_ext->pri[2] = atmel_pri_ext.pri[2];
654
655 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &atmel_pri_ext.major_version);
656 if (retval != ERROR_OK)
657 return retval;
658 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &atmel_pri_ext.minor_version);
659 if (retval != ERROR_OK)
660 return retval;
661
662 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0],
663 atmel_pri_ext.pri[1], atmel_pri_ext.pri[2],
664 atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
665
666 pri_ext->major_version = atmel_pri_ext.major_version;
667 pri_ext->minor_version = atmel_pri_ext.minor_version;
668
669 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &atmel_pri_ext.features);
670 if (retval != ERROR_OK)
671 return retval;
672 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &atmel_pri_ext.bottom_boot);
673 if (retval != ERROR_OK)
674 return retval;
675 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &atmel_pri_ext.burst_mode);
676 if (retval != ERROR_OK)
677 return retval;
678 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &atmel_pri_ext.page_mode);
679 if (retval != ERROR_OK)
680 return retval;
681
682 LOG_DEBUG(
683 "features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
684 atmel_pri_ext.features,
685 atmel_pri_ext.bottom_boot,
686 atmel_pri_ext.burst_mode,
687 atmel_pri_ext.page_mode);
688
689 if (atmel_pri_ext.features & 0x02)
690 pri_ext->EraseSuspend = 2;
691
692 /* some chips got it backwards... */
693 if (cfi_info->device_id == AT49BV6416 ||
694 cfi_info->device_id == AT49BV6416T) {
695 if (atmel_pri_ext.bottom_boot)
696 pri_ext->TopBottom = 3;
697 else
698 pri_ext->TopBottom = 2;
699 } else {
700 if (atmel_pri_ext.bottom_boot)
701 pri_ext->TopBottom = 2;
702 else
703 pri_ext->TopBottom = 3;
704 }
705
706 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
707 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
708
709 return ERROR_OK;
710 }
711
712 static int cfi_read_0002_pri_ext(struct flash_bank *bank)
713 {
714 struct cfi_flash_bank *cfi_info = bank->driver_priv;
715
716 if (cfi_info->manufacturer == CFI_MFR_ATMEL)
717 return cfi_read_atmel_pri_ext(bank);
718 else
719 return cfi_read_spansion_pri_ext(bank);
720 }
721
722 static int cfi_spansion_info(struct flash_bank *bank, char *buf, int buf_size)
723 {
724 int printed;
725 struct cfi_flash_bank *cfi_info = bank->driver_priv;
726 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
727
728 printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
729 buf += printed;
730 buf_size -= printed;
731
732 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
733 pri_ext->pri[1], pri_ext->pri[2],
734 pri_ext->major_version, pri_ext->minor_version);
735 buf += printed;
736 buf_size -= printed;
737
738 printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
739 (pri_ext->SiliconRevision) >> 2,
740 (pri_ext->SiliconRevision) & 0x03);
741 buf += printed;
742 buf_size -= printed;
743
744 printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
745 pri_ext->EraseSuspend,
746 pri_ext->BlkProt);
747 buf += printed;
748 buf_size -= printed;
749
750 snprintf(buf, buf_size, "VppMin: %u.%x, VppMax: %u.%x\n",
751 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
752 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
753
754 return ERROR_OK;
755 }
756
757 static int cfi_intel_info(struct flash_bank *bank, char *buf, int buf_size)
758 {
759 int printed;
760 struct cfi_flash_bank *cfi_info = bank->driver_priv;
761 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
762
763 printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
764 buf += printed;
765 buf_size -= printed;
766
767 printed = snprintf(buf,
768 buf_size,
769 "pri: '%c%c%c', version: %c.%c\n",
770 pri_ext->pri[0],
771 pri_ext->pri[1],
772 pri_ext->pri[2],
773 pri_ext->major_version,
774 pri_ext->minor_version);
775 buf += printed;
776 buf_size -= printed;
777
778 printed = snprintf(buf,
779 buf_size,
780 "feature_support: 0x%" PRIx32 ", "
781 "suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n",
782 pri_ext->feature_support,
783 pri_ext->suspend_cmd_support,
784 pri_ext->blk_status_reg_mask);
785 buf += printed;
786 buf_size -= printed;
787
788 printed = snprintf(buf, buf_size, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
789 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
790 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
791 buf += printed;
792 buf_size -= printed;
793
794 snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, "
795 "factory pre-programmed: %i, user programmable: %i\n",
796 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
797 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
798
799 return ERROR_OK;
800 }
801
802 /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
803 */
804 FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
805 {
806 struct cfi_flash_bank *cfi_info;
807 int bus_swap = 0;
808
809 if (CMD_ARGC < 6)
810 return ERROR_COMMAND_SYNTAX_ERROR;
811
812 /* both widths must:
813 * - not exceed max value;
814 * - not be null;
815 * - be equal to a power of 2.
816 * bus must be wide enough to hold one chip */
817 if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
818 || (bank->bus_width > CFI_MAX_BUS_WIDTH)
819 || (bank->chip_width == 0)
820 || (bank->bus_width == 0)
821 || (bank->chip_width & (bank->chip_width - 1))
822 || (bank->bus_width & (bank->bus_width - 1))
823 || (bank->chip_width > bank->bus_width)) {
824 LOG_ERROR("chip and bus width have to specified in bytes");
825 return ERROR_FLASH_BANK_INVALID;
826 }
827
828 cfi_info = malloc(sizeof(struct cfi_flash_bank));
829 cfi_info->probed = 0;
830 cfi_info->erase_region_info = NULL;
831 cfi_info->pri_ext = NULL;
832 bank->driver_priv = cfi_info;
833
834 cfi_info->x16_as_x8 = 0;
835 cfi_info->jedec_probe = 0;
836 cfi_info->not_cfi = 0;
837 cfi_info->data_swap = 0;
838
839 for (unsigned i = 6; i < CMD_ARGC; i++) {
840 if (strcmp(CMD_ARGV[i], "x16_as_x8") == 0)
841 cfi_info->x16_as_x8 = 1;
842 else if (strcmp(CMD_ARGV[i], "data_swap") == 0)
843 cfi_info->data_swap = 1;
844 else if (strcmp(CMD_ARGV[i], "bus_swap") == 0)
845 bus_swap = 1;
846 else if (strcmp(CMD_ARGV[i], "jedec_probe") == 0)
847 cfi_info->jedec_probe = 1;
848 }
849
850 if (bus_swap)
851 cfi_info->endianness =
852 bank->target->endianness == TARGET_LITTLE_ENDIAN ?
853 TARGET_BIG_ENDIAN : TARGET_LITTLE_ENDIAN;
854 else
855 cfi_info->endianness = bank->target->endianness;
856
857 /* bank wasn't probed yet */
858 cfi_info->qry[0] = 0xff;
859
860 return ERROR_OK;
861 }
862
863 static int cfi_intel_erase(struct flash_bank *bank, int first, int last)
864 {
865 int retval;
866 struct cfi_flash_bank *cfi_info = bank->driver_priv;
867 int i;
868
869 cfi_intel_clear_status_register(bank);
870
871 for (i = first; i <= last; i++) {
872 retval = cfi_send_command(bank, 0x20, flash_address(bank, i, 0x0));
873 if (retval != ERROR_OK)
874 return retval;
875
876 retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0));
877 if (retval != ERROR_OK)
878 return retval;
879
880 uint8_t status;
881 retval = cfi_intel_wait_status_busy(bank, cfi_info->block_erase_timeout, &status);
882 if (retval != ERROR_OK)
883 return retval;
884
885 if (status == 0x80)
886 bank->sectors[i].is_erased = 1;
887 else {
888 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
889 if (retval != ERROR_OK)
890 return retval;
891
892 LOG_ERROR("couldn't erase block %i of flash bank at base "
893 TARGET_ADDR_FMT, i, bank->base);
894 return ERROR_FLASH_OPERATION_FAILED;
895 }
896 }
897
898 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
899 }
900
901 static int cfi_spansion_erase(struct flash_bank *bank, int first, int last)
902 {
903 int retval;
904 struct cfi_flash_bank *cfi_info = bank->driver_priv;
905 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
906 int i;
907
908 for (i = first; i <= last; i++) {
909 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
910 if (retval != ERROR_OK)
911 return retval;
912
913 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
914 if (retval != ERROR_OK)
915 return retval;
916
917 retval = cfi_send_command(bank, 0x80, flash_address(bank, 0, pri_ext->_unlock1));
918 if (retval != ERROR_OK)
919 return retval;
920
921 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
922 if (retval != ERROR_OK)
923 return retval;
924
925 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
926 if (retval != ERROR_OK)
927 return retval;
928
929 retval = cfi_send_command(bank, 0x30, flash_address(bank, i, 0x0));
930 if (retval != ERROR_OK)
931 return retval;
932
933 if (cfi_spansion_wait_status_busy(bank, cfi_info->block_erase_timeout) == ERROR_OK)
934 bank->sectors[i].is_erased = 1;
935 else {
936 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
937 if (retval != ERROR_OK)
938 return retval;
939
940 LOG_ERROR("couldn't erase block %i of flash bank at base "
941 TARGET_ADDR_FMT, i, bank->base);
942 return ERROR_FLASH_OPERATION_FAILED;
943 }
944 }
945
946 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
947 }
948
949 static int cfi_erase(struct flash_bank *bank, int first, int last)
950 {
951 struct cfi_flash_bank *cfi_info = bank->driver_priv;
952
953 if (bank->target->state != TARGET_HALTED) {
954 LOG_ERROR("Target not halted");
955 return ERROR_TARGET_NOT_HALTED;
956 }
957
958 if ((first < 0) || (last < first) || (last >= bank->num_sectors))
959 return ERROR_FLASH_SECTOR_INVALID;
960
961 if (cfi_info->qry[0] != 'Q')
962 return ERROR_FLASH_BANK_NOT_PROBED;
963
964 switch (cfi_info->pri_id) {
965 case 1:
966 case 3:
967 return cfi_intel_erase(bank, first, last);
968 break;
969 case 2:
970 return cfi_spansion_erase(bank, first, last);
971 break;
972 default:
973 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
974 break;
975 }
976
977 return ERROR_OK;
978 }
979
980 static int cfi_intel_protect(struct flash_bank *bank, int set, int first, int last)
981 {
982 int retval;
983 struct cfi_flash_bank *cfi_info = bank->driver_priv;
984 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
985 int retry = 0;
986 int i;
987
988 /* if the device supports neither legacy lock/unlock (bit 3) nor
989 * instant individual block locking (bit 5).
990 */
991 if (!(pri_ext->feature_support & 0x28)) {
992 LOG_ERROR("lock/unlock not supported on flash");
993 return ERROR_FLASH_OPERATION_FAILED;
994 }
995
996 cfi_intel_clear_status_register(bank);
997
998 for (i = first; i <= last; i++) {
999 retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0));
1000 if (retval != ERROR_OK)
1001 return retval;
1002 if (set) {
1003 retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0));
1004 if (retval != ERROR_OK)
1005 return retval;
1006 bank->sectors[i].is_protected = 1;
1007 } else {
1008 retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0));
1009 if (retval != ERROR_OK)
1010 return retval;
1011 bank->sectors[i].is_protected = 0;
1012 }
1013
1014 /* instant individual block locking doesn't require reading of the status register
1015 **/
1016 if (!(pri_ext->feature_support & 0x20)) {
1017 /* Clear lock bits operation may take up to 1.4s */
1018 uint8_t status;
1019 retval = cfi_intel_wait_status_busy(bank, 1400, &status);
1020 if (retval != ERROR_OK)
1021 return retval;
1022 } else {
1023 uint8_t block_status;
1024 /* read block lock bit, to verify status */
1025 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55));
1026 if (retval != ERROR_OK)
1027 return retval;
1028 retval = cfi_get_u8(bank, i, 0x2, &block_status);
1029 if (retval != ERROR_OK)
1030 return retval;
1031
1032 if ((block_status & 0x1) != set) {
1033 LOG_ERROR(
1034 "couldn't change block lock status (set = %i, block_status = 0x%2.2x)",
1035 set, block_status);
1036 retval = cfi_send_command(bank, 0x70, flash_address(bank, 0, 0x55));
1037 if (retval != ERROR_OK)
1038 return retval;
1039 uint8_t status;
1040 retval = cfi_intel_wait_status_busy(bank, 10, &status);
1041 if (retval != ERROR_OK)
1042 return retval;
1043
1044 if (retry > 10)
1045 return ERROR_FLASH_OPERATION_FAILED;
1046 else {
1047 i--;
1048 retry++;
1049 }
1050 }
1051 }
1052 }
1053
1054 /* if the device doesn't support individual block lock bits set/clear,
1055 * all blocks have been unlocked in parallel, so we set those that should be protected
1056 */
1057 if ((!set) && (!(pri_ext->feature_support & 0x20))) {
1058 /* FIX!!! this code path is broken!!!
1059 *
1060 * The correct approach is:
1061 *
1062 * 1. read out current protection status
1063 *
1064 * 2. override read out protection status w/unprotected.
1065 *
1066 * 3. re-protect what should be protected.
1067 *
1068 */
1069 for (i = 0; i < bank->num_sectors; i++) {
1070 if (bank->sectors[i].is_protected == 1) {
1071 cfi_intel_clear_status_register(bank);
1072
1073 retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0));
1074 if (retval != ERROR_OK)
1075 return retval;
1076
1077 retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0));
1078 if (retval != ERROR_OK)
1079 return retval;
1080
1081 uint8_t status;
1082 retval = cfi_intel_wait_status_busy(bank, 100, &status);
1083 if (retval != ERROR_OK)
1084 return retval;
1085 }
1086 }
1087 }
1088
1089 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
1090 }
1091
1092 static int cfi_protect(struct flash_bank *bank, int set, int first, int last)
1093 {
1094 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1095
1096 if (bank->target->state != TARGET_HALTED) {
1097 LOG_ERROR("Target not halted");
1098 return ERROR_TARGET_NOT_HALTED;
1099 }
1100
1101 if (cfi_info->qry[0] != 'Q')
1102 return ERROR_FLASH_BANK_NOT_PROBED;
1103
1104 switch (cfi_info->pri_id) {
1105 case 1:
1106 case 3:
1107 return cfi_intel_protect(bank, set, first, last);
1108 break;
1109 default:
1110 LOG_WARNING("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
1111 return ERROR_OK;
1112 }
1113 }
1114
1115 static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
1116 {
1117 struct target *target = bank->target;
1118
1119 uint8_t buf[CFI_MAX_BUS_WIDTH];
1120 cfi_command(bank, cmd, buf);
1121 switch (bank->bus_width) {
1122 case 1:
1123 return buf[0];
1124 break;
1125 case 2:
1126 return target_buffer_get_u16(target, buf);
1127 break;
1128 case 4:
1129 return target_buffer_get_u32(target, buf);
1130 break;
1131 default:
1132 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1133 bank->bus_width);
1134 return 0;
1135 }
1136 }
1137
1138 static int cfi_intel_write_block(struct flash_bank *bank, const uint8_t *buffer,
1139 uint32_t address, uint32_t count)
1140 {
1141 struct target *target = bank->target;
1142 struct reg_param reg_params[7];
1143 struct arm_algorithm arm_algo;
1144 struct working_area *write_algorithm;
1145 struct working_area *source = NULL;
1146 uint32_t buffer_size = 32768;
1147 uint32_t write_command_val, busy_pattern_val, error_pattern_val;
1148
1149 /* algorithm register usage:
1150 * r0: source address (in RAM)
1151 * r1: target address (in Flash)
1152 * r2: count
1153 * r3: flash write command
1154 * r4: status byte (returned to host)
1155 * r5: busy test pattern
1156 * r6: error test pattern
1157 */
1158
1159 /* see contib/loaders/flash/armv4_5_cfi_intel_32.s for src */
1160 static const uint32_t word_32_code[] = {
1161 0xe4904004, /* loop: ldr r4, [r0], #4 */
1162 0xe5813000, /* str r3, [r1] */
1163 0xe5814000, /* str r4, [r1] */
1164 0xe5914000, /* busy: ldr r4, [r1] */
1165 0xe0047005, /* and r7, r4, r5 */
1166 0xe1570005, /* cmp r7, r5 */
1167 0x1afffffb, /* bne busy */
1168 0xe1140006, /* tst r4, r6 */
1169 0x1a000003, /* bne done */
1170 0xe2522001, /* subs r2, r2, #1 */
1171 0x0a000001, /* beq done */
1172 0xe2811004, /* add r1, r1 #4 */
1173 0xeafffff2, /* b loop */
1174 0xeafffffe /* done: b -2 */
1175 };
1176
1177 /* see contib/loaders/flash/armv4_5_cfi_intel_16.s for src */
1178 static const uint32_t word_16_code[] = {
1179 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
1180 0xe1c130b0, /* strh r3, [r1] */
1181 0xe1c140b0, /* strh r4, [r1] */
1182 0xe1d140b0, /* busy ldrh r4, [r1] */
1183 0xe0047005, /* and r7, r4, r5 */
1184 0xe1570005, /* cmp r7, r5 */
1185 0x1afffffb, /* bne busy */
1186 0xe1140006, /* tst r4, r6 */
1187 0x1a000003, /* bne done */
1188 0xe2522001, /* subs r2, r2, #1 */
1189 0x0a000001, /* beq done */
1190 0xe2811002, /* add r1, r1 #2 */
1191 0xeafffff2, /* b loop */
1192 0xeafffffe /* done: b -2 */
1193 };
1194
1195 /* see contib/loaders/flash/armv4_5_cfi_intel_8.s for src */
1196 static const uint32_t word_8_code[] = {
1197 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
1198 0xe5c13000, /* strb r3, [r1] */
1199 0xe5c14000, /* strb r4, [r1] */
1200 0xe5d14000, /* busy ldrb r4, [r1] */
1201 0xe0047005, /* and r7, r4, r5 */
1202 0xe1570005, /* cmp r7, r5 */
1203 0x1afffffb, /* bne busy */
1204 0xe1140006, /* tst r4, r6 */
1205 0x1a000003, /* bne done */
1206 0xe2522001, /* subs r2, r2, #1 */
1207 0x0a000001, /* beq done */
1208 0xe2811001, /* add r1, r1 #1 */
1209 0xeafffff2, /* b loop */
1210 0xeafffffe /* done: b -2 */
1211 };
1212 uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
1213 const uint32_t *target_code_src;
1214 uint32_t target_code_size;
1215 int retval = ERROR_OK;
1216
1217 /* check we have a supported arch */
1218 if (is_arm(target_to_arm(target))) {
1219 /* All other ARM CPUs have 32 bit instructions */
1220 arm_algo.common_magic = ARM_COMMON_MAGIC;
1221 arm_algo.core_mode = ARM_MODE_SVC;
1222 arm_algo.core_state = ARM_STATE_ARM;
1223 } else {
1224 LOG_ERROR("Unknown architecture");
1225 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1226 }
1227
1228 cfi_intel_clear_status_register(bank);
1229
1230 /* If we are setting up the write_algorith, we need target_code_src
1231 * if not we only need target_code_size. */
1232
1233 /* However, we don't want to create multiple code paths, so we
1234 * do the unnecessary evaluation of target_code_src, which the
1235 * compiler will probably nicely optimize away if not needed */
1236
1237 /* prepare algorithm code for target endian */
1238 switch (bank->bus_width) {
1239 case 1:
1240 target_code_src = word_8_code;
1241 target_code_size = sizeof(word_8_code);
1242 break;
1243 case 2:
1244 target_code_src = word_16_code;
1245 target_code_size = sizeof(word_16_code);
1246 break;
1247 case 4:
1248 target_code_src = word_32_code;
1249 target_code_size = sizeof(word_32_code);
1250 break;
1251 default:
1252 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1253 bank->bus_width);
1254 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1255 }
1256
1257 /* flash write code */
1258 if (target_code_size > sizeof(target_code)) {
1259 LOG_WARNING("Internal error - target code buffer to small. "
1260 "Increase CFI_MAX_INTEL_CODESIZE and recompile.");
1261 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1262 }
1263
1264 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1265
1266 /* Get memory for block write handler */
1267 retval = target_alloc_working_area(target,
1268 target_code_size,
1269 &write_algorithm);
1270 if (retval != ERROR_OK) {
1271 LOG_WARNING("No working area available, can't do block memory writes");
1272 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1273 }
1274
1275 /* write algorithm code to working area */
1276 retval = target_write_buffer(target, write_algorithm->address,
1277 target_code_size, target_code);
1278 if (retval != ERROR_OK) {
1279 LOG_ERROR("Unable to write block write code to target");
1280 goto cleanup;
1281 }
1282
1283 /* Get a workspace buffer for the data to flash starting with 32k size.
1284 * Half size until buffer would be smaller 256 Bytes then fail back */
1285 /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
1286 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1287 buffer_size /= 2;
1288 if (buffer_size <= 256) {
1289 LOG_WARNING(
1290 "no large enough working area available, can't do block memory writes");
1291 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1292 goto cleanup;
1293 }
1294 }
1295
1296 /* setup algo registers */
1297 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1298 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1299 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1300 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1301 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
1302 init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
1303 init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
1304
1305 /* prepare command and status register patterns */
1306 write_command_val = cfi_command_val(bank, 0x40);
1307 busy_pattern_val = cfi_command_val(bank, 0x80);
1308 error_pattern_val = cfi_command_val(bank, 0x7e);
1309
1310 LOG_DEBUG("Using target buffer at " TARGET_ADDR_FMT " and of size 0x%04" PRIx32,
1311 source->address, buffer_size);
1312
1313 /* Programming main loop */
1314 while (count > 0) {
1315 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1316 uint32_t wsm_error;
1317
1318 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1319 if (retval != ERROR_OK)
1320 goto cleanup;
1321
1322 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1323 buf_set_u32(reg_params[1].value, 0, 32, address);
1324 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1325
1326 buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
1327 buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
1328 buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
1329
1330 LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32,
1331 thisrun_count, address);
1332
1333 /* Execute algorithm, assume breakpoint for last instruction */
1334 retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
1335 write_algorithm->address,
1336 write_algorithm->address + target_code_size -
1337 sizeof(uint32_t),
1338 10000, /* 10s should be enough for max. 32k of data */
1339 &arm_algo);
1340
1341 /* On failure try a fall back to direct word writes */
1342 if (retval != ERROR_OK) {
1343 cfi_intel_clear_status_register(bank);
1344 LOG_ERROR(
1345 "Execution of flash algorythm failed. Can't fall back. Please report.");
1346 retval = ERROR_FLASH_OPERATION_FAILED;
1347 /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
1348 /* FIXME To allow fall back or recovery, we must save the actual status
1349 * somewhere, so that a higher level code can start recovery. */
1350 goto cleanup;
1351 }
1352
1353 /* Check return value from algo code */
1354 wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
1355 if (wsm_error) {
1356 /* read status register (outputs debug information) */
1357 uint8_t status;
1358 cfi_intel_wait_status_busy(bank, 100, &status);
1359 cfi_intel_clear_status_register(bank);
1360 retval = ERROR_FLASH_OPERATION_FAILED;
1361 goto cleanup;
1362 }
1363
1364 buffer += thisrun_count;
1365 address += thisrun_count;
1366 count -= thisrun_count;
1367
1368 keep_alive();
1369 }
1370
1371 /* free up resources */
1372 cleanup:
1373 if (source)
1374 target_free_working_area(target, source);
1375
1376 target_free_working_area(target, write_algorithm);
1377
1378 destroy_reg_param(&reg_params[0]);
1379 destroy_reg_param(&reg_params[1]);
1380 destroy_reg_param(&reg_params[2]);
1381 destroy_reg_param(&reg_params[3]);
1382 destroy_reg_param(&reg_params[4]);
1383 destroy_reg_param(&reg_params[5]);
1384 destroy_reg_param(&reg_params[6]);
1385
1386 return retval;
1387 }
1388
1389 static int cfi_spansion_write_block_mips(struct flash_bank *bank, const uint8_t *buffer,
1390 uint32_t address, uint32_t count)
1391 {
1392 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1393 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1394 struct target *target = bank->target;
1395 struct reg_param reg_params[10];
1396 struct mips32_algorithm mips32_info;
1397 struct working_area *write_algorithm;
1398 struct working_area *source;
1399 uint32_t buffer_size = 32768;
1400 uint32_t status;
1401 int retval = ERROR_OK;
1402
1403 /* input parameters -
1404 * 4 A0 = source address
1405 * 5 A1 = destination address
1406 * 6 A2 = number of writes
1407 * 7 A3 = flash write command
1408 * 8 T0 = constant to mask DQ7 bits (also used for Dq5 with shift)
1409 * output parameters -
1410 * 9 T1 = 0x80 ok 0x00 bad
1411 * temp registers -
1412 * 10 T2 = value read from flash to test status
1413 * 11 T3 = holding register
1414 * unlock registers -
1415 * 12 T4 = unlock1_addr
1416 * 13 T5 = unlock1_cmd
1417 * 14 T6 = unlock2_addr
1418 * 15 T7 = unlock2_cmd */
1419
1420 static const uint32_t mips_word_16_code[] = {
1421 /* start: */
1422 MIPS32_LHU(0, 9, 0, 4), /* lhu $t1, ($a0) ; out = &saddr */
1423 MIPS32_ADDI(0, 4, 4, 2), /* addi $a0, $a0, 2 ; saddr += 2 */
1424 MIPS32_SH(0, 13, 0, 12), /* sh $t5, ($t4) ; *fl_unl_addr1 = fl_unl_cmd1 */
1425 MIPS32_SH(0, 15, 0, 14), /* sh $t7, ($t6) ; *fl_unl_addr2 = fl_unl_cmd2 */
1426 MIPS32_SH(0, 7, 0, 12), /* sh $a3, ($t4) ; *fl_unl_addr1 = fl_write_cmd */
1427 MIPS32_SH(0, 9, 0, 5), /* sh $t1, ($a1) ; *daddr = out */
1428 MIPS32_NOP, /* nop */
1429 /* busy: */
1430 MIPS32_LHU(0, 10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1431 MIPS32_XOR(0, 11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
1432 MIPS32_AND(0, 11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
1433 MIPS32_BNE(0, 11, 8, 13), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
1434 MIPS32_NOP, /* nop */
1435
1436 MIPS32_SRL(0, 10, 8, 2), /* srl $t2,$t0,2 ; temp1 = DQ7mask >> 2 */
1437 MIPS32_AND(0, 11, 10, 11), /* and $t3, $t2, $t3 ; temp2 = temp2 & temp1 */
1438 MIPS32_BNE(0, 11, 10, NEG16(8)), /* bne $t3, $t2, busy ; if (temp2 != temp1) goto busy */
1439 MIPS32_NOP, /* nop */
1440
1441 MIPS32_LHU(0, 10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1442 MIPS32_XOR(0, 11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
1443 MIPS32_AND(0, 11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
1444 MIPS32_BNE(0, 11, 8, 4), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
1445 MIPS32_NOP, /* nop */
1446
1447 MIPS32_XOR(0, 9, 9, 9), /* xor $t1, $t1, $t1 ; out = 0 */
1448 MIPS32_BEQ(0, 9, 0, 11), /* beq $t1, $zero, done ; if (out == 0) goto done */
1449 MIPS32_NOP, /* nop */
1450 /* cont: */
1451 MIPS32_ADDI(0, 6, 6, NEG16(1)), /* addi, $a2, $a2, -1 ; numwrites-- */
1452 MIPS32_BNE(0, 6, 0, 5), /* bne $a2, $zero, cont2 ; if (numwrite != 0) goto cont2 */
1453 MIPS32_NOP, /* nop */
1454
1455 MIPS32_LUI(0, 9, 0), /* lui $t1, 0 */
1456 MIPS32_ORI(0, 9, 9, 0x80), /* ori $t1, $t1, 0x80 ; out = 0x80 */
1457
1458 MIPS32_B(0, 4), /* b done ; goto done */
1459 MIPS32_NOP, /* nop */
1460 /* cont2: */
1461 MIPS32_ADDI(0, 5, 5, 2), /* addi $a0, $a0, 2 ; daddr += 2 */
1462 MIPS32_B(0, NEG16(33)), /* b start ; goto start */
1463 MIPS32_NOP, /* nop */
1464 /* done: */
1465 MIPS32_SDBBP(0), /* sdbbp ; break(); */
1466 };
1467
1468 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
1469 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
1470
1471 int target_code_size = 0;
1472 const uint32_t *target_code_src = NULL;
1473
1474 switch (bank->bus_width) {
1475 case 2:
1476 /* Check for DQ5 support */
1477 if (cfi_info->status_poll_mask & (1 << 5)) {
1478 target_code_src = mips_word_16_code;
1479 target_code_size = sizeof(mips_word_16_code);
1480 } else {
1481 LOG_ERROR("Need DQ5 support");
1482 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1483 /* target_code_src = mips_word_16_code_dq7only; */
1484 /* target_code_size = sizeof(mips_word_16_code_dq7only); */
1485 }
1486 break;
1487 default:
1488 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1489 bank->bus_width);
1490 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1491 }
1492
1493 /* flash write code */
1494 uint8_t *target_code;
1495
1496 /* convert bus-width dependent algorithm code to correct endianness */
1497 target_code = malloc(target_code_size);
1498 if (target_code == NULL) {
1499 LOG_ERROR("Out of memory");
1500 return ERROR_FAIL;
1501 }
1502
1503 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1504
1505 /* allocate working area */
1506 retval = target_alloc_working_area(target, target_code_size,
1507 &write_algorithm);
1508 if (retval != ERROR_OK) {
1509 free(target_code);
1510 return retval;
1511 }
1512
1513 /* write algorithm code to working area */
1514 retval = target_write_buffer(target, write_algorithm->address,
1515 target_code_size, target_code);
1516 if (retval != ERROR_OK) {
1517 free(target_code);
1518 return retval;
1519 }
1520
1521 free(target_code);
1522
1523 /* the following code still assumes target code is fixed 24*4 bytes */
1524
1525 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1526 buffer_size /= 2;
1527 if (buffer_size <= 256) {
1528 /* we already allocated the writing code, but failed to get a
1529 * buffer, free the algorithm */
1530 target_free_working_area(target, write_algorithm);
1531
1532 LOG_WARNING(
1533 "not enough working area available, can't do block memory writes");
1534 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1535 }
1536 }
1537
1538 init_reg_param(&reg_params[0], "r4", 32, PARAM_OUT);
1539 init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
1540 init_reg_param(&reg_params[2], "r6", 32, PARAM_OUT);
1541 init_reg_param(&reg_params[3], "r7", 32, PARAM_OUT);
1542 init_reg_param(&reg_params[4], "r8", 32, PARAM_OUT);
1543 init_reg_param(&reg_params[5], "r9", 32, PARAM_IN);
1544 init_reg_param(&reg_params[6], "r12", 32, PARAM_OUT);
1545 init_reg_param(&reg_params[7], "r13", 32, PARAM_OUT);
1546 init_reg_param(&reg_params[8], "r14", 32, PARAM_OUT);
1547 init_reg_param(&reg_params[9], "r15", 32, PARAM_OUT);
1548
1549 while (count > 0) {
1550 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1551
1552 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1553 if (retval != ERROR_OK)
1554 break;
1555
1556 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1557 buf_set_u32(reg_params[1].value, 0, 32, address);
1558 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1559 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1560 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1561 buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
1562 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1563 buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
1564 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1565
1566 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1567 write_algorithm->address,
1568 write_algorithm->address + ((target_code_size) - 4),
1569 10000, &mips32_info);
1570 if (retval != ERROR_OK)
1571 break;
1572
1573 status = buf_get_u32(reg_params[5].value, 0, 32);
1574 if (status != 0x80) {
1575 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1576 retval = ERROR_FLASH_OPERATION_FAILED;
1577 break;
1578 }
1579
1580 buffer += thisrun_count;
1581 address += thisrun_count;
1582 count -= thisrun_count;
1583 }
1584
1585 target_free_all_working_areas(target);
1586
1587 destroy_reg_param(&reg_params[0]);
1588 destroy_reg_param(&reg_params[1]);
1589 destroy_reg_param(&reg_params[2]);
1590 destroy_reg_param(&reg_params[3]);
1591 destroy_reg_param(&reg_params[4]);
1592 destroy_reg_param(&reg_params[5]);
1593 destroy_reg_param(&reg_params[6]);
1594 destroy_reg_param(&reg_params[7]);
1595 destroy_reg_param(&reg_params[8]);
1596 destroy_reg_param(&reg_params[9]);
1597
1598 return retval;
1599 }
1600
1601 static int cfi_spansion_write_block(struct flash_bank *bank, const uint8_t *buffer,
1602 uint32_t address, uint32_t count)
1603 {
1604 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1605 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1606 struct target *target = bank->target;
1607 struct reg_param reg_params[10];
1608 void *arm_algo;
1609 struct arm_algorithm armv4_5_algo;
1610 struct armv7m_algorithm armv7m_algo;
1611 struct working_area *write_algorithm;
1612 struct working_area *source;
1613 uint32_t buffer_size = 32768;
1614 uint32_t status;
1615 int retval = ERROR_OK;
1616
1617 /* input parameters -
1618 * R0 = source address
1619 * R1 = destination address
1620 * R2 = number of writes
1621 * R3 = flash write command
1622 * R4 = constant to mask DQ7 bits (also used for Dq5 with shift)
1623 * output parameters -
1624 * R5 = 0x80 ok 0x00 bad
1625 * temp registers -
1626 * R6 = value read from flash to test status
1627 * R7 = holding register
1628 * unlock registers -
1629 * R8 = unlock1_addr
1630 * R9 = unlock1_cmd
1631 * R10 = unlock2_addr
1632 * R11 = unlock2_cmd */
1633
1634 /* see contib/loaders/flash/armv4_5_cfi_span_32.s for src */
1635 static const uint32_t armv4_5_word_32_code[] = {
1636 /* 00008100 <sp_32_code>: */
1637 0xe4905004, /* ldr r5, [r0], #4 */
1638 0xe5889000, /* str r9, [r8] */
1639 0xe58ab000, /* str r11, [r10] */
1640 0xe5883000, /* str r3, [r8] */
1641 0xe5815000, /* str r5, [r1] */
1642 0xe1a00000, /* nop */
1643 /* 00008110 <sp_32_busy>: */
1644 0xe5916000, /* ldr r6, [r1] */
1645 0xe0257006, /* eor r7, r5, r6 */
1646 0xe0147007, /* ands r7, r4, r7 */
1647 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1648 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1649 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
1650 0xe5916000, /* ldr r6, [r1] */
1651 0xe0257006, /* eor r7, r5, r6 */
1652 0xe0147007, /* ands r7, r4, r7 */
1653 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1654 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
1655 0x1a000004, /* bne 8154 <sp_32_done> */
1656 /* 00008140 <sp_32_cont>: */
1657 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1658 0x03a05080, /* moveq r5, #128 ; 0x80 */
1659 0x0a000001, /* beq 8154 <sp_32_done> */
1660 0xe2811004, /* add r1, r1, #4 ; 0x4 */
1661 0xeaffffe8, /* b 8100 <sp_32_code> */
1662 /* 00008154 <sp_32_done>: */
1663 0xeafffffe /* b 8154 <sp_32_done> */
1664 };
1665
1666 /* see contib/loaders/flash/armv4_5_cfi_span_16.s for src */
1667 static const uint32_t armv4_5_word_16_code[] = {
1668 /* 00008158 <sp_16_code>: */
1669 0xe0d050b2, /* ldrh r5, [r0], #2 */
1670 0xe1c890b0, /* strh r9, [r8] */
1671 0xe1cab0b0, /* strh r11, [r10] */
1672 0xe1c830b0, /* strh r3, [r8] */
1673 0xe1c150b0, /* strh r5, [r1] */
1674 0xe1a00000, /* nop (mov r0,r0) */
1675 /* 00008168 <sp_16_busy>: */
1676 0xe1d160b0, /* ldrh r6, [r1] */
1677 0xe0257006, /* eor r7, r5, r6 */
1678 0xe0147007, /* ands r7, r4, r7 */
1679 0x0a000007, /* beq 8198 <sp_16_cont> */
1680 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1681 0x0afffff9, /* beq 8168 <sp_16_busy> */
1682 0xe1d160b0, /* ldrh r6, [r1] */
1683 0xe0257006, /* eor r7, r5, r6 */
1684 0xe0147007, /* ands r7, r4, r7 */
1685 0x0a000001, /* beq 8198 <sp_16_cont> */
1686 0xe3a05000, /* mov r5, #0 ; 0x0 */
1687 0x1a000004, /* bne 81ac <sp_16_done> */
1688 /* 00008198 <sp_16_cont>: */
1689 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1690 0x03a05080, /* moveq r5, #128 ; 0x80 */
1691 0x0a000001, /* beq 81ac <sp_16_done> */
1692 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1693 0xeaffffe8, /* b 8158 <sp_16_code> */
1694 /* 000081ac <sp_16_done>: */
1695 0xeafffffe /* b 81ac <sp_16_done> */
1696 };
1697
1698 /* see contrib/loaders/flash/armv7m_cfi_span_16.s for src */
1699 static const uint32_t armv7m_word_16_code[] = {
1700 0x5B02F830,
1701 0x9000F8A8,
1702 0xB000F8AA,
1703 0x3000F8A8,
1704 0xBF00800D,
1705 0xEA85880E,
1706 0x40270706,
1707 0xEA16D00A,
1708 0xD0F70694,
1709 0xEA85880E,
1710 0x40270706,
1711 0xF04FD002,
1712 0xD1070500,
1713 0xD0023A01,
1714 0x0102F101,
1715 0xF04FE7E0,
1716 0xE7FF0580,
1717 0x0000BE00
1718 };
1719
1720 /* see contrib/loaders/flash/armv7m_cfi_span_16_dq7.s for src */
1721 static const uint32_t armv7m_word_16_code_dq7only[] = {
1722 /* 00000000 <code>: */
1723 0x5B02F830, /* ldrh.w r5, [r0], #2 */
1724 0x9000F8A8, /* strh.w r9, [r8] */
1725 0xB000F8AA, /* strh.w fp, [sl] */
1726 0x3000F8A8, /* strh.w r3, [r8] */
1727 0xBF00800D, /* strh r5, [r1, #0] */
1728 /* nop */
1729
1730 /* 00000014 <busy>: */
1731 0xEA85880E, /* ldrh r6, [r1, #0] */
1732 /* eor.w r7, r5, r6 */
1733 0x40270706, /* ands r7, r4 */
1734 0x3A01D1FA, /* bne.n 14 <busy> */
1735 /* subs r2, #1 */
1736 0xF101D002, /* beq.n 28 <success> */
1737 0xE7EB0102, /* add.w r1, r1, #2 */
1738 /* b.n 0 <code> */
1739
1740 /* 00000028 <success>: */
1741 0x0580F04F, /* mov.w r5, #128 */
1742 0xBF00E7FF, /* b.n 30 <done> */
1743 /* nop (for alignment purposes) */
1744
1745 /* 00000030 <done>: */
1746 0x0000BE00 /* bkpt 0x0000 */
1747 };
1748
1749 /* see contrib/loaders/flash/armv4_5_cfi_span_16_dq7.s for src */
1750 static const uint32_t armv4_5_word_16_code_dq7only[] = {
1751 /* <sp_16_code>: */
1752 0xe0d050b2, /* ldrh r5, [r0], #2 */
1753 0xe1c890b0, /* strh r9, [r8] */
1754 0xe1cab0b0, /* strh r11, [r10] */
1755 0xe1c830b0, /* strh r3, [r8] */
1756 0xe1c150b0, /* strh r5, [r1] */
1757 0xe1a00000, /* nop (mov r0,r0) */
1758 /* <sp_16_busy>: */
1759 0xe1d160b0, /* ldrh r6, [r1] */
1760 0xe0257006, /* eor r7, r5, r6 */
1761 0xe2177080, /* ands r7, #0x80 */
1762 0x1afffffb, /* bne 8168 <sp_16_busy> */
1763 /* */
1764 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1765 0x03a05080, /* moveq r5, #128 ; 0x80 */
1766 0x0a000001, /* beq 81ac <sp_16_done> */
1767 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1768 0xeafffff0, /* b 8158 <sp_16_code> */
1769 /* 000081ac <sp_16_done>: */
1770 0xeafffffe /* b 81ac <sp_16_done> */
1771 };
1772
1773 /* see contrib/loaders/flash/armv4_5_cfi_span_8.s for src */
1774 static const uint32_t armv4_5_word_8_code[] = {
1775 /* 000081b0 <sp_16_code_end>: */
1776 0xe4d05001, /* ldrb r5, [r0], #1 */
1777 0xe5c89000, /* strb r9, [r8] */
1778 0xe5cab000, /* strb r11, [r10] */
1779 0xe5c83000, /* strb r3, [r8] */
1780 0xe5c15000, /* strb r5, [r1] */
1781 0xe1a00000, /* nop (mov r0,r0) */
1782 /* 000081c0 <sp_8_busy>: */
1783 0xe5d16000, /* ldrb r6, [r1] */
1784 0xe0257006, /* eor r7, r5, r6 */
1785 0xe0147007, /* ands r7, r4, r7 */
1786 0x0a000007, /* beq 81f0 <sp_8_cont> */
1787 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1788 0x0afffff9, /* beq 81c0 <sp_8_busy> */
1789 0xe5d16000, /* ldrb r6, [r1] */
1790 0xe0257006, /* eor r7, r5, r6 */
1791 0xe0147007, /* ands r7, r4, r7 */
1792 0x0a000001, /* beq 81f0 <sp_8_cont> */
1793 0xe3a05000, /* mov r5, #0 ; 0x0 */
1794 0x1a000004, /* bne 8204 <sp_8_done> */
1795 /* 000081f0 <sp_8_cont>: */
1796 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1797 0x03a05080, /* moveq r5, #128 ; 0x80 */
1798 0x0a000001, /* beq 8204 <sp_8_done> */
1799 0xe2811001, /* add r1, r1, #1 ; 0x1 */
1800 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
1801 /* 00008204 <sp_8_done>: */
1802 0xeafffffe /* b 8204 <sp_8_done> */
1803 };
1804
1805 if (strncmp(target_type_name(target), "mips_m4k", 8) == 0)
1806 return cfi_spansion_write_block_mips(bank, buffer, address, count);
1807
1808 if (is_armv7m(target_to_armv7m(target))) { /* armv7m target */
1809 armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
1810 armv7m_algo.core_mode = ARM_MODE_THREAD;
1811 arm_algo = &armv7m_algo;
1812 } else if (is_arm(target_to_arm(target))) {
1813 /* All other ARM CPUs have 32 bit instructions */
1814 armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
1815 armv4_5_algo.core_mode = ARM_MODE_SVC;
1816 armv4_5_algo.core_state = ARM_STATE_ARM;
1817 arm_algo = &armv4_5_algo;
1818 } else {
1819 LOG_ERROR("Unknown architecture");
1820 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1821 }
1822
1823 int target_code_size = 0;
1824 const uint32_t *target_code_src = NULL;
1825
1826 switch (bank->bus_width) {
1827 case 1:
1828 if (is_armv7m(target_to_armv7m(target))) {
1829 LOG_ERROR("Unknown ARM architecture");
1830 return ERROR_FAIL;
1831 }
1832 target_code_src = armv4_5_word_8_code;
1833 target_code_size = sizeof(armv4_5_word_8_code);
1834 break;
1835 case 2:
1836 /* Check for DQ5 support */
1837 if (cfi_info->status_poll_mask & (1 << 5)) {
1838 if (is_armv7m(target_to_armv7m(target))) {
1839 /* armv7m target */
1840 target_code_src = armv7m_word_16_code;
1841 target_code_size = sizeof(armv7m_word_16_code);
1842 } else { /* armv4_5 target */
1843 target_code_src = armv4_5_word_16_code;
1844 target_code_size = sizeof(armv4_5_word_16_code);
1845 }
1846 } else {
1847 /* No DQ5 support. Use DQ7 DATA# polling only. */
1848 if (is_armv7m(target_to_armv7m(target))) {
1849 /* armv7m target */
1850 target_code_src = armv7m_word_16_code_dq7only;
1851 target_code_size = sizeof(armv7m_word_16_code_dq7only);
1852 } else { /* armv4_5 target */
1853 target_code_src = armv4_5_word_16_code_dq7only;
1854 target_code_size = sizeof(armv4_5_word_16_code_dq7only);
1855 }
1856 }
1857 break;
1858 case 4:
1859 if (is_armv7m(target_to_armv7m(target))) {
1860 LOG_ERROR("Unknown ARM architecture");
1861 return ERROR_FAIL;
1862 }
1863 target_code_src = armv4_5_word_32_code;
1864 target_code_size = sizeof(armv4_5_word_32_code);
1865 break;
1866 default:
1867 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
1868 bank->bus_width);
1869 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1870 }
1871
1872 /* flash write code */
1873 uint8_t *target_code;
1874
1875 /* convert bus-width dependent algorithm code to correct endianness */
1876 target_code = malloc(target_code_size);
1877 if (target_code == NULL) {
1878 LOG_ERROR("Out of memory");
1879 return ERROR_FAIL;
1880 }
1881
1882 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1883
1884 /* allocate working area */
1885 retval = target_alloc_working_area(target, target_code_size,
1886 &write_algorithm);
1887 if (retval != ERROR_OK) {
1888 free(target_code);
1889 return retval;
1890 }
1891
1892 /* write algorithm code to working area */
1893 retval = target_write_buffer(target, write_algorithm->address,
1894 target_code_size, target_code);
1895 if (retval != ERROR_OK) {
1896 free(target_code);
1897 return retval;
1898 }
1899
1900 free(target_code);
1901
1902 /* the following code still assumes target code is fixed 24*4 bytes */
1903
1904 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1905 buffer_size /= 2;
1906 if (buffer_size <= 256) {
1907 /* we already allocated the writing code, but failed to get a
1908 * buffer, free the algorithm */
1909 target_free_working_area(target, write_algorithm);
1910
1911 LOG_WARNING(
1912 "not enough working area available, can't do block memory writes");
1913 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1914 }
1915 }
1916
1917 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1918 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1919 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1920 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1921 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1922 init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
1923 init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
1924 init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
1925 init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
1926 init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
1927
1928 while (count > 0) {
1929 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1930
1931 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1932 if (retval != ERROR_OK)
1933 break;
1934
1935 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1936 buf_set_u32(reg_params[1].value, 0, 32, address);
1937 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1938 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1939 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1940 buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
1941 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1942 buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
1943 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1944
1945 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1946 write_algorithm->address,
1947 write_algorithm->address + ((target_code_size) - 4),
1948 10000, arm_algo);
1949 if (retval != ERROR_OK)
1950 break;
1951
1952 status = buf_get_u32(reg_params[5].value, 0, 32);
1953 if (status != 0x80) {
1954 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1955 retval = ERROR_FLASH_OPERATION_FAILED;
1956 break;
1957 }
1958
1959 buffer += thisrun_count;
1960 address += thisrun_count;
1961 count -= thisrun_count;
1962 }
1963
1964 target_free_all_working_areas(target);
1965
1966 destroy_reg_param(&reg_params[0]);
1967 destroy_reg_param(&reg_params[1]);
1968 destroy_reg_param(&reg_params[2]);
1969 destroy_reg_param(&reg_params[3]);
1970 destroy_reg_param(&reg_params[4]);
1971 destroy_reg_param(&reg_params[5]);
1972 destroy_reg_param(&reg_params[6]);
1973 destroy_reg_param(&reg_params[7]);
1974 destroy_reg_param(&reg_params[8]);
1975 destroy_reg_param(&reg_params[9]);
1976
1977 return retval;
1978 }
1979
1980 static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1981 {
1982 int retval;
1983 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1984 struct target *target = bank->target;
1985
1986 cfi_intel_clear_status_register(bank);
1987 retval = cfi_send_command(bank, 0x40, address);
1988 if (retval != ERROR_OK)
1989 return retval;
1990
1991 retval = target_write_memory(target, address, bank->bus_width, 1, word);
1992 if (retval != ERROR_OK)
1993 return retval;
1994
1995 uint8_t status;
1996 retval = cfi_intel_wait_status_busy(bank, cfi_info->word_write_timeout, &status);
1997 if (retval != ERROR_OK)
1998 return retval;
1999 if (status != 0x80) {
2000 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2001 if (retval != ERROR_OK)
2002 return retval;
2003
2004 LOG_ERROR("couldn't write word at base " TARGET_ADDR_FMT
2005 ", address 0x%" PRIx32,
2006 bank->base, address);
2007 return ERROR_FLASH_OPERATION_FAILED;
2008 }
2009
2010 return ERROR_OK;
2011 }
2012
2013 static int cfi_intel_write_words(struct flash_bank *bank, const uint8_t *word,
2014 uint32_t wordcount, uint32_t address)
2015 {
2016 int retval;
2017 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2018 struct target *target = bank->target;
2019
2020 /* Calculate buffer size and boundary mask
2021 * buffersize is (buffer size per chip) * (number of chips)
2022 * bufferwsize is buffersize in words */
2023 uint32_t buffersize =
2024 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2025 uint32_t buffermask = buffersize-1;
2026 uint32_t bufferwsize = buffersize / bank->bus_width;
2027
2028 /* Check for valid range */
2029 if (address & buffermask) {
2030 LOG_ERROR("Write address at base " TARGET_ADDR_FMT ", address 0x%"
2031 PRIx32 " not aligned to 2^%d boundary",
2032 bank->base, address, cfi_info->max_buf_write_size);
2033 return ERROR_FLASH_OPERATION_FAILED;
2034 }
2035
2036 /* Check for valid size */
2037 if (wordcount > bufferwsize) {
2038 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32,
2039 wordcount, buffersize);
2040 return ERROR_FLASH_OPERATION_FAILED;
2041 }
2042
2043 /* Write to flash buffer */
2044 cfi_intel_clear_status_register(bank);
2045
2046 /* Initiate buffer operation _*/
2047 retval = cfi_send_command(bank, 0xe8, address);
2048 if (retval != ERROR_OK)
2049 return retval;
2050 uint8_t status;
2051 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2052 if (retval != ERROR_OK)
2053 return retval;
2054 if (status != 0x80) {
2055 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2056 if (retval != ERROR_OK)
2057 return retval;
2058
2059 LOG_ERROR(
2060 "couldn't start buffer write operation at base " TARGET_ADDR_FMT
2061 ", address 0x%" PRIx32,
2062 bank->base,
2063 address);
2064 return ERROR_FLASH_OPERATION_FAILED;
2065 }
2066
2067 /* Write buffer wordcount-1 and data words */
2068 retval = cfi_send_command(bank, bufferwsize-1, address);
2069 if (retval != ERROR_OK)
2070 return retval;
2071
2072 retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word);
2073 if (retval != ERROR_OK)
2074 return retval;
2075
2076 /* Commit write operation */
2077 retval = cfi_send_command(bank, 0xd0, address);
2078 if (retval != ERROR_OK)
2079 return retval;
2080
2081 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2082 if (retval != ERROR_OK)
2083 return retval;
2084
2085 if (status != 0x80) {
2086 retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2087 if (retval != ERROR_OK)
2088 return retval;
2089
2090 LOG_ERROR("Buffer write at base " TARGET_ADDR_FMT
2091 ", address 0x%" PRIx32 " failed.", bank->base, address);
2092 return ERROR_FLASH_OPERATION_FAILED;
2093 }
2094
2095 return ERROR_OK;
2096 }
2097
2098 static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2099 {
2100 int retval;
2101 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2102 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2103 struct target *target = bank->target;
2104
2105 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
2106 if (retval != ERROR_OK)
2107 return retval;
2108
2109 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
2110 if (retval != ERROR_OK)
2111 return retval;
2112
2113 retval = cfi_send_command(bank, 0xa0, flash_address(bank, 0, pri_ext->_unlock1));
2114 if (retval != ERROR_OK)
2115 return retval;
2116
2117 retval = target_write_memory(target, address, bank->bus_width, 1, word);
2118 if (retval != ERROR_OK)
2119 return retval;
2120
2121 if (cfi_spansion_wait_status_busy(bank, cfi_info->word_write_timeout) != ERROR_OK) {
2122 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
2123 if (retval != ERROR_OK)
2124 return retval;
2125
2126 LOG_ERROR("couldn't write word at base " TARGET_ADDR_FMT
2127 ", address 0x%" PRIx32, bank->base, address);
2128 return ERROR_FLASH_OPERATION_FAILED;
2129 }
2130
2131 return ERROR_OK;
2132 }
2133
2134 static int cfi_spansion_write_words(struct flash_bank *bank, const uint8_t *word,
2135 uint32_t wordcount, uint32_t address)
2136 {
2137 int retval;
2138 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2139 struct target *target = bank->target;
2140 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2141
2142 /* Calculate buffer size and boundary mask
2143 * buffersize is (buffer size per chip) * (number of chips)
2144 * bufferwsize is buffersize in words */
2145 uint32_t buffersize =
2146 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2147 uint32_t buffermask = buffersize-1;
2148 uint32_t bufferwsize = buffersize / bank->bus_width;
2149
2150 /* Check for valid range */
2151 if (address & buffermask) {
2152 LOG_ERROR("Write address at base " TARGET_ADDR_FMT
2153 ", address 0x%" PRIx32 " not aligned to 2^%d boundary",
2154 bank->base, address, cfi_info->max_buf_write_size);
2155 return ERROR_FLASH_OPERATION_FAILED;
2156 }
2157
2158 /* Check for valid size */
2159 if (wordcount > bufferwsize) {
2160 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %"
2161 PRId32, wordcount, buffersize);
2162 return ERROR_FLASH_OPERATION_FAILED;
2163 }
2164
2165 /* Unlock */
2166 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
2167 if (retval != ERROR_OK)
2168 return retval;
2169
2170 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
2171 if (retval != ERROR_OK)
2172 return retval;
2173
2174 /* Buffer load command */
2175 retval = cfi_send_command(bank, 0x25, address);
2176 if (retval != ERROR_OK)
2177 return retval;
2178
2179 /* Write buffer wordcount-1 and data words */
2180 retval = cfi_send_command(bank, bufferwsize-1, address);
2181 if (retval != ERROR_OK)
2182 return retval;
2183
2184 retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word);
2185 if (retval != ERROR_OK)
2186 return retval;
2187
2188 /* Commit write operation */
2189 retval = cfi_send_command(bank, 0x29, address);
2190 if (retval != ERROR_OK)
2191 return retval;
2192
2193 if (cfi_spansion_wait_status_busy(bank, cfi_info->buf_write_timeout) != ERROR_OK) {
2194 retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
2195 if (retval != ERROR_OK)
2196 return retval;
2197
2198 LOG_ERROR("couldn't write block at base " TARGET_ADDR_FMT
2199 ", address 0x%" PRIx32 ", size 0x%" PRIx32, bank->base, address,
2200 bufferwsize);
2201 return ERROR_FLASH_OPERATION_FAILED;
2202 }
2203
2204 return ERROR_OK;
2205 }
2206
2207 static int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2208 {
2209 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2210
2211 switch (cfi_info->pri_id) {
2212 case 1:
2213 case 3:
2214 return cfi_intel_write_word(bank, word, address);
2215 break;
2216 case 2:
2217 return cfi_spansion_write_word(bank, word, address);
2218 break;
2219 default:
2220 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2221 break;
2222 }
2223
2224 return ERROR_FLASH_OPERATION_FAILED;
2225 }
2226
2227 static int cfi_write_words(struct flash_bank *bank, const uint8_t *word,
2228 uint32_t wordcount, uint32_t address)
2229 {
2230 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2231
2232 if (cfi_info->buf_write_timeout_typ == 0) {
2233 /* buffer writes are not supported */
2234 LOG_DEBUG("Buffer Writes Not Supported");
2235 return ERROR_FLASH_OPER_UNSUPPORTED;
2236 }
2237
2238 switch (cfi_info->pri_id) {
2239 case 1:
2240 case 3:
2241 return cfi_intel_write_words(bank, word, wordcount, address);
2242 break;
2243 case 2:
2244 return cfi_spansion_write_words(bank, word, wordcount, address);
2245 break;
2246 default:
2247 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2248 break;
2249 }
2250
2251 return ERROR_FLASH_OPERATION_FAILED;
2252 }
2253
2254 static int cfi_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
2255 {
2256 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2257 struct target *target = bank->target;
2258 uint32_t address = bank->base + offset;
2259 uint32_t read_p;
2260 int align; /* number of unaligned bytes */
2261 uint8_t current_word[CFI_MAX_BUS_WIDTH];
2262 int i;
2263 int retval;
2264
2265 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2266 (int)count, (unsigned)offset);
2267
2268 if (bank->target->state != TARGET_HALTED) {
2269 LOG_ERROR("Target not halted");
2270 return ERROR_TARGET_NOT_HALTED;
2271 }
2272
2273 if (offset + count > bank->size)
2274 return ERROR_FLASH_DST_OUT_OF_BANK;
2275
2276 if (cfi_info->qry[0] != 'Q')
2277 return ERROR_FLASH_BANK_NOT_PROBED;
2278
2279 /* start at the first byte of the first word (bus_width size) */
2280 read_p = address & ~(bank->bus_width - 1);
2281 align = address - read_p;
2282 if (align != 0) {
2283 LOG_INFO("Fixup %d unaligned read head bytes", align);
2284
2285 /* read a complete word from flash */
2286 retval = target_read_memory(target, read_p, bank->bus_width, 1, current_word);
2287 if (retval != ERROR_OK)
2288 return retval;
2289
2290 /* take only bytes we need */
2291 for (i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2292 *buffer++ = current_word[i];
2293
2294 read_p += bank->bus_width;
2295 }
2296
2297 align = count / bank->bus_width;
2298 if (align) {
2299 retval = target_read_memory(target, read_p, bank->bus_width, align, buffer);
2300 if (retval != ERROR_OK)
2301 return retval;
2302
2303 read_p += align * bank->bus_width;
2304 buffer += align * bank->bus_width;
2305 count -= align * bank->bus_width;
2306 }
2307
2308 if (count) {
2309 LOG_INFO("Fixup %" PRIu32 " unaligned read tail bytes", count);
2310
2311 /* read a complete word from flash */
2312 retval = target_read_memory(target, read_p, bank->bus_width, 1, current_word);
2313 if (retval != ERROR_OK)
2314 return retval;
2315
2316 /* take only bytes we need */
2317 for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2318 *buffer++ = current_word[i];
2319 }
2320
2321 return ERROR_OK;
2322 }
2323
2324 static int cfi_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count)
2325 {
2326 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2327 struct target *target = bank->target;
2328 uint32_t address = bank->base + offset; /* address of first byte to be programmed */
2329 uint32_t write_p;
2330 int align; /* number of unaligned bytes */
2331 int blk_count; /* number of bus_width bytes for block copy */
2332 uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being
2333 *programmed */
2334 uint8_t *swapped_buffer = NULL;
2335 const uint8_t *real_buffer = NULL;
2336 int i;
2337 int retval;
2338
2339 if (bank->target->state != TARGET_HALTED) {
2340 LOG_ERROR("Target not halted");
2341 return ERROR_TARGET_NOT_HALTED;
2342 }
2343
2344 if (offset + count > bank->size)
2345 return ERROR_FLASH_DST_OUT_OF_BANK;
2346
2347 if (cfi_info->qry[0] != 'Q')
2348 return ERROR_FLASH_BANK_NOT_PROBED;
2349
2350 /* start at the first byte of the first word (bus_width size) */
2351 write_p = address & ~(bank->bus_width - 1);
2352 align = address - write_p;
2353 if (align != 0) {
2354 LOG_INFO("Fixup %d unaligned head bytes", align);
2355
2356 /* read a complete word from flash */
2357 retval = target_read_memory(target, write_p, bank->bus_width, 1, current_word);
2358 if (retval != ERROR_OK)
2359 return retval;
2360
2361 /* replace only bytes that must be written */
2362 for (i = align;
2363 (i < bank->bus_width) && (count > 0);
2364 i++, count--)
2365 if (cfi_info->data_swap)
2366 /* data bytes are swapped (reverse endianness) */
2367 current_word[bank->bus_width - i] = *buffer++;
2368 else
2369 current_word[i] = *buffer++;
2370
2371 retval = cfi_write_word(bank, current_word, write_p);
2372 if (retval != ERROR_OK)
2373 return retval;
2374 write_p += bank->bus_width;
2375 }
2376
2377 if (cfi_info->data_swap && count) {
2378 swapped_buffer = malloc(count & ~(bank->bus_width - 1));
2379 switch (bank->bus_width) {
2380 case 2:
2381 buf_bswap16(swapped_buffer, buffer,
2382 count & ~(bank->bus_width - 1));
2383 break;
2384 case 4:
2385 buf_bswap32(swapped_buffer, buffer,
2386 count & ~(bank->bus_width - 1));
2387 break;
2388 }
2389 real_buffer = buffer;
2390 buffer = swapped_buffer;
2391 }
2392
2393 /* handle blocks of bus_size aligned bytes */
2394 blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
2395 switch (cfi_info->pri_id) {
2396 /* try block writes (fails without working area) */
2397 case 1:
2398 case 3:
2399 retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
2400 break;
2401 case 2:
2402 retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
2403 break;
2404 default:
2405 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2406 retval = ERROR_FLASH_OPERATION_FAILED;
2407 break;
2408 }
2409 if (retval == ERROR_OK) {
2410 /* Increment pointers and decrease count on succesful block write */
2411 buffer += blk_count;
2412 write_p += blk_count;
2413 count -= blk_count;
2414 } else {
2415 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
2416 /* Calculate buffer size and boundary mask
2417 * buffersize is (buffer size per chip) * (number of chips)
2418 * bufferwsize is buffersize in words */
2419 uint32_t buffersize =
2420 (1UL <<
2421 cfi_info->max_buf_write_size) *
2422 (bank->bus_width / bank->chip_width);
2423 uint32_t buffermask = buffersize-1;
2424 uint32_t bufferwsize = buffersize / bank->bus_width;
2425
2426 /* fall back to memory writes */
2427 while (count >= (uint32_t)bank->bus_width) {
2428 int fallback;
2429 if ((write_p & 0xff) == 0) {
2430 LOG_INFO("Programming at 0x%08" PRIx32 ", count 0x%08"
2431 PRIx32 " bytes remaining", write_p, count);
2432 }
2433 fallback = 1;
2434 if ((bufferwsize > 0) && (count >= buffersize) &&
2435 !(write_p & buffermask)) {
2436 retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
2437 if (retval == ERROR_OK) {
2438 buffer += buffersize;
2439 write_p += buffersize;
2440 count -= buffersize;
2441 fallback = 0;
2442 } else if (retval != ERROR_FLASH_OPER_UNSUPPORTED)
2443 return retval;
2444 }
2445 /* try the slow way? */
2446 if (fallback) {
2447 for (i = 0; i < bank->bus_width; i++)
2448 current_word[i] = *buffer++;
2449
2450 retval = cfi_write_word(bank, current_word, write_p);
2451 if (retval != ERROR_OK)
2452 return retval;
2453
2454 write_p += bank->bus_width;
2455 count -= bank->bus_width;
2456 }
2457 }
2458 } else
2459 return retval;
2460 }
2461
2462 if (swapped_buffer) {
2463 buffer = real_buffer + (buffer - swapped_buffer);
2464 free(swapped_buffer);
2465 }
2466
2467 /* return to read array mode, so we can read from flash again for padding */
2468 retval = cfi_reset(bank);
2469 if (retval != ERROR_OK)
2470 return retval;
2471
2472 /* handle unaligned tail bytes */
2473 if (count > 0) {
2474 LOG_INFO("Fixup %" PRId32 " unaligned tail bytes", count);
2475
2476 /* read a complete word from flash */
2477 retval = target_read_memory(target, write_p, bank->bus_width, 1, current_word);
2478 if (retval != ERROR_OK)
2479 return retval;
2480
2481 /* replace only bytes that must be written */
2482 for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2483 if (cfi_info->data_swap)
2484 /* data bytes are swapped (reverse endianness) */
2485 current_word[bank->bus_width - i] = *buffer++;
2486 else
2487 current_word[i] = *buffer++;
2488
2489 retval = cfi_write_word(bank, current_word, write_p);
2490 if (retval != ERROR_OK)
2491 return retval;
2492 }
2493
2494 /* return to read array mode */
2495 return cfi_reset(bank);
2496 }
2497
2498 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, const void *param)
2499 {
2500 (void) param;
2501 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2502 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2503
2504 pri_ext->_reversed_geometry = 1;
2505 }
2506
2507 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, const void *param)
2508 {
2509 int i;
2510 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2511 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2512 (void) param;
2513
2514 if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3)) {
2515 LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
2516
2517 for (i = 0; i < cfi_info->num_erase_regions / 2; i++) {
2518 int j = (cfi_info->num_erase_regions - 1) - i;
2519 uint32_t swap;
2520
2521 swap = cfi_info->erase_region_info[i];
2522 cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
2523 cfi_info->erase_region_info[j] = swap;
2524 }
2525 }
2526 }
2527
2528 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, const void *param)
2529 {
2530 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2531 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2532 const struct cfi_unlock_addresses *unlock_addresses = param;
2533
2534 pri_ext->_unlock1 = unlock_addresses->unlock1;
2535 pri_ext->_unlock2 = unlock_addresses->unlock2;
2536 }
2537
2538 static void cfi_fixup_0002_polling_bits(struct flash_bank *bank, const void *param)
2539 {
2540 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2541 const int *status_poll_mask = param;
2542
2543 cfi_info->status_poll_mask = *status_poll_mask;
2544 }
2545
2546
2547 static int cfi_query_string(struct flash_bank *bank, int address)
2548 {
2549 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2550 int retval;
2551
2552 retval = cfi_send_command(bank, 0x98, flash_address(bank, 0, address));
2553 if (retval != ERROR_OK)
2554 return retval;
2555
2556 retval = cfi_query_u8(bank, 0, 0x10, &cfi_info->qry[0]);
2557 if (retval != ERROR_OK)
2558 return retval;
2559 retval = cfi_query_u8(bank, 0, 0x11, &cfi_info->qry[1]);
2560 if (retval != ERROR_OK)
2561 return retval;
2562 retval = cfi_query_u8(bank, 0, 0x12, &cfi_info->qry[2]);
2563 if (retval != ERROR_OK)
2564 return retval;
2565
2566 LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x",
2567 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
2568
2569 if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y')) {
2570 retval = cfi_reset(bank);
2571 if (retval != ERROR_OK)
2572 return retval;
2573 LOG_ERROR("Could not probe bank: no QRY");
2574 return ERROR_FLASH_BANK_INVALID;
2575 }
2576
2577 return ERROR_OK;
2578 }
2579
2580 static int cfi_probe(struct flash_bank *bank)
2581 {
2582 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2583 struct target *target = bank->target;
2584 int num_sectors = 0;
2585 int i;
2586 int sector = 0;
2587 uint32_t unlock1 = 0x555;
2588 uint32_t unlock2 = 0x2aa;
2589 int retval;
2590 uint8_t value_buf0[CFI_MAX_BUS_WIDTH], value_buf1[CFI_MAX_BUS_WIDTH];
2591
2592 if (bank->target->state != TARGET_HALTED) {
2593 LOG_ERROR("Target not halted");
2594 return ERROR_TARGET_NOT_HALTED;
2595 }
2596
2597 cfi_info->probed = 0;
2598 cfi_info->num_erase_regions = 0;
2599 if (bank->sectors) {
2600 free(bank->sectors);
2601 bank->sectors = NULL;
2602 }
2603 if (cfi_info->erase_region_info) {
2604 free(cfi_info->erase_region_info);
2605 cfi_info->erase_region_info = NULL;
2606 }
2607
2608 /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
2609 * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
2610 */
2611 if (cfi_info->jedec_probe) {
2612 unlock1 = 0x5555;
2613 unlock2 = 0x2aaa;
2614 }
2615
2616 /* switch to read identifier codes mode ("AUTOSELECT") */
2617 retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, unlock1));
2618 if (retval != ERROR_OK)
2619 return retval;
2620 retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, unlock2));
2621 if (retval != ERROR_OK)
2622 return retval;
2623 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, unlock1));
2624 if (retval != ERROR_OK)
2625 return retval;
2626
2627 retval = target_read_memory(target, flash_address(bank, 0, 0x00),
2628 bank->bus_width, 1, value_buf0);
2629 if (retval != ERROR_OK)
2630 return retval;
2631 retval = target_read_memory(target, flash_address(bank, 0, 0x01),
2632 bank->bus_width, 1, value_buf1);
2633 if (retval != ERROR_OK)
2634 return retval;
2635 switch (bank->chip_width) {
2636 case 1:
2637 cfi_info->manufacturer = *value_buf0;
2638 cfi_info->device_id = *value_buf1;
2639 break;
2640 case 2:
2641 cfi_info->manufacturer = target_buffer_get_u16(target, value_buf0);
2642 cfi_info->device_id = target_buffer_get_u16(target, value_buf1);
2643 break;
2644 case 4:
2645 cfi_info->manufacturer = target_buffer_get_u32(target, value_buf0);
2646 cfi_info->device_id = target_buffer_get_u32(target, value_buf1);
2647 break;
2648 default:
2649 LOG_ERROR("Unsupported bank chipwidth %d, can't probe memory",
2650 bank->chip_width);
2651 return ERROR_FLASH_OPERATION_FAILED;
2652 }
2653
2654 LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x",
2655 cfi_info->manufacturer, cfi_info->device_id);
2656 /* switch back to read array mode */
2657 retval = cfi_reset(bank);
2658 if (retval != ERROR_OK)
2659 return retval;
2660
2661 /* check device/manufacturer ID for known non-CFI flashes. */
2662 cfi_fixup_non_cfi(bank);
2663
2664 /* query only if this is a CFI compatible flash,
2665 * otherwise the relevant info has already been filled in
2666 */
2667 if (cfi_info->not_cfi == 0) {
2668 /* enter CFI query mode
2669 * according to JEDEC Standard No. 68.01,
2670 * a single bus sequence with address = 0x55, data = 0x98 should put
2671 * the device into CFI query mode.
2672 *
2673 * SST flashes clearly violate this, and we will consider them incompatible for now
2674 */
2675
2676 retval = cfi_query_string(bank, 0x55);
2677 if (retval != ERROR_OK) {
2678 /*
2679 * Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
2680 * be harmless enough:
2681 *
2682 * http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
2683 */
2684 LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
2685 retval = cfi_query_string(bank, 0x555);
2686 }
2687 if (retval != ERROR_OK)
2688 return retval;
2689
2690 retval = cfi_query_u16(bank, 0, 0x13, &cfi_info->pri_id);
2691 if (retval != ERROR_OK)
2692 return retval;
2693 retval = cfi_query_u16(bank, 0, 0x15, &cfi_info->pri_addr);
2694 if (retval != ERROR_OK)
2695 return retval;
2696 retval = cfi_query_u16(bank, 0, 0x17, &cfi_info->alt_id);
2697 if (retval != ERROR_OK)
2698 return retval;
2699 retval = cfi_query_u16(bank, 0, 0x19, &cfi_info->alt_addr);
2700 if (retval != ERROR_OK)
2701 return retval;
2702
2703 LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: "
2704 "0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1],
2705 cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr,
2706 cfi_info->alt_id, cfi_info->alt_addr);
2707
2708 retval = cfi_query_u8(bank, 0, 0x1b, &cfi_info->vcc_min);
2709 if (retval != ERROR_OK)
2710 return retval;
2711 retval = cfi_query_u8(bank, 0, 0x1c, &cfi_info->vcc_max);
2712 if (retval != ERROR_OK)
2713 return retval;
2714 retval = cfi_query_u8(bank, 0, 0x1d, &cfi_info->vpp_min);
2715 if (retval != ERROR_OK)
2716 return retval;
2717 retval = cfi_query_u8(bank, 0, 0x1e, &cfi_info->vpp_max);
2718 if (retval != ERROR_OK)
2719 return retval;
2720
2721 retval = cfi_query_u8(bank, 0, 0x1f, &cfi_info->word_write_timeout_typ);
2722 if (retval != ERROR_OK)
2723 return retval;
2724 retval = cfi_query_u8(bank, 0, 0x20, &cfi_info->buf_write_timeout_typ);
2725 if (retval != ERROR_OK)
2726 return retval;
2727 retval = cfi_query_u8(bank, 0, 0x21, &cfi_info->block_erase_timeout_typ);
2728 if (retval != ERROR_OK)
2729 return retval;
2730 retval = cfi_query_u8(bank, 0, 0x22, &cfi_info->chip_erase_timeout_typ);
2731 if (retval != ERROR_OK)
2732 return retval;
2733 retval = cfi_query_u8(bank, 0, 0x23, &cfi_info->word_write_timeout_max);
2734 if (retval != ERROR_OK)
2735 return retval;
2736 retval = cfi_query_u8(bank, 0, 0x24, &cfi_info->buf_write_timeout_max);
2737 if (retval != ERROR_OK)
2738 return retval;
2739 retval = cfi_query_u8(bank, 0, 0x25, &cfi_info->block_erase_timeout_max);
2740 if (retval != ERROR_OK)
2741 return retval;
2742 retval = cfi_query_u8(bank, 0, 0x26, &cfi_info->chip_erase_timeout_max);
2743 if (retval != ERROR_OK)
2744 return retval;
2745
2746 uint8_t data;
2747 retval = cfi_query_u8(bank, 0, 0x27, &data);
2748 if (retval != ERROR_OK)
2749 return retval;
2750 cfi_info->dev_size = 1 << data;
2751
2752 retval = cfi_query_u16(bank, 0, 0x28, &cfi_info->interface_desc);
2753 if (retval != ERROR_OK)
2754 return retval;
2755 retval = cfi_query_u16(bank, 0, 0x2a, &cfi_info->max_buf_write_size);
2756 if (retval != ERROR_OK)
2757 return retval;
2758 retval = cfi_query_u8(bank, 0, 0x2c, &cfi_info->num_erase_regions);
2759 if (retval != ERROR_OK)
2760 return retval;
2761
2762 LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: 0x%x",
2763 cfi_info->dev_size, cfi_info->interface_desc,
2764 (1 << cfi_info->max_buf_write_size));
2765
2766 if (cfi_info->num_erase_regions) {
2767 cfi_info->erase_region_info = malloc(sizeof(*cfi_info->erase_region_info)
2768 * cfi_info->num_erase_regions);
2769 for (i = 0; i < cfi_info->num_erase_regions; i++) {
2770 retval = cfi_query_u32(bank,
2771 0,
2772 0x2d + (4 * i),
2773 &cfi_info->erase_region_info[i]);
2774 if (retval != ERROR_OK)
2775 return retval;
2776 LOG_DEBUG(
2777 "erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "",
2778 i,
2779 (cfi_info->erase_region_info[i] & 0xffff) + 1,
2780 (cfi_info->erase_region_info[i] >> 16) * 256);
2781 }
2782 } else
2783 cfi_info->erase_region_info = NULL;
2784
2785 /* We need to read the primary algorithm extended query table before calculating
2786 * the sector layout to be able to apply fixups
2787 */
2788 switch (cfi_info->pri_id) {
2789 /* Intel command set (standard and extended) */
2790 case 0x0001:
2791 case 0x0003:
2792 cfi_read_intel_pri_ext(bank);
2793 break;
2794 /* AMD/Spansion, Atmel, ... command set */
2795 case 0x0002:
2796 cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /*
2797 *default
2798 *for
2799 *all
2800 *CFI
2801 *flashs
2802 **/
2803 cfi_read_0002_pri_ext(bank);
2804 break;
2805 default:
2806 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2807 break;
2808 }
2809
2810 /* return to read array mode
2811 * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
2812 */
2813 retval = cfi_reset(bank);
2814 if (retval != ERROR_OK)
2815 return retval;
2816 } /* end CFI case */
2817
2818 LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
2819 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2820 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2821 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2822 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2823
2824 LOG_DEBUG("typ. word write timeout: %u us, typ. buf write timeout: %u us, "
2825 "typ. block erase timeout: %u ms, typ. chip erase timeout: %u ms",
2826 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
2827 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
2828
2829 LOG_DEBUG("max. word write timeout: %u us, max. buf write timeout: %u us, "
2830 "max. block erase timeout: %u ms, max. chip erase timeout: %u ms",
2831 (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2832 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2833 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2834 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2835
2836 /* convert timeouts to real values in ms */
2837 cfi_info->word_write_timeout = DIV_ROUND_UP((1L << cfi_info->word_write_timeout_typ) *
2838 (1L << cfi_info->word_write_timeout_max), 1000);
2839 cfi_info->buf_write_timeout = DIV_ROUND_UP((1L << cfi_info->buf_write_timeout_typ) *
2840 (1L << cfi_info->buf_write_timeout_max), 1000);
2841 cfi_info->block_erase_timeout = (1L << cfi_info->block_erase_timeout_typ) *
2842 (1L << cfi_info->block_erase_timeout_max);
2843 cfi_info->chip_erase_timeout = (1L << cfi_info->chip_erase_timeout_typ) *
2844 (1L << cfi_info->chip_erase_timeout_max);
2845
2846 LOG_DEBUG("calculated word write timeout: %u ms, buf write timeout: %u ms, "
2847 "block erase timeout: %u ms, chip erase timeout: %u ms",
2848 cfi_info->word_write_timeout, cfi_info->buf_write_timeout,
2849 cfi_info->block_erase_timeout, cfi_info->chip_erase_timeout);
2850
2851 /* apply fixups depending on the primary command set */
2852 switch (cfi_info->pri_id) {
2853 /* Intel command set (standard and extended) */
2854 case 0x0001:
2855 case 0x0003:
2856 cfi_fixup(bank, cfi_0001_fixups);
2857 break;
2858 /* AMD/Spansion, Atmel, ... command set */
2859 case 0x0002:
2860 cfi_fixup(bank, cfi_0002_fixups);
2861 break;
2862 default:
2863 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2864 break;
2865 }
2866
2867 if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size) {
2868 LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32
2869 " size flash was found", bank->size, cfi_info->dev_size);
2870 }
2871
2872 if (cfi_info->num_erase_regions == 0) {
2873 /* a device might have only one erase block, spanning the whole device */
2874 bank->num_sectors = 1;
2875 bank->sectors = malloc(sizeof(struct flash_sector));
2876
2877 bank->sectors[sector].offset = 0x0;
2878 bank->sectors[sector].size = bank->size;
2879 bank->sectors[sector].is_erased = -1;
2880 bank->sectors[sector].is_protected = -1;
2881 } else {
2882 uint32_t offset = 0;
2883
2884 for (i = 0; i < cfi_info->num_erase_regions; i++)
2885 num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
2886
2887 bank->num_sectors = num_sectors;
2888 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
2889
2890 for (i = 0; i < cfi_info->num_erase_regions; i++) {
2891 uint32_t j;
2892 for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++) {
2893 bank->sectors[sector].offset = offset;
2894 bank->sectors[sector].size =
2895 ((cfi_info->erase_region_info[i] >> 16) * 256)
2896 * bank->bus_width / bank->chip_width;
2897 offset += bank->sectors[sector].size;
2898 bank->sectors[sector].is_erased = -1;
2899 bank->sectors[sector].is_protected = -1;
2900 sector++;
2901 }
2902 }
2903 if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width)) {
2904 LOG_WARNING(
2905 "CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "", \
2906 (cfi_info->dev_size * bank->bus_width / bank->chip_width),
2907 offset);
2908 }
2909 }
2910
2911 cfi_info->probed = 1;
2912
2913 return ERROR_OK;
2914 }
2915
2916 static int cfi_auto_probe(struct flash_bank *bank)
2917 {
2918 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2919 if (cfi_info->probed)
2920 return ERROR_OK;
2921 return cfi_probe(bank);
2922 }
2923
2924 static int cfi_intel_protect_check(struct flash_bank *bank)
2925 {
2926 int retval;
2927 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2928 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
2929 int i;
2930
2931 /* check if block lock bits are supported on this device */
2932 if (!(pri_ext->blk_status_reg_mask & 0x1))
2933 return ERROR_FLASH_OPERATION_FAILED;
2934
2935 retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55));
2936 if (retval != ERROR_OK)
2937 return retval;
2938
2939 for (i = 0; i < bank->num_sectors; i++) {
2940 uint8_t block_status;
2941 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2942 if (retval != ERROR_OK)
2943 return retval;
2944
2945 if (block_status & 1)
2946 bank->sectors[i].is_protected = 1;
2947 else